SAMPLE QUANTILES OF STOCHASTIC PROCESSES WITH STATIONARY AND INDEPENDENT INCREMENTS

By Angelos Dassios
London School of Economics

The purpose of this note is to obtain a representation of the distribution of the α-quantile of a process with stationary and independent increments as the sum of the supremum and the infimum of two rescaled independent copies of the process. This representation has already been proved for a Brownian motion. The proof is based on already known discrete time results.

1. Introduction. Let $(X(t), t \geq 0)$ be a process with stationary and independent increments with $X(0)=0$ and consider the version with paths in $D[0, \infty$) (see [2], page 306). For $0<\alpha<1$, define the α-quantile of ($X(s)$, $0 \leq s \leq t$) by

$$
M(\alpha, t)=\inf \left\{x: \int_{0}^{t} \mathbf{1}(X(s) \leq x) d s>\alpha t\right\} .
$$

Our main result is the following theorem
Theorem 1. Let $X^{(1)}(t)$ and $X^{(2)}(t)$ be independent copies of $X(t)$. Then,

$$
\binom{M(\alpha, t)}{X(t)}=\binom{\sup _{o \leq s \leq \alpha t} X^{(1)}(s)+\inf _{0 \leq s \leq(1-\alpha) t} X^{(2)}(s)}{X^{(1)}(\alpha t)+X^{(2)}((1-\alpha) t)} \quad \text { (in law). }
$$

This result was obtained for the special case when $X(t)$ is a Brownian motion by Dassios [4] and Embrechts, Rogers and Yor [5]. Using this result, one could calculate an expression for the joint probability density of $M(\alpha, t)$ and $X(t)$. The motivation for these calculations was a problem in mathematical finance, the pricing of the so-called α-quantile (α-percentile) options. For the pricing of these options, see $[1,4,6]$.

To prove our theorem, we will use a similar discrete time result, obtained some time ago by Wendel [9] and Port [7].
2. Discrete time results. Consider the sequence $\mathbf{x}=\left(x_{0}, x_{1}, x_{2}, \ldots\right)$. For integers $0 \leq j \leq n$, define the (j, n)th quantile of \mathbf{x} for $j=0,1,2, \ldots, n$ by $M_{j, n}(\mathbf{x})=\inf \left\{z: \sum_{i=0}^{n} \mathbf{1}\left(x_{i} \leq z\right)>j\right\}$.

[^0]In particular, $M_{0, n}(\mathbf{x})=\min _{i=0,1, \ldots, n}\left(x_{i}\right)$ and $M_{n, n}(\mathbf{x})=\max _{i=0,1, \ldots, n}\left\{x_{i}\right\}$. This definition coincides with the one in [7].

The following result is due to Wendel [9].
Proposition 1. Let Y_{1}, Y_{2}, \ldots be a sequence of i.i.d. random variables. Define $\mathbf{X}=\left(X_{0}, X_{1}, \ldots\right)$ by $X_{0}=0$ and $X_{n}=\sum_{i=1}^{n} Y_{i}$ for $n=1,2, \ldots$. Let $\mathbf{X}^{(1)}$ and $\mathbf{X}^{(2)}$ be two independent copies of \mathbf{X}. Then,

$$
\begin{equation*}
\binom{M_{j, n}(\mathbf{X})}{X_{n}}=\binom{M_{j, j}\left(\mathbf{X}^{(1)}\right)+M_{0, n-j}\left(\mathbf{X}^{(2)}\right)}{X_{j}^{(1)}+X_{n-j}^{(2)}} \quad(\text { in law }) . \tag{2.1}
\end{equation*}
$$

Wendel actually states this result in characteristic function form. An extension of this result, involving the time the quantile is achieved, was obtained by Port [7]. A careful reading of Port's proof can persuade the reader that the result is actually true where $Y_{1}, Y_{2}, \ldots, Y_{n}$ are exchangeable random variables, with $\mathbf{X}^{(1)}$ replaced by $\left(0, X_{1}, \ldots, X_{j}\right)$ and $\mathbf{X}^{(2)}$ by ($0, X_{j+1}-$ $X_{j}, \ldots, X_{n}-X_{j}$).
3. Proof of Theorem 1. Define the occupation time $L(x, t)=\int_{0}^{t} \mathbf{1}(X(s)$ $\leq x) d s$. We have that

$$
\begin{equation*}
\operatorname{Pr}(M(\alpha, t) \leq x, X(t) \leq a)=\operatorname{Pr}(L(x, t)>\alpha t, X(t) \leq a) . \tag{3.1}
\end{equation*}
$$

Similarly for the discrete time process \mathbf{X} define $L_{n}(x)=\sum_{i=0}^{n} \mathbf{1}\left(x_{i} \leq x\right)$. We then have

$$
\begin{equation*}
\operatorname{Pr}\left(M_{j, n}(\mathbf{X}) \leq x, X_{n} \leq a\right)=\operatorname{Pr}\left(L_{n}(x)>j, X_{n} \leq a\right) . \tag{3.2}
\end{equation*}
$$

Without loss of generality, we will prove Theorem 1 for $t=1$. Let ($X(s)$, $0 \leq s \leq 1)$ be as in the Introduction, and for $r=0,1, \ldots, n$ set $X_{r}=X(r / n)$. The process ($X_{[n s]}, 0 \leq s \leq 1$) converges weakly to ($X(s), 0 \leq s \leq 1$). Since $\int_{0}^{1} \mathbf{1}(X(s) \leq x) d s$ is a continuous functional of $(X(s), 0 \leq s \leq 1)$, we conclude that for all $0<\alpha<1$ such that $\operatorname{Pr}(L(x, t)>\alpha, X(t) \leq a)$ is continuous,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(L_{n}(x)>[n \alpha], X_{n} \leq a\right)=\operatorname{Pr}(L(x, 1)>\alpha, X(1) \leq a) . \tag{3.3}
\end{equation*}
$$

Take $X_{r}^{(1)}=X(r / n)$ for $r=0,1, \ldots,[n \alpha]$, and $X_{r}^{(2)}=X(r+[n \alpha] / n)-$ $X([n \alpha] / n)$ for $r=0,1, \ldots, n-[n \alpha]$. Then $\left(M_{[n \alpha],[n \alpha]}\left(\mathbf{X}^{(1)}\right), X_{[n \alpha]}\right)$ converges in distribution to $\left(\sup _{0 \leq s \leq \alpha} X(s), X(\alpha)\right)$ and $\left(M_{0, n-[n \alpha]}\left(\mathbf{X}^{(2)}\right), X_{n}-X_{[n \alpha]}\right)$ converges in distribution to $\left(\inf _{0 \leq s \leq 1-\alpha}(X(s+\alpha)-X(\alpha)), X(1)-X(\alpha)\right)$. We note that $\mathbf{X}^{(1)}$ and $\mathbf{X}^{(2)}$ are independent and so from (2.1), (3.1), (3.2) and (3.3) we conclude

$$
\begin{align*}
& \binom{M(\alpha, 1)}{X(1)} \\
& \quad=\binom{\sup _{o \leq s \leq \alpha} X(s)+\inf _{0 \leq s \leq(1-\alpha)}(X(\alpha+s)-X(\alpha))}{X(\alpha)+X(1)-X(\alpha)} \quad \text { (in law). } \tag{3.4}
\end{align*}
$$

Taking $X^{(1)}(s)=X(s)$ and $X^{(2)}(s)=X(\alpha+s)-X(a)$ completes the proof of the theorem.

Equation (3.4) is also true if $(X(t), t \geq 0)$ is a process with exchangeable increments. If ($X(t), t \geq 0$) is defined on a probability space ($\Omega, \mathscr{F}, \operatorname{Pr}$), according to [8], Theorem 1, page 202, there exists a nontrivial σ-algebra $\mathscr{F}_{1} \subset \mathscr{F}$ such that $(X(t), t \geq 0)$ has stationary and independent increments with respect to \mathscr{F}_{1}. This was first proved by Bühlman [3]. Conditioning on \mathscr{F}_{1} and taking expectations, we obtain (3.4).

Acknowledgment. The author thanks the referee for pointing out important references.

REFERENCES

[1] Akahori, J. (1995). Some formulae for a new type of path-dependent option. Ann. Appl. Probab. 5 383-388.
[2] Breiman, L. (1968). Probability. Addison-Wesley, Reading, MA.
[3] BÜhlmann, H. (1960). Austauschbare stochastische variabeln und ihre gremzwertsaetze. Univ. California Publications in Statistics 3 1-36.
[4] Dassios, A. (1995). The distribution of the quantiles of a Brownian motion with drift and the pricing of related path-dependent options. Ann. Appl. Probab. 5 389-398.
[5] Embrechts, P., Rogers, L. C. G. and Yor, M. (1995). A proof of Dassios' representation of the α-quantile of Brownian motion with drift. Ann. Appl. Probab. 5 757-767.
[6] Miura, R. (1992). A note on a look-back option on order statistics. Hitotsubashi Journal of Commerce and Management 27 15-28.
[7] Port, S. C. (1963). An elementary probability approach to fluctuation theory. J. Math. Anal. Appl. 6 109-151.
[8] TAKÁcs, L. (1967). Combinatorial Methods in the Theory of Stochastic Processes. Wiley, New York.
[9] Wendel, J. G. (1960). Order statistics of partial sums. Ann. Math. Statist. 31 1034-1044.
Department of Statistics
London School of Economics
Houghton Street
London WC2A 2AE
United Kingdom
E-MAIL: dassios@statserv.lse.ac.uk

[^0]: Received May 1995; revised September 1995, April 1996.
 AMS 1991 subject classifications. PLEASE SUPPLY
 Key words and phrases. Sample quantiles, exchangeability, stationary and independent increments, look-back financial options.

