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GAUSSIAN LIMIT FIELDS FOR THE
INTEGRATED PERIODOGRAM

By Claudia Klüppelberg and Thomas Mikosch

Johannes Gutenberg–University Mainz and University of Groningen

Functionals of a two-parameter integrated periodogram have been
used for detecting a change in the spectral distribution of a stationary
sequence. The bases for these results are functional central limit theorems
for the integrated periodogram with a Gaussian limit field. We prove func-
tional central limit theorems for a general linear sequence having a finite
fourth moment which is shown to be the optimal moment condition. Our
approach is via an approximation of the integrated periodogram by a finite
linear combination of sample autocovariances. This gives special insight
into the structure of the Gaussian limit field.

1. Introduction. The objective of this paper is to study the two-parameter
process

∫ λ
−π
In; �nx�;X�y�f�y�dy; 0 ≤ x ≤ 1; −π ≤ λ ≤ π;(1.1)

for a smooth function f and for the periodogram
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; 0 ≤ x ≤ 1; −π ≤ λ ≤ π;

of a sample X1; : : : ;Xn taken from a linear process

Xt =
∞∑

j=−∞
ψjZt−j; t ∈ Z:(1.2)

The i.i.d. noise sequence �Zt�t∈Z is supposed to be mean zero with finite vari-
ance var�Z0� = σ2 > 0. We will make the assumptions and notation precise
in Section 2.

Two-parameter processes of type (1.1) have been used for detecting a change
in the spectral distribution function of the sample X1; : : : ;Xn. The integrated
periodogram (1.1) serves here as an analogue to the empirical process for
i.i.d. observations, and test statistics based on (1.1) have a structure which
is similar to the corresponding Kolmogorov–Smirnov-type test statistics in
nonparametric statistics. The basic idea is that the renormalized periodogram
ordinates
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are asymptotically i.i.d. exponential at distinct frequencies λ ∈ �0; π� and that
the corresponding integrated periodogram has very much the same asymp-
totic behaviour as a sum of independent exponential random variables (r.v.’s).
This fact has already been exploited by Grenander and Rosenblatt (1957) and
Bartlett (1954) with their pioneering work on goodness-of-fit tests and also
by Whittle (1953), who introduced a parameter estimator for autoregressive
moving average (ARMA) processes based on the integrated periodogram.

Picard (1985) introduced tests for detecting a changepoint of the spectral
distribution function F of a stationary Gaussian sequence �Xt�. The test
statistics are either

√
n sup

0≤x≤1
0≤λ≤π
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2πn
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when F is known or
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when F is unknown, or they are weighted versions of these statistics. Picard
derived the asymptotic distributions of these test statistics from a two-
parameter functional central limit theorem (FCLT) for the process (1.1).
Giraitis and Leipus (1990, 1992) relaxed the condition of normality of �Xt�
to a linear process with sufficiently high finite moments and derived a FCLT
for (1.1) with a Gaussian limit field.

It is our intention to give another view of these results. Fundamental for our
approach is the fact that the original problem for the periodogram of the sta-
tionary process �Xt� can be relaxed to the simpler problem for the periodogram
of the i.i.d. noise sequence �Zt�. This is due to some specific continuity proper-
ties of the periodogram and of the sample autocovariances. Phillips and Solo
(1992) have given a partial justification of this very useful fact. Furthermore,
we observe that weak limits for linear combinations of sample autocovariances
of the noise �Zt� lead via a Slutsky argument to asymptotic results for the in-
tegrated periodogram. For example, the Whittle estimator for ARMA processes
is based on the integrated periodogram of the observations X1; : : : ;Xn, and
the derivation of its limit distribution relies mainly on the asymptotic be-
haviour of a finite number of such sample autocovariances [see Brockwell and
Davis (1991), Chapter 10.8]. A similar approach allows us to derive goodness–
of–fit test statistics based on the integrated periodogram [see Grenander and
Rosenblatt (1957), Bartlett (1954), Priestley (1981), Dzhaparidze (1986) and
Anderson (1993)].

These considerations are the starting point for our approach. In Section 3
we commence with a sequence of i.i.d. r.v.’s and derive a two-parameter FCLT
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for the integrated periodogram. This FCLT is a consequence of the limit theory
for a finite vector of sample autocovariances.

FCLT ’s for empirical processes are standard and can be found in Shorack
and Wellner (1986), for example. Under standard conditions, the resulting
limit for the sequential empirical process is a Kiefer process K̃�x; t� which is
a Gaussian two-parameter field for x ≥ 0 and t ∈ �0;1� and satisfies

EK̃�x; t� = 0

cov
(
K̃�x1; t1�; K̃�x2; t2�

)
= min�x1; x2��min�t1; t2� − t1t2�:

The Gaussian limit field we obtain for the integrated periodogram is based on
the process

K�x; λ� = 2
∞∑
t=1

Yt�x�
sin�λt�
t

; x ∈ �0;1�; λ ∈ �−π;π�;(1.3)

where Y1�x�;Y2�x�; : : : are i.i.d. Wiener processes with varY1�1� = σ4.
Using well known formulae for trigonometric functions [e.g., Gradshteyn

and Ryzhik (1994), page 39] for x1, x2 ∈ �0;1� and 0 ≤ λ1 ≤ λ2 ≤ π, we obtain
for the covariance function

E�K�x1; λ1�K�x2; λ2��

= 4σ4 min�x1; x2�
∞∑
t=1

sin�λ1t� sin�λ2t�
t2

= 2π2σ4 min�x1; x2�
(

min
(
λ1

π
;
λ2

π

)
− λ1

π

λ2

π

)
:

(1.4)

Hence the process K�x; λ� can be considered as a (suitably scaled) Kiefer
process. This provides a further link between empirical process theory and
the integrated periodogram. We still mention the well known property of a
Kiefer process that for each fixed x 6= 0 the processK�x; λ� defines a Brownian
bridge; also for fixed λ 6= 0 we obtain a Wiener process. This is also immediate
from (1.3) via the Lévy–Ciesielski or Paley–Wiener decomposition of a bridge
process and by the scaling properties of independent Wiener processes.

In Section 4 we extend these results to the linear process �Xt� having a fi-
nite fourth moment. Our main result (Theorem 4.3) is a FCLT for the two-
parameter process (1.1) with a two-parameter Gaussian field as limit. In the
simplest case, Theorem 4.3 states that, for x ∈ �0;1� and λ ∈ �−π;π�,

√
n
∫ λ
−π

(
In; �nx�;X�y�
�ψ�e−iλ��2 −

�nx�
n

σ2
)
dy→d �λ+ π�Y0�x� +K�x; λ�

in the Skorokhod space D ��0;1� × �−π;π��, where the Wiener process Y0
is independent of K�x; λ�. This gives some insight into the structure of the
Gaussian limit field. The course of the proof shows that the summand Y0�x� is
due to the diagonal term in the quadratic form

∫ λ
−π In; �nx�;X�y�/�ψ�e−iλ��2 dy,
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whereas the Yh�x� for h ≥ 1 are the contributions from the sample autoco-
variances of the noise �Zt� at lag h. Moreover, for a suitable random centering
sequence, the Gaussian limit field is simply the Kiefer process K�x; λ� defined
in (1.3).

In Section 5 we prove the results from Sections 3 and 4, and in Section 6
we apply them to changepoint detection in some financial data sets.

2. Notation and assumptions. In this section we make the notation of
the previous section precise. We also introduce basic assumptions.

Throughout we use the convention that
∑b
i=a ai = 0 for any sequence �ai�

provided b < a. The symbol c stands for positive constants which are possibly
different from line to line or formula to formula and whose precise values are
not of interest.

In order to state our results we need the definition of a p-stable r.v. We say
that Y has a p-stable distribution �Y =d Sp�σ;β;µ�� if there are parameters
0 < p ≤ 2, σ > 0, −1 ≤ β ≤ 1 and µ ∈ R such that its characteristic function
has the form

EeiθY =





exp
{
−σp�θ�p

(
1− iβ�sign θ� tan

πp

2

)
+ iµθ

}
; if p 6= 1;

exp
{
−σ �θ�

(
1+ 2

π
iβ�sign θ� ln �θ�

)
+ iµθ

}
; if p = 1:

The case p = 2 corresponds to normal r.v.’s and we denote by N�µ;σ2�
a normal r.v. with mean µ and variance σ2. In certain cases we will ob-
tain stable limit processes. For their definition and properties we refer to the
two recent monographs by Samorodnitsky and Taqqu (1994) and Janicki and
Weron (1993).

We consider the linear process (1.2), where the innovations or the noise
�Zt�t∈Z is a sequence of i.i.d. r.v.’s with mean zero and finite variance σ2. The
assumption

∞∑
j=−∞

�ψj�j <∞(2.1)

ensures that Xt is properly defined as an a.s. absolutely converging series.
The function

�ψ�e−iλ��2 =
∣∣∣∣
∞∑

j=−∞
ψj e

−iλj
∣∣∣∣
2

; −π ≤ λ ≤ π;

is called the power transfer function (of the linear filter �ψj�), and

f�λ� = �ψ�e−iλ��2σ2/�2π�

is just the spectral density of the linear process �Xt�. Condition (2.1) implies
that f is bounded, hence belongs to any Lp.
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Let now �At�t≥1 be one of the sequences �Zt�t∈Z or �Xt�t∈Z. We define the
periodogram for the sample A1; : : : ;An as

In; �nx�;A�λ� = n−1

∣∣∣∣
�nx�∑
t=1

At e
−iλt

∣∣∣∣
2

; x ∈ �0;1�; −π ≤ λ ≤ π;

and we also write for simplicity

In;A�λ� = n−1

∣∣∣∣
n∑
t=1

At e
−iλt

∣∣∣∣
2

; −π ≤ λ ≤ π:

We will frequently make use of weak convergence in the Skorokhod space D .
In particular, we need the spaces D ��a; b� × �c; d�;Rm� of m-dimensional cad-
lag functions on �a; b� × �c; d� for finite a < b, c < d and integer m ≥ 1.
We suppose that D ��a; b� × �c; d�;Rm� is equipped with the J1-topology and
the corresponding σ-algebra of the Borel sets [see Jacod and Shiryaev (1987),
Bickel and Wichura (1971); also Billingsley (1968) and Pollard (1984) for spe-
cial cases].

3. i.i.d. sequences. In this section we consider the case �Xt� = �Zt�.
We will derive a two-parameter FCLT for the integrated periodogram
�
∫ λ
−π In; �nx�;Z�y�dy� which is the basis for the corresponding results for

general linear processes in Section 4.

Theorem 3.1. (a) Suppose that EZ4 <∞. Then

(
n−1/2

�nx�∑
t=1

(
Z2
t − σ2); n1/2

∫ λ
−π

(
In; �nx�;Z�y� − n−1

�nx�∑
t=1

Z2
t

)
dy

)

→d �Y0�x�; K�x; λ��; x ∈ �0;1�; λ ∈ �−π;π�;

in D ��0;1�×�−π;π�;R2�; where Y0�x� and K�x; λ� are independent stochastic
processes, Y0�x� is a Wiener process with Y0�0� ≡ 0, Y0�1� =d N�0; var�Z2��
and K�x; λ� is a Kiefer process with covariance function (1.4).

(b) Suppose that Z is symmetric and

P�Z2 > x� = L�x�x−p; x > 0;

for some p ∈ �1;2� and a slowly varying function L. Then for some slowly
varying function L1;

(
n−1/pL1�n�

�nx�∑
t=1

(
Z2
t − σ2); n1/2

∫ λ
−π

(
In; �nx�;Z�y� − n−1

�nx�∑
t=1

Z2
t

)
dy

)

→d �Y0�x�; K�x; λ��; x ∈ �0;1�; λ ∈ �−π;π�;

in D ��0;1�×�−π;π�;R2�, where Y0�x� and K�x; λ� are independent stochastic
processes,Y0�x� is a p-stable motion withY0�0� ≡ 0,Y0�1� =d Sp�1; 1;0� and
K�x; λ� is a Kiefer process with covariance function (1.4).
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Now we obtain a FCLT for the integrated periodogram of the noise variables
�Zt� as an immediate consequence of Theorem 3.1.

Corollary 3.2. (a) Suppose the assumptions of Theorem 3.1(a) hold. Then

n1/2
∫ λ
−π

(
In; �nx�;Z�y� −

�nx�
n
σ2
)
dy→d S�x; λ� = �λ+ π�Y0�x� +K�x; λ�;

x ∈ �0;1�; λ ∈ �−π;π�
in D ��0;1�× �−π;π��, where Y0�x� and K�x; λ� are as in Theorem 3.1(a); that
is, the limit process is a two-parameter Gaussian field.

(b) Suppose the assumptions of Theorem 3.1(b) hold. Then for some slowly
varying function L1,

n1−1/pL1�n�
∫ λ
−π

(
In; �nx�;Z�y� −

�nx�
n
σ2
)
dy→d �λ+ π�Y0�x�;

x ∈ �0;1�; λ ∈ �−π;π�;
in D ��0;1� × �−π;π��, where Y0�x� is a p-stable motion as in Theorem 3.1(b);
that is, the limit process is a two-parameter stable process.

Random centering yields a unifying result for variables Z satisfying the
assumptions of either Theorem 3.1(a) or (b).

Proposition 3.3. Suppose σ2 <∞. Then the two-parameter process

n1/2
∫ λ
−π

(
In; �nx�;Z�y� − n−1

�nx�∑
t=1

Z2
t

)
dy→d K�x; λ�;

x ∈ �0;1�; λ ∈ �−π;π�;
in D ��0;1� × �−π;π��, where K�x; λ� is a Kiefer process with covariance func-
tion (1.4).

Consequently, random centering with n−1∑�nx�
t=1 Z

2
t yields the same limit

field independent ofEZ4 being finite or infinite provided σ2 <∞. This changes
dramatically if we use deterministic centering with σ2. Then we get differ-
ent limits according as EZ4 < ∞ or EZ4 = ∞. The random centering with
n−1∑�nx�

t=1 Z
2
t eliminates the leading (diagonal) term in the quadratic form given

by the integrated periodogram. The remaining terms are of the same order,
as becomes clear in Proposition 5.1. The random centering can be interpreted
as a robustification of the limiting procedure.

4. Linear processes with finite fourth moment. In this section we
extend the FCLT of Section 3 from the i.i.d. case to a general linear process
(1.2). The key to our results is a standard decomposition which links the pe-
riodogram In;X of the linear process �Xt� with the periodogram In;Z of the
i.i.d. sequence �Zt� [e.g., Brockwell and Davis (1991), pages 346–347].
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Lemma 4.1. We have

In;X�λ� = �ψ�e−iλ��2 In;Z�λ� + n−1Rn�λ�; −π ≤ λ ≤ π;

where

Rn�λ� = ψ�e−iλ�Jn�λ� Yn�−λ� + ψ�eiλ�Jn�−λ� Yn�λ� + �Yn�λ��2;

ψ�e−iλ� =
∞∑

j=−∞
ψje

−iλj; Jn�λ� =
n∑
t=1

Zt e
−iλt;

Yn�λ� =
∞∑

j=−∞
ψj e

−iλj Unj�λ�; Unj�λ� =
n−j∑
t=1−j

Zt e
−iλt −

n∑
t=1

Zt e
−iλt:

This lemma enables us to write the integrated periodogram as

n1/2
∫ λ
−π
In; �nx�;X�y�dy

= �ψ�e−iλ��2 n1/2
∫ λ
−π
In; �nx�;Z�y�dy+ n−1/2

∫ λ
−π
R�nx��y�dy:

(4.1)

Thus we can apply the FCLT for the integrated periodogram of i.i.d. �Zt� (see
Theorem 3.1) if the remainder in (4.1) is uniformly negligible (in λ and x).
This is indeed the case if the fourth moment of Z exists.

Lemma 4.2. If EZ4 <∞, then

n−1/2
∫ λ
−π
R�nx��y�dy→P 0

uniformly in λ ∈ �−π;π� and x ∈ �0;1�.

The following result gives some insight into the structure of the Gaussian
limit field of the integrated periodogram. Together with Corollary 3.2 this
result also explains the influence of the sample autocovariances of the noise
�Zt� on the Gaussian limit field.

Theorem 4.3. Suppose the linear process �Xt� has i.i.d. mean-zero innova-
tions �Zt� and EZ4 < ∞. Let f�λ� and g�λ� = �ψ�e−iλ��2f�λ� be continuously
differentiable functions on �−π;π�. Then

√
n
∫ λ
−π

(
In; �nx�;X�y� − σ2�ψ�e−iy��2 �nx�

n

)
f�y�dy

→d g�λ�S�x; λ� −
∫ λ
−π
g′�y�S�x;y�dy; x ∈ �0;1�; λ ∈ �−π;π�;

(4.2)

in D ��0;1� × �−π;π��, where S�x; λ� is the two-parameter Gaussian field in-
troduced in Corollary 3.2.
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If var�Z� = σ2 is unknown, it is reasonable to replace the centering se-
quence in Theorem 4.3 by a corresponding estimator based on the �Zt�. Re-
visiting the proof of Corollary 3.2 we see that the additional Wiener process
Y0�x� in the limit is due to the centering with σ2 instead of n−1∑n

t=1Z
2
t . This

makes the limit process S�x; λ� more complicated. The following result sug-
gests the use of a random centering sequence which can be calculated from
the observations and which overcomes the additional term Y0�x� in the limit
process.

Theorem 4.4. Suppose the assumptions of Theorem 4.3 hold and assume
in addition that �ψ�e−iλ��2 is positive on �−π;π�. Then

√
n
∫ λ
−π

(
In; �nx�;X�y� −

1
2π

∫ π
−π

In; �nx�;X�z�
�ψ�e−iz��2 dz �ψ�e−iy��2

)
f�y�dy

→d g�λ�K�x; λ� −
∫ λ
−π
g′�y�K�x;y�dy; x ∈ �0;1�; λ ∈ �−π;π�;

in D ��0;1� × �−π;π��, where K�x; λ� is a Kiefer process with covariance func-
tion (1.4).

The Gaussian limit field (4.2) coincides—although the representation is
different—with the one in Picard (1985) and Giraitis and Leipus (1990, 1992)
(except that we integrate from −π to λ, whereas they integrate from −λ to λ).
An inspection of their proofs suggests that one needs at least a finite eighth
moment of Z. Our conditions on the power transfer function �ψ�e−iλ��2 and
on f are more restrictive than in Giraitis and Leipus (1990, 1992), who re-
quire that these functions belong to certain Lq spaces or that they are of
bounded variation. Differentiability of f and g implies that these functions
are bounded, hence belong to all Lq spaces. On the other hand, differentiabil-
ity allows for the representation of the Gaussian field (4.2), which we think
provides a more intuitive understanding of the limit.

Remark. The approach of this section does not work for linear processes
when the fourth moment of Z is infinite. For example, consider the MA(1)-
process Xt = Zt + θZt−1, t ∈ Z, with symmetric Z and P�Z2 > x� ∼ c0x

−p as
x→∞ for some c0 > 0 and p ∈ �1;2�. Then EZ4 = ∞, but still σ2 <∞. It is
not difficult to see that

n1−1/p

2π

∫ π
−π

(
In; �nx�;X�λ� − σ2�ψ�e−iλ��2 �nx�

n

)
dλ

= n−1/p�1+ θ2�
�nx�∑
t=1

�Z2
t − σ2� − θ2n−1/pZ2

�nx� + oP�1�

=x An�x� +Bn�x� + oP�1�

(4.3)

uniformly in x ∈ �0;1�, �An� converges in distribution to a p-stable process in
D �0;1�, but �Bn� is not tight and hence �An +Bn� is not tight. This situation
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remains the same if we replace σ2 in (4.3) by its estimate n−1∑n
t=1Z

2
t . The

problems arise from the fact that the remainders
∫ λ
−πR�nx��y�dy are not negli-

gible. That is, they are of the same order as n1−1/p
∫ λ
−π In; �nx�;Z�y�dy and do not

converge weakly in D ��0;1�× �−π;π��. Thus the FCLT for the two-parameter
integrated periodogram of linear processes with infinite fourth moment does
not hold. This means that these results are sensitive to large fluctuations in
the innovations and therefore are not very robust. This failure came to us quite
surprisingly since we showed in Klüppelberg and Mikosch (1993, 1994, 1996)
and Mikosch, Gadrich, Klüppelberg and Adler (1995) that several statistical
procedures in the frequency domain (such as estimation of the power transfer
function, parameter estimation for ARMA processes and goodness-of-fit tests)
remain valid with slight modifications for observations having even infinite
variance. However, we mention that a one-parameter FCLT for the integrated
periodogram (1.1) with x = 1 still holds true provided σ2 < ∞. This can be
used to derive goodness-of-fit test statistics in the spirit of Grenander and
Rosenblatt (1957), Bartlett (1954), Dzhaparidze (1986) or Anderson (1993);
see also Klüppelberg and Mikosch (1996) for the infinite variance case.

5. Proofs of the results. First we recall some results on sample autoco-
variances.

Proposition 5.1. Under the corresponding assumptions of Theorem 3.1,
the following limit relations hold for every fixed m ≥ 1:

(a)
(
n−1/2

n∑
t=1

�Z2
t − σ2�; n−1/2

n−1∑
t=1

ZtZt+1; : : : ; n
−1/2

n−m∑
t=1

ZtZt+m

)

→d �Y0;Y1; : : : ;Ym�

for independent mean-zero Gaussian r.v.’s Y0;Y1; : : : ;Ym, where var�Y0� =
var�Z2� = EZ4 − σ4 and Y1; : : : ;Ym are i.i.d. with var�Y1� = σ4;

(b)
(
n−1/pL1�n�

n∑
t=1

�Z2
t − σ2�; n−1/2

n−1∑
t=1

ZtZt+1; : : : ; n
−1/2

n−m∑
t=1

ZtZt+m

)

→d �Y0;Y1; : : : ;Ym�

for independent r.v.’s Y0;Y1; : : : ;Ym and a slowly varying function L1. Here
Y0=dSp�1;1;0� and Y1; : : : ;Ym are i.i.d. with Y1 =d N�0; σ4�.

Proof. Part (a) is standard and can be found in Brockwell and Davis
[(1991), Chapter 7] for example. Part (b) can be proved by the point process
techniques as developed in Davis and Resnick (1985, 1986). Here we prefer
an elementary proof. We restrict ourselves to the case m = 1; the general case
m ≥ 1 can be handled analogously. Billingsley’s CLT for mixing sequences
[Billingsley (1968), Chapter 20] and the CLT for r.v.’s in the domain of attrac-
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tion of a p-stable law Gp [e.g., Feller (1971) and Bingham, Goldie and Teugels
(1987)] imply that

n−1/2
n−1∑
t=1

ZtZt+1→dN�0; σ4�; n−1/pL1�n�
n∑
t=1

�Z2
t − σ2�→dGp:(5.1)

Here L1 is slowly varying. We show joint convergence of
(
n−1/pL1�n�

n∑
t=1

�Z2
t − σ2�; n−1/2

n−1∑
t=1

ZtZt+1

)

via a characteristic function argument. Write εt = signZt. Then

E exp
{
iθ1n

−1/pL1�n�
n∑
t=1

�Z2
t − σ2� + iθ2n

−1/2
n−1∑
t=1

ZtZt+1

}

= E
[
exp

{
iθ1n

−1/pL1�n�
n∑
t=1

�Z2
t − σ2�

}

×E
(

exp
{
iθ2n

−1/2
n−1∑
t=1

�ZtZt+1�εtεt+1

}∣∣∣�Z1�; �Z2�; : : :
)]
:

(5.2)

Notice that, given ��Zi��, the quadratic form in �εt�,

An =
n−1∑
t=1

�ZtZt+1�εtεt+1

/( n−1∑
t=1

Z2
tZ

2
t+1

)1/2

;

has mean zero and variance 1. From standard theory for random quadratic
forms [e.g., Mikosch (1991)] it follows that the sequence �An� converges (con-
ditionally) in distribution to the standard normal distribution provided

n−1∑
t=1

Z4
tZ

4
t+1

/( n−1∑
t=1

Z2
tZ

2
t+1

)2

→ 0

for almost all realizations of ��Zt��. This is easily seen since

max
t=1; :::; n−1

Z2
tZ

2
t+1

/ n−1∑
t=1

Z2
tZ

2
t+1 → 0

for almost all realizations of ��Zt��. Thus we conclude that, for almost all
realizations of ��Zt��,

E

(
exp

{
iθ2n

−1/2
n−1∑
t=1

�ZtZt+1�εtεt+1

}∣∣∣�Z1�; �Z2�; : : :
)
→ exp�−θ2

2σ
4/2�:

This and relations (5.1) and (5.2) yield the statement. 2

Proposition 5.1 can be extended to a FCLT.
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Proposition 5.2. Under the corresponding assumptions of Theorem 3.1 the
following limit relations hold for every fixed m ≥ 1:

(a) Z�A�n =
(
n−1/2

�nx�∑
t=1

(
Z2
t − σ2); n−1/2

�nx�−1∑
t=1

ZtZt+1; : : : ; n
−1/2

�nx�−m∑
t=1

ZtZt+m

)

→d

(
Y0�x�;Y1�x�; : : : ;Ym�x�

)
; x ∈ �0;1�;

in D ��0;1�;Rm+1�, whereY0�x�;Y1�x�; : : : ;Ym�x� are independent Wiener pro-
cesses such that Yi�0� ≡ 0 for all i, Y0�1�=dN�0; var�Z2�� and Yi�1�=d
N�0; σ4�, i = 1; : : : ;m.

(b) Z�B�n =
(
n−1/pL1�n�

�nx�∑
t=1

(
Z2
t − σ2);

n−1/2
�nx�−1∑
t=1

ZtZt+1; : : : ; n
−1/2

�nx�−m∑
t=1

ZtZt+m

)

→d

(
Y0�x�;Y1�x�; : : : ;Ym�x�

)
; x ∈ �0;1�;

in D ��0;1�;Rm+1�, where Y0�x�;Y1�x�; : : : ;Ym�x� are independent processes,
Y0�x� is a p-stable motion such that Y0�0� ≡ 0, Y0�1�=dSp�1;1;0� and
Y1�x�; : : : ;Ym�x� are i.i.d. Wiener processes such that Y1�0� ≡ 0, Y1�1�=d
N�0; σ4�.

Proof. (a) We have to show the convergence of the finite-dimensional dis-
tributions and the tightness in D ��0;1�;Rm+1� for �Z�A�n �.

The convergence of the finite-dimensional distributions follows from Propo-
sition 5.1(a) by the Cramér–Wold device and the fact that, for every fixed k ≥ 1,
�∑n−k

t=1 ZtZt+k�n>k is a sum process with k-dependent stationary increments
and

∑n
t=1Z

2
t is a sum of i.i.d. r.v.’s.

For the tightness in D ��0;1�;Rm+1� we use the fact that each component
of �Z�A�n � converges weakly in D �0;1� to a Wiener process. This follows from
Billingsley’s FCLT’s for mixing sequences [see Billingsley (1968), Chapter 20].
A straightforward generalisation of Lemma 4.4 in Resnick (1986) yields that
the map from �D �0;1��m+1 into D ��0;1�;Rm+1� defined by

�x0; : : : ; xm� → �x0�t�; : : : ; xm�t��t≥0

is continuous at �x0; : : : ; xm� ∈ D �0;1�× �C �0;1��m. This and the sample path
continuity of the limit processes assure that �Z�A�n � is tight and converges
weakly to the given limit.

(b) The convergence of the finite-dimensional distributions can be shown
in the same way, by an application of Proposition 5.1(b).

To show tightness we have to modify our arguments slightly. Resnick’s
(1986) approach still works in this case if we can show that the components of
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�Z�B�n � are tight in D �0;1�. Applying a FCLT for processes with independent in-
crements [e.g., Jacod and Shiryaev (1987) or Resnick (1986), Proposition 3.4] it
follows that for x ∈ �0;1�, n−1/p∑�nx�

t=1 �Z2
t −σ2� converges weakly to a p-stable

process Y0�x� with independent stationary increments. To the remaining com-
ponents of �Z�B�n � we again apply Billingsley’s FCLT for mixing sequences with
a Wiener process as limit. 2

Proof of Theorem 3.1. (a) We write

(
n−1/2

�nx�∑
t=1

�Z2
t − σ2�; n1/2

∫ λ
−π

(
In; �nx�;Z�y� − n−1

�nx�∑
t=1

Z2
t

)
dy

)

=
(
n−1/2

�nx�∑
t=1

�Z2
t − σ2�; 2

( �nx�∑
t=1

sin�λt�
t

(
n−1/2

�nx�−t∑
h=1

ZhZh+t

)))
:

For every fixedm, we conclude from Proposition 5.2(a) and from the continuous
mapping theorem that

(
n−1/2

�nx�∑
t=1

�Z2
t − σ2�; 2

m∑
t=1

sin�λt�
t

(
n−1/2

�nx�−t∑
h=1

ZhZh+t

))

→d

(
Y0�x�;2

m∑
t=1

(
Zt�x�

sin�λt�
t

))
; x ∈ �0;1�; λ ∈ �−π;π�;

in D ��0;1� × �−π;π�;R2�. Thus it suffices to show that for all ε > 0

lim
m→∞

lim sup
n→∞

P

(
sup

0≤x≤1
sup
−π≤λ≤π

∣∣∣∣
�nx�∑

t=m+1

(
sin�λt�
t

n−1/2
�nx�−t∑
h=1

ZhZh+t

)∣∣∣∣>ε
)
=0y(5.3)

see Billingsley [(1968), Theorem 4.2]. If Z has a finite fourth moment, we first
apply a submartingale inequality in order to obtain that

P

(
sup

0≤x≤1
sup
−π≤λ≤π

∣∣∣∣
�nx�∑

t=m+1

(
sin�λt�
t

n−1/2
�nx�−t∑
h=1

ZhZh+t

)∣∣∣∣ > ε
)

≤ ε−2 c E

(
sup
−π≤λ≤π

∣∣∣∣
n∑

t=m+1

sin�λt�
t

n−1/2
n−t∑
h=1

ZhZh+t

∣∣∣∣
2)
:

Then we follow the proof of Theorem 1 in Grenander and Rosenblatt [(1957),
Chapter 6.4, pages 188–189]. We mention that Grenander and Rosenblatt refer
to their Lemma 1 where an eighth moment of Z is required. A careful study of
this proof and of the one on their page 189 shows that one only needs a finite
fourth moment.

(b) We can apply the same arguments as under (a), but we still have to
show (5.3) without a fourth moment condition. If Z has a symmetric distri-
bution one can use the analogue of Lévy’s inequality for quadratic forms [see
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Theorem 6.2.1 in Kwapień and Woyczynski (1992)] to obtain that

P

(
sup

0≤x≤1
sup
−π≤λ≤π

∣∣∣∣
�nx�∑

t=m+1

(
sin�λt�
t

n−1/2
�nx�−t∑
h=1

ZhZh+t

)∣∣∣∣ > ε
)

≤ cP
(

sup
−π≤λ≤π

∣∣∣∣
n∑

t=m+1

(
sin�λt�
t

n−1/2
n−t∑
h=1

ZhZh+t

)∣∣∣∣ > ε
)
:

Now one can follow the lines of the proof of Theorem 3.2 in Klüppelberg and
Mikosch (1996). Instead of the tail estimate for stable quadratic forms [Theo-
rem 3.1 in Rosinski and Woyczynski (1987)], one applies Chebyshev’s inequal-
ity; then all the inequalities remain valid with µ = 2 (the parameter µ is
defined in the paper mentioned). 2

Proof of Proposition 3.3. A careful study of the proof of Theorem 3.1
shows that the conditionsEZ4 <∞ [part (a)] and regular variation forP�Z2 >
x� [part (b)] are only needed to ensure the weak convergence of the properly
normalised sequence �∑n

t=1�Z2
t − σ2��. On the other hand, in Proposition 3.3

we are interested in the convergence of

n1/2
∫ λ
−π

(
In; �nx�;Z�y� − n−1

�nx�∑
t=1

Z2
t

)
dy:

The latter quantity does not contain any terms with �Z2
t � and depends only

on the sample autocorrelations n−1∑n−h
t=1 ZtZt+h, a finite vector of which con-

verges to a multivariate Gaussian limit with mean zero and σ4 times the
identity as covariance matrix. For this convergence result, a finite variance is
sufficient. Having this in mind, we can follow the lines of proof above which
yield the statement of the proposition. 2

Proof of Theorem 4.3. Lemma 4.1 and integration by parts yield the fol-
lowing decomposition:

√
n
∫ λ
−π

(
In; �nx�;X�y� − σ2�ψ�e−iy��2 �nx�

n

)
f�y�dy

= g�λ�√n
∫ λ
−π

(
In; �nx�;Z�y� − σ2 �nx�

n

)
dy

−
∫ λ
−π
g′�y�√n

(∫ y
−π

(
In; �nx�;Z�z� − σ2 �nx�

n

)
dz

)
dy

+ f�λ�n−1/2
∫ λ
−π
R�nx��y�dy

−
∫ λ
−π
f′�y�n−1/2

( ∫ y
−π
R�nx��z�dz

)
dy:

An application of Corollary 3.2 and of Lemma 4.2 together with the continuous
mapping theorem prove that the limit of this two-parameter field is given by
(4.2). This concludes the proof. 2
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Proof of Theorem 4.4. From Lemma 4.1 we see that

√
n

1
2π

∫ π
−π

I�nx�;X�z�
�ψ�e−iz��2 dz = n

−1/2
�nx�∑
t=1

Z2
t + n−1/2 1

2π

∫ π
−π

R�nx��z�
�ψ�e−iz��2 dz :

Moreover, Lemma 4.2, integration by parts and the continuous mapping the-
orem imply that

n−1/2
∫ π
−π

R�nx��z�
�ψ�e−iz��2 dz = n

−1/2�ψ�e−iλ��−2
∫ π
−π
R�nx��z�dz

+ n−1/2
∫ π
−π

d

dλ

(
�ψ�e−iλ��−2)

(∫ λ
−π
R�nx��z�dz

)
dλ

= oP�1�:

Now the proof is similar to the one of Theorem 4.3 with σ2 everywhere replaced
by the random centering with n−1∑n

t=1Z
2
t . 2

Proof of Lemma 4.2. The proof is an immediate consequence of the de-
composition in Lemma 4.1 and of Lemmas 5.3 and 5.5. For ease of represen-
tation we restrict ourselves to a one-sided linear process Xt =

∑∞
j=0ψjZt−j,

t ∈ Z: The two-sided case does not cause any additional difficulties. 2

Lemma 5.3. The relation

n−1/2
∫ π
−π
�Y�nx��y��2 dy = oP�1�

holds uniformly for x ∈ �0;1�.

Proof. It suffices to show that the following terms are of the order
oP�n−1/2� uniformly for x ∈ �0;1�:

I1 =
1

2π

∫ π
−π

∣∣∣∣
∑

j>�nx�
ψje

−iλj
�nx�−j∑
t=1−j

Zte
−iλt

∣∣∣∣
2

dλ;

I2 =
1

2π

∫ π
−π

∣∣∣∣
∑

j>�nx�
ψje

−iλj
( �nx�∑
t=1

Zte
−iλt +

0∑
t=1−j

Zte
−iλt

)∣∣∣∣
2

dλ;

I3 =
1

2π

∫ π
−π

∣∣∣∣
�nx�∑
j=1

ψje
−iλj

�nx�∑
t=�nx�−j+1

Zte
−iλt

∣∣∣∣
2

dλ:

We have by (2.1) and since EZ4 <∞,

I3 ≤ c max
0≤k≤n

Z2
k

( �nx�∑
j=1

�ψj�j
)2

≤ c max
0≤k≤n

Z2
k = op�

√
n�:
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A similar argument applies to I2 and

I11 =
1

2π

∫ π
−π

∣∣∣∣
−1∑

t=−�nx�+1

Zt

�nx�−t∑
j=�nx�+1

ψj exp�−iλ�j+ t��
∣∣∣∣
2

dλ

can be treated analogously. The lemma is proved for I1 if we can show stochas-
tic boundedness for

I12 =
1

2π

∫ π
−π

∣∣∣∣
−�nx�∑
t=−∞

Zt

�nx�−t∑
j=1−t

ψj exp�−iλ�t+ j��
∣∣∣∣
2

dλ

=
−�nx�∑

t1; t2=−∞
Zt1

Zt2

�nx�−t1∑
j1=1−t1

�nx�−t2∑
j2=1−t2

j1+t1=j2+t2

ψj1
ψj2

:

Notice that

I12 ≤
0∑

t=−∞
Z2
t

∞∑
j=1−t

ψ2
j +

∑
−∞<t1 6=t2≤0

(
�Zt1

Zt2
�
n∑
j=1

∣∣ψj−t1ψj−t2
∣∣
)
:(5.4)

The series on the right-hand side of (5.4) does not depend on x and converges
a.s. This concludes the proof. 2

We will make use of the following lemma due to Bickel and Wichura (1971):
let fn be random elements assuming values in D ��0;1�×�−π;π��. For a block
B = �x1; x2� × �λ1; λ2� ⊂ �0;1� × �−π;π� we define

fn�B� = fn�x1; x2� − fn�x1; λ2� − fn�x2; λ1� + fn�λ1; λ2�:

Lemma 5.4. Suppose that fn�0; λ� = fn�x;0� = 0 for all 0 < x < 1,
−π < λ < π, and that �µn� is a sequence of finite measures on �0;1� × �−π;π�
converging weakly to a measure µ with continuous marginal distributions. If
the relation

E�min�fn�B�; fn�C���a ≤ c �µn�B ∪C��b; n ≥ 1;

holds for some a > 0, b > 1 and for all disjoint blocksB andC in �0;1�×�−π;π�
which have one edge in common, then �fn� is tight in D ��0;1� × �−π;π��.

Lemma 5.5. The relation

n−1/2
∫ λ
−π
J�nx��−y�Y�nx��y� dy = oP�1�

holds uniformly for x ∈ �0;1� and λ ∈ �−π;π�.
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Proof. By Lemma 5.3 it suffices to prove

n−1/2
∫ λ
−π

(
J�nx��−y�

�nx�∑
s=1

Zs

�nx�∑
j=�nx�−s+1

ψj exp�−iy�j+ s��
)
dy

= n−1/2
�nx�∑
t=1

�nx�∑
s=1

ZtZs

�nx�∑
j=�nx�−s+1

ψj

∫ λ
−π

exp�−iy�−t+ j+ s��dy

= oP�1�

(5.5)

uniformly for x and λ. Notice that, since EZ4 <∞,

n−1/2

∣∣∣∣
�nx�∑
t=1

Z2
t

�nx�∑
j=�nx�−t+1

ψj

∫ λ
−π
e−iyj dy

∣∣∣∣ ≤ c n
−1/2 max

0≤k≤n
Z2
k = oP�1�

uniformly for x ∈ �0;1� and λ ∈ �−π;π�. Thus it suffices to prove the uni-
form convergence to zero for the right-hand side of (5.5) without the diagonal
terms. We first show that the finite-dimensional distributions converge. This is
immediate from the following calculations. Fix x and λ. Using one of the stan-
dard moment inequalities for random quadratic forms [e.g., Mikosch (1991),
Lemma 1.3] and Hölder’s inequality we obtain

E

∣∣∣∣n
−1/2

�nx�∑
t=1

�nx�∑
s=1
s6=t

ZtZs

�nx�∑
j=�nx�−s+1

ψj

∫ λ
−π

exp�−iy�t− j− s��dy
∣∣∣∣
4

≤ cn−2
( �nx�∑
t=1

�nx�∑
s=1
s6=t

∣∣∣∣
�nx�∑

j=�nx�−s+1

ψj

∫ λ
−π

exp�−iy�t− j− s��dy
∣∣∣∣
2)2

≤ c
(
n−1

�nx�∑
t=1

�nx�∑
s=1
s6=t

( �nx�∑
j1=�nx�−s+1

ψ2
j1

)

×
( �nx�∑
j2=�nx�−s+1

∣∣∣∣
∫ λ
−π

exp�−iy�t− j2 − s��dy
∣∣∣∣
2))2

≤ c
(
n−1

�nx�∑
t=1

�nx�∑
s=1
s6=t

( �nx�∑
j1=�nx�−s+1

ψ2
j1

)( �nx�∑
j2=�nx�−s+1

1
�t− �j2 + s��2

))2

= o�1�

uniformly for x and λ. Thus it remains to show the tightness via Lemma 5.4.
Put

An�x; λ� = n−1/2
�nx�∑
t=1

�nx�∑
s=1
s6=t

ZtZs

�nx�∑
j=�nx�−s+1

ψj

∫ λ
−π

exp�−iy�t− j− s��dy:
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For x ≤ x′ and λ ≤ λ′ we introduce

An�x; x′; λ; λ′�
= An�x; λ� −An�x; λ′� −An�x′; λ� +An�x′; λ′�

= n−1/2
�nx�∑
t=1

�nx�∑
s=1;s6=t

ZsZt

( �nx′�∑
j=�nx′�−s+1

ψj

∫ λ′

λ
exp�−iy�t− j− s��dy

−
�nx�∑

j=�nx�−s+1

ψj

∫ λ′

λ
exp�−iy�t− j− s��dy

)

+ n−1/2 ∑

1≤t6=s≤�nx′�
t>�nx� or s>�nx�

ZtZs

�nx′�∑
j=�nx′�−s+1

ψj

∫ λ′

λ
exp�−iy�t− j− s��dy

= A1 +A2:

Using a standard moment inequality for quadratic forms [e.g., Mikosch (1991),
Lemma 1.3] and Hölder’s inequality we see that

EA4
1 ≤ c

(
n−1

�nx�∑
t=1

�nx�∑
s=1
s6=t

∣∣∣∣
�nx′�∑

j=�nx′�−s+1

ψj

∫ λ′

λ
exp�−iy�t− j− s��dy

−
�nx�∑

j=�nx�−s+1

ψj

∫ λ′

λ
exp�−iy�t− j− s��dy

∣∣∣∣
2)2

= J1:

We split J1 into different subsums and estimate those. Suppose first that
�nx′� − �nx� ≥ �nx�. Then

J1 ≤ c
(
n−1

�nx�∑
t=1

�nx�∑
s=1
s6=t

∣∣∣∣
�nx′�∑

j=�nx′�−s+1

ψj

∫ λ′

λ
exp�−iy�t− j− s��dy

∣∣∣∣
2)2

+ c
(
n−1

�nx�∑
t=1

�nx�∑
s=1
s6=t

∣∣∣∣
�nx�∑

j=�nx�−s+1

ψj

∫ λ′

λ
exp�−iy�t− j− s��dy

∣∣∣∣
2)2

= J11 +J12:

By Hölder’s inequality,

J11 ≤ c
(
n−1

�nx�∑
s=1

�nx′�∑
j1=�nx′�−s+1

ψ2
j1

�nx′�∑
j2=�nx′�−s+1

�nx�∑
t=1

∣∣∣∣
∫ λ′

λ
exp�−iy�t− j2 − s��dy

∣∣∣∣
2)2

:

Using the fact that
∞∑

r=−∞

∣∣∣∣
∫ λ′

λ
exp�−iyr�dy

∣∣∣∣
2

≤ c�λ′ − λ�;
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we conclude

J11 ≤ c
(
�λ′ − λ�n−1

�nx�∑
s=1

s
�nx′�∑

j1=�nx′�−s+1

ψ2
j1

)2

≤ c�λ′ − λ�2�n−1��nx′� − �nx���2:

Similarly we can estimate J12:

J12 ≤ c�λ′ − λ�2�n−1��nx′� − �nx���2:
Similar calculations for �nx′�−�nx� < �nx� yield the same upper estimates for
EA4

1, but also for EA4
2. We omit details. In summary,

EA4
n�x; x′; λ; λ′� ≤ c�λ′ − λ�2�n−1��nx′� − �nx���2

for all n ≥ 1, x ≤ x′, λ ≤ λ′. Define

µn��x; x′� × �λ; λ′�� = �λ′ − λ��n−1��nx′� − �nx���:
The so-defined measure µn converges weakly to the measure µ defined by

µ��x; x′� × �λ; λ′�� = �λ′ − λ��x′ − x�:
An application of Lemma 5.4 proves the tightness of the two-parameter process
(5.5). This concludes the proof of the lemma. 2

6. Some applications. Changepoint detection is an important question
in many applied areas, for example, in meteorology, economics and engineer-
ing. One of the canonical assumptions in finance, for example, is that the price
of a risky asset (e.g., exchange rate, interest rate, price of stock) can be mod-
elled by geometric Brownian motion Gt = exp�ct + σBt�, t ≥ 0, where B is
standard Brownian motion. The celebrated Black–Scholes pricing formula is
based on the assumption of geometric Brownian motion. It is one of the back-
bones of modern portfolio theory. A vast amount of literature has recently
appeared on the pricing of options, futures and other derivatives. We refer to
Duffie (1992) and the literature cited therein for a mathematical treatment of
the financial problems. Geometric Brownian motion is clearly a crude model
for a price. However, because of its simplicity, it is widely applicable as a first
approximation over a reasonable period of time. This can be several months or
a shorter period of time for which geometric Brownian motion with constant
volatility σ might be appropriate.

We consider the German stock index (DAX, closing values) over a period of
500 days (starting from July 1, 1988) and assume that this price corresponds
to a geometric Brownian motion. Then the daily log returns Zt = ln�Gt/Gt−1�
can be considered as realizations of i.i.d. N�c; σ2� r.v.’s. We work with cen-
tered data; that is, an estimated mean c has been subtracted. In Figure 1 the
�Zt�t=1; :::;500 are plotted. There is an obvious dramatic change of the model
around day 330. In Figure 2 we plot the values

Tn = n1/2 sup
x∈�0;1�
λ∈�0;π�

∣∣∣∣
(∫ λ
−π
In; �nx�;Z�y� − n−1

�nx�∑
t=1

Z2
t

)
dy

∣∣∣∣
/
�2σ2�
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Fig. 1. 500 log returns of the DAX.
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Fig. 2. The changepoint statistic Tn with 95% confidence band for moving blocks of 90 days of
the DAX index.
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calculated from the moving blocks �Zl+1; : : : ;Zl+n� for n = 90 and l =
0;10;20; : : : ;410. The variance σ2 is estimated for each block separately.
Around day 240 we observe that the values of T90 are out of the asymptotic
95% confidence band (see Table 1) so that a change of the model in the last
10 days of the interval (241, 330) is very likely. We also see that around day
240 the values of T90 are quite high; that is, a change of the model happens
in each moving block of length 90 with high probability. This fact makes the
i.i.d. assumption on the log returns quite doubtful.

In a second example we consider 810 daily log returns �Xt� of the Japanese
stock index (NIKKEI, closing data) starting from February 22, 1990. In a
preliminary check we observed that in the interval �1;550� the sample au-
tocorrelations (over moving blocks of lengths 200 and larger) do not change
significantly. The sample autocorrelations over moving blocks in (550, 810)
are not significantly different from zero. From the first 400 data we obtain
the ARMA(1,2) model Xt−0:32Xt−1 = Zt−0:26Zt−1−0:2Zt−2 via maximum
likelihood estimation. Under the assumption that this model is correct we plot
in Figure 3 the quantities

Sn = n1/2 sup
λ∈�−π;π�
x∈�0;1�

∣∣∣∣
∫ λ
−π

(
In; �nx�;X�y�
�ψ�e−iy��2 −

1
2π

∫ π
−π

In; �nx�;X�z�
�ψ�e−iz��2 dz

)
dy

∣∣∣∣
/
�2σ2�

calculated from moving blocks �Xl+1; : : : ;Xl+n� of length n = 100 and l = 0,
10, 20; : : : ;700. The variance σ2 is estimated for each block separately. We
observe that the ARMA(1,2)–model is accepted in the first 570 days. Then the
quantities S100 increase, indicating that there is a change in the model after
day 570. The 95% confidence band is constructed from Table 1. We observe

Table 1

Quantiles of the supremum functional of K�x; λ�/�2σ2� on �0;1� × �0; π�

Quantile T Quantile T

0.05 1.296149 0.75 2.267647
0.10 1.387182 0.80 2.383965
0.15 1.462891 0.85 2.484999
0.20 1.538464 0.90 2.660475
0.25 1.600525 0.91 2.720025
0.30 1.656383 0.92 2.773808
0.35 1.719021 0.93 2.814511
0.40 1.782333 0.94 2.862216
0.45 1.838113 0.95 2.909492
0.50 1.895355 0.96 3.039315
0.55 1.948501 0.97 3.094397
0.60 2.022626 0.98 3.246785
0.65 2.099422 0.99 3.477924
0.70 2.175465



LIMIT FIELDS FOR INTEGRATED PERIODOGRAMS 989

Time

S
up

re
m

um

0 200 400 600

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Fig. 3. The changepoint statistic Sn with 95% confidence band for moving blocks of 100 days of
the NIKKEI index.

that the changepoint statistic Sn reacts quite sensitively to the change of
the model. Indeed, the coefficients in the ARMA model are rather small: the
dependence in the sequence is weak. Nevertheless, the change to white noise
around day 570 is well illustrated.

An advantage of the statistics Tn and Sn is that they deliver reasonable
results already for a medium sample size n ≈ 100. The asymptotic quantiles
of Tn were derived from Proposition 3.3

Tn→dT = sup
x∈�0;1�
λ∈�0; π�

�K�x; λ��
2σ2

=d sup
x∈�0;1�
λ∈�0; π�

∣∣∣∣
∞∑
t=1

sin�λt�
t

Yt�x�
∣∣∣∣;

where �Yt� are i.i.d standard Brownian motions on �0;1�. In view of Theorem
4.4, we may also conclude that Sn→dT since in that case g�x� ≡ 1. The
quantiles of T were obtained by simulation from the series representation
(1.3) of the Kiefer process K�x; λ�. They are given in Table 1. We are not
aware of such a table in the literature. Representation (1.3) offers a simple
way to calculate these and other quantities related to the Kiefer process.
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Klüppelberg, C. and Mikosch, T. (1993). Spectral estimates and stable processes. Stochastic

Process. Appl. 47 323–344.
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