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THE EXTREMES OF A TRIANGULAR ARRAY OF

NORMAL RANDOM VARIABLES

BY TAILEN HSING,1 JURG HUSLER AND ROLF-DIETER REISS¨ ¨

Texas A & M University, University of Bern and University of Siegen

Consider a triangular array of stationary normal random variables
� 4 � 4j , i G 0, n G 1 such that j , i G 0 is a stationary normal sequencen, i n, i

Ž . Žfor each n G 1. Let r s corr j , j . We show that if 1 yn, j n, i n, iqj

. Ž .r log n ª d g 0, ` as n ª ` for some j, then the locations where then, j j

extreme values occur cluster, and if r tends to 0 fast enough as j ª `n, j

� 4for fixed n, then j , i G 0 satisfies a certain weak dependence condi-n, i

tion. Under the two conditions, it is possible to speak about an index

which measures the degree of clustering. In practice, this viewpoint can

provide a better approximation of the distributions of the maxima of

weakly dependent normal random variables than what is directly guided

by the asymptotic theory of Berman.

1. Introduction. The distributional behavior of the extreme values from

a normal process has been studied extensively. An important result due to
Ž . � 4Berman 1964 states that for a stationary normal sequence j with r sj j

Ž .corr j , j , the condition0 j

1.1 r log j ª 0 as j ª `Ž . j

implies that the extremes of j , 1 F j F n, have the same asymptotic distribu-j

wtions as those from a sample of n independent random variables cf. Leadbet-
Ž .x Ž .ter, Lindgren and Rootzen 1983 . Mittal and Ylvisaker 1975 showed that´

Ž .the condition 1.1 on r is nearly necessary for that conclusion.j

In practice, an unfortunate limitation of Berman’s result is that the speed

at which the independence model becomes appropriate may be rather slow.

This can be seen in a number of ways. For instance, suppose we generate a
Ž .sample path of 5000 observations, displayed in Figure 1, from an AR 1

stationary normal sequence with AR coefficient 0.7. Note that we rescaled the
Ž xtime interval to be 0, 1 and for clarity we plotted only those values greater

than 1.4; a small bar is placed at irn on the horizontal axis if the ith value is

recorded. Even though the correlations of the sequence decrease geometri-

cally, one observes the obvious tendency that large values occur in clusters, a

serious violation of the independence model.
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FIG. 1.

Ž .This is not surprising in view of a result in Rootzen 1983 , which shows´
� 4 Ž .that for a stationary normal sequence j satisfying 1.1 , the convergencej

rate of
n

nsup P j F u y F uŽ .E i½ 5
uGv is1n

yŽ1 yr .rŽ1qr . Ž Ž ..is roughly on the order of n for any v satisfying n 1 y F v sn n

Ž .O 1 , where

r s max 0, r , r , . . . .Ž .1 2

Berman’s theorem and its proof, based on the so-called normal comparison

lemma, do not take clustering into account.

The purpose of this paper is then to develop an asymptotic theory for the

extremes of a normal sequence which addresses the issue of clustering. The

basic idea is essentially to magnify the correlations among neighboring

observations so that the clustering information will be captured in the limit.

Specifically, we use an embedding scheme explained as follows.

Consider a triangular array of normal random variables j , i s 0, 1, 2, . . . ,n, i

� 4n s 1, 2, . . . , such that for each n, j , i G 0 is a stationary normaln, i

sequence. Without loss of generality, assume that

Ej s 0 and Ej 2 s 1.n , i n , i

Suppose within each row a weak dependence condition such as Berman’s

condition holds so that, at least theoretically, the extremes of j , . . . , j asn, 1 n, N

N ª ` do not cluster. At the same time, however, as the row number n

increases, allow some of the correlations among neighboring observations in
� 4̀j to increase to 1 so that the local dependence cannot be ignored in then, i is0

limit. Putting suitable restrictions on the correlations in this manner, one

would be able to show, for example, that the point process with points irn,

1 F i F n, for which j ) v , converges weakly as n ª ` to a compoundn, i n

� 4Poisson process on the unit interval. Coming back to the sequence j , if thej

� 4correlations of j mimic those of some rows of such a triangular array, thenj
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the clustering aspect in the asymptotic theory for the array should provide

useful information about the clustering of the large values in j , . . . , j .1 n

It is worth mentioning that the above idea is motivated by Husler and¨
Ž .Reiss 1989 , who considered the joint asymptotic distribution of component-

wise maxima of normal random vectors. Also, related general discussions of

the extremes of a triangular array of random variables can be found in
Ž . Ž .Husler 1993 , Nandagopalan 1990 and Nandagopalan, Leadbetter and¨
Ž .Husler 1993 .¨

Ž .Specifically, writing r [ E j j and assuming thatn, j n, i n, iqj

1.2 1 y r log n ª some d g 0, ` for all j G 1 as n ª `Ž . ŽŽ .n , j j

Ž .d s 0 and for each n, r decays fast enough as j increases, we show that0 n, j

one can speak about a cluster index which is similar to the notion of the
Ž .extremal index reviewed in Section 2 for stationary sequences. This covers,

Ž .in particular, the case where the rows are identical and satisfy 1.1 , and

hence d s ` for each j G 1. As a result, Berman’s theorem is covered as aj

Ž .special case Remark 4 of Section 2 . The main results of this paper are

presented in Section 2, an example and some numerical comparisons are

included in Section 3 and proofs are given in Section 4.

2. Main results. We continue to use the notation developed in Section 1.

Ž .Fix x g y`, ` and let

u x s xra q b ,Ž .n n n

where

1r2
a s 2 log nŽ .n

and

1r2 y1r21b s 2 log n y 2 log n log log n q log 4p .Ž . Ž . Ž .n 2

It is well known that

yxlim n 1 y F u x s e , y` - x - `.Ž .Ž .n
nª`

Ž .THEOREM 2.1. Assume that 1.2 holds. Also assume that there exist

positive integers r , l such thatn n

l rn n
2.1 ª 0, ª 0Ž .

r nn

and for which

2 n < <n r 2 log n y log log nn , j
2.2 lim exp y s 0Ž . Ý 1r2 ½ 52r 1 q rnª` n n , jjsl 1 y rŽ .n n , j
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and

Ž .yr r 1qrr n , j n , jn log nŽ .
yŽ1 yr .rŽ1qr .n , j n , j2.3 lim lim sup n s 0.Ž . Ý 1r2

2mª` nª` jsm 1 y rŽ .n , j

Then

n

lim P j F u x s exp yq exp yx , y` - x - `,Ž . Ž .Ž .E n , i n½ 5nª` is1

where

q s P Er2 q d W F d for all k G 1 such that d - `'½ 5k k k k

Ž .q s 1 if d s ` for all k G 1 , with E denoting a standard exponentialk

� 4random variable independent of the W and W : d - `, k G 1 being jointlyk k k

normal with zero means and

d q d y di j < iyj <
2.4 EW W s .Ž . i j 1r2

2 d dŽ .i j

REMARK 1. By the triangle inequality,

2 22'E j y j F E j y j q E j y j .' 'Ž .Ž . Ž .n , i n , j n , 0 n , i n , o n , j

Hence,

1 y r log n F 1 y r log n q 1 y r log n'Ž .Ž . Ž .' 'n , < iyj < n , i n , j

so that

d F d q d .'' '< iyj < i j

Thus d is finite if both d and d . Also we obtain the W in the proof< iyj < i j k

through weak convergence and thus we need not worry about issues related
Ž .to existence such as whether the correlations in 2.4 are nonnegative defi-

nite.

REMARK 2. It is completely straightforward to extend Theorem 2.1 to

consider the weak convergence, as n ª `, of the point process containing
Ž .those irn, 1 F i F n, for which j ) u x . See Hsing, Husler and Leadbetter¨i n

Ž .1988 .

Ž . Ž .REMARK 3. The conditions 2.2 and 2.3 are conditions which restrict,

respectively, the global and local dependence of the random variables. They
Ž .can be simplified in the direction of 1.1 , as in Theorem 2.2.

Ž .THEOREM 2.2. Assume that 1.2 holds and that there exist positive inte-
Ž .gers l satisfying l s o n and for whichn n

< <2.5 lim sup r log n s 0Ž . n , j
nª` jGln
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and

Ž .yr r 1qrl n , j n , jn log nŽ .
yŽ1 yr .rŽ1qr .n , j n , j2.6 lim lim sup n s 0.Ž . Ý 1r2

2mª` nª` jsm 1 y rŽ .n , j

Then the conclusion of Theorem 2.1 holds.

� 4 Ž .REMARK 4. Suppose j is a stationary sequence satisfying 1.1 . Then,j

� 4 � 4 Ž .letting j s j for every n, it is straightforward to show that 1.2 holdsn, j j

Ž . Ž . w b xwith d s ` for all k G 1, and 2.5 and 2.6 hold with l s n for somek n

b ) 0. Thus Berman’s result is recovered in the present scheme.

There is a strong resemblance between the role of q in the preceding

results and that of the extremal index for a stationary sequence. Assume that
� 4 Ž .X is a strictly stationary sequence and v t is such thati n

lim nP X ) v t s t , t ) 0,� 4Ž .1 n
nª`

� 4The sequence X is said to have extremal index u ifi

n
yu tlim P X F v t s e , t ) 0.Ž .E i n½ 5nª` is1

w xAn extremal index is necessarily, and can, in fact, be any value, in 0, 1 . The

closeness of u to 0 and 1 signifies, respectively, strong and weak dependence.

For details of the extremal index, see Leadbetter, Lindgren and Rootzen´
Ž . w Ž .x1983 cf. Hsing 1993 .

For convenience, we call the cluster index q in the context of Theorems 2.1
� 4and 2.2 the extremal index of the array j . The implication of the theoreti-n, i

� 4cal results is the following. Let j be a stationary normal sequence withi

Ž . Ž .r s corr j , j satisfying 1.1 . Suppose for some fixed sample size n, wej 0 j

� n 4wish to find an approximate formula for P E j F x . The quantitiesis1 i

1 y r log n , if r ) 0,Ž .k k
d sk ½ `, if r F 0,k

˜Ž .then play the role of the d in 1.2 and our results suggest how to compute qk
˜n q n n� 4 Ž . Ž .such that P E j F x is better approximated by F x than by F x .is1 i

However, care has to be taken in this practice since the quantities

˜ ˜ ˜d q d y di j < iyj <
, i , j G 1,

1r2
˜ ˜2 d dž /i j

are no longer guaranteed to be nonnegative definite. It can be seen from the
˜Ž .proof, in particular the derivations in 4.2 , that a sensible choice of q is

˜ ˜ ˜ ˜'2.7 P r Er2 q d W F d for all k G 1 such that d - ` ,Ž . ½ 5k k k k k
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˜ ˜ ˜�where E is standard exponential independent of the W and W : d - `,k k k

4k G 1 is jointly normal with zero means and

r y r r< iyj < i j˜ ˜EW W s .i j 1r21r2
2 1 y r 1 y rŽ . Ž .i j

Ž .By the monotone convergence theorem, the probability in 2.7 can be com-

puted as a limit

˜ ˜ ˜ ˜'lim P r Er2 q d W F d for all 1 F k F m such that d - ` ,½ 5k k k k k
mª`

where, if r ª 0 fast, then one expects the speed of convergence of thisn

probability to its limit to be fast also.

We do not evaluate such approximations theoretically. Instead, we illus-

trate numerically via an example in Section 3.

3. An example and numerical results. Consider a triangular array of
� 4Gaussian random variables j with standard normal margins and suchn, j

� 4̀ Ž .that for each n, j is a stationary AR 1 process. That is,n, j js0

2'j s d j q 1 y d Z , i G 0,n , i n n , iy1 n i

where the Z are iid standard normal. Assume thati

z
3.1 d s 1 y for some z g 0, ` .Ž . Ž .n

log n

Clearly

j
z

jr s d s 1 yn , j n ž /log n

Ž .and 1.2 holds with

d s jz .j

Ž .Ž Ž ..2 Ž .Now pick l s log n log log n . To verify 2.5 , observe thatn

< < < <sup r log n F r log n F exp yz l rlog n q log log n ª 0.Ž .Ž .n , j n , l nn
jGln

Ž . Ž .Now we verify 2.6 . Fix any « g 0, 2 . If jzrlog n ) « , then

r F ey«
n , j

and if jzrlog n F « , then by Taylor expansion we obtain

jz « jz
1 y F 1 y r F .n , jž /log n 2 log n
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Thus,

Ž .yr r 1qrl n , j n , jn log nŽ .
yŽ1 yr .rŽ1qr .n , j n , jnÝ 1r2

1 y rŽ .jsm n , j

Ž .Ž . Ž .1r2 1yr r 1qrl n , j n , jn log nŽ .
yŽ1 yr .rŽ1qr .n , j n , js nÝ 1r2

1 y r log njsm Ž .Ž .n , j

1r2ln log nŽ .
yŽ1 yexpŽy« ..rŽ1qexpŽy« ..F nÝ 1r2ž /1 y exp y« log nŽ .Ž .Ž .jsm

ln jz « exp jzr2 log log n rlog nŽ . Ž .Ž .
k exp y 1 y .Ý 1r2ž /ž /ž /2 2 jz 1 y «r2Ž .Ž .jsm

Ž .Hence 2.6 is readily verified and the conclusion of Theorem 2.2 holds.

Note that for this example, it is more natural to replace W by ky1r2Ýk Zk is1 i

and represent q by

k

'3.2 q s P Er2 q z Z F kz for all k G 1 ,Ž . Ý i½ 5
is1

where E denotes a standard exponential random variable independent of the
Ž . Ž .Z and the Z are iid standard normal. Smith 1992 and Perfekt 1994i i

observed that for a class of weakly dependent stationary Markov chains, the

extremal index can be expressed as the probability that a random walk

process never up-crosses a threshold. From that perspective, it is intuitively
Ž .clear why the representation in 3.2 arises.

We now present some numerical computations regarding the above exam-
� 4ple. We first compare the approximation of P E j F x by means of1F iF n n, i

F n and Fq n, the latter being suggested by Theorem 2.2. The computation

results are consistent with theory; namely, even though the ‘‘Berman-like’’
Ž .condition 2.5 holds, the increased correlation among neighboring random

variables within the rows causes clustering and the extremal index q has an

important role to play in approximating the distribution of the maximum.

To get a better visual insight into the approximation, the approximating
n Ž .d.f. F will be replaced by the limiting standard Gumbel d.f. G x s3

Ž yx . y1Ž .exp ye by using the nonlinear transformation T s G F . Observe that3

n
q n

sup P j F x y F x s sup H x y G x ,Ž . Ž . Ž .E n , i n 3, log q½ 5
x xis1

Ž . � n 4 Ž .where H x [ P E h y log n F x , the marginal r.v.’s h s T jn is1 n, i n, i n, i

have the common d.f. G and G is the Gumbel d.f. with location parameter3 3, m

m. Thus, if q - 1, the limiting d.f. is G shifted to the left. Clearly, the3

preceding equality also holds in terms of the variational distance.
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Ž .FIG. 2. Gumbel densities g and g and kernel estimates of h dotted and h3 3, y0.444 100 10,000

Ž .dashed .

For our Monte Carlo simulations, we use the random number generator of

Turbo Pascal, version 4.0; normal pseudo-random numbers are obtained by

applying the polar method. Moreover, the normal d.f. F is computed numeri-
Ž . Ž .cally by formula 26.2.19 in Abramowitz and Stegun 1965 .

The following illustration gives a flavor of the approximation of H byn

means of G and G . Taking z s 1 we have q s 0.641 and log q s 0.444.3 3, log q

The density h of H is estimated by means of a kernel density based onn n

N s 8000 random numbers generated according to H .n

For increasing sample sizes n, the performance of H can be described inn

the following way: Clearly, H s G . For n G 2, H drifts to the left with1 3 n

increasing variance, passing the target distribution G for n s 10 and3, y0.444

attaining the maximum distance to G for n between 40 and 60.3, y0.444

Finally, H approaches G in the manner as indicated in Figure 2 andn 3, y0.444

Table 1.

Subsequently, the distance between distributions will be measured by the

variational distance. Using the same symbols for d.f.’s and the corresponding

probability measures, put

< <D s D n [ sup H A y G AŽ . Ž . Ž .B B n 3
A

TABLE 1

Comparison under the extremal index q s 0.641

D D D rrrrr DHH R B B HHR

n s 20 0.080 0.200 2.5

n s 100 0.099 0.224 2.3

n s 1,000 0.071 0.217 3.1

n s 10,000 0.055 0.206 3.7

n s 50,000 0.047 0.204 4.3
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TABLE 2
˜Extremal indices q

d s 0.5 d s 0.6 d s 0.7 d s 0.8 d s 0.9

n s 20 0.752 0.697 0.611 0.495 0.314

n s 100 0.861 0.809 0.734 0.615 0.423

n s 1,000 0.935 0.898 0.841 0.734 0.530

n s 10,000 0.967 0.942 0.898 0.809 0.615

n s 50,000 0.982 0.963 0.925 0.851 0.671

and

< <D s D n , q [ sup H A y G A .Ž . Ž . Ž .HHR HHR n 3, log q
A

Let again d s 1 y zrlog n with z s 1 and hence q s 0.641 and log q sn

y0.444. Keep in mind that the last digit of the computed values is uncertain

due to the Monte Carlo simulations. We see that G always provides a3, log q

more accurate approximation to H than G and, moreover, the accuracyn 3

improves as n increases.

Ž . � 4Next consider a stationary AR 1 normal sequence j with standardi
j ˜Ž . Ž . Ž .normal margins and cov j , j s d for some fixed d in 0, 1 . With z sj0

Ž .1 y d log n and E and the Z as before, we computedi

k

˜ ˜ ˜'q s P Er2 q z Z F kz for all k G 1Ý i½ 5
is1

w Ž . Ž .xcf. 3.1 and 3.2 for various sample sizes n and recorded the results in
˜Table 2. Clearly, for larger d, it takes a larger n for q to approach 1.

Now for d s 0.7 and various values of n, we compared the approximation
˜n q n� 4of P E j F x by means of F and F . We did so by computing the1F iF n i

˜Ž . Ž .variational distances D n, q and D n , where D and D are modi-HHR B HHR B

fied from the above in an obvious way. The results again demonstrate that
q̃ n nthe approximations F are indeed superior to F . Note that the last ratio

was omitted because of the relative inaccuracy of the value D s 0.014.HHR

A referee suggested that we compare our approximation with the one
Ž .described on the bottom of page 71 of Rootzen 1983 . For the example´

considered above and in terms of the notation in this section, Rootzen’s´

TABLE 3

Comparison under the fixed correlation d s 0.7

˜log q D D D rrrrr DHH R B B HHR

n s 20 y0.493 0.092 0.230 2.5

n s 100 y0.309 0.066 0.161 2.4

n s 1,000 y0.173 0.035 0.085 2.4

n s 10,000 y0.108 0.014 0.045 }
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� Ž . 4method essentially suggests approximation of P T E j y log n F x1F iF n i

by
3r2

1 q d 2 q dŽ . Ž . Ž .y 1yd r 1qd yŽ1yd .rŽ1qd .G x 1 q 4p log n n exp y x ,Ž . Ž .3 1r2 ž /1 q d1 y dŽ .
ỹ1Ž .as opposed to G x q log u suggests by our method. The qualities of the3

Ž .two approximations are very similar numerically for the AR 1 normal se-

quence. A vague connection between the two methods can be seen by making
ỹ1Ž .a Taylor expansion on G x q log u , namely,3

y1 y1 yx˜ ˜G x q log u f G x 1 q log u e .Ž .Ž . Ž .3 3

However, it is not possible to be more specific since Rootzen’s method has an´
entirely different justification and does not take into account the correlations

that are less than the maximum correlation.

The illustrations and the numerical computations were partially carried
wout with the statistical software system XTREMES Hassman, Reiss and

Ž .xThomas 1994 .

Ž .4. Proofs. In the following, assume that x g y`, ` is fixed and write
Ž .u s u x .n n

Ž .LEMMA 4.1. Assume that 1.2 holds. Then for any bounded set K ;
� 41, 2, . . . .

˜<lim P j F u , k g K j ) u s P Er2 q d W F d , k g K ,� 4 '½ 5n , k n n , 0 n k k k
nª`

˜ ˜� 4 Žwhere K s k g K : d - ` if K is the null set, then the probability on thek

.right-hand side is 1 , E is a standard exponential random variable indepen-
˜Ž .dent of W , k g K and the W have a jointly normal distribution with meank k

0 and
d q d y di j < iyj <

EW W s .i j 1r2
2 d dŽ .i j

˜PROOF. Assume that K s K. The modification is obvious if this is not so.

Straightforward computations give

<P j F u , k g K j ) u� 4n , k n n , 0 n

` y
<s P j F u , k g K j s u qH n , k n n , 0 n½ 5u0 n

f u q yruŽ .n n
= dy

u 1 y f uŽ .Ž .n n4.1Ž .

` y
<; P j F u , k g K j s u qH n , k n n , 0 n½ 5u0 n

y2

= exp yy y dy.
2ž /2un
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Ž . Ž .Let h , k g K have the conditional distribution of j , k g K givenn, k n, k

wŽ . xj s u q yru . By Anderson 1984 , Theorem 2.5.1 ,n, 0 n n

X Xh , k g K ; N S u q yru , S y S S ,Ž . Ž .Ž .n , k 12 n n 11 12 12

where
X

S s r and S s r , k g K .Ž . Ž .11 n , < iyj < 12 n , ki , jgK

That is,
X

h , k g K ; N m , S ,Ž . Ž .n , k

where

X
m s r u q yru , k g K and S s r y r r .Ž . Ž .Ž .n , k n n n , < iyj < n , i n , j i , jgK

Moreover, define

h y r u q yruŽ .n , k n , k n n
Z s , k g K .n , k 1r221 y rŽ .n , k

Hence
X

Z , k g K ; N 0, S ,Ž . Ž .n , k

where

r y r rn , < iyj < n , i n , j
S s .

1r21r2ž /2 21 y r 1 y rŽ . Ž .n , i n , j i , jgK

Thus,

y
<P j F u , k g K j s u qn , k n n , 0 n½ 5un

� 4s P h F u , k g Kn , k n

2yr 1 q r u 1 y rŽ .n , k n , k n n , k
s P q Z(( n , k½ 2 2 2

4.2Ž .

u2 1 y rŽ .n n , k
F , k g K .52

Ž . Ž .1r2Using the assumption 1.2 and the fact that u ; 2 log n , it is easy ton

see that as n ª `,

u2 1 y rŽ .n n , k
r ª 1, ; 1 y r log n ª dŽ .n , k n , k k

2

and

r y r r d q d y dn , < iyj < n , i n , j i j < iyj <
EZ Z s ª , i , j g K .n , i n , j 1r2 1r21r22 2 2 d dŽ .1 y r 1 y rŽ . i jŽ .n , i n , j



¨T. HSING, J. HUSLER AND R.-D. REISS682

Ž .Together with 4.2 , we conclude that

<lim P j F u , k g K j s u q yru s P yr2 q d W F d , k g K .� 4 '½ 5n , k n n , 0 n n k k k
nª`

Ž .The result follows readily from 4.1 using Lebesgue’s dominated convergence

theorem. I

For 0 F l F n y 2, define the mixing coefficient

� 4a l s max P j F u , i g I j J�Ž .n n , i n

� 4 � 4 � 4yP j F u , i g I P j F u , i g J : I , J ; 1, . . . , nn , i n n , i n

< <� 4and min i y j : i g I , j g J s l .4

The following result is proved using a familiar argument, based on the
Ž .so-called normal comparison lemma. See Berman 1964 and Leadbetter,

wŽ . xLindgren and Rootzen 1983 , pages 81]84 .´

LEMMA 4.2. For each n, l G 1,

n 2< <n r un , j n
a l F exp y .Ž . Ýn 1r2

2 ž /2p 1 q rn , jjsl 1 y rŽ .n , j

PROOF OF THEOREM 2.1. Since

u2 s 2 log n y log log n q O 1 ,Ž .n

Ž .Lemma 4.2 and 2.2 imply that

n
lim a l s 0.Ž .n n

rnª` n

Ž . Ž . wCombining with the assumption 2.1 , Theorem 21. of O’Brien 1987 cf.
Ž .xRootzen 1988 implies that´

rn n

� 4P X F u y exp ynP j ) u P j F u j ) u ª 0.Ž .E Fi n n , 0 n n , j n n , 0 n½ 5 ½ 5ž /
is1 js1

It is clear that

� 4 yxlim nP j ) u s en , 0 n
nª`

and it follows from Lemma 4.1 that

m

lim lim P j F u j G u s q .Ž .D n , j n n , 0 n½ 5mª` nª` js1

Therefore, the conclusion of the theorem follows if we have

rn

lim lim sup P j ) u j ) u s 0.Ž .D n , j n n , 0 n½ 5mª` nª` jsm
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As in Lemma 4.1, write

rn

P j ) u j ) uŽ .D n , j n n , 0 n½ 5
jsm

`
2 2; exp yy y y r2uŽ .H n

ys0

rn

2= P r u q yru q Z 1 y r ) u dy.Ž . 'D n , j n n n , j n , j nž /½ 5
jsm

It obviously suffices to show that for each fixed y ) 0,0

rny y0 yy 2lim lim sup e P r u q qZ 1 y r ) u dys0,'DH n , j n n , j n , j nž /½ 5ž /umª` ys0nª` njsm

or the stronger statement

rn y
lim lim sup sup P r u qÝ n , j n½ ž /umª` nª` 0FyFj njsm0

4.3Ž .
2qZ 1 y r ) u s 0.'n , j n , j n 5

Next observe that

Ž .yr r 1qrr n , j n , jn log nŽ .
yŽ1 yr .rŽ1qr .n , j n , jnÝ 1r2

2
jsm 1 y rŽ .n , j

Ž .Ž . Ž .1r2 1yr r 1qrr n , j n , jn log nŽ .
yŽ1 yr .rŽ1qr .n , j n , js nÝ

1 q r 1 y r log nŽ . Ž .'jsm n , j n , j

rn exp y 1 y r log nŽ .Ž .n , j
G .Ý

2 1 y r log nŽ .'jsm n , j

Hence, if for some « ) 0,

y1
1 y r log n ) «Ž .Ž .E n , j

mFjFrn

then

Ž .yr r 1qrr n , n n , jn log n «Ž .
yŽ1 yr .rŽ1qr . y1r«n , j n , jn G e .Ý (1r2

2 2jsm 1 y rŽ .n , j

Ž .Thus, condition 2.3 implies that

y1
4.4 lim lim sup 1 y r log n s 0.Ž . Ž .Ž .E n , j

mª` nª` mFjFrn
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Now,

y
2P r u q q Z 1 y r ) u'n , j n n , j n , j n½ 5ž /un

1 y r y rn , j n , j
s P Z ) u y ,n( 2½ 51 q r u 1 y rn , j n ' n , j

4.5Ž .

Ž . Ž . w xwhere Z ; N 0, 1 . By 4.4 for large n and j g m, r ,n

1 y r y rn , j n , j
u y ) 0.n( 21 q r u 1 y rn , j n ' n , j

By the well-known inequality,

1 y F x F xy1f x , x ) 0,Ž . Ž .
we obtain

1 y r y rn , j n , j
P Z ) u yn( 2½ 51 q r u 1 y rn , j n ' n , j

y1

1 y r y rn , j n , j
F u yn( 21 q r už /1 y rn , j n ' n , j

4.6Ž .

2¡ ¦
1 1 1 y r y rn , j n , j~ ¥= exp y u y .n( 2' 2 1 q r u2p ž /¢ §1 y rn , j n ' n , j

Now,
2

1 y r y rn , j n , j
u yn( 21 q r už /1 y rn , j n ' n , j

1 y rn , j 2G C q un
1 q rn , j

4.7Ž .

1 y rn , j
G C q 2 log n y log log nŽ .

1 q rn , j

for some constant C depending only on x and y . Here and hereafter, C0

Ž .denotes a generic constant whose value changes from line to line. By 4.6 and
Ž .4.7 ,

1 y r y rn , j n , j
P Z ) u yn( 2½ 51 q r u 1 y rn , j n ' n , j

Ž .yr r 1qrn , j n , jlog nŽ .
yŽ1 yr .rŽ1qr .n , j n , jF Cn

21 y r' n , j

4.8Ž .
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Ž . Ž . Ž .for some constant C independent of n and j. By 4.5 and 4.8 , 4.3 follows
Ž .from 2.3 . I

< <PROOF OF THEOREM 2.2. Let « s sup r log n andn jG l n, jn

r s n « k nl .' 'n n n

Ž . Ž .Thus 2.1 is satisfied. For j G l , Taylor’s theorem and condition 2.5 implyn

that for some constant C,

2 log n y log log n
G 2 log n y log log n q C.

1 q rn , j

Thus,

2 n 2 3< <n r u n «n , j n n
exp y F C exp y2 log n q log log nŽ .Ý 1r2 ½ 52r 1 q r r log nn n , j njsl 1 y rŽ .n n , j

n
s C « ª 0 as n ª `,n

rn

Ž .which proves 2.2 . Now write

Ž .yr r 1qrr n , j n , jn log nŽ .
yŽ1 yr .rŽ1qr .n , j n , jn s S q S ,Ý n , 1 n , 21r2

1 y rŽ .jsm n , j

where

Ž .yr r 1qrl n , j n , jn log nŽ .
yŽ1 yr .rŽ1qr .n , j n , jS s n ,Ýn , 1 1r2

1 y rŽ .jsm n , j

Ž .yr r 1qrr n , j n , jn log nŽ .
yŽ1 yr .rŽ1qr .n , j n , jS s n .Ýn , 2 1r2

1 y rŽ .jsl q1 n , jn

Ž .By 2.5 ,

Ž .yr r 1qrn , j n , jlog nŽ .
1y Ž1yr .rŽ1qr .n , j n , jsup n ª 1,

1r2
1 y rjGl q1 Ž .n n , j

and hence we have

sup S F lim r rn s 0.n , 2 n
nª`nª`

Ž . Ž .Thus 2.3 follows from 2.6 and the result follows from Theorem 2.1. I
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