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RECURRENCE RELATIONS FOR GENERALIZED HITTING
TIMES FOR SEMI-MARKOV PROCESSES1

BY DMITRII S. SILVESTROV

Umea University˚

Recurrence relations and upper bounds are obtained for power mo-

ments of generalized hitting times for semi-Markov processes. General

necessary and sufficient conditions for the existence of these moments are

also found. Applications to hitting times for semi-Markov dynamical sys-

tems of linear type, semi-Markov random walks, diffusion processes and

queuing systems are discussed.

Ž .1. Introduction. Let h t , t G 0, be a semi-Markov process with arbi-

trary phase space X, that is, a process with stepwise trajectories possessing

the Markov property at moments of jumps. We consider random functionals t
Ž .defined on trajectories of h t and called generalized hitting times. Ordinary

Ž .hitting times in domains D : X for a semi-Markov process h t are included

in this class, as well as more general place-dependent hitting times, first

record times, additive functionals accumulated on trajectories of a semi-
Ž .Markov process h t up to the moment t and many others. The concept of

this class of functionals arose from the model of terminal stopping times
Ž .place-dependent hitting times for discrete-time Markov chains investigated

Ž .by Pitman 1977 .

In this paper we focus on recurrence relations, upper bounds and neces-
Ž .sary and sufficient conditions for the existence meaning finiteness of the

moments of generalized hitting times E t r
.p

Moments of this type play an important role in limit and ergodic theorems

for Markov-type processes. As a rule, first and second order moments are

used in the conditions of the theorems; higher order moments are used in the

rates of convergence and asymptotic expansions.

There is also another important area of application. Hitting times are often

interpreted as transition times for different stochastic systems described by
ŽMarkov-type processes occupation times or waiting times in queuing sys-

tems, lifetimes in reliability models, extinction times in population dynamic
.models, etc. . The problem of estimating the tails of the corresponding distri-

Ž .butions leads one due to Chebyshev-type inequalities to the use of different

order moments for hitting times.
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Our results are based on the development and expansion of two groups of

results concerning hitting times for Markov chains to generalized hitting

times for semi-Markov processes.

The first group of results is concerned with recurrence relations for the

moments of integer order for ordinary and place-dependent hitting times.

Recurrence relations of this type have been obtained for Markov chains by
Ž . Ž .Chung 1954, 1960 . Further development was achieved by Lamperti 1963 ,

Ž . Ž .Kemeny and Snell 1961a, b and subsequently by Pitman 1974, 1976, 1977 .

In this paper a new approach to this problem is developed. Instead of direct

calculations for moments, we first obtain trajectory stochastic recurrence
r Ž .representations for powers of generalized hitting times t Theorem 1 . Then

simple calculations for the first-order moments yield desirable recurrence

relations for the higher order moments and the description of these moments
Žas minimal solutions of the corresponding recurrent integral equations Theo-

.rem 2 . This theorem presents, for generalized hitting times and semi-Markov

processes, results similar to those given for ordinary and place-dependent

hitting times for Markov chains in the cited papers.

The second group of results is concerned with upper bounds for the

expectations of ordinary hitting times, which can be obtained in terms of test

functions with the use of the so-called sweeping technique. Upper bounds for

expectations E t and criteria for positive recurrence of Markov chains withp

discrete phase space have been obtained in terms of a test function of one
Ž .space variable by Foster 1953 . These results have been extended to Markov

Ž . Žchains with general phase space by Lamperti 1963 and Tweedie 1975,
. Ž .1976 . Related problems have been investigated by Hasminskii 1969 ,

Ž . Ž .Kalashnikov 1973, 1977, 1978 , Nummelin 1984 and Kalashnikov and
Ž . Ž .Rachev 1990 . The latest results have been obtained by Meyn 1989 and

Ž .Meyn and Tweedie 1992, 1993 .

As far as the moments of higher order are concerned, the works of
Ž .Kalashnikov 1973, 1978 have to be mentioned, in which the corresponding

upper bounds have been obtained for Markov chains with the use of more

complicated bivariate test functions of time and space variables.

It should be noted that it is useful to have upper bounds for moments of

hitting times in terms of test functions from different classes. In the work of
Ž .Silvestrov 1980 , the idea of recurrent construction of upper bounds based on

test functions of only one space variable has been introduced, and the

corresponding upper bounds have been obtained for higher order moments of

ordinary hitting times for semi-Markov processes with a discrete phase space.

Similar results for Markov chains and semi-Markov processes with an arbi-

trary phase space have been obtained independently by Nummelin and
Ž . Ž . Ž .Tuominen 1983 , Tweedie 1983 and Silvestrov 1983a, b .

In this paper we consider more general functionals, called generalized

hitting times, and present the corresponding recursive test function tech-
Ž .niques in a more advanced operator version Theorem 3 . These techniques

can be applied to minimal solutions of recurrent operator equations and

depend more on some general properties of the operator model than on
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specific features connected with the structure of hitting time functionals. It

seems to us that such a method clarifies the real mechanism for the corre-

sponding recurrent upper bounds in a wider mathematical context.

The upper bounds obtained in Theorem 3 possess a natural minimal

property which makes it possible to reformulate them in the form of neces-

sary and sufficient conditions for the existence of moment-type functionals of
Ž .generalized hitting times. We do this in the general form Theorem 4 which

permits us cover many different Foster-type criteria for higher order mo-

ments of generalized hitting times in the frame of one model. As examples,

we formulate necessary and sufficient conditions for so-called uniform recur-
Ž .rence of generalized hitting times Theorem 5 as well as a version of these

Ž .conditions for time-dependent generalized hitting times Theorem 6 . These

theorems correspond to the well-known results concerned with the uniform

recurrence and regularity of ordinary hitting times for Markov chains. Refer-

ences and discussion related to this question can be found in the books by
Ž . Ž .Nummelin 1984 and Meyn and Tweedie 1993 and in the recent papers by

Ž . Ž .Tuominen and Tweedie 1994 and Silvestrov 1993, 1994a .

Applications to some concrete models of semi-Markov processes are also

considered in order to demonstrate the techniques of recurrent test functions

and the relevance of the semi-Markov setting. We obtain recurrent upper

bounds for higher order moments of hitting times for semi-Markov dynamical
Ž .systems of linear type Theorems 7 and 8 , semi-Markov random walks

Ž . Ž .Theorems 9 and 10 , diffusion processes Theorems 11 and 12 and MrG-type
Ž .queuing systems Theorems 13 and 14 , and we show how these results can

be used to obtain rates of convergence in the corresponding ergodic theorems
Ž .Theorem 15 .

� Ž . 42. Definition of the model. Let b s b s h , a , n s 0, 1, . . . be an n n

w x Žrandom sequence with phase space X = 0, q` . Here X is an arbitrary
w xspace with s-algebra of measurable subsets B , and 0, q` is an extendedX

.half-line with the Borel s-algebra of measurable subsets B . Let t s 0,q 0

t s a q ??? qa , n s 0, 1, . . . , and t s a q a q ??? . We can connect withn 1 n ` 1 2

Ž .the sequence b the stepwise random process h t with phase space X,

considering random variables h , a and t as states of this process atn n n

moments of jumps, times between jumps and moments of jumps, respectively,
Ž .and defining h t s h for t F t - t , n s 0, 1, . . . .n n nq1

Ž .The process h t is a semi-Markov process if the random sequence b is a

Markov renewal process, that is, a homogeneous Markov chain with phase
w x Ž . � 4 �space X = 0, q` , an initial distribution p A s P h g A s P h g A,0 0

4a s 0 and transition probabilities0

<1 P h g A , a F u h s x , a s v s P x , A , u .� 4Ž . Ž .nq1 nq1 n n

� 4In this case the first component h s h , n s 0, 1, . . . is also a homoge-n

Ž . Ž .neous Markov chain with transition probabilities P x, A s P x, A, ` .
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Ž .We do not use the random variable a to define the process h t . That is0

why it is convenient to assign a ' 0 and consider, together with b, the0
X � 4reduced version of this sequence b s h , b , b , . . . .0 1 2

Ž .Let h ? be a measurable functional acting from the space of trajectories of
X Xw x Ž .the sequence b to 0, q` , and let h b be the corresponding random

X
functional defined on trajectories of the random sequence b . We denote by un

X
and Q the shift operators translating the random sequence b in then

X X� 4 Ž .sequence u b s h , b , . . . and the nonnegative random functional h bn n nq1
X XŽ . Ž .in the random functional Q h b s h u b , respectively.n n

As usual, the notation P and E is used to denote probabilities andx x

expectations calculated when the initial distribution is concentrated in point

x. If some equality or inequality holds almost everywhere in measure P , wex

Ž .use the notation P 1 beside the corresponding symbol e.g., s .x P 1x
X XŽ . Ž .Now, let m s g b and l s h b be two nonnegative random functionals.

ŽWe call a random functional n a generalized hitting time for the Markov
.chain h generated by a random functional m if n takes values 1, 2, . . . and is

defined by the formula

2 n s min n G 1: Q m G 1 , x g X .Ž . Ž .P 1 ny1x

wSimilarly, we call a random functional t a generalized hitting time for a
Ž .xsemi-Markov process h t generated by random functionals m and l if t

w xtakes values in the interval 0, ` and is defined by the formula

ny1 `

3 t s Q l s x Q l, x g X ,Ž . Ý ÝP 1 n P 1 n nx x

ns0 ns0

Ž . Ž .where x s I n ) n and, in the right-hand side of 3 , one takes the productsn

x Q l as 0 if the corresponding indicators x take the value 0.n n n

We say that t is a Markovian generalized hitting time if the functionals
Ž . Ž .m s g h , h , a and l s h h , h , a depend on the triple of random vari-0 1 1 0 1 1

X
ables h , h , a but not on the whole sequence b .0 1 1

Let us consider some examples to show that this class is sufficiently rich

and to illustrate the term generalized hitting time.

Ž . Ž . � Ž . 4If m s g h , then n s min n G 1: h g D , where D s y: g y G 1 . In1 P 1 nx

Ž .this case n is an ordinary hitting time for the Markov chain h. If m s g h , h ,0 1

Ž . � Ž . 4then n s min n G 1: h g D , where D s y: g x, y G 1 , x g X. OneP 1 n h xx ny1

can call such a functional a place-dependent hitting time. Let m s ty1a ,1

Ž .where t ) 0. Then n s min n G 1: a G t . One can call such a functionalP 1 nx

the first record time.

Let us mention two of the most important examples involving the variation

of functionals l. If l s a , then t s t is an ordinary generalized hitting1 P 1 nx

Ž . Ž .time for the semi-Markov process h t . If l s h h , h , then t is an additive0 1

functional accumulated on trajectories of the Markov chain h up to the

moment n . The list of examples can be continued.

For Markovian generalized hitting times we can effectively use the Markov
Ž .property of the initial semi-Markov process h t and obtain desirable recur-

rent relations and upper bounds for the moments E t r
.p
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3. Stochastic recurrence relations. The results given in this section
Žshow that recurrence relations for powers of generalized hitting times without

.the additional Markovian supposition can be obtained, not only for the

moments, but directly for these functionals as trajectory stochastic recur-

rence relations which take place with probability 1.

Let us introduce the random functionals

ry1
lr l ryl4 l s l q C l x Q t , x g X , r s 1, 2, . . . ,Ž . Ž .Ýr P 1 r 1 1x

ls1

ry l Ž .lwhere one takes the products l x Q t as 0 if at least one of the factors1 1

takes the value 0.

THEOREM 1. Let t be a generalized hitting time generated by nonnegative

random functionals m and l. Then, for any r s 1, 2, . . . , the random func-

tional t r is also a generalized hitting time generated by the same functional m
w Ž .xused to define the random index n in 3 for all r s 1, 2, . . . and the

Ž .functional l s l which is specified for every r s 1, 2, . . . and defined in 4 .r

PROOF. Let us introduce doubly truncated hitting times which are finite

random variables

Ž .nnN y1

t N , T s Q l n T ,Ž . Ý n

ns1

Ž .where N s 0, 1, . . . , T G 0. By definition, the random functional t N, T can

be represented as the sum of two summands

5 t N , T s l n T q x Q t N y 1, T , x g X .Ž . Ž . Ž .P 1 1 1x

Ž .Taking equality 5 to the r th power, we obtain the equivalent stochastic

equality

r r
6 t N , T s l N , T q x Q t N y 1, T , x g X ,Ž . Ž . Ž . Ž .P 1 r 1 1x

where

ry1
r lryll7 l N , T s l n T q C l n T x Q t N y 1, T .Ž . Ž . Ž . Ž . Ž .Ž .Ýr P 1 r 1 1x

ls1

Ž .Iterating 6 and taking into account that, by definition, t s 0, we can0, T

obtain the stochastic equality

Ny1
r

8 t N , T s x Q l N y n , T , x g X .Ž . Ž . Ž .ÝP 1 n n rx

ns0

By definition, one has

9 0 F t N , T F t , x g X ,Ž . Ž . P 1x
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and, as N, T ª q` in an arbitrary way,

10 t N , T ª t , x g X .Ž . Ž . P 1x

Ž .It follows from 7 that

11 0 F l N , T F l , x g X ,Ž . Ž .r P 1 rx

Ž . Ž .and, using 9 and 10 , we also obtain that, as N, T ª q` in an arbitrary

way,

12 l N , T ª l , x g X .Ž . Ž .r P 1 rx

Ž . Ž .To evaluate the limit in 12 , we use 7 . In this formula the random
Ž . Žvariables l n T and Q t N y 1, T are finite, and so the products l n1

.ry l Ž Ž ..lT x Q t N y 1, T are 0 if at least one of the factors takes the value 0.1 q

Ž .Therefore, the limit in 12 can be calculated with the use of the product rule
Ž .described in 4 .

Ž . Ž .From 11 and 12 it follows that similar relations also hold for the shifted
Ž .random variables Q l N y n, T . Taking this into consideration, we obtainn r

Ž . Ž .by 11 and 12 that, as N, T ª q` in an arbitrary way,

Ny1 `

13 x Q l N y n , T ª x Q l , x g X .Ž . Ž .Ý Ýn n r P 1 n n rx

ns0 ns0

Ž . Ž .In 13 the random variables Q l N y n, T are finite and so the productsn r

Ž .x Q l N y n, T are 0, if the corresponding indicators x are 0. Therefore,n n r n

Ž .the limit in 13 can also be calculated with the use of the product rule
Ž .described in 3 .

Evaluating the limits for the expressions on the left-hand and right-hand
Ž . Ž . Ž .sides in 8 and using relations 10 and 13 , we finally get

`
r14 t s x Q l , x g X ,Ž . ÝP 1 n n rx

ns0

Ž .where we use the product rule described in 3 . I

REMARK 1. We formulated Theorem 1 as an assertion concerning general-

ized hitting times for semi-Markov processes. However, analyzing the proof of

Theorem 1, one can observe that only the general structural properties of the

random sequence b were used, and the semi-Markov properties of this

sequence were not used at all. This fact allows us to conclude, somewhat

unexpectedly, that the assertion of Theorem 1 is justified for an arbitrary
w xrandom sequence b with phase space X = 0, q` and any generalized

Ž . Ž .hitting time defined by formulas similar to 2 and 3 as a random functional

on trajectories of the random sequence b.

4. Recurrence relations for moments. In this section we obtain recur-

rence relations and equations for moments of generalized hitting times. The

Markovian property of generating functionals plays an essential role. There-
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fore, we consider the Markovian generalized hitting time t generated by
Ž . Ž .random functionals m s g h , h , a and l s h h , h , a .0 1 1 0 1 1

w xLet L be a space of functions acting from X to 0, q` that are B -mea-q

surable with respect to the s-algebra B .X

Let us introduce, for each r s 0, 1, . . . , the linear integral operator Pr

acting from L to L according to

P v x s E lrx v hŽ . Ž .r x 1 1

r
s P x , dy, dt h x , y , t I g x , y , t - 1 v y ,Ž . Ž . Ž . Ž .Ž .HH

w xX 0, q`

15Ž .

x g X ,
r Ž .r r Ž .where l and h x, y, t are counted as 1 if r is 0, and the products l x v h1 1

Ž .r Ž Ž . . Ž .and h x, y, t I g x, y, t - 1 v y as 0 if at least one of the factors takes the

value 0. As usual, one takes the integral of q` over a set A to be 0 or q`

according to whether A has zero or positive measure.

The operator P plays the most important role. It is not difficult to show0

that P n, the nth iteration of this operator, acts by the formula0

16 P n v x s E x v h , x g X ,Ž . Ž . Ž .0 x n n

Ž .where the rule of calculation is as for 15 .

We use the potential-type operator U mapping L to L and defined by the

formula

17 Uv x s v x q P v x q P 2 v x q ??? , x g X ,Ž . Ž . Ž . Ž . Ž .0 0

Ž . Ž .where the rules are as for 15 and 16 .

We also need to consider the linear integral operator functionals mw r x,
Ž .r s 1, 2, . . . , mapping L = ??? = L r y 1 times to L by the formula

ry1
w r x r l rylm v , . . . , v x s E l q C E l x v hŽ . Ž . Ž .Ý1 ry1 x r x 1 l 1

ls1

ry1
Žr . ls m x q C P v x ,Ž . Ž .Ý r ryl l

ls1

18Ž .

Žr . ² Žr .Ž . r :where m s m x s E l , x g X and, once again, one has rules as forx

Ž .15 .

Ž .To distinguish the function of x g X defined in 18 from the corresponding
Ž .operator functional, we use the notation m s m v , . . . , v sw r x w r x 1 ry1

² w r xŽ .Ž . : ² :m v , . . . , v x , x g X . Let us also write m s E l , x g X and1 ry1 r x r

² r : Ž1.M s E t , x g X . Note that, by definition, m s m s m .r x w1x 1

THEOREM 2. Let t be a Markovian generalized hitting time generated by

nonnegative random functionals m and l. Then the functions m , M , r sr r

1, 2, . . . , belong to the space L and are defined by the recurrence formulas

a m s m M , . . . , M , M s Um .Ž . Ž .r w r x 1 ry1 r r
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Moreover, the function M satisfies the linear integral equationr

b M s m q P MŽ . r r 0 r

wand is the minimal solution of this equation in L M F M for any otherr

Ž . xsolutions of b from L .

PROOF. We are going to use Theorem 1. First, let us calculate E l usingx r

Ž . ry l4 . In this formula the random variables l x depend on the random1

variables h , h , a , but the shifted generalized hitting time Q t depends on0 1 1 1

the random variables h , h , a , . . . . Therefore, using the Markov property of1 2 2

the initial Markov renewal process b, we get

ry1
r l ryl l <E l s E l q C E l x E Q t h� 4Ýx r x r x 1 1 1

ls1

ry1
Žr . ryls m x q E l x M hŽ . Ž .Ý x 1 l 1

ls1

19Ž .

s m M , . . . , M , x g X .Ž .w r x 1 ry1

Ž . Ž .The rule of calculation in 19 is the same as in 18 , which follows from
Ž .those of 4 .

r Ž .Now, we can calculate E t using 3 . In this formula the random indica-x

tors x depend on the random variables h , h , a , . . . , h , a , but the shiftedn 0 1 1 n n

generalized hitting time Q t depends on the random variablesn

h , h , a , . . . . Therefore, using the Lebesgue theorem to change then nq1 nq1

order of computation for expectation and sum of series and then using the

Markov property of the initial Markov renewal processes b, we get

`
rE t s E x Q lÝx x n n r

ns0

`

<s E x E Q l h� 4Ý x n n r n

ns0
20Ž .

s m x q P m x q P 2 m x q ???Ž . Ž . Ž .r 0 r 0 r

s Um x , x g X .Ž .r

Ž . Ž . Ž .The rule of calculation in 20 is the same as in 16 and 17 . It follows
Ž .from the rule of calculation used in 3 .

The function M s Um belongs to L since the function m s mŽ1. belongs1 1 1

to L and this space is closed with respect to the operation of finite and
Žcountable summation v s v q v q ??? belongs to L for any functions1 2

. Ž . Ž .v , v , . . . from L . Then 19 and 20 let us conclude that the functions1 2

Ž .m s m M and M s Um belong to L and so on. By induction, we can2 w2x 1 2 2

conclude that the functions m , M belong to L for all r s 1, 2, . . . .r r
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w ŽThe linear integral operator P is a countably additive operator P v q0 0 1

.v q ??? s P v q P v q ??? for any finite or countable sequence of functions2 0 1 0 2

x Ž .v , v , . . . from L . Therefore, using a , we can write1 2

m q P M s m q P m q P m q ???Ž .r 0 r r 0 r 0 r

s m q P m q P 2 m q ??? s M .r 0 r 0 r r

Ž .Therefore, M is a solution of the operator equation b .r

Ž . Ž .Let M be an arbitrary solution of the operator equation b . Iterating b ,

we get

M s m q P m q P M s m q P m q P 2MŽ .r 0 r 0 r 0 r 0

and, continuing this process, we get

M s m q P m q ??? qP nm q P nq1M G m q P m q ??? qP nmr 0 r 0 r 0 r 0 r 0 r

for any n s 1, 2, . . . . From the last inequality it follows that M G m q P mr 0 r

Ž .q ??? s M , that is, M is the minimal solution of b . Ir r

5. Recurrent upper bounds for moments. In this section we obtain

recurrent upper bounds for moments of generalized hitting times in terms of

so-called test functions.

Ž .Recall the notation m s m v , . . . , v introduced in Section 4.w r x w r x 1 ry1

THEOREM 3. Let t be a Markovian generalized hitting time. If there exist

test functions v , r s 1, . . . , k, from L that satisfy the test inequalityr

c v G m q P v , x g X , r s 1, . . . , k ,Ž . r w r x 0 r

then, for functions M , r s 1, . . . , k, the following upper bounds hold:r

d M F m q P v F v , x g X , r s 1, . . . , k .Ž . r w r x 0 r r

PROOF. Let us first prove that

21 M F v , x g X , r s 1, . . . , k .Ž . r r

The space L is closed with respect to the computation of monotonic
Ž w Ž . Ž . Ž .difference the function v s v y v by definition v x s 0 if v x s v x s1 2 1 2

x .q` belongs to L for any two functions v G v from L . Therefore, a1 2

Žcountably additive operator P is a partial monotonic operator P v G P v0 0 1 0 2

.for any functions v G v . Indeed, if v G , then the function v can be1 2 1 2 1

represented in the form v s v q v, where v g L. Therefore, we have P v s1 2 0 1

P v q P v G P v . It is also obvious that the property of partial monotonicity0 2 0 0 2

of the operator P imply the same property for the iterates P n
.0 0

Using these properties of the operator P , the equality m s m and the0 w1x 1

Ž .test inequality c , we get

v G m q P v G m q P m q P vŽ .1 0 1 0 1 0

s m q P m q P 2 v1 0 1 0

G ??? G m q P m q ??? qP nm q P nq1 v , x g X .1 0 1 0 1 0
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Ž .It follows from the last relation and a that

v G m q P m q ??? s M , x g X .1 0 1 1

Ž .Therefore, inequality 21 is valid for r s 1.

Ž .Let us assume that inequality 21 holds for all l F r y 1 for some r F k,
Ž .and check that under this assumption inequality 21 also holds for l s r.

It is not difficult to check that the operators P are also partially monotonicr

for all r s 1, . . . . Therefore, the operator functionals mw r x are also partially
w Ž . Ž X X . X

monotonic m v , . . . , v G m v , . . . , v for any functions v G v ,w r x 1 ry1 w r x 1 ry1 l l

xl s 1, . . . , r y 1, x g X . Using this fact and the induction hypothesis made

above, we have

m s m v , . . . , vŽ .w r x w r x 1 ry1

G m M , . . . , M s m , x g X .Ž .w r x 1 ry1 r

Also, using the partial monotonicity of the operators P n and the test0

Ž .inequality c , we get

v G m q P vr w r x 0 r

G m q P m q P vŽ .w r x 0 w r x 0 r

s m q P m q P 2 vw r x 0 w r x 0 r

G ??? G m q P m q ??? qP nm q P nq1 v , x g X .w r x 0 w r x 0 w r x 0 r

Ž .It follows from the last two inequalities and a that

v G m q P m q P 2 m q ???r w r x 0 w r x 0 w r x

G m q P m q P 2 m q ??? s M , x g X .r 0 r 0 r r

Ž .We can now conclude by induction that inequality 21 is valid for all

r s 1, . . . , k.

Ž .To complete the proof and to get the upper bounds d , we use the fact that
Ž . Ž .the functions M are solutions of b together with 21 , the partial mono-r

w r x Ž .tonicity of P and of the m and the test inequality c . We finally get0

M s m M , . . . , M q P MŽ .r w r x 1 r 0 r

F m v , . . . , v q P v F v , x g X , r s 1, . . . , k .Ž .w r x 1 ry1 0 r r

22Ž .

The proof is complete. I

6. Necessary and sufficient conditions for the existence of mo-

ments. The moments E t k may take finite values or the value q`. Usu-p

ally, one says that these moments exist in the first case. The recurrent upper

bounds represented in Theorem 3 allow us to formulate effective necessary

and sufficient conditions for the existence of these moments and of some more

general moment functionals.
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Ž .The measurable functional f acting from L s L = ??? = L k times tok

w x Ž .0, q` is said to be nonnegative partly monotonic if f v , . . . , v F1 k

Ž X X . X
f v , . . . , v for any functions from L such that v F v , x g X, r s 1, . . . , k.1 k r r

The following theorem supplements Theorem 3.

THEOREM 4. Let f be a nonnegative partly monotonic functional and let t

be a Markovian generalized hitting time. Then there exist test functions v ,r

Ž .r s 1, . . . , k, from L that satisfy the test inequality c , and

e F s f m q P v , . . . , m q P v - `Ž . Ž .k w1x 0 1 w k x 0 k

is the necessary and sufficient condition for the relation

f f M , . . . , M - `Ž . Ž .1 k

to hold. In this case

g f M , . . . , M F F .Ž . Ž .1 k k

Ž .PROOF. The assertion of sufficiency and inequality g follow directly from

the assertions of Theorem 3 and the partial monotonicity of f. We obtain

necessity by choosing the moments M , r s 1, . . . , k, as test functions. In thisr

Ž .case the test inequality c holds since the moments M , r s 1, . . . , k, satisfyr

Ž . Ž . Ž . Ž .b , replacing the test inequality c . The test inequality e coincides with f ,
Ž .also because of b . I

REMARK 2. Analyzing the proofs of Theorems 2]4, one may note that the
Ž .recurrent explicit formulas a play a key role. We obtain these formulas

using the special structure of Markovian generalized hitting times and the

Markov property of the initial Markov renewal process. After that, we obtain

the description of the moments M as minimal solutions of the recurrentr

Ž . Ž .integral equations b and the recurrent upper bounds d , as well as the
Ž .necessary and sufficient conditions of existence and upper bounds g using

only general properties of the space L, the operator P and the operator0

functionals mw r x
. Specifically, one uses the fact that the space L is closed with

respect to the operations of finite and countable summation and computation

of monotonic differences, the countable additivity and partial monotonicity of

the operator P , and the partial monotonicity of the operator functionals0

mw r x
. Assertions similar to those formulated in Theorems 2]4 can be proved

under similar general assumptions for any space of functions L acting from
w x w r xX to 0, ` and any P , m and minimal series M s m q P m q ???0 r r 0 r

associated with the functions m by the recurrence relations m sr r

Ž .m M , . . . , M .w r x 1 ry1

7. Uniform recurrence. Many examples illustrating Theorem 4 can be

generated if one takes into consideration the fact that the class of nonnega-

tive partly monotonic functionals is closed with respect to linear combination

with nonnegative coefficients, multiplication, maximum, minimum and so

forth.
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Let us consider one typical example of a nonnegative partly monotonic

functional

f v , . . . , v s sup E v h s v x p dx ,Ž . Ž . Ž . Ž .H1 k p k 0 k
XpgP

where p is a s-finite measure on B and P is some class of such measures.X

w Ž .We retain the notation E j s H E jp dx for expectations of random func-p X x

xtionals averaged by a measure p , even if p is not a probability measure.

Applying Theorem 3, we obtain in this case necessary and sufficient condi-

tions for the relation

M s sup E t k - `k P p
pgP

to hold, as well as the corresponding upper bounds for M . One cank P

interpret the last relation as the definition of some kind of uniform recur-
Ž .rence of order k for the semi-Markov process h t with respect to a general-

ized hitting time t and a class of initial measures P.

Note that in the case of ordinary hitting times the typical choice of the

class of initial measures P is the class of all distributions concentrated at

points x g D. Another important case is when the family P includes only one

measure which is a stationary measure for the Markov chain h or itsn

truncation to the same set D.

To simplify the notation, let us define

r
r l rylV x s E l q C E l x v h , x g X , r s 1, . . . , k ,Ž . Ž .Ýr x r x 1 l 1

ls1

Ž .where the rule of calculation is as for 15 .

THEOREM 5. Let t be a Markovian generalized hitting time. Then the

existence of test functions v , . . . , v from L that satisfy the test inequalities1 k

h v x G V x , x g X , r s 1, . . . , k ,Ž . Ž . Ž .r r

and

i sup E V h s V - `Ž . Ž .p k 0 k P
pgP

is a necessary and sufficient condition for the relation

j M - `Ž . k P

to hold. In this case

k M F V .Ž . k P k P

The model considered in Theorem 4 can easily be extended to the case
Ž .k s `, when f v , v , . . . is a measurable nonnegative partly monotonic1 2

w xfunctional acting from the space L s L = L = ??? to 0, q` . One can keep`

the formulation of Theorem 4 without any changes.
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Taking this into consideration, one can also formulate necessary and

sufficient conditions for exponential recurrence of semi-Markov processes by

considering the nonnegative partly monotonic functional

f v , v , . . . s sup 1 q akrk ! E v h ,Ž . Ž .Ž .Ý1 2 p k 0ž /
pgP kG1

Ž .where a ) 0. We refer to the paper by Silvestrov 1994 .

8. D-invariant generalized hitting times. A very useful simplifica-

tion in the conditions of Theorems 3 and 4 can be achieved in the important

case in which the hitting time n satisfies the following condition of D-invari-

ance for some domain D g B :X

23 I n ) 1, h g D s 0, x g X .Ž . Ž .1 P 1x

Ž .For example, condition 23 is satisfied in the case of ordinary hitting times

when

n s min n G 1: h g D , x g X .Ž .P 1 nx

It is also satisfied in the case of place-dependent hitting times when

n s min n G 1: h g D , x g X ,Ž .P 1 n hx ny1

if all domains D = D, x g X.x

Ž . nUnder condition 23 the operator P and its iterates P , n s 1, 2, . . . , the0 0

operators P , r s 1, 2, . . . , and their iterates and also the operator function-r
w r x w nals m , r s 1, 2, . . . , are D-invariant. The functions P v andr

Ž .m v , . . . , v depend on the values of the functions v and v , . . . , v onw r x 1 ry1 1 ry1

xD only.

Ž .Using this property, we can weaken the test inequality c in Theorems 3

and 4, demanding that it be satisfied only for x g D.

We can still obtain, as in the proof of Theorem 3, the upper bounds
Ž .M F v , r s 1, . . . , k, but for x g D only. Then, using b , we can obtain ther r

recurrent upper bounds M F m q P v for all x g X, r s 1, . . . , k.r w r x 0 r

Therefore, if we simplify the initial test inequality as described above, we

lose only the possibility of bounding moments M directly by test functions vr r

on D in Theorem 3 and we lose nothing in Theorem 4.

9. First-order moments. Taking into consideration Remark 2, one can

note that, in the case of first-order moments, Theorems 2]4 can be proved for

generalized hitting times with weaker Markovian properties. Specifically, the
Ž .generating functional m s g h , h , a has to possess the Markovian prop-0 1 1

Ž .erty but l s h h , h , a , . . . may be an arbitrary nonnegative random func-0 1 1

tional.
Ž . Ž1. Ž .The calculations given in 19 can be omitted since m s m . However, a1

Ž .can still be obtained by a calculation as for 20 .

In the case of higher order moments, the Markovian property of both
Ž .functionals m and l is essential to carry out the calculations given in 19 and

Ž . Ž .20 and to obtain a .
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10. Time-dependent generalized hitting times. The results obtained

in Theorems 1]5 may also be generalized to a nonhomogeneous Markov
Ž .renewal process b s h , a , differing from a homogeneous Markov renewaln n n

process only by transition probabilities depending on a time parameter n:

<P h g A , a F u h s x , a s v s P x , A , u .� 4 Ž .nq1 nq1 n n n

We may use the well-known method of transforming a Markov renewal

process b into a homogeneous Markov chain by adding a supplementaryn

time-parameter component n q n, where n is some initial shift of time. If0 0

ˆ Ž . Ž .we define b s h , a , where h s n q n, h , a s a , n s 0, 1, . . . ,ˆ ˆ ˆ ˆn n n n 0 n qn n n qn0 0

ˆ ˆthen b is a homogeneous Markov renewal process with phase space X sn

� 4N = X, where N s 0, 1, . . . .

Ž . Ž .In the definition of generalized hitting times given in 2 and 3 , generat-

ing functionals can now depend on time. For example, in the case of Mar-
Ž .kovian generalized hitting times, shifts of generating functionals in 2 and

Ž . Ž .3 take the form Q m s g n q n y 1, h , h , a and Q lny1 0 n qny1 n qn n qn n0 0 0

Ž .s h n q n, h , a , h .0 n qn n qnq1 n qnq10 0 0

ˆŽ . w xTest functions v n, x acting from the space X to 0, q` have to be used
Ž .in this case and the operators P defined in 15 must be interpreted asr

ˆ ˆoperators acting from X to X according to

r
P v n , x s P x , dy, dt h n , x , y , t I g n , x , y , t - 1Ž . Ž . Ž . Ž .Ž .HHr n

w xX 0, q`

= v n q 1, y , xg X , ns0, 1, . . . ,Ž .

Ž .where the rule of calculation is as for 15 .

We do not reformulate Theorems 1]5 for the nonhomogeneous case. In-

stead, we consider a homogeneous Markov renewal process b with time-n

dependent generalized hitting times defined by generating functionals de-

pending on time.

ˆŽ .We need to consider different initial points n, x g X. Due to the homo-

geneity of b , one way do this is by operating with a family of time-dependentn

generalized hitting times corresponding to different initial shifts of time

n s min n G 1: g m q n y 1, h , h , a G 1 , x g X , m G 0,Ž .Ž .m P 1 ny1 n nx

and
n y1m

t s h m q n , h , h , a , x g X , m s 0, 1, . . . .Ž .Ým P 1 n nq1 nq1x

ns0

� 4Let p s p , m s 0, 1, . . . be a sequence of probability measures on B ,m X

� 4p s p , m s 0, 1, . . . be a discrete distribution, P be some family of pairsm

Ž .p, p and

`
kM s sup p E t .Ýk P m p mm

ms0Ž .p , p gP
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We formulate only the analog of Theorem 5. To simplify the notation, let us

define, for x g X, n s 0, 1, . . . , r G 1,

r
V n , x s E h n , h , h , aŽ . Ž .r x 0 1 1

r
ry llq C E h n , h , h , aŽ .Ý r x 0 1 1

ls1

= I g n , h , h , a - 1 v n q 1, h ,Ž . Ž .Ž .0 1 1 l 1

Ž .where the rule of calculation is as for 15 .

THEOREM 6. Let t , m s 0, 1, . . . , be a family of time-dependent Mar-m

kovian generalized hitting times. Then there exist test functions
Ž . Ž .v n, x , . . . , v n, x that satisfy the test inequalities1 k

l v n , x G V n , x , x g X , n s 0, 1, . . . , r s 1, . . . , k ,Ž . Ž . Ž .r r

and

m sup p E V m, h s V - `Ž . Ž .Ý m p k 0 k Pm

mG0Ž .p , p gP

is a necessary and sufficient condition for the relation

n M - `Ž . k P

to hold. In this case

o M F V .Ž . k P k P

As an example, let us consider the model with n s n for all m s 0, 1, . . . ,m

where

n s min n G 1: h g D , x g X ,Ž .P 1 nx

Ž . Ž .with h n, x, y, t s r f x nonnegative, so thatn

t s r f h , x g X , m s 0, 1, . . . .Ž .Ým P 1 mqn nx

nFny1

Furthermore, let all distributions p be concentrated at 0, and let P be some

class of probability measures on B . In this case Theorem 6 gives necessaryX

Ž Ž .. kand sufficient conditions for M D, r , f ? s sup E t to be finite andk , P ? p g P p 0

provides the corresponding upper bounds. Note that, according to the re-
Ž .marks made in Section 8, test inequality l can be assumed for x g D,

Ž .n s 0, 1, . . . only. If k s 1 we get conditions of so-called r, f -regularity from
Ž .the recent paper by Tuominen and Tweedie 1994 where these conditions

were used to obtain rates of convergence in ergodic theorems for Markov

chains.

11. Random potentials. The results obtained above can also be applied
Ž .to a model with generating functionals g ? - 1 so that possibly n s q `,P 1x

x g X.
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Again, we consider only the time-dependent generalized hitting times for a

homogeneous Markov renewal process b and comment only on the analog ofn

Theorem 6. The shifted time-dependent generalized hitting times defined in

the previous section take the form

`

t s h m q n , h , h , a , x g X , m s 0, 1, . . . .Ž .Ým P 1 n nq1 nq1x

ns0

The formulation of Theorem 6, including the formulas defining functions
Ž .V n, x , carries over without change.r

Note that we call the functional t a random potential because the expecta-
Ž . Ž . Ž .tion E t in the case h n, x, y, t s r f x is really the r, f -potential of thex n

Markov chain h .n

12. Fractional and mixed moments. Upper bounds for fractional-type

moment functionals for ordinary hitting times based on test functions have
Ž .been investigated in the papers by Nummelin and Tuominen 1983 and

Ž .Tweedie 1983 for Markov chains, as well as in the recent paper by
Ž .Silvestrov 1993 for semi-Markov processes. Similar results can be developed

for generalized hitting times on the basis of a stochastic representation

analogous to that in Theorem 1.

� 4 w .Let G s g be a class of functions which, by definition, act from 0, `kq1

w .to 0, ` and satisfy the following conditions:

Žk .Ž .the derivative g t exists and is a continuous, monotonic
pŽ .

and convex function for all t

and

q g Žr . 0 G 0, r s 0, . . . , k ,Ž . Ž .
Ž0.Ž . Ž . Žr .Ž .where g t ' g t . Additionally, we define the values at q` by g q` s
Žr .Ž .lim g t , r s 0, . . . , k.t ª`

The polynomials of order k q 1 with nonnegative coefficients, as well as

t kqd and t kqd ln t for 0 - d F 1, belong to G . These facts explain the termkq1

power-type function for functions in this class.

Let the generalized hitting time t be generated by nonnegative random

functionals m and l. One can obtain the following stochastic inequality

generalizing the stochastic representation given in Theorem 1:

24 g t y g 0 F t , x g X ,Ž . Ž . Ž . P 1 kq1, gx

where t is a generalized hitting time generated by the same functionalkq1, g

Ž .m used to define the random index n in 3 , and the functional l s l iskq1, g

defined by

k
ry1 Žr . Žr .25 l s g l y g 0 q r ! g l y g 0 x Q t ,Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .Ýkq1, g P 1 1 1x

rs1

Ž Žr .Ž . Žr .Ž .. Ž .lwhere one counts products g l y g 0 x Q t as 0 if at least one of1 1

the factors takes the value 0.
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If the function g is a polynomial of order k q 1 with nonnegative coeffi-
Ž .cients, then the symbol F can be replaced by the symbol s in 24 .

The proof is similar to that of Theorem 1. However, instead of taking
Ž .equality 5 to the r th power, one now calculates g and uses the inequality

Ž .equality for polynomials of order k q 1

y1 Žr . Žr . rg a q b F r ! g a y g 0 b q g b , a, b G 0,Ž . Ž . Ž . Ž . Ž .Ž .Ý
0FrFk

Ž . Ž .which can be obtained by the use of the Taylor expansion for g a q t y g t

and properties of functions from the class G . Further details can be foundkq1

Ž .in the paper by Silvestrov 1993 .

Ž .Using the stochastic inequality 24 , one can easily obtain upper bounds

analogous to those given in Theorems 3]6 for the more general power-type
Ž .moments E g t .p

To conclude the general discussion, we would like to mention that the

results of the previous sections can also be generalized to the more general

product moments E t = ??? = t . It can be shown that, for any generalizedp 1 k

hitting times t , r s 1, . . . , k, the product t = ??? = t is also a generalizedr 1 k

hitting time. One can also obtain recurrent stochastic representations similar

to those in Theorem 1, as well as recurrent relations and upper bounds for

the moments similar to those given in Theorems 2]6.

13. Semi-Markov dynamical systems of linear type. We use this
Ž . w .term for a semi-Markov process h t , t G 0, with phase space X s 0, ` ,

initial state h s const and the corresponding embedded Markov renewal0

Ž .process b s h , a , defined in the following recurrent dynamical form:n n n

q
h s h q a h q b h j ,Ž . Ž .nq1 n n n n

26Ž .
a s c h q d h g , n s 0, 1 . . . ,Ž . Ž .nq1 n n n

where:

Ž .1. r s j , g , n s 0, 1, . . . , is a sequence of i.i.d. random vectors takingn n n

w .values in R = 0, ` ;1

Ž . Ž . Ž . Ž .2. a x , b x and c x , d x are measurable functions mapping X to R and1

w .X to 0, ` , respectively.

Ž . Ž .We are interested in the ordinary hitting times t 0 s t , where n 0 sn Ž0.

Ž .min n G 1: h s 0 , and we are going to obtain upper bounds for the momentsn

Ž .rE t 0 using the technique of recurrent test functions.x

Ž .The model 26 may be considered as a semi-Markov analog of a nonhomo-

geneous random walk as well as a semi-Markov nonlinear autoregressive
Ž .time series. We refer to the paper by Borovkov 1991 and the book by Tong

Ž .1990 , which contains a survey of results concerning hitting times for

nonhomogeneous random walks and nonlinear autoregressive time series.

These results are mainly related to expectations of hitting times and the

corresponding conditions of ergodicity. The object of our interest is, however,

not expectations but power-type moments of high order for hitting times. Our
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Ž .results were partially presented in the papers by Silvestrov 1993, 1996

where one can also find more detailed references.

Ž . Ž . Ž . Ž .First, we consider the basic case with a x , b x , c x and d x bounded

for x ) 0, and then we discuss some generalizations to the case of unbounded

functional coefficients.

The natural choice of test functions in this model are polynomials with

nonnegative coefficients. Two types of upper bounds can be developed.

w Ž . Ž . xThe first corresponds to the model with the function E a x q b x j1

negative and bounded away from 0 for large x. In this case we choose test
Ž . rfunctions v x s v q v x with nonnegative constants v , v , r sr 0 r 1r 0 r 1r

1, . . . , k.

˜� Ž . Ž . 4 � Ž .Let us write A s x ) 0: x q a x q zb x F 0 , A s x ) 0: x q a x qz z

Ž . 4zb x ) 0 . The following are obvious:

� Ž . Ž . 41. A = A, where A s x ) 0: b x s 0, x q a x F 0 for any real z;z

Ž . X Y
X Y2. for nonnegative b x one has A = A if z F z ;z z

Ž . Ž . Ž x3. for bounded a x and b x , the sets A are bounded, that is, A : 0, h ,z z z

where h - ` for any real z.z

Ž � 4 .Let us also write e s inf x: P j F x ) 0 G y` and1

rrx y E x q a x q b x jŽ . Ž . 1
f x s , x ) 0, r s 1, . . . , k .Ž .r ry11 q x

Ž . Ž . Ž . Ž . Ž .THEOREM 7. Let b x G 0, let a x , b x , c x and d x be bounded for

x ) 0 and let the following conditions hold for some natural k G 1:

kk < <r E g q j - `Ž . 1 1

and

s lim inf f x ) 0, r s 1, . . . , k .Ž . Ž .r
z)e , zªe ˜xgA z

Then there exist constants v , v ) 0, r s 1, . . . , k, such that the following0 r 1r

inequality holds:

r rt E t 0 F v q v x , x ) 0, r s 1, . . . , k .Ž . Ž .x 0 r 1r

Ž .PROOF. We are going to use Theorem 3. The test inequality c takes the
Ž .following form if one places all terms related to the function v x on ther

left-hand side:

rrv P x q v x y E x q a x q b x j q P x G m x ,Ž . Ž . Ž . Ž . Ž .Ž .0 r 00 1r 1 0 r r27Ž .
x ) 0, r s 1, . . . , k ,
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where

m x s m v , v , . . . , v , v ; xŽ . Ž .r r 01 11 0 ry1 1ry1

ry1
r rylls E c x q d x g q C v E c x q d x g y P xŽ . Ž . Ž . Ž . Ž .Ý ž /1 r 0 l 1 ryl0

ls1

ry1
ry llq C v E c x q d x gŽ . Ž .½Ý r 1 l 1ž

ls1

=
l

x q a x q b x j y P xŽ . Ž . Ž .51 ryl l /
and

r
P x s E c x q d x gŽ . Ž . Ž .½r l 1

l
= x q a x q b x j I x q a x q b x j F 0 .Ž . Ž . Ž . Ž .Ž . 51 1

Ž . � Ž . Ž . 4Note that, by definition, P x s P x q a x q b x j F 0 is the proba-00 1

bility of hitting the sequence h into 0 from the point x after the first step.n

Ž .Let us show that under condition r , for any 1 F l F r F k,

28 lim sup P x s 0.Ž . Ž .ry l l
z)e , zªe ˜xgA z

We have to consider two cases: e s y` and e ) y`.

˜ � Ž . 4 � Ž . Ž . 4If x g A l x: b x s 0 s x ) 0: x q a x ) 0, b x s 0 , then for bothz

cases

ry l l
29 P x s E c x q d x g x q a x I x q a x F 0 s 0.Ž . Ž . Ž . Ž . Ž . Ž .Ž .ry l l 1

Let us write

y1
b s sup b x , q s sup c x q d x , u x s yb x x q a x .Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .

x)0 x)0

˜ � Ž . 4 � Ž . Ž . 4If e s y` and x g A l x: b x ) 0 s x ) 0: z ) u x , b x ) 0 , thenz

P xŽ .ry l l

ry l lls b x E c x q d x g j y u x I j F u xŽ . Ž . Ž . Ž . Ž .Ž .1 1 1

l
lym ryl ml ryl m < <w xF b q C u x E 1 q g j I j F u xŽ . Ž .Ž .Ý l 1 1 1

ms0
30Ž .

l
ry llym ml ryl m < < < <w xF b q C sup y E 1 q g j I j F yŽ .Ý l 1 1 1

y-zms0

s Q z .Ž .ry l l

Ž . Ž . Ž .Using condition r , we get from 29 and 30 , in the case e s y`,

31 sup P x F Q z ª 0 as z ª y`.Ž . Ž . Ž .ry l l ryl l
˜xgA z
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˜ � Ž . 4 Ž .Let z ) e ) y` and x g A l x: b x ) 0 . For x such that u x - e thez

definition of e gives

P xŽ .ry l l

ry l l
s E c x q d x g x q a x q b x j I j F u xŽ . Ž . Ž . Ž . Ž .Ž .1 1 1

32Ž .

s 0.

Ž .For x such that u x G e we have

< <x q a x q vb x s v y u x b x F z y e bŽ . Ž . Ž . Ž .

Ž .for e F v F u x . Therefore,

P xŽ .ry l l

ry l lls b x E c x q d x g j y u x I e F j F u xŽ . Ž . Ž . Ž . Ž .Ž .1 1 1
33Ž .

ry ll l ryl< < w xF z y e b q E 1 q g I e F j - zŽ .1

s Q
X

z .Ž .ry l l

Ž . Ž . Ž . Ž .Using condition r , we get from 29 , 32 and 33 , in the case e ) y`,

X
34 sup P x F Q z ª 0 as z ) e, z ª e.Ž . Ž . Ž .ry l l ryl l

˜xgA z

Ž . Ž . Ž .Both relations 31 and 34 are stronger than 28 .

From the boundedness of the sets A , the boundedness on finite intervalsz

Ž . Ž . Ž . Ž .of the functions a x , . . . , d x , condition r and relation 28 , it follows that
Ž .the functions P x , 0 F l F r F k, are bounded for x ) 0. From this factry l l

Ž . Ž .and the boundedness of a x , . . . , d x for x ) 0, we get the following rela-

tions:

m xŽ .r
35 sup - `, r s 1, . . . , k ,Ž . ry11 q xx)0

and

rrx y E x q a x q b x j q P xŽ . Ž . Ž .1 0 r
36 sup - `, r s 1, . . . , k .Ž . ry11 q xx)0

Ž . Ž .Using condition s and relation 28 , we can also find z ) e such that, fork̂

Ž xany z g e, z ,k̂

rrx y E x q a x q b x j q P xŽ . Ž . Ž .1 0 r
37 inf ) 0, r s 1, . . . , k .Ž . ry11 q x˜xgA z

It also follows from the definitions of A and e that, for any z ) e,z

� 438 inf P x G P j F z ) 0.Ž . Ž .00 1
xgA z
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Ž . Ž . Ž xUsing relations 35 ] 38 , we can define, for any z g e, z , r s 1, . . . , k,ˆr k

Ž . Ž .nonnegative finite constants v z , v z , r s 1, . . . , k, and v , v , r s0 r r 1r r 0 r 1r

1, . . . , k, by the following recurrence formulas:

v G v z s v v , v , . . . , v , v ; zŽ . Ž .1r 1r r 1r 01 11 0 ry1 1ry1 r

m v , v , . . . , v , v ; xŽ .r 01 11 0 ry1 1ry1
s sup ,rrx y E x q a x q b x j q P xŽ . Ž . Ž .˜ 1 0 rxgA zr

v G v z s v v , v , . . . , v , v , v ; zŽ . Ž .0 r 0 r r 0 r 01 11 0 ry1 1ry1 1r r

39Ž .
m v , v , . . . , v , v ; xŽ .r 01 11 0 ry1 1ry1

s 0 k sup ½ P xŽ .xgA 00zr

rrv x y E a x q b x j q P xŽ . Ž . Ž .Ž .1r 1 0 r
y .5P xŽ .00

For any constants v , v , r s 1, . . . , k, taken from recurrence relations0 r 1r

Ž . Ž .39 , the test inequality 27 holds. Taking sequentially r s 1, . . . , k and using
˜Ž .39 , we have, for x g A ,z r

rrv P x q v x y E x q a x q b x j q P xŽ . Ž . Ž . Ž .Ž .0 r 00 1r x 1 0 r

rrG v z x y E x q a x q b x j q P xŽ . Ž . Ž . Ž .Ž .1r r x 1 0 r

G m x ,Ž .r

and, for x g A ,z r

v P x G v z P xŽ . Ž . Ž .0 r 0 r r 00

rw r x rG m x y v x y E x q a x q b x j q P x .Ž . Ž . Ž . Ž .Ž .1r x 1 0 r

The proof of the theorem is complete. I

The second type of upper bound corresponds to the model with the function
w Ž . Ž . x w Ž . Ž . xE a x q b x j vanishing, but the function xE a x q b x j negative1 1

and bounded away from 0 for large x. In this case we choose test functions
X Ž . X X 2 r X X

v x s v q v x , r s 1, . . . , k, with nonnegative constants v , v G 0,r 0 r 1r 0 r 1r

r s 1, . . . , k. The proof of the following theorem is similar to that of Theorem

7. Let

2 r2 rx y E x q a x q b x jŽ . Ž . 1X
f x s , x ) 0, r s 1, . . . , k .Ž .r 2 ry21 q x

Ž . Ž . Ž . Ž . Ž .THEOREM 8. Let b x G 0, let a x , b x , c x and d x be bounded for

x ) 0 and let the following conditions hold for some natural k G 1:

2 kk < <u E g q j - `Ž . 1 1
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and

v lim inf f
X

x ) 0, r s 1, . . . , k .Ž . Ž .r
z)e , zªe ˜xgA z

Then there exist constants v
X

, v
X

) 0, r s 1, . . . , k, such that the following0 r 1r

inequality holds:

r 2 rw E t 0 F v q v x , x ) 0, r s 1, . . . , k .Ž . Ž .x 0 r 1r

˜ w .REMARK 3. By definition, one has A = h , ` , where h - ` for all realz z z

Ž . Ž .z. Therefore, conditions r and s entail the following relation:

x lim sup E a x q b x j - 0,Ž . Ž . Ž . 1
xª`

w Ž . Ž . xwhich means that the function E a x q b x j has to be negative and1

bounded away from 0 for large x.

Ž .At the same time, if the function b x is bounded away from 0 on finite
Ž .intervals, that is, inf b x ) 0, h ) 0, then for any h ) 0 the setsx g Ž0, h x

˜ w . Ž .A : h, ` for z F z h small enough. It follows from this fact that, in thisz

Ž . Ž . Ž .case, relation x and condition s are equivalent if e s y` and r holds.

Ž . Ž .By similar reasoning we get that conditions u and v entail the following

relation:

2
y lim sup 2 xE a x q b x j q 2k y 1 E a x q b x j - 0,Ž . Ž . Ž . Ž . Ž . Ž .ž /1 1

xª`

w Ž . Ž . xwhich means that the function E a x q b x j can vanish in this case but1

w Ž . Ž . x Ž . w Ž . Ž . x2the function 2 xE a x q b x j q 2k y 1 E a x q b x j has to be neg-1 1

Ž .ative and bounded away from 0 for large x. Therefore, if the function b x is
Ž .bounded away from 0 on finite intervals, e s y` and condition u holds,

Ž . Ž .then relation y and condition v are equivalent.

Ž . Ž .REMARK 4. Relations 37 and 39 give explicit formulas for the constants
Ž . Ž . Ž .in t . By definition, v z and v z are nonincreasing and nondecreasing1r r 0 r r

Ž .functions of z , respectively. If v s lim v z and v sr 1r z ) e, z ª e 1r r 0 rr r

Ž . Ž .lim v z G v z , then any constants v ) v and v G vz ) e, z ª e 0 r r 0 r r 1r 1r 0 r 0 rr r

Ž . Ž xsatisfy 39 for all z g e, z close enough to e. Therefore, such constantsˆr k

Ž .can be used in inequality t . Such choices minimize the values of the

constants v , r s 1, . . . , k.1r

To illustrate this assertion, let us consider the case in which e s y` and
Ž . Ž . Ž . Ž .a x , b x , c x and d x have limits a, b, c and d, respectively, as x ª `.

Ž .Then a simple calculation in 39 yields formulas for the constants

r
a q bEj1

v s v s , r s 1, . . . , k .1r r
c q dEg1

Ž .Together with the upper bounds t , this provides the asymptotic relations

ryrlim sup x E t 0 F v , r s 1, . . . , k .Ž .x r
xª`
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This is the right asymptotic relation for moments. As is known from renewal
Ž . Ž . Ž .theory, in the space-homogeneous case in which coefficients a x , b x , c x

Ž . yr Ž .rand d x are constants, one has x E t 0 ª v as x ª `, r s 1, . . . , k.x r

The results of Theorems 7 and 8 can be generalized to a model with a

control random sequence r which switches distribution depending on then

current positions of the dynamical system. We do not discuss these general-
Ž .izations here and refer to the papers by Silvestrov 1993, 1996 .

Instead, we would like to make some remarks concerning a model with
Ž .unbounded functional coefficients. Now we suppose only that functions a x ,

Ž . Ž . Ž .b x , c x and d x are locally bounded, that is, are bounded on any finite
Ž xinterval 0, h for h ) 0.

It is obvious that there always exists a positive, locally bounded function
Ž . Ž .y1 Ž . Ž .y1 Ž . Ž .y1 Ž .e x bounded away from 0, such that e x a x , e x b x , e x c x and
Ž .y1 Ž . Ž .e x d x are all bounded for x ) 0. For example, the function e x s 1 q

< Ž . < < Ž . < Ž . Ž .a x q b x q c x q d x possesses this property.

Ž . Ž .r Ž . ry1Let us define e x s e x q e x x for r G 1. These functions are alsor

positive, bounded away from 0 and locally bounded.
w r xŽ . r w Ž . Ž . x rUsing the definition of the functions m x , x y E x q a x q b x j1

Ž . Ž .q P x and P x , it is easy to check that, in this case, the functions0 r lr

Ž .y1 w r xŽ . Ž .y1Ž r w Ž . Ž . x r Ž ..e x m x and e x x y E x q a x q b x j q P x , r sr r 1 0 r

Ž .1, . . . , k, are bounded for x ) 0, and that, under condition r , the relation
Ž .yr < Ž . <sup e x P x ª 0 as z ) e, z ª e holds for 1 F l F r F k in place˜x g A ryl lz

Ž .of relation 28 . Due to these facts we can repeat the proof of Theorem 7 by
ry1 Ž .replacing the functions 1 q x with the functions e x in the correspond-r

Ž .ing formulas. We can retain formulas 39 for the constants v , v , r s0 r 1r

1, . . . , k, without change, because of the quotient structure of the expressions
Ž . ry1in 39 . Of course, to do this, we also have to replace the functions 1 q x

Ž . Ž .by the functions e x in condition s which takes the form:r

rrx y E x q a x q b x jŽ . Ž . 1
z lim inf ) 0, r s 1, . . . , k .Ž .

e xz)e , zªe Ž .˜xgA rz

Therefore, Theorem 7 is valid under the assumption of local boundedness
Ž . Ž . Ž . Ž . Ž .of the functional coefficients a x , b x , c x and d x , if condition s can be

Ž .replaced by condition z .

Theorem 8 can be also reformulated in a similar way. In this theorem we
2 ry2 X Ž . Ž .rhave to replace the functions 1 q x by the functions e x s e x qr

Ž . 2 ry2 Ž .e x x in condition v .

The basic model with bounded functional coefficients corresponds to the
Ž .choice e x ' 1. Another important model, with functional coefficients pos-

sessing not more than a linear rate of growth, corresponds to the choice
Ž . < <e x ' 1 q x . This model may be considered as a nonlinear semi-Markov

Ž . Žanalog of the classical autoregressive model having coefficients a x ' a y
. Ž . Ž . Ž .1 x with a - 1, b x , c x ' 1 and d x ' 0.

Ž . Ž .In conclusion, we remark that the model with b x s 1 and d x s 0 was
Ž .analyzed in the recent paper by Tuominen and Tweedie 1994 where condi-



D. S. SILVESTROV640

Ž .tions of regularity of the Markov chain h were obtained see Section 10 withn

Ž . Ž .kthe use of the time-dependent test functions v n, x s n q x .

14. Semi-Markov random walks. Let us consider a semi-Markov pro-
� 4cess with phase space X s 0, " 1, . . . and the transition probabilities of the

Ž .corresponding Markov renewal process b s h , a given byn n n

<P h s j, a F u h s i , a s v� 4nq1 nq1 n n

¡p i P i , u , if j s i q 1, i g X ,Ž . Ž .q q~s p i P i , u , if j s i y 1, i g X ,Ž . Ž .y y¢
0, otherwise.

40Ž .

Ž .The process h t can be considered as a semi-Markov inhomogeneous

random walk with unit jumps "1 on the integer line.

This model includes, as particular cases, discrete-time inhomogeneous

Bernoullian random walks. Birth]death processes can also be embedded in

this model by the use of standard symmetrical arguments. We shall also show

how the model can be applied to hitting times for diffusion processes.

Ž . Ž .We are interested in ordinary hitting times t 0 s t , where n 0 sn Ž0.

Ž . Ž .rmin n G 1: h s 0 , and in obtaining upper bounds for the moments E t 0 .n i

We are again going to use the method of recurrent test functions but in

combination with some embedding semi-Markov procedures. Our results are

analogous to those obtained for birth]death processes in the recent paper by
Ž .Nilsson 1996 .

� 4Let J s ??? - j - 0 s j - j - ??? be a subgrid of points from X, andy1 0 1

Ž . w Ž . xsuppose h 0 g J we can always extend J by including h 0 in J . Also let

0 s t - t - ??? be the sequence of times when the semi-Markov processJ 0 J 1

Ž . Ž .h t hits the set J. We can define the embedded process h t s m ifJ

Ž . Ž .h t s j for t F t - t , n s 0, 1, . . . . The process h t is also a semi-J m J J Jn n nq1

Markov process with phase space X, and, moreover, it is also an inhomoge-

neous semi-Markov random walk with unit jumps "1 on the integer line as
Ž .the initial process h t . We denote the transition probabilities of the corre-

Ž . Ž .sponding embedded Markov renewal process h , a as in 40 , but withJ Jn n

Ž . Ž .index J, that is, p i P i, u .J " J "

Ž .Let us denote by t 0 the first hitting time into state 0 for the semi-MarkovJ

Ž . Ž . Ž .process h t . By the definition of the embedded process, one has t 0 s t 0J J

Ž .if h 0 / 0 and so

k k
A E t 0 s E t 0 if i s j / 0.Ž . Ž . Ž .i m J m

To estimate hitting time moments for the initial states j - i - j , onemy 1 m

can use the inequality

k k k
B E t 0 F E t 0 k E t 0Ž . Ž . Ž . Ž .i j jmy 1 m

Ž .and then use A .
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We give the following result without proof.

Ž .LEMMA 1. For the process h t let the following conditions hold:

C 0 - a F p i F b - 1, i g X ,Ž . Ž ."

and

D E a k F c - `, i g X ,Ž .k i 1 k

for some k G 1. Then

E j y j F d , i g X ,Ž . iq1 i

Ž . Ž .implies that conditions C and D are also satisfied for the embeddedk

Ž .process h t with some new constants 0 - a , b - 1 and 0 F c - `.J J J J k

As in Section 13, the results can be developed along two lines. The first
w x Ž . Ž .relates to the model with jump expectation E h y i s p i y p ii J 1 Jq Jy

negative and bounded away from 0 for large positive i, and positive and

bounded away from 0 for large negative i. The second relates to the model for
w Ž . Ž .xwhich i p i y p i is negative and bounded far enough from 0 for largeJq Jy

positive i, and positive and bounded far enough from 0 for large negative i.

Ž . Ž .THEOREM 9. Let the following conditions hold: C and D for somek

Ž .k G 1 and also E and

F lim sup "p i . p i - 0Ž . Ž . Ž .Jq Jy
iª"`

for some subgrid J. Then there exist positive constants v , v , r s 1, . . . , k,0 r 1r

such that the following inequality holds:

r r< <G E t 0 F v q v i , i g X , r s 1, . . . , k .Ž . Ž .i 0 r 1r

Ž . Ž .THEOREM 10. Let the following conditions hold: C and D for some2 k

Ž .k G 1 and also E and

< <H lim sup i "p i . p i - 2k y 1 r2Ž . Ž . Ž . Ž .Jq Jy
iª"`

for some subgrid J. Then there exist positive constants v
X

, v
X

, r s 1, . . . , k,0 r 1r

such that the following inequality holds:

r 2 rX X < <I E t 0 F v q v i , i g X , r s 1, . . . , k .Ž . Ž .i 0 r 1r

PROOF. We give the proof of Theorem 10, omitting some details. First, we

consider only the case in which the initial state belongs to the positive

half-line.

Ž . Ž . Ž .Second, note that, due to A and B , if inequality I holds for the
Ž . X X

embedded process h t with some constants v , v , then these inequalitiesJ 0 r 1r

Ž .also hold for the initial process h t with the same constants since m F i if
Ž .j - i F j . This remark lets us operate with the embedded process h tmy 1 m J

Ž .instead of the initial process h t .
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Ž .Third, due to Lemma 1, it is clear how one can get inequality I for all

i ) 0 if similar polynomial inequalities can be obtained for the hitting times
Ž .of the process h t into a point N and initial states i ) N. In reality, theJ

Ž .hitting time t 0 can be bounded above by the first hitting time to point N

plus a sum of the geometrically distributed random number of return times to

point N before the first hitting to 0. The power moments of this additional

sum can be bounded above by the use of upper bounds for moments of the
w xfirst exit times from the interval 0, N following from Lemma 1 and polyno-

mial upper bounds for moments of hitting times from N q 1 to N.

Ž . 2 r w Ž . rWe are going to use Theorem 3 with test functions v i s v i v i s v ir r r r

x Ž .in Theorem 9 and show that the corresponding test inequality c from

Theorem 3 holds for i ) N and all N large enough. This will complete the
Ž .proof. Here the test inequality c takes the form

2 r 2 r2 rv i G m i q v i q 1 p i q i y 1 p i ,Ž . Ž . Ž . Ž . Ž .r w r x r Jq Jy41Ž .
i ) N , r s 1, . . . , k .

Ž .Note that we omitted the indicators x on the right-hand side of 41 and1

so made the corresponding test inequality even stronger.

Ž . Ž .We do not rewrite formula 18 but note only that in this case m i is aw r x

polynomial of order 2r y 2 with nonnegative bounded coefficients and high-
Ž .est-order coefficient rv E a here v s 1 .ry1 i J 1 0

w 2 r 2 ry1 Ž . ry1 Ž . Ž . 2 ry2 xSubtracting v i q 2ri p i y 2ri p i q r 2r y 1 i fromr Jq Jy
Ž . 2 ry2expressions on both sides of 41 , dividing both expressions by v 2ri andr

Ž .calculating the upper limits on the right-hand side, one can find from 41

that these limits are less than or equal to c v r2v . These expressions canJ 1 ry1 r

be made less than any positive constant by a suitable recurrent choice of
Ž .constants v for r s 1, . . . , k. At the same time, due to condition H , ther

limits of the expressions on the right-hand side are positive. Therefore,
Ž .inequality 41 holds for all i large enough. I

REMARK 5. In the case when the subgrid J includes all points i G i ,0

Ž . Ž .conditions F and H take the form of simple shift conditions

X
F lim sup "p i . p i - 0Ž . Ž . Ž .q y

iª"`

and
X < <H lim sup i "p i . p i - 2k y 1 r2,Ž . Ž . Ž . Ž .q y

iª"`

respectively.

In the general case one can use the well-known formula

y1j j y1 j y1 j y1i iq1 iq1 iq1p l p lŽ . Ž .q q
p i s ? 1 q .Ž . Ý Ł Ý ŁJq

p l p lŽ . Ž .lsm lsmy ymsj q1 msj q1iy1 iy1

Ž .To recognize F as a space-averaged shift condition, let us consider the
Ž . < <case when the jump probabilities p i are periodic functions for i largeq
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Ž .enough different for positive and negative half-lines . For the positive half-
Ž . Ž .line this means p i s p i q u for all i G v and some u, v G 1. In thisq q

case it is natural to choose the subgrid J in such a way that the points
Ž .v, v q u, v q 2u, . . . belong to J. Using the formula for p i given above,Jq

Ž . Ž . Ž .one can easily transform F into the form p v ??? p v q u y 1 yq q
Ž . Ž .p v ??? p v q u y 1 - 0. This condition was found for birth]death pro-y y

Ž .cesses by Nilsson 1996 . Under this condition the shift of a random walk can
w xbe positive instead of negative at some points in the interval v, v q u y 1 .

Ž X. Ž .At the same time, condition F yields the much stronger condition p w yq
Ž .p w - 0, v F w F v q u y 1.y

REMARK 6. In some cases the requirements of uniform boundedness in
Ž . Ž .conditions C and D can be weakened or removed. For example, in the casek

Ž . Ž .of first-order moments, one can only demand that conditions C and D are1

Ž .satisfied for each finite interval and, instead of F , the following condition

holds:
Y

F lim sup "p i . p i rE a - 0.Ž . Ž . Ž .Jq Jy i J 1
iª"`

15. Hitting times for diffusion processes. The semi-Markov embed-

ding approach described in the previous section can also be applied to the

model of diffusion processes and their hitting times.

Ž .Let h t , t G 0, be a homogeneous continuous diffusion process on the real
Ž . Ž .line R with coefficients a x , b x . For simplicity, we assume1

Ž . Ž .a x and b x are continuous bounded functionsJŽ .

and

K b x G b ) 0, x g R .Ž . Ž . 1

Ž . Ž Ž . .Again, we are interested in the hitting time t 0 s inf t ) 0: h t s 0 and
Ž .kthe moments E t 0 for x g R . Related results can also be found in thex 1

Ž .book by Hasminskii 1969 .

� 4We fix some subgrid of real numbers J s ??? - j - 0 s j - j - ???y1 0 1

Ž .and then define an embedded semi-Markov process h t in the same way asJ

was done above for the semi-Markov random walk. That is, we define an
Ž . Ž .embedded process h t s m if h t s j for t F t - t , n s 0, 1, . . . ,J J n m J n Jnq 1

Ž .where 0 s t - t - ??? are the times when the semi-Markov process h tJ 0 J 1

Ž .hits the set J. The initial point h 0 can simply be included in J and the

equality
k k

L E t 0 s E t 0 if x s j / 0Ž . Ž . Ž .x m J m

can be used to evaluate moments of hitting times for diffusion processes.

Ž . Ž .Under conditions J , K and the additional condition

M j y j F d , m s 0, " 1, . . . ,Ž . mq 1 m

Ž . Ž .conditions C and D for all k G 1 are satisfied for the semi-Markov processk

Ž .h t . Therefore, we can apply Theorems 9 and 10 to this process and obtainJ

the following theorems.
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Ž . Ž . Ž . Ž .THEOREM 11. Let conditions J , K and M hold and also condition F
w Ž .xfor the embedded process h t . Then there exist constants v , v , r G 1,J 0 r 1r

such that the following inequality holds:

r r< <N E t 0 F v q v x , x g R , r G 1.Ž . Ž .x 0 r 1r 1

Ž . Ž . Ž . Ž .THEOREM 12. Let conditions J , K and M hold and also condition H
w Ž .x X X

for the embedded processes h t . Then there exist constants v , v , r sJ 0 r 1r

1, . . . , k, such that the following inequality holds:

r 2 rX X < <O E t 0 F v q v x , x g R , r s 1, . . . , k .Ž . Ž .x 0 r 1r 1

Ž .The following explicit formula for transition probabilities p i in termsJq
Ž . Ž .of a x , b x is well known:

p iŽ .Jq

y1
y yj jiq1 iq12 2s y2a x rb x dx dy y 2 a x rb x dx dy .Ž . Ž . Ž . Ž .Ž .H H H H

j j j ji iy1 iy1 iy1

Ž . Ž .Conditions F and H are again types of shift conditions averaged in
Ž . Ž .space. For example, in the case when the functions a x , b x are periodic for

< < Ž . Ž .large x different on positive and negative half-lines , condition F and the
Ž . Ž .formula for p i given above yield for the positive half-line the shiftJq

vqu Ž . Ž .2 w xcondition H a x rb x dx - 0, where v, v q u is an interval of periodic-v

ity.

16. Queuing systems of M rrrrr G type with service times depending
on the queue. Let MrG r1 be a queuing system which differs from thei

Ž .classical MrGr1 system only in that the service distributions G u dependi

on the length of the queue at the times at which services are begun. We

denote the input Poisson flow parameter by l.

Ž . Ž .Let z t be a queue at time t. The process z t , t G 0, has phase space
� 4 Ž . ŽX s 0, 1, . . . . We are interested in the first hitting times t 0 s inf t ) 0:

Ž . . Ž .rz t s 0 and in upper bounds for the moments E t 0 .i

Ž .Also let h t be a queue at the last before t end-of-service time. The process
Ž .h t , t G 0, is a semi-Markov process with phase space X. By definition,
Ž . Ž Ž . . Ž . Ž .t 0 s inf t ) 0: h t s 0 if the initial state z t / 0. Therefore, t 0 is an

Ž .ordinary hitting time for the semi-Markov process h t .

We use the condition

P m s ukG du F M - `, i g X .Ž . Ž .Hk ik i k
w .0, `

Ž .THEOREM 13. Let conditions P andk

w xQ lim sup lm y 1 - 0Ž . i1
iª`
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hold. Then there exist constants v , v , r s 1, . . . , k, such that the following0 r 1r

inequality holds:

r rR E t 0 F v q v i , i g X , r s 1, . . . , k .Ž . Ž .i 0 r 1r

Ž .THEOREM 14. Let conditions P and2 k

2S lim sup 2 i lm y 1 q 2k y 1 l m - 0Ž . Ž . Ž .i1 i2
iª`

hold. Then there exist constants v
X

, v
X

, r s 1, . . . , k, such that the following0 r 1r

inequality holds:

r X X 2 rT E t 0 F v q v i , i g X , r s 1, . . . , k .Ž . Ž .i 0 r 1r

PROOF. We give the proof of Theorem 14 and omit some details. Theorem

5 can be applied with the use of polynomial test functions. One can get
Ž .inequality T for all i ) 0 if similar polynomial inequalities can be obtained

Ž .for the times when the process h t hits point N and initial states i ) N. In
Ž .reality, the hitting time t 0 can be bounded above by the first hitting time of

point N plus a sum of the geometrically distributed random number of

return times to point N before first hitting 0. The power moments of this

additional sum can be bounded from above by the use of the condition that

the corresponding kth-order polynomial upper bounds are valid for i ) N,

and also by the existence of the kth-order moment for the random position of
Ž . w .the process h t at the moment when it first hits to the domain N, ` for any

w xinitial state in the interval 0, N . The existence of such a moment follows
Ž .from condition P .2 k

Ž . 2 rWe are going to use test functions v i s v i and show that the testr r

Ž .inequality h from Theorem 5 is satisfied for all i G N for all N large
Ž .enough. Here the inequality h takes the form

v i2 r G V iŽ .r r

jyltr ` e ltŽ .2 ll ryls m q C t v i q j y 1 G dt ,Ž . Ž .Ý Hi r r l i
j!0ls1

42Ž .

i ) N , r s 1, . . . , k .

Ž .Note that we omitted the indicators x on the right-hand side of 42 and1

so made the corresponding test inequality even stronger.

Ž .By condition P and the fact that the moments of order r of a Poisson2 k

distribution with parameter lt are polynomials of order r in lt, a moment
Ž .calculation in 42 yields the following representation:

V i s v ri2 ry2 mŽ .r ry1 i1

2 r 2 ry1q v i q 2ri lm y 1Ž .r i143Ž .

2 ry2 2qr 2r y 1 i l m y lm q 1 q O i ,Ž . Ž .Ž .i2 i1 2 ry3

Ž .where O i is some polynomial of order 2r y 3 with bounded coefficients.2 ry3
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Ž .We can substitute this representation in 43 , subtract from both sides the
w 2 r 2 ry1Ž . Ž . 2 ry2Ž 2 .xterm v i q 2ri lm y 1 q r 2r y 1 i l m y lm q 1 , divider i1 i2 i1

Ž . 2 ry243 by v ri and calculate the upper limits for expressions on ther

left-hand side and the lower limits for expressions on the right-hand side. The
Ž .limits on the left-hand side are less than or equal to M v rv here v s 1 ,1 ry1 r 0

which can be made less than any positive number by a suitable recurrent

choice of constants v for r s 1, . . . , k. The limits on the right-hand side arer

Ž . Ž .positive due to condition S . This proves that test inequality 42 holds for all

i large enough. I

17. Rates of convergence in ergodic theorems. Explicit upper bounds

for high-order moments of hitting times can be effectively used to obtain

explicit rates of convergence in ergodic theorems.

It is well known that wide classes of Markov-type processes can be
Ž .embedded in the model of regenerative processes in the following way: a

the distribution of a process at time t coincides with the distribution at time t
Ž .of some regenerative process, and b the distribution of the regeneration

time for this regenerative process coincides with the distribution of some
Ž .ordinary hitting time for some semi-Markov process. It is also known that g

rates of convergence for regenerative processes can be given in terms of

high-order moments of regenerative times. Finally, as was demonstrated in
Ž .this paper, d effective upper bounds for moments of hitting times of

semi-Markov processes can be obtained by the use of recurrent test functions.

Ž . Ž .Using a ] d together, one can obtain effective explicit rates of convergence

for different classes of Markov-type processes.

Let us illustrate this approach for the semi-Markov dynamical systems

considered in Section 13. To do this, we need to formulate some results

concerning rates of convergence in the ergodic theorems for regenerative
Ž .process obtained in the papers of Silvestrov 1983a, 1984 . We present them

Ž .as in the survey by Silvestrov 1994b .

Ž .Let z t , t G 0, be a regenerative process with phase space X, B andX

regenerative times 0 s k - k - ??? .0 1

Ž .Let G and F be the distributions of the first transition period t and the1
k Ž .standard regenerative period k y k , respectively, m s H u F du and2 1 k w0, `.

Ž . y1 Ž Ž .. Ž . � Ž . 4 Ž .H t s m H 1 y F u du. Let P A s P z t g A and P A be the sta-1 w0, t . t

Ž .tionary distribution of the process z t . This exists under conditions assumed

below.

If

the distribution F possesses a nonzero absolutely continu-
UŽ .

ous component

and

V m - ` for some k G 1,Ž .k k
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then the following inequality holds:

d P , P s sup P A y P AŽ . Ž . Ž .t t
AgBX

F 1 y G t q 0 q 1 y H t q 0Ž . Ž .44Ž .

t tyk k kqt L 1 q u G du q u H du , t)0,Ž . Ž .H Hk
0 0

where the constant 1 F L - ` depends on the distribution F only. Explicitk

Ž .formulas are given in Silvestrov 1983a, 1984 for the calculation of the

constant L as a continuous function of the moments m , m and otherk 1 k

parameters of F, including parameters characterizing concentration proper-

ties of the absolutely continuous component of F.

Ž . Ž .If, in addition to U and V ,k

W e s Ek ky1 - `Ž .ky1 ky1 1

holds, then it is easily shown that the expression on the right-hand side of
Ž . Ž ykq1.44 is o t .

Ž .The inequality 44 involves information on the distributions G and F. If
Ž ykq1. Ž .one agrees to decrease the rate of convergence to O t , then 44 can be

transformed into a form involving only the moments of G and F:

w x ykq1 yk45 d P , P F L m rkm q e t q L t , t ) 0.Ž . Ž .t k k 1 ky1 k

Ž .Let us apply this inequality to the semi-Markov process h t , t G 0,

considered in Section 13. This process is a regenerative process with regener-

ative times which are return times at state 0. Let p be an initial distribution
Ž . Ž . � Ž . 4 Ž . � Ž . 4of the process h t , t G 0. Then G u s P t 0 - u and F u s P t 0 - u .p 0

Assume, for example, that the conditions of Theorem 7 are satisfied. Then

k
m s E t 0 F MŽ .k 0 k

kk
s E c 0 q d 0 g q v q v E 0 k a 0 q b 0 j - `.Ž . Ž . Ž . Ž .Ž .1 0 k 1k 1

� 4Let P s p be some class of initial distributions such that

X H s sup x ky1p dx - `.Ž . Ž .Hky1 P ky1
w .0, `pgP

Then

ky1
e s sup E t 0 F E s M q v q v H - `.Ž .P ky1 p P ky1 ky1 0 ky1 1ky1 P ky1

pgP

Ž .Assume d 0 / 0 and also

the distribution of the random variable g has a nonzero1YŽ .
absolutely continuous component.

Ž .Obviously, in this case, the distribution F u possesses such a component.

Ž . � Ž . 4 Ž .Let P A s P h t g A and let P A be the corresponding stationaryp t p

Ž . Ž .distribution of the process h t . Applying estimate 45 , we can give the
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explicit upper bound for the rate of convergence in the ergodic theorem for
Ž .the semi-Markov process h t uniformly with respect to the family of initial

distributions P.

Ž . Ž .THEOREM 15. Suppose that X , Y and the conditions of Theorem 7ky1

are satisfied. Then the following inequality holds:

w x ykq1 ykZ sup d P , P F L M rkm q E t q L t , t ) 0.Ž . Ž .p t k k 1 P ky1 k
pgP

Similar results concerning rates of convergence in ergodic theorems can be

developed for semi-Markov random walks, diffusion processes and MrG r1i

queuing systems, since for these models the corresponding initial processes

and embedded semi-Markov processes are also regenerative processes with

return times at 0 as regeneration times.
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