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A SUFFICIENT CONDITION FOR THE POSITIVE
RECURRENCE OF A SEMIMARTINGALE

REFLECTING BROWNIAN MOTION
IN AN ORTHANT1

By Hong Chen

University of British Columbia

Dupuis and Williams proved that a sufficient condition for the posi-
tive recurrence and the existence of a unique stationary distribution for a
semimartingale reflecting Brownian motion in an orthant (SRBM) is that
all solutions of an associated deterministic Skorohod problem are attracted
to the origin. In this paper, we derive a sufficient condition under which
we can construct an explicit linear Lyapunov function for the Skorohod
problem. Thus, this implies a sufficient condition for the stability of the
deterministic Skorohod problem. The existence of such a linear Lyapunov
function is equivalent to the feasibility of a set of linear inequalities. In the
two-dimensional case, we recover the necessary and sufficient conditions
for the positive recurrence. Some explicit sufficient conditions are derived
for the higher-dimensional case.

1. Introduction. A semimartingale reflecting Brownian motion (SRBM)
evolves in a J-dimensional nonnegative orthant <J+ = �x ∈ <J: x ≥ 0�. (The
vector inequalities are interpreted componentwise throughout the paper.) The
key parameters that describe an SRBM are aJ-dimensional drift for the Brow-
nian motion θ, a J×J reflection matrix R and a J×J covariance matrix for
the Brownian motion 1. (A more precise definition of an SRBM is given in the
next section.)

Reiman and Williams (1988, 1989) first studied SRBMs, and they gave a
necessary condition for the existence of an SRBM. This necessary condition
is proved to be sufficient by Taylor and Williams (1993). This necessary and
sufficient condition is that the matrix R is completely-S (this notion is defined
in the next section). It was shown by Dupuis and Williams (1994) that an
SRBM is positive recurrent and has a unique stationary distribution if all
solutions of an associated deterministic Skorohod problem (SP) are attracted
to the origin. Readers are referred to Dupuis and Williams (1994) for the
motivation for studying SRBMs.

In this paper, a sufficient condition is obtained for the existence of a lin-
ear Lyapunov function for the deterministic Skorohod problem of Dupuis and
Williams (1994). Thus, this implies a sufficient condition for positive recur-
rence of an SRBM. In particular, this condition recovers the necessary and
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sufficient conditions for the case J = 2, previously derived by Hobson and
Rogers (1993) and Williams (1985), and for the case when R is an M-matrix,
previously derived by Harrison and Williams (1987).

Lyapunov functions have also been used to study the stability of fluid mod-
els of queueing networks. For example, Chen (1995) used a quadratic Lya-
punov function, and Dai and Weiss (1996) and Down and Meyn (1994) used a
piecewise linear Lyapunov function.

In the next section, the main results are presented and they are proved in
Section 3. We conclude this introduction with some notation and conventions
used throughout the paper. All vectors in <J are assumed to be column vectors.
Let J = �1; : : : ; J� and suppose that a; b ⊆ J . Then �a� denotes the cardinality
of a and for u ∈ <J, ua is an �a�-dimensional vector whose elements are those
in u with indices in a. For a J×J matrix R, Rab is an �a� × �b� matrix whose
elements are from R with row indices in a and column indices in b, and Ra

is short for Raa.

2. Main results. Let R be a J×J matrix and CJ be the set of continuous
functions from �0;∞� to <J.

Definition 2.1. GivenX ∈ CJ withX�0� ≥ 0, the pairY ∈ CJ andZ ∈ CJ

is said to solve the SP for X, or simply, said to solve SP�X�, if they jointly
satisfy

Z�t� =X�t� +RY�t� ≥ 0 for all t ≥ 0;(1)

Y�·� is nondecreasing with Y�0� = 0;(2)

∫ ∞
0
Zj�t�dYj�t� = 0; j = 1; : : : ; J:(3)

The equation (3) means that Yj�·� can have a point of increase at t only
when Zj�t� = 0. A Skorohod problem SP�X� is said to be a linear Skorohod
problem (LSP) with rate θ if X takes the form X�t� =X�0�+θt; this Skorohod
problem is denoted by LSP�θ� with initial state X�0�.

A function X ∈ CJ is said to be attracted to the origin if for every ε > 0,
there exists a T <∞ such that �X�t�� < ε for all t ≥ T.

Definition 2.2. A linear Skorohod problem LSP�θ� with initial state X�0�
is said to be stable if the Z component of all of its solutions is attracted to the
origin. If LSP�θ� is stable for every initial state X�0� ≥ 0, then we simply say
that LSP�θ� is stable.

Definition 2.3. Let θ be a J-dimensional vector and 1 be a J × J non-
degenerate covariance matrix. A semimartingale reflected Brownian motion
(SRBM) is a continuous Ft-adapted J-dimensional process z = �z�t�; t ≥ 0�,
together with a family of probability measures �Px; x ∈ <J+�, defined on



760 H. CHEN

some filtered probability space ��;F ; �Ft�� such that for each x ∈ <J+, un-
der Px, z, together with an Ft-adapted process y = �y�t�; t ≥ 0�, solves
SP��w�t�+θt; t ≥ 0��, where w = �w�t�; t ≥ 0� is a J-dimensional Brownian
motion Ft-martingale with covariance matrix 1 such that w�0� = x Px-a.s.

Definition 2.4. A square matrix R is called an S-matrix if there exists a
positive vector u such that Ru > 0; it is called a completely-S matrix if all of
its principal submatrices are S-matrices.

It was shown in Bernard and El Kharroui (1991) and Mandelbaum and
Van der Heyden (1987) that when R is completely-S, the Skorohod problem
has at least one (pathwise) solution for any given continuous path X ∈ CJ,
X�0� ≥ 0; however, uniqueness may not hold, even when R is a P-matrix. On
the other hand, working with a notion of “weak” solution, Taylor and Williams
(1993) proved that a sufficient condition for an SRBM to exist and to be unique
in law is that the matrix R be completely-S. [Berman and Plemmons (1979)
and Cottle, Pang and Stone (1992) are good references for various notions of
matrices mentioned in this paper.]

In Dupuis and Williams (1994), it is proved that an SRBM�θ;R;1� is pos-
itive recurrent and has a unique stationary distribution if the corresponding
linear Skorohod problem LSP�θ� is stable. Our main result is a sufficient con-
dition for the stability of LSP�θ� and hence the positive recurrence and the
existence of a unique stationary distribution for an SRBM�θ;R;1�.

Theorem 2.5. Assume that R is completely-S. Then an SRBM�θ;R;1� is
positive recurrent and has a unique stationary distribution if there exists a
positive vector h ∈ <J such that given any partition �a; b� of J ;

h′a�θa +Rabu� < 0(4)

for all u ∈ �v ∈ <�b�+ : θb +Rbv = 0�.

Remarks.

1. Inequality (4) is interpreted as h′θ < 0 when a = J (and necessarily b = \),
and the inequality (4) is assumed always to hold when a = \. In addition,
the inequality (4) is assumed to hold by default when the set �v ∈ <�b�+ : θb+
Rbv = 0� is empty.

2. The sufficient condition given by the theorem is derived from a linear Lya-
punov function of the form, f�t� = h′Z�t�, where Z solves LSP�θ�. A dif-
ferent sufficient condition can be obtained by considering a quadratic Lya-
punov function of the form f�t� = Z�t�′AZ�t�. This sufficient condition
can be stated as follows. An SRBM�θ;R;1� is positive recurrent and has
a unique stationary distribution if there exists a symmetric and strictly
copositive matrix A such that given any partition �a; b� of J ,

Aa�θa −Rabu� < 0
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for all u ∈ �v ∈ <�b�+ : θb + Rbv = 0�. [A K × K symmetric matrix A is
called a strictly copositive matrix, if for all x ∈ <K and x ≥ 0, x′Ax ≥ 0
and x′Ax = 0 only when x = 0. See Cottle, Habetler and Lemke (1970) for
more details.]

Corollary 2.6. Assume that R is completely-S and that all principal sub-
matrices of R are nonsingular. Then an SRBM�θ;R;1� is positive recurrent
and has a unique stationary distribution if there exists a positive vector h ∈ <J
such that for all partitions �a; b� of J , h′a�θa − RabR

−1
b θb� < 0, whenever

R−1
b θb ≤ 0.

This corollary is more convenient to use. Note that R being completely-
S implies that all diagonal elements of R are positive. Then for the two-
dimensional case, the sufficient condition given by Corollary 2.6 is

θ1 + r12r
−1
22 θ
−
2 < 0 and θ2 + r21r

−1
11 θ
−
1 < 0;

where u− = −min�u;0� for any u ∈ <. This condition has been shown to be
both necessary and sufficient for positive recurrence of an SRBM [Hobson and
Rogers (1994) and Williams (1985)].

Definition 2.7. A J×J matrix R is Schur-S if all of its principal subma-
trices are nonsingular and there exists a positive vector u such that u′a�Ra −
RabR

−1
b Rba� > 0 for any partition �a; b� of J .

Corollary 2.8. Suppose that R is both completely-S and Schur-S. Then
R−1θ < 0 is sufficient for an SRBM�θ;R;1� to be positive recurrent and to
have a unique stationary distribution.

Remarks.

1. A nonsingularM-matrix is both completely-S and Schur-S. (See Lemma 3.1
in the next section.) Hence, when R is a nonsingular M-matrix, Corol-
lary 2.8 recovers the sufficiency of the necessary and sufficient condition
for positive recurrence proved by Harrison and Williams (1987), namely,
that R−1θ < 0, where R is a nonsingular M-matrix.

2. It was proved in Peterson (1991) and Chen and Zhang (1995) that
the diffusion approximations exist for multiclass feedforward queueing
networks and multiclass re-entrant queueing networks with a first-buffer–
first-served (FBFS) priority discipline, respectively. [The corresponding
Brownian models were also studied by Harrison and Williams (1992) and
Dai, Yeh and Zhou (1994), respectively.] Let SRBM�θ;R;1� be the diffusion
limit of multiclass feedforward queueing networks or multiclass re-entrant
queueing networks with first-buffer–first-served discipline. Then the ma-
trix R was shown to be a lower triangular matrix whose inverse exists
and is nonnegative. We will prove in Lemma 3.2 that a lower triangular
matrix whose inverse exists and is nonnegative is both completely-S and
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Schur-S. (Note that such a matrix may not be an M-matrix.) Therefore,
Corollary 2.8 implies that for a Browniam model that corresponds to a
multiclass feedforward queueing network or a multiclass re-entrant queue-
ing network with a FBFS priority discipline, R−1θ < 0 is sufficient for its
positive recurrence and its existence as a unique stationary distribution.
[Dai, Yeh and Zhou (1994) had proved this result independently for the
re-entrant network in its latest version.]

3. In general, a Schur-S matrix is a larger class of matrices than the class
of nonsingular M-matrices and the classes of lower triangular matrices
whose inverses exist and are nonnegative. In the two-dimensional case, all
P-matrices are Schur-S, but whether this holds in general is an interesting
open problem.

To close this section, we note that it does not seem to have been realized
previously that there is a linear Lyapunov function for the Skorohod prob-
lem for the two-dimensional case and for the case studied by Harrison and
Williams (1987).

3. Proofs of main results.

Proof of Theorem 2.5. Let �Y;Z� be a solution pair to LSP�θ� with
Z�0� ≥ 0. Since X�t� = Z�0� + θt is Lipschitz continuous, it follows from
Bernard and El Kharroui (1991) that both Y and Z are Lipschitz continuous
and hence are absolutely continuous. Let f�t� = h′Z�t�. Since h > 0, Z is
attracted to the origin if f is. By the calculus of fluid models [Dai and Weiss
(1996)], for f to be attracted to the origin, it suffices to show that there
exists an ε > 0 such that whenever Ẏ�t� (the derivative of Y at t) exists and
f�t� > 0, ḟ�t� ≤ −ε.

First, let −ε be the maximum of h′a�θa + Rabu� over all u ∈ Sb x= �v ∈
<�b�+ : θb +Rbv = 0� and all partitions �a; b� of J . Since Sb is an affine subspace
and the number of the partitions is finite, it follows from (4) that ε > 0.

Let t be a point where Ẏ�t� and hence Ż�t� and ḟ�t� exist. Let a =
�j: Zj�t� > 0� and b = �j x Zj�t� = 0�. Write (1) with X�t� = Z�0� + θt in
block form:

Za�t� = Za�0� + θat+RaYa�t� +RabYb�t�;
Zb�t� = Zb�0� + θbt+RbaYa�t� +RbYb�t�:

Taking the derivative in the above yields

Ża�t� = θa +RaẎa�t� +RabẎb�t�;(5)

Żb�t� = θb +RbaẎa�t� +RbẎb�t�:(6)

Since Za�t� > 0, relation (3) implies that Ẏa�t� = 0. On the other hand, since
Zb is nonnegative and Zb�t� = 0, it must be that Żb�t−� ≤ 0 and Żb�t+� ≥ 0
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whenever the left derivative and the right derivative exist. Therefore, Żb�t� =
0 as we assumed Ż�t� exists. Then it follows from (5) and (6) that

Ża�t� = θa +RabẎb�t�;(7)

Żb�t� = θb +RbẎb�t� = 0:(8)

[Note that no contradiction arises if there is no Ẏb�t� ≥ 0 satisfying (8); in
this case, Ẏb�t� does not exist.] Hence, ḟ�t� = h′a�θa +RabẎb�t�� ≤ −ε, where
we note that Ẏb�t� must be nonnegative and satisfy (8). 2

Proof of Corollary 2.6. Since R−1
b exists, the only possible element of

the set �v ∈ <�b�+ : θb +Rbv = 0� is v = −R−1
b θb. It is in <�b�+ if and only if

R−1
b θb ≤ 0. When it is, substituting u = −R−1

b θb into (4) yields the corollary. 2

Proof of Corollary 2.8. Let h > 0 be such that h′a�Ra−RabR
−1
b Rba� > 0

for all partitions a and b. In block form, we can write

R−1 =
(

�Ra −RabR
−1
b Rba�−1 −�Ra −RabR

−1
b Rba�−1RabR

−1
b

−�Rb −RbaR
−1
a Rab�−1RbaR

−1
a �Rb −RbaR

−1
a Rab�−1

)
:(9)

(To verify this is indeed the inverse ofR, one should multiply byR on the right
of the above expression for R−1.) Hence, the block a of condition R−1θ < 0 is
equivalent to

�Ra −RabR
−1
b Rba�−1�θa −RabR

−1
b θb� < 0:(10)

Let g′a = h′a�Ra −RabR
−1
b Rba� and note that g′a > 0. Now multiplying (10) by

g′a yields

h′a�θa −RabR
−1
b θb� < 0:

Then this corollary follows from Corollary 2.6. 2

Lemma 3.1. A nonsingular M matrix is both completely-S and Schur-S.

Proof. It is clear that a nonsingular M-matrix is completely-S, and we
show that it is also Schur-S. Let R be a nonsingular M-matrix. Then there
exists a u > 0 such that u′R > 0 [see, e.g., Berman and Plemmons (1979)]. In
block form, u′R > 0 is

u′aRa + u′bRba > 0;(11)

u′aRab + u′bRb > 0:(12)

Note that any principal submatrices of a nonsingular M-matrix are nonsingu-
lar M-matrices. Hence, Rb is a nonsingular M-matrix and R−1

b exists and is
nonnegative. Since R is a non-singular M-matrix, Rba ≤ 0. Then multiplying
(12) by R−1

b Rba from the right, we have

u′bRba ≤ −u′aRabR
−1
b Rba:(13)
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Combining (11) and (13) yields

u′a�Ra −RabR
−1
b Rba� > 0:

Therefore, R is Schur-S. 2

Lemma 3.2. A lower triangular matrix whose inverse exists and is nonneg-
ative is both completely-S and Schur-S.

Proof. Let R be a lower triangular matrix whose inverse exists and is
nonnegative. Since the inverse of a lower triangular matrix is also a lower
triangular matrix, it is clear that the diagonal element of R must be positive.
Hence, it is clear that R is completely-S.

In order to show that R is Schur-S, it suffices to show that there exists a
u > 0 such that

u′a�Ra −RabR
−1
b Rba� > 0;(14)

for any partition �a; b� of J . Recall that R−1 is a lower triangular nonnegative
matrix; from its block form (9), it follows that �Ra −RabR

−1
b Rba�−1 is a lower

triangular nonnegative matrix. This implies that

R̃a x= Ra −RabR
−1
b Rba

is a lower triangular matrix with positive diagonal elements. Then choose

u1 = 1;

uj = max
�a: j∈a�

([ ∑

�i: i∈a and 1≤i<j�
ui��R̃a�ji�

]/
�R̃a�jj

)
; j = 2; : : : ; J;

where the maximum is taken over all partitions �a; b� of J with a including
j. By its definition, it is clear that such u satisfies (14). 2
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