ON THE ASYMPTOTIC PATTERNS OF SUPERCRITICAL BRANCHING PROCESSES IN VARYING ENVIRONMENTS

BY HARRY COHN

University of Melbourne

Let $\{Z_n\}$ be a branching process whose offspring distributions vary with *n*. It is shown that the sequence $\{\max_{i>0} P(Z_n = i)\}$ has a limit. Denote this limit by *M*. It turns out that *M* is positive only if the offspring variables rapidly approach constants. Let $\{c_n\}$ be a sequence of constants and $W_n = Z_n/c_n$. It will be proven that M = 0 is necessary and sufficient for the limit distribution functions of all convergent $\{W_n\}$ to be continuous on $(0, \infty)$. If M > 0 there is, up to an equivalence, only one sequence $\{c_n\}$ such that $\{W_n\}$ has a limit distribution with jump points in $(0, \infty)$. Necessary and sufficient conditions for continuity of limit distributions are derived in terms of the offspring distributions of $\{Z_n\}$.

1. Introduction and results. A branching process in varying environments $\{Z_n\}$ is a sequence of nonnegative integer-valued random variables $\{Z_n\}$ defined inductively by $Z_0 = 1$ and

(1)
$$Z_{n+1} = \begin{cases} \sum_{k=1}^{Z_n} X_{n,k}, & \text{if } Z_n \ge 1, \\ 0, & \text{if } Z_n = 0, \end{cases}$$

where $\{X_{n,k}; k = 1, 2, ...\}$, the offspring variables of the *n*th generation, are for each *n* independent and identically distributed given Z_n . The term *varying environments* refers to the fact that, unlike the classical Galton– Watson process, the probability distributions of $\{X_{n,k}\}$ are allowed to vary with *n*. Let X_n be a random variable distributed like $X_{n,1}$. Write $M_n = \max_{i>0} P(Z_n = i)$ and 1_A for the indicator function of the set *A*. We say that the sequences $\{a_n\}$ and $\{b_n\}$ are equivalent and write $a_n \sim b_n$ if $\lim_{n \to \infty} a_n/b_n$ $= \gamma$ for $\gamma \in (0, \infty)$. In what follows convergence to a variable *W* includes the case when the limit is defective. That is, $P(W = \infty) > 0$ is allowed.

The limit behavior of the branching process in varying environments in the case $P(\lim_{n\to\infty} Z_n > 0) > 0$ was studied under two (not mutually incompatible) conditions: (i) $P(0 < \lim_{n\to\infty} Z_n < \infty) > 0$ and (ii) $P(\lim_{n\to\infty} Z_n = \infty) > 0$. In the first case Church [3] proved that $\sum_{n=1}^{\infty} (1 - P(X_n = 1)) < \infty$ is necessary and sufficient for $\{Z_n\}$ to converge in distribution to a nondegenerate limit. Lindvall [12] strengthened this result to a.s. convergence. There are

Key words and phrases. Branching, Galton-Watson, varying environments, supercritical, martingale, limit distribution.

Received April 1995; revised February 1996.

AMS 1991 subject classifications. Primary 60J80; secondary 60F25.

a number of results in case (ii) centering on some norming constants $\{c_n\}$ tending to ∞ such that $\{W_n\}$, with $W_n = Z_n/c_n$, converges to a nondegenerate limit. Write F for the limit distribution of $\{W_n\}$. A number of papers have dealt with the asymptotic behavior of $\{W_n\}$. We mention the basic paper by Goettge [8] and more recent papers of Biggins and D'Souza [2], D'Souza and Biggins [7] and D'Souza [6]. For a survey of earlier literature, see [1] and [10].

In this paper, the aspect of the limit behavior of $\{Z_n\}$ which concerns us is the continuity or presence of jump points in $(0,\infty)$ in the limit distribution of $\{W_n\}$. In sharp contrast to the case of sums of independent random variables (take, e.g., the law of large numbers), for branching processes in varying environments $\lim_{n\to\infty} [\max_{i>0} P(Z_n = i)] = 0$ turns out to be necessary and sufficient for the limit distribution functions of all convergent $\{W_n\}$ to be continuous on $(0, \infty)$. Sufficient conditions for the limit of $\{W_n\}$ to be continuous outside 0 were given by Cohn and Schuh [5] and Cohn [4] in the one-type case and by Jones [11] in the multitype setting. Hattori, Hattori and Watanabe [9] studied the support of the limit distribution of the multitype process.

Define k_n by $P(X_n = k_n) = \max_{i>0} P(X_n = i)$ and $i_n = \prod_{j=0}^{n-1} k_j$.

THEOREM 1. The following statements are equivalent:

- (i) $\limsup_{n \to \infty} M_n > 0;$
- (ii) the sequence $\{M_n\}$ converges to a positive limit;
- (iii) $\sum_{n=1}^{\infty} i_n (1 P(X_n = k_n)) < \infty;$

(iv) there exist a sequence of positive integers $\{m_n\}$ and an event of positive probability, Λ , such that $\lim_{n\to\infty} 1_{\{Z_n=m_n\}} = 1_{\Lambda}$ a.s. (Here Λ may be chosen to have probability $\lim_{n\to\infty} M_n$.)

COROLLARY 2. The sequence $\{M_n\}$ converges.

THEOREM 3. Suppose that $\sum_{n=1}^{\infty} i_n (1 - P(X_n = k_n)) < \infty$. Then the following statements hold:

(i) $\{Z_n/i_n\}$ converges a.s. to a limit W with $\max_{x>0} P(W=x) > 0$; (ii) if $\{Z_n/c_n\}$ converges a.s. to a limit W' with $\max_{x>0} P(W'=x) > 0$, for

COROLLARY 4. The following conditions are equivalent:

some constants $\{c_n\}$, then $c_n \sim i_n$.

(i) ∑_{n=1}[∞] i_n(1 − P(X_n = k_n)) = ∞;
(ii) any a.s. convergent {Z_n/c_n} has a continuous limit distribution function in $(0,\infty)$.

It seems rather surprising that continuity may fail only if the offspring variables approach constants very rapidly. In the case of the classical Galton-Watson process, it is sufficient to assume that the offspring distribution is not concentrated in one point, that is, to exclude the deterministic case, when of course F is not continuous. Another consequence of Theorem 3 in the case when there are two or more nonequivalent rates of convergence for $\{Z_n\}$ (see [13] and [6]) is that there is essentially only one convergent $\{W_n\}$ with limit distribution admitting jump points in $(0, \infty)$. Take the branching process considered by MacPhee and Schuh [13] with offspring generating functions

(2)
$$f_n(s) = (1 - 4^{-(n+1)})s^2 + 4^{-(n+1)}s[(m-2)4^{n+1} + 2], \quad s \in [0,1], n = 0, 1, \dots$$

By Theorem 2 of [13], if m > 4, there are two rates of growth: $\{2^n\}$ and $\{m^n\}$. In the first case we get $k_n = 2$ and $i_n = 2^n$ with

$$\sum_{n=1}^{\infty} i_n (1 - P(X_n = k_n)) = \sum_{n=1}^{\infty} 2^{-n} < \infty$$

and Theorem 3(i) implies that the limit distribution of $\{Z_n/2^n\}$ must have jump points in $(0, \infty)$. By Theorem 3(ii) the limit corresponding to $\{Z_n/m^n\}$ is continuous outside 0.

2. Proofs. We shall need a number of lemmas.

LEMMA 5. Suppose that $\{Z_n\}$ is a branching process in varying environments and $\{c_{n_k}\}$ is a sequence of constants such that $\{Z_{n_k}/c_{n_k}\}$ converges weakly as $k \to \infty$ to a nondegenerate limit W. Then there exist some random variables $\{W_i^{(n)}\}$ such that

(3)
$$W = \sum_{i=1}^{Z_n} W_i^{(n)} \quad a.s.,$$

where $W_i^{(n)}$, i = 1, 2, ..., are independent and identically distributed given Z_n .

PROOF. Notice that for $n < n_k$,

(4)
$$Z_{n_k} = \begin{cases} \sum_{i=1}^{Z_n} Z_{n_k-n,n}^{(i)}, & \text{if } Z_n \ge 1, \\ 0, & \text{if } Z_n = 0, \end{cases}$$

where $Z_{m,n}^{(i)}$ is the number of the *m*th generation offspring of the *i*th individual of the *n*th generation. The random variables $\{Z_{n_k-n,n}^{(i)}; i = 1, ..., Z_n\}$ are independent and identically distributed given Z_n . Since $\{Z_{n_k}/c_{n_k}\}$ converges weakly as $k \to \infty$, so does $\{Z_{n_k-n}/c_{n_k}\}$ for i = 1, 2, This may be shown by using Laplace transforms. Indeed, write $V_k = Z_{n_k}/c_{n_k}$, $\hat{V}_k = Z_{n_k-n,n}/c_{n_k}$, $\phi_k(t) = E[\exp(-tV_k)]$, $\hat{\phi}_k(t) = E[\exp(-t\hat{V}_k)]$ and $f_n(t) = \sum_{i=0}^{\infty} t^i P(Z_n = i)$. Then (4) yields

(5)
$$\phi_k(t) = f_n(\hat{\phi}_k(t)).$$

Using in (5) that $\lim_{k \to \infty} \phi_k(t)$ exists for all t and that $f_n(t)$ is continuous and strictly increasing in t implies that $\lim_{k \to \infty} \hat{\phi}_k(t)$ must also exist for all t and

898

therefore $\{\hat{V}_k\}$ converges weakly as $k \to \infty$. Notice now that a subsequence of a branching process in varying environments $\{Z_{n_k}\}$ is also a branching process in varying environments. Thus Theorem 29 of [8] applies to yield that $\{\hat{V}_k\}$ converges a.s. as $k \to \infty$. Now dividing (4) by c_{n_k} and letting $k \to \infty$ completes the proof. \Box

LEMMA 6. If $\{c_{n_k}\}$ is a sequence of constants such that $\{Z_{n_k}/c_{n_k}\}$ converges in distribution as $k \to \infty$ to a nondegenerate limit, then there exists a whole sequence $\{c_n\}$ such that $\{Z_n/c_n\}$ converges a.s. as $n \to \infty$.

PROOF. As was noticed in the course of the proof of Lemma 6, $\{Z_{n_k}\}$ is also a branching process in varying environments. Thus Theorem 16 of [8] applies and yields $c_{n_k} \sim c/h_{n_k}(s_0)$ for some s_0 , where $h_n(s) = -\log f_n^{-1}(s)$, f_n being the generating function of Z_n . However, according to Theorem 17 of [8], $\{h_n(s_0)Z_n\}$ converges in distribution as $n \to \infty$ and Theorem 29 of [8] completes the proof. \Box

LEMMA 7. If $\{Y_i^{(n)}, i = 1, 2, ...\}$ are, for each n, nonnegative, independent and identically distributed random variables such that $\lim_{n\to\infty} P(\sum_{i=1}^{m_n} Y_i^{(n)} = c_n) = 1$, for some constants $\{c_n\}$ and $\{m_n\}$, then $\lim_{n\to\infty} P(Y_i^{(n)} = c_n/m_n) = 1$.

PROOF. Notice first that the result is elementary in the case when $\{m_n\}$ are bounded. Let ξ_1, \ldots, ξ_n be some independent and identically distributed random variables, $S_n = \xi_1 + \cdots + \xi_n$ and $p = \sup_x P(\xi_1 = x)$. Define the concentration function of the random variable X by $Q(X; \lambda) = \sup_x P(x \le X \le x + \lambda)$. Then by a result on concentration functions of sums of independent random variables [see, e.g., [14], page 68, equation (2.58)], for any $\lambda > 0$,

$$Q(S_n; \lambda) \leq An^{-1/2} (1 - Q(\xi_1; \lambda))^{-1/2}$$

where A is an absolute constant. Notice that letting λ tend to 0 yields

(6)
$$\sup P(S_n = x) \le A(n(1-p))^{-1/2}$$

Let x_n be such that $P(Y_i^{(n)} = x_n) = \sup_x P(Y_i^{(n)} = x)$. By (6) we get

(7)
$$\limsup_{n \to \infty} m_n \left(1 - P(Y_i^{(n)} = x_n) \right) \le A^{\frac{1}{2}}$$

On the other hand,

(8)
$$P\left(\sum_{i=1}^{m_n} Y_i^{(n)} = m_n x_n\right) \ge \left(P\left(Y_1^{(n)} = x_n\right)\right)^{m_n}.$$

By (7) the right-hand side of (8) is bounded away from 0. Letting now $n \to \infty$ in (8) yields $x_n = c_n/m_n$ for *n* large enough and completes the proof. \Box

LEMMA 8. Suppose that $\{c_k\}$ is a sequence of constants such that $\{Z_{n_k}/c_k\}$ converges a.s. as $k \to \infty$ to a limit W with P(W = c) > 0 and c > 0. Then there exist some positive integers $\{m_n\}$ such that:

(i) $\lim_{n \to \infty} \mathbf{1}_{\{Z_n = m_n\}} = \mathbf{1}_{\{W = c\}} a.s.;$ (ii) $m_{n+1}/m_n = k_n$ for *n* large enough. H. COHN

PROOF. By Lemma 5 we get that

(9)
$$P(W = c | Z_n) = P\left(\sum_{i=1}^{Z_n} W_i^{(n)} = c | Z_n\right),$$

and by the martingale convergence theorem there must exist some $\{m_n\}$ such that

(10)
$$\lim_{n\to\infty} P\left(\sum_{i=1}^{m_n} W_i^{(n)} = c\right) = 1.$$

By Lemma 7 this can only happen when $\lim_{n\to\infty} P(W_i^{(n)} = c/(m_n)) = 1$. Thus, in this case,

(11)
$$\lim_{n \to \infty} P\left(\sum_{i=1}^{m_n+1} W_m^{(n)} = c\left(1 + m_n^{(-1)}\right)\right) = 1,$$
$$\lim_{n \to \infty} P\left(\sum_{i=1}^{m_n-1} W_i^{(n)} = c\left(1 - m_n^{(-1)}\right)\right) = 1.$$

From (11) it follows that for $\delta \in (0, 0.5)$, *n* large enough, $l > m_n$ and $j < m_n$,

(12)
$$P\left(\sum_{i=1}^{l} W_{i}^{(n)} > c\right) > 1 - \delta, \quad P\left(\sum_{i=1}^{j} W_{i}^{(n)} < c\right) > 1 - \delta.$$

The martingale convergence theorem applied to $\{P(W = c \mid Z_n)\}$ yields $\lim_{n \to \infty} P(W = c \mid Z_n) = 1_{\{W = c\}}$ a.s., which is equivalent to

(13)
$$\lim_{n \to \infty} 1_{\{Z_n \in A_n\}} = 1_{\{W = c\}} \quad \text{a.s}$$

for $A_n = \{j: P(W = c \mid Z_n = j) > 1 - \delta\}$. However, $P(W = c \mid Z_n = j) = P(\sum_{i=1}^{j} W_i^{(n)} = c)$ follows from (9), and using (12) yields $A_n = \{m_n\}$ for n large enough. Finally, (13) completes the proof of (i). Notice now that by (i) $\lim_{n \to \infty} P(Z_{n+1} = m_{n+1} \mid Z_n = m_n) = 1$, which implies $\lim_{n \to \infty} P(X_{n,1} + \cdots + X_{m_n} = m_{n+1}) = 1$. By Lemma 6, this entails $P(X_n = m_{n+1}/m_n) = 1$, which can happen only if $m_{n+1}/m_n = k_n$ for n large, and the proof is complete. \Box

LEMMA 9. The following conditions are equivalent:

(i)
$$\sum_{n=1}^{\infty} (1 - P(X_{n,1} + \dots + X_{n,m_n} = m_n k_n)) < \infty$$

(ii) $\sum_{n=1}^{\infty} m_n (1 - P(X_n = k_n)) < \infty$.

PROOF. If (i) holds, then

$$(1 - P(X_{n,1} + \dots + X_{n,m_n} = m_n k_n))$$

= $P(X_{n,1} + \dots + X_{n,m_n} \neq m_n k_n)$
 $\geq m_n (1 - P(X_n = k_n)) (P(X_n = k_n))^{m_n - 1}.$

900

Since under (i), $\lim_{n \to \infty} P(X_{n,1} + \cdots + X_{n,m_n} = m_n k_n) = 1$, we invoke the argument used in (7) to deduce that $(P(X_n = k_n))^{m_n - 1}$ is bounded away from 0 as $n \to \infty$, and (ii) follows.

If (ii) holds, then

$$\left(1 - P(X_{n,1} + \dots + X_{n,m_n} = m_n k_n) \right) \le \left(1 - \left(P(X_{n,1} = k_n) \right)^{m_n} \right) \\ \le m_n (1 - P(X_n = k_n))$$

and (i) follows. \Box

PROOF OF THEOREM 1. Assume (i) and write $\alpha = \limsup_{n \to \infty} M_n > 0$. Choose a sequence $\{n_k\}$ with $\lim_{k \to \infty} M_{n_k} = \alpha$ and define $\{c_k\}$ such that $M_{n_k} = P(Z_{n_k} = c_k)$. Two cases are possible: (a) when $\{c_k\}$ is bounded and (b) when $\limsup_{k \to \infty} c_{n_k} = \infty$. The proof that we give here holds in general. However, we wish to mention that in case (a), (ii) and (iv) follow immediately from a result of Lindvall [12] asserting that $\{Z_n\}$ converges a.s. Indeed, this implies that there must exist some i^* such that $\alpha = \lim_{n \to \infty} P(Z_n = i^*)$, proving (ii). It is easy to see that (iv) follows now from a.s. convergence. Let us assume the general case. Then $\{Z_{n_k}/c_{n_k}\}$ or a subsequence thereof converges weakly to limit distribution F which is nondegenerate since $F(1) \ge F(0) + \alpha$. By Theorem 29 of [8] weak convergence implies a.s. convergence; denote the almost sure limit by W. According to Lemma 8(i) there exists a sequence $\{m_n\}$ with $1_{\{W=1\}} = \lim_{n \to \infty} 1_{\{Z_n = m_n\}}$ a.s. This proves (iv).

Dominated convergence and the definition of α and M_n give

$$\lim_{n \to \infty} P(Z_n = m_n) = P(W = 1) \ge \alpha = \limsup_{n \to \infty} \max_{i > 0} \{ P(Z_n = i) \},$$

which proves (ii).

Notice now that (iv) implies

(14)
$$\lim_{n \to \infty} P(Z_n = m_n, Z_{n+1} = m_{n+1}, \dots) = \lim_{n \to \infty} P(Z_n = m_n) > 0,$$

which leads to

(15)
$$\lim_{n \to \infty} P(Z_{n+1} = m_{n+1} | Z_n = m_n) P(Z_{n+2} = m_{n+2} | Z_{n+1} = m_{n+1}) \cdots = 1.$$

This in turn entails

(16)
$$\sum_{n=1} \left(1 - P(X_{n,1} + \dots + X_{n,m_n} = m_{n+1}) \right) < \infty.$$

However, by Lemma 8(ii), $m_{n+1}/m_n = k_n$ for *n* large using this in (16) together with Lemma 9 yields $\sum_{n=1}^{\infty} m_n (1 - P(X_n = k_n)) < \infty$. Since $m_n \sim i_n$, we get $\sum_{n=1}^{\infty} i_n (1 - P(X_n = k_n)) < \infty$ and (iii) is proved. Assume now that (iii) holds. By Lemma 9,

(17)
$$\sum_{n=1} \left(1 - P(X_{n,1} + \dots + X_{n,i_n} = k_n i_n) \right) < \infty.$$

Further, it is easy to see that $P(Z_n = i_n) > 0$ for all n which makes (17) imply (14) with m_n replaced by i_n . Since (14) implies (i), the proof is complete. \Box

H. COHN

PROOF OF THEOREM 3. Theorem 1(iv) together with Theorem 29 of Goettge [8] imply that $\{Z_n/m_n\}$ converges a.s. to a limit W'' with P(W'' = 1) > 0. Indeed, any convergent subsequence of $\{Z_n/m_n\}$ has a nondegenerate limit. Furthermore by Lemma 6 there are some constants $\{c_n\}$ such that $\{Z_n/c_n\}$ converges a.s. to a nondegenerate limit, where a subsequence of $\{c_n\}$ is equivalent to a subsequence of $\{m_n\}$. It is now easy to see, from Theorem 1(iv), that $\{m_n\}$ are necessarily, up to an equivalence, the norming constants making $\{Z_n/m_n\}$ a.s. convergent. Using now Lemma 8(ii) yields $m_n \sim i_n$, and (i) follows. However, the same argument based on Lemma 8 yields $c_n \sim i_n$, which implies (ii). This completes the proof. \Box

Acknowledgment. The author is thankful to the referee for a number of valuable comments that led to an improved revision of the original typescript.

REFERENCES

- [1] ATHREYA, K. and NEY, P. (1973). Branching Processes. Springer, New York.
- [2] BIGGINS, J. D. and D'SOUZA, J. C. (1993). The supercritical Galton-Watson process in varying environments—Seneta-Heyde norming. *Stochastic Process. Appl.* 48 237–249.
- [3] CHURCH, J. (1971). On infinite composition products of probability generating functions. Z. Wahrsch. Verw. Gebiete 19 243-256.
- [4] COHN, H. (1982). On a property related to convergence in probability and some applications to branching processes. *Stochastic Process. Appl.* 12 59–72.
- [5] COHN, H. and SCHUH, H.-J. (1980). On the positivity and the continuity of the limit random variable of an irregular branching process with infinite mean. J. Appl. Probab. 17 696-703.
- [6] D'SOUZA, J. C. (1994). The rates of growth of the Galton-Watson process in varying environments. Adv. in Appl. Probab. 26 658-671.
- [7] D'SOUZA, J. C. and BIGGINS, J. D. (1992). The supercritical Galton-Watson process in varying environments. Stochastic Process. Appl. 42 39-47.
- [8] GOETTGE, R. T. (1975). Limit theorems for supercritical Galton-Watson processes in varying environment. *Math. Biosci.* 28 171-190.
- [9] HATTORI, K., HATTORI, T. and WATANABE, H. (1994). Asymptotically one-dimensional diffusions on the Sierpinski gasket and the abc-gaskets. *Probab. Theory Related Fields* 100 85-116.
- [10] JAGERS, P. (1975). Branching Processes with Biological Applications. Wiley, New York.
- [11] JONES, O. D. (1995). On the convergence of multi-type branching processes with varying environments. Research Report 444, Univ. Sheffield.
- [12] LINDVALL, T. (1974). Almost sure convergence of branching processes in varying and random environment. Ann. Probab. 2 344–346.
- [13] MACPHEE, I. M. and SCHUH, H. J. (1983). A Galton-Watson process in varying environments with essentially constant means and two rates of growth. *Austral. J. Statist.* 25 329-338.
- [14] PETROV, V. V. (1995). Limit Theorems of Probability Theory. Sequences of Independent Random Variables. Clarendon, Oxford.

DEPARTMENT OF STATISTICS MELBOURNE UNIVERSITY PARKVILLE, VICTORIA, 3052 AUSTRALIA E-MAIL: h.cohn@stats.unimelb.edu.au