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ˆITO FORMULA FOR AN ASYMPTOTICALLY
4-STABLE PROCESS1

BY KRZYSZTOF BURDZY AND ANDRZEJ MA̧DRECKI

University of Washington and Technical University of Wrocław

We study an asymptotically 4-stable process. The main result is an Itô

type formula.

1. Introduction. The purpose of this article is to give a rigorous version

of the Ito formula for a stochastic process introduced in mathematical physicsˆ
Ž .by Ma̧drecki and Rybaczuk 1989, 1993 . Our model approaches the equation

­ u s y­ 4 u from a probabilistic point of view by means of a process which ist x

4-stable in an asymptotic sense. The mathematical foundations of the model
w Ž .xhave been laid in our previous article Burdzy and Ma̧drecki 1995 . We plan

to develop further elements of stochastic calculus for the asymptotically

4-stable process in a future paper.

The ‘‘squared Laplacian’’ appears in many equations of mathematical
Ž .physics. The research presented in Ma̧drecki and Rybaczuk 1993 was

motivated by several concrete examples. Here is a review of two of those

examples.

The first example is concerned with the Hamiltonian in the ‘‘momentum

representation’’

p2 ­
H s q V yi" ,ž /2m ­ p

where p represents momentum and m stands for mass. If we consider the

anharmonic oscillator described by

p2 mv 2 p2

2 4H s q x q l x s q P x ,Ž .
2m 2 2m

Ž . Ž 2 2 . 4 2 2 Ž .with P x s l x y h y lh , l - 0, h s mv r 4l , we obtain an equa-

tion with potential discussed in Vainstein, Zakharov, Novikov and Shifman
Ž .1982 .

Another example is provided by a relativistic particle with mass m moving

at high velocity. The relativistic kinetic energy E is given by

2 4p p
2 2 2 4 2'E s p c q m c y mc f y q ??? ,

3 32m 8m c
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ˆITO FORMULA 201

where p is momentum, m is mass and c is the speed of light. If the particle is
Ž .moving in the potential field V x , then, retaining the first two terms, we get

1 ­ 4 1 ­ 2

H s q q V x .Ž .3 3 4 22m8m c ­ x ­ x

This leads to a Schrodinger equation of the form¨

­ 4 u z , t ­ 2 u z , t ­ u z , tŽ . Ž . Ž .
c q c q V z u z , t s .Ž . Ž .4 24 2 ­ t­ z ­ z

Ž .See Ma̧drecki and Rybaczuk 1993 for more details and bibliography.

This article is part of a larger project which aims at developing a usable

stochastic calculus which may be successfully applied to equations involving

the squared Laplacian in the same way the classical stochastic calculus is

applied to equations involving the classical Laplacian. Next we will review

other attempts at ‘‘fourth order’’ stochastic calculus and point out their

limitations.

There were at least three other attempts at constructing a ‘‘4-stable
Žprocess’’ we use the quotation marks since it is a classical fact that a genuine

. Ž .4-stable process does not exist . The oldest construction, due to Krylov 1960 ,
w xused a signed finitely additive measure with infinite variation on C 0, 1 as

an analog of the Wiener measure. The model was further developed by
Ž . Ž .Hochberg 1978 , Hochberg and Orsingher 1994 and later by Nishioka

Ž .1985, 1987, 1994 but the finite additivity of the underlying measure put

strong limitations on the model.
Ž .Funaki 1979 used a composition of two Brownian motions to represent

some solutions of ­ u s ­ 4 u. The idea was developed in a slightly differentt x

Ž .direction by Burdzy 1993, 1994 who considered ‘‘iterated Brownian motion’’
Ž .IBM but so far there is no stochastic calculus or potential theory for IBM.

Another model, quite similar to ours in many respects, has been recently
Ž .proposed by Sainty 1992 . However, his Definition 3.1 can only be inter-

preted as that of an n-stable process with homogeneous, independent incre-

ments, which does not exist for n ) 2.

One can also approach the problem of ‘‘squared Laplacian’’ probabilisti-
Ž .cally without introducing a 4-stable process. Helms 1967 used only standard

Brownian motion in his paper but it seems that his ideas have not been

developed any further.

Our model has been inspired by a sequential approach to distributions
w Ž .xsee, e.g., Antosiewicz, Mikusinski and Sikorski 1973 .´

The next section contains a review of the basic definitions and results from
Ž .Burdzy and Ma̧drecki 1995 . The stochastic integral with respect to an

asymptotically 4-stable process is defined in Section 3. An Ito formula isˆ
proved in Section 4.

2. An asymptotically 4-stable process: a review. All definitions and
Ž .results in this section are taken from Burdzy and Ma̧drecki 1995 . The

reader is asked to consult that paper for the proofs. The sets of all natural,
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real and complex numbers will be denoted N, R and C, respectively. It will be

convenient to identify the complex plane C with R2 and occasionally switch

from complex notation to vector notation.
Ž . NLet V, FF, P be a probability space. We will concentrate on C -valued

Ž . Ž N N . Nrandom variables Z: V, FF, P ª C , BB , where BB is the Borel s-algebra
N N � 4of C . Clearly, Z is a C -valued random variable iff Z is a sequence Z ofn

complex random variables.
� 4 NIf Z s Z is a C -valued random variable and f is a function defined onn

Ž . � Ž .4C, then f Z will stand for the sequence f Z .n

� 4 N Ž .DEFINITION 2.1. If Z s Z is a C -valued random variable on V, FF, Pn

and lim EZ exists, then the limit will be denoted EEZ and called the firstnª` n

Ž . Ž .asymptotic moment of Z or asymptotic expected value of Z. For example,
Ž . k k Žthe kth asymptotic moment of Z is given by EEZ s lim EZ if the limitnª` n

.exists .

N � 4DEFINITION 2.2. Suppose that a C -valued random variable Z s Zn

satisfies the following two conditions:

Ž . Ž .i Write Z s U q iV s U , V and let m be the distribution of V .n n n n n n n

Then m has a two-sided Laplace transform. That is,n

eyt vm dv - `Ž .H n
R

for every t g R and n g N.
Ž . � Ž .4ii The complex sequence E exp itZ is convergent.n

Ž . Ž . Ž .Then we define the asymptotic characteristic function c t s c Z, t ofZ

Z by the formula

c t s c Z, t s EEe i tZ s lim E exp itZ , t g R.Ž . Ž . Ž .Z n
nª`

Ž . Ž . Ž N .The set of Z satisfying i and ii will be denoted RR V, C .

Suppose that X and X are random elements with values in CN. We willm
p Ž . psay that X converges to X in L if lim EE X y X s 0.m EE mª` m

The distribution of a CN-valued random variable Z will be denoted LL ;Z

Ž . � y1Ž .4 Nthat is LL B s P Z B for all Borel sets B g C .Z

Ž .PROPOSITION 2.1. i If a , a g R and Z , Z are two independent ran-1 2 1 2

Ž N . Ž N .dom elements from RR V, C , then a Z q a Z also belongs to RR V, C1 1 2 2

and

c a Z q a Z , t s c Z , a t c Z , a tŽ . Ž . Ž .1 1 2 2 1 1 2 2

Ž . Ž N . Ž N .for t g R. Moreover, c 0 s 1 for any Z g RR V, C . If Z g RR V, C isZ
N < Ž . <such that Z: V ª R , then sup c t s 1.t g R Z

Ž . � 4ii Let X s X be a sequence of real random variables. If the sequencen

� 4 Ž . i tY Ž .X tends to Y in the sense of distribution, then c t s Ee ; that is, c tn X X

is the characteristic function of Y in the classical sense.
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Ž .Proposition 2.1 shows that the asymptotic characteristic function c hasZ

properties similar to those of the classical characteristic functions of real-

valued random variables. However, one can show that c does not deter-Z

mine LL .Z

DEFINITION 2.3. We will say that a CN-valued random variable Z has a
Ž .p-stable asymptotic distribution with 0 - p F 4 if there exist two complex

numbers m and s and a real number t ) 0 such that

< < pr2 < < p
2.1 c t s exp imt q s t q t t , t g R.Ž . Ž . Ž .Z

a Ž .The asymptotic distribution LL of such Z will be denoted S m, s , t . WeZ p

Ž .will also write Z ; S m, s , t .p

Ž .The set S m, s , t is nonempty for each p with 0 - p F 4 and eachp

Ž . 2triplet m, s , t g C = R .q

Ž . Ž .PROPOSITION 2.2. Suppose that Z ; S m , s , t , Y ; S m , s , t andp 1 1 1 p 2 2 2

a , a g R. If Z and Y are independent, then1 2

a Z q a Y ; S a m q a m , a pr2s q a pr2s , a pt q a pt .Ž . Ž .1 2 p 1 1 2 2 1 1 2 2 1 1 2 2

Ž .Proposition 2.2 and 2.1 justify the name ‘‘stable distribution’’ for
Ž .S m, s , t as they show that these distributions have properties similar top

the classical stable distributions. It will be convenient to renormalize the
Ž .parameters m, s and t . Namely, we will write N m, s , t instead of4

'Ž . Ž .S m, 3 sr2, tr8 . That is, Z ; N m, s , t iff4 4

2 4'c t s exp imt q 3 s t r2 q t t r8 , t g RR.Ž . Ž .Z

With this normalization of parameters, m and s may be interpreted as the
Ž . w Ž . xmean and variance of N m, s , t see Theorem 2.1 ii below . The third4

parameter, t , is normalized to give the simplest form to the statement of the
w Ž . x‘‘central limit theorem’’ see Theorem 2.1 iii below . The distribution

Ž .N m, s , t may be looked upon as an analog of the normal distribution.4

Ž . ŽTHEOREM 2.1. i Assume that Z and Y are independent, Z ; N m , s ,4 1 1

. Ž .t , Y ; N m , s , t and a , a g R. Then1 4 2 2 2 1 2

a Z q a Y ; N a m q a m , a 2s q a 2s , a 4t q a 4t .Ž . Ž .1 2 4 1 1 2 2 1 1 2 2 1 1 2 2

Ž . Ž .ii Suppose that Z ; N m, s , t . Then, for each j g N, there exists a4

Ž j. Ž .2 ŽŽ .2j-asymptotic moment EE Z and EEZ s m, EE Z y m s s and EE Z y m y
.2 Ž .s s 3t . Moreover, if m s s s 0, then the jth derivative of c t at 0 existsZ

and

c Ž j. 0 s i j
EE Z j .Ž . Ž .Z

Ž . Ž . � n 4iii Central limit theorem Let Z : k, n g N be a family of complexk
n Ž n n n .random variables and let Z s Z , Z , . . . , Z , . . . . Assume that, for all1 2 k

Ž . m nm, n g N: 1 Z and Z have the same asymptotic distribution, that is,
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a a Ž . � k4m nLL s LL ; 2 for a fixed n, the random variables Z are jointly indepen-Z Z n k G1

Ž . ndent; 3 the first four asymptotic moments of Z exist,

2 3n n n
EE Z s EE Z s EE Z s 0Ž . Ž . Ž .

and, for some t ) 0 independent of n,

4n
EE Z s t ) 0;Ž .

Ž . Ž4. Ž n.n4 the fourth derivatives c of the characteristic functions E exp itZ areZ kk

uniformly convergent on some open neighborhood of 0 as k ª `.

Then

w 1 2 n x 1r4 4lim c Z q Z q ??? qZ rn , u s exp t u r8 , u g R;Ž .Ž .
nª`

Ž 1 n. 1r4that is, the distributions of the normalized sums S s Z q ??? qZ rnn

Ž .tend in a very weak sense to the ‘‘normal’’ distribution N 0, 0, t .4

In order to define an asymptotically 4-stable process, it will be convenient
Ž . Ž .to work with a product of two probability spaces V, FF, P s V , FF , P =1 1 1

Ž . Ž . �V , FF , P . First we define on V , FF , P a standard Brownian motion b :2 2 2 2 2 2 t

4 � qŽ . 4 � yŽ . 4t G 0 and two families b n : t G 0 and b n : t G 0 of processest nG1 t nG1

w Ž .which satisfy the following conditions the space V , FF , P has to be2 2 2

xsufficiently rich :

qŽ . yŽ . qŽ . yŽ .1. For each n g N, b n s b n s 0 and the processes b n and yb n0 0
qŽ . qŽ . yŽ . yŽ .have nondecreasing paths, that is, 0 F b n F b n and b n F b ns t t s

F 0 for all 0 - s - t - `.

2. For all t G 0,

lim bq n q by n s b P -a.s.Ž . Ž .Ž .t t t 2
nª`

Ž . qŽ . yŽ . Ž .3. Let b n s b n q b n . For every pair n, t g N = R , the randomt t t q
Ž .variable b n has a Gaussian density on R.t

Here is one way to construct such processes. We will limit ourselves to the
w xinterval 0, 1 . Recall that a Haar function is given by

¡ Žmy1.r2 m m2 , if k y 1 r2 F t - kr2 ,Ž .
~ Žmy1.r2 m mH t s H m, k , t sŽ . Ž . y2 , if kr2 F t - k q 1 r2 ,Ž .¢

0, otherwise.

� 4Let H be an ordering of all Haar functions for m G 0 and k sn
m Ž . � 41, 3, 5, . . . , 2 y 1, such that H m , k , ? comes earlier in the sequence H1 1 n

Ž .than H m , k , ? if m - m . Let X be i.i.d. real standard normal random2 2 1 2 n

variables. Let

`
t

b v s X v H t dt , 0 F t F 1.Ž . Ž . Ž .Ý Ht n n
0ns0
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Ž .Thus defined, b is a Brownian motion. Let sgn x denote the sign of x witht

Ž . Ž .the convention sgn 0 s 0 and let x ? , x ? be the indicator functions of the1 y1

� 4 � 4sets 0, 1 and y1 , respectively. Then let
n2

tqb n s X x sgn X max H t , 0 dtŽ . Ž . Ž .Ž .Ý Ht k 1 k k
0ks0

t
qx sgn X min H t , 0 dtŽ . Ž .Ž .Hy1 k k

0

and
n2

tyb n s X x sgn X min H t , 0 dtŽ . Ž . Ž .Ž .Ý Ht k 1 k k
0ks0

t
qx sgn X max H t , 0 dt .Ž . Ž .Ž .Hy1 k k

0

These processes satisfy conditions 1 to 3. A typical Brownian path has

unbounded variation and, therefore, it cannot be represented as a sum of two
qŽ . yŽ .monotone functions. The functions b n and b n provide an ‘‘approximate’’t t

decomposition of this type as they represent the increasing and decreasing

parts of the truncated series in the Haar function representation of Brownian

motion.
q Ž qŽ . .We will also need two independent Brownian motions w s w t : t G 0x x

y Ž yŽ . . Ž .and w s w t : t G 0 starting from x g R and defined on V , FF , P . Thex x 1 1 1

processes wq, wy and b may be looked upon as three independent processes
Ž .defined on the product space V, FF, P . A generic element of V will be

Ž .denoted v s v , v .1 2

N � aDEFINITION 2.4. Suppose that a s a q ia g C. A C -valued process Z :1 2 t

4t G 0 defined by the formula

Za v , n s Za v , v , n s wq v , bq v , n q iwy v , yby v , nŽ . Ž . Ž . Ž .Ž . Ž .t t 1 2 a 1 t 2 a 1 t 21 2

will be called 4-stable motion starting from a.

In the sequel we will write Z instead of Z 0 and we will call Z the standard

4-stable motion.

Since our probability space is a product space, the expected value func-

tional EE for CN-valued random variables may be written as

EEZ s lim E E Z n ,Ž .Ž .Ž .2 1
nª`

where E is the expected value on the probability space V .j j

a � a 4THEOREM 2.2. The 4-stable motion Z s Z : t G 0 has the followingt

properties:

Ž . Ž . aŽ .i For each t, n g R = N, the function v ª Z v, n is FF-measura-q t

ble; that is, it is a random variable.
Ž . aŽ .ii Z n s a a.s.0
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Ž . N Ž a a.iii For any t ) s G 0, the C -valued random variable Z y Z has thet s

Ž .4-stable asymptotic distribution N 0, 0, t y s .4

Ž .iv For each natural number l g N and every 0 F s - t, the expectation
Ž a a.l

EE Z y Z exists. If l is divisible by 4 and l s 4 p, thent s

pla a
EE Z y Z s 4 p y 1 !! 2 p y 1 !! t y s ,Ž . Ž . Ž .Ž .t s

Ž a a.lwhere k!!s 1 ? 3 ? 5 ? ??? ? k. If l is not divisible by 4, then EE Z y Z s 0. Int s

Ž a a. j Ž a a.4 Ž .particular, EE Z y Z s 0 if j s 1, 2, 3 and EE Z y Z s 3 t y s .t s t s

Ž .v For each p g N, for every sequence t - t - ??? - t , for arbitrary0 1 p

Ž . pmulti-indices a s a , . . . , a g N and for arbitrary complex numbers c ,1 p a

the asymptotic expectation

p
a ia a

EE c Z y ZŽ .Ý Ła t tiq 1 iž /is1Ž .as a , . . . , a1 p

exists, provided the sum extends over a finite set of multi-indices a .
Ž . avi The increments of Z are asymptotically uncorrelated; that is, for

Ž .every sequence t - t - ??? - t and each multi-index a s a , . . . , a ,0 1 p 1 p

p p
a ai ia a p a

EE Z y Z s EE Z y Z .Ž . Ž .Ł Łt t t tiq 1 i iq1 iž /
is1 is1

Ž . Ž . Ž .vii For every b , b g N and all disjoint intervals s, t and u, v , we1 2

have

b bb b1 1a a a a2 2
EE Z y Z b y b s EE Z y Z EE b y b .Ž . Ž .Ž . Ž .t s v u t s v u

Ž . aŽ . N Nviii The paths t ª Z v , v g C are continuous, assuming that C ist 1 2

endowed with the product topology.
Ž . Ž . � aŽ .ix For each fixed v , n g V = N, the stochastic process Z ?, v , n :2 0 t 2

4t G 0 has independent increments.

3. Stochastic integral with respect to Z. We will continue to work
Ž . Ž . Ž .with the probability space V, FF, P s V , FF , P = V , FF , P introduced1 1 1 2 2 2

in the previous section. Recall the Brownian motion b used in the construc-

tion of Z. From now on, we will use the letter B to denote it; that is,
Ž . Ž . Ž .B v s b v for v s v , v . For notational convenience we will considert t 2 1 2

only the process Z starting from 0, that is, Z s 0.0

We will identify the stochastic integral with a sequence of ‘‘approximating
Ž .sums.’’ A similar idea has been applied in Hochberg 1978 . Consistency

requires that we define in a similar way analogs of the Ito integral withˆ
respect to Brownian motion and the Riemann integral.

� Ž .4 NDEFINITION 3.1. Suppose that X s X n is a C -valued stochastic pro-t

w x Ž .cess. For an interval a, b and an integer m G 1, let t s a q j b y a rm.j
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Ž . Ž .i An asymptotic stochastic integral of X with respect to Z is a

CN 2

-valued random variable H bX dZ defined by the formulaa s s

my1
b
X dZ m , n s X n Z n y Z n .Ž . Ž . Ž . Ž .ÝH Ž .s s t t tj jq1 jž /

a js0

Ž . Ž .ii An asymptotic Ito integral of X with respect to B is given byˆ

my1
b
X dB m, n s X n B y B .Ž . Ž . Ž .ÝH s s t t tj jq1 jž /

a js0

Ž . Ž . biii We define an asymptotic Riemann integral H X ds bya s

my1b y aŽ .b
X ds m , n s X n .Ž . Ž .ÝH s t jž / ma js0

We would like to define an ‘‘asymptotic expectation’’ operator E for the

integrals defined above. Since they are doubly indexed families of random

variables, we have to specify the order in which we pass to the limit. We will

write

b b
E X dZ s lim lim E X dZ m , n ,Ž .H Hs s df s sž /ž /mª` nª`a a

and similarly for the other two integrals.

Ž . bPROPOSITION 3.1. i The mapping X ª H X dZ is C-linear.a s s

Ž . Ž . w . w .ii If X s X ? x u , where c, d ; a, b , the random variable X isu w c, d .
N w .C -valued and x is the characteristic function of c, d , thenw c, d .

b
X dZ m , n s X n Z n y Z n .Ž . Ž . Ž . Ž .Ž .H s s d cž /

a

Ž . biii The mapping X ª H X dZ has the following ‘‘isometry property’’ fora s s

any X which is a polynomial in Z:

4
b b

4E X dZ s 3 EE X ds.Ž .H Hs s sž /
a a

Ž .iv The asymptotic Ito integral has the classical isometry property for anyˆ
X which is a polynomial in Z; that is,

2
b b

2E X dB s EE X ds.Ž .H Hs s sž /
a a
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Ž . Ž .PROOF. We omit the easy proofs of i and ii .
Ž .iii We have

44
b b

E X dZ s lim lim E X dZ m , nŽ .H Hs s s sž / ž /ž /m na a

4
my1

s lim lim E X n Z n y Z nŽ . Ž . Ž .Ý Ž .t t tj jq1 jž /ž /m n js0

3.1Ž .

4
my1

s lim EE X n Z n y Z n .Ž . Ž . Ž .Ý Ž .t t tj jq1 jž /m js0

Since X is a polynomial in Z, the expression
4

my1

X n Z n y Z nŽ . Ž . Ž .Ý Ž .t t tj jq1 jž /
js0

may be represented as a finite sum of terms of the form
rk

Z n y Z n ,Ž . Ž .Ł ž /t tj q1 jk kk

where the product is taken over a finite set of k. If any power r is less thank

4, then
rk

EE Z n y Z n s 0Ž . Ž .Ł ž /t tj q1 jk kk

Ž . Ž .by Theorem 2.2 iv and vi . The only terms that may have nonzero expecta-

tion have the form
4

4X n Z n y Z nŽ . Ž . Ž .Ž .t t tj jq1 j

Ž .and so 3.1 is equal to
my1

44
lim EE X Z n y Z n .Ž . Ž .Ž .Ý Ž .t t tž /j jq1 jm js0

Ž . Ž .Another application of Theorem 2.2 iv and vi shows that this is equal to
my1

b4 4lim EE X t y t s 3 EE X ds.Ž . Ž .Ž .Ý Ht jq1 j sjm ajs0

Ž . Ž .The proof of iv is analogous to that of iii . I

4. Ito formula.ˆ

THEOREM 4.1. For all polynomials f and integers p G 1,

b X
E f Z y f Z y f Z dZŽ . Ž . Ž .Hb a s sž a

4.1Ž . p'1 q 2 i 1Ž . b bY Ž4.y f Z dB y f Z ds s 0.Ž . Ž .H Hs s s /2 8a a
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First we will prove two lemmas. The first one is a generalization of
Ž . Ž .Theorem 2.2 vi ] vii .

LEMMA 4.1. Suppose that a , b g N for every j s 1, . . . , r. Assume thatj j

�Ž .4s , t is a family of pairwise disjoint intervals. Thenj j 1F jF r

r r
a ab bj jj j

EE Z y Z B y B s EE Z y Z B y B .Ž . Ž . Ž . Ž .Ł Łt s t s t s t sž /j j j j j j j jž /
js1 js1

PROOF. Recall the notation from Section 2. Recall that B s b dependst t

Ž .only on v and that B n converge to B as n ª `. Assume for a moment2 t t

that v is fixed and j / k. Since bq and by are monotone, the increments2

Z y Z and Z y Z are functions of increments of wq and wy overt s t sj j k k

disjoint intervals. Hence, they are conditionally independent.

First consider the case when, for every j, a s 2g where g is an integer.j j j

Ž .Then the conditional independence discussed above and 4.6 of Burdzy and
Ž .Ma̧drecki 1995 give

r
a bj j

E Z n y Z n B y BŽ . Ž . Ž .Ł Ž .1 t s t sj j j jž /
js1

r
a bj js E Z n y Z n B y BŽ . Ž . Ž .Ł Ž .1 t s t sj j j j

js1

r
g bj js 2g y 1 !! B n y B n B y B .Ž . Ž .Ž . Ž .Ł Ž .j t s t sj j j j

js1

One can check that these random variables are E -uniformly integrable by2

calculating their higher moments. Thus one can pass to the limit in the

following formula:

r
a bj j

EE Z y Z B y BŽ . Ž .Ł t s t sj j j jž /
js1

r
a bj js lim E E Z n y Z n B y BŽ . Ž . Ž .Ł Ž .2 1 t s t sj j j jž /ž /nª` js1

r
g bj js lim E 2g y 1 !! B n y B n B y BŽ . Ž .Ž . Ž .Ł Ž .2 j t s t sj j j jž /nª` js1

r
g bj js E 2g y 1 !! B y B B y BŽ . Ž . Ž .Ł2 j t s t sj j j jž /

js1

r
g bj js E 2g y 1 !! B y B B y B .Ž . Ž . Ž .Ł 2 j t s t sj j j j

js1

If we take r s 1 in this identity, we obtain

a gb bj jj j
EE Z y Z B y B s E 2g y 1 !! B y B B y BŽ .Ž . Ž . Ž . Ž .t s t s 2 j t s t sj j j j j j j j
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and so

r
a bj j

EE Z y Z B y BŽ . Ž .Ł t s t sj j j j
js1

r
g bj js E 2g y 1 !! B y B B y B .Ž . Ž . Ž .Ł 2 j t s t sj j j j

js1

The right-hand side of this identity is the same as the right-hand side of the

identity obtained in the previous paragraph. It follows that the left-hand

sides are equal as well and this proves the lemma.

It remains to consider the case when one of the a ’s is not even. In thisj

case, the product

r
a bj j

Z n y Z n B y BŽ . Ž . Ž .Ł Ž .t s t sj j j j
js1

Ž q. k Ž y. lcontains a factor of the form w or w , where either k or l is odd, and,

therefore, the E -expectation of the product must be 0. The same remark1

applies to a factor on the right-hand side of the equation given in the

statement of the lemma. I

The following lemma is a slight generalization of Lemma 5.1 of Burdzy and
Ž .Ma̧drecki 1995 .

LEMMA 4.2. Suppose that b , b g N. Then, for s - t,1 2

b b b r4qb r21 2 1 2
EE Z y Z B y B s b r2 q b y 1 !! t y sŽ . Ž . Ž . Ž .t s t s 1 2

if b and b r2 q b are even. Otherwise the expectation is equal to 0.1 1 2

PROOF. If b and b r2 q b are even, then the result follows from1 1 2

Ž .Lemma 5.1 of Burdzy and Ma̧drecki 1995 . It remains to discuss what

happens when one of these conditions is not satisfied.

If b is even but b r2 q b is odd, then the proof of Lemma 5.1 in Burdzy1 1 2

Ž .and Ma̧drecki 1995 shows that

b b b r2qb1 2 1 2
EE Z y Z B y B s E B y B .Ž . Ž . Ž .t s t s 2 t s

Since the distribution of B y B is centered normal, the expectation is equalt s

to 0.

If b is odd, then we argue as in the proof of Lemma 4.1. The expression1

Ž Ž . Ž .. b1Ž . b2 Ž q. kZ n y Z n B y B must contain a factor of the form w ort s t s

Ž y. lw , where either k or l is odd, and, therefore, the E -expectation of this1

expression must be 0. When we apply the E -expectation and pass to ` with2

n, we obtain 0 for the value of the expectation in the statement of the lemma.

I
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w xPROOF OF THEOREM 4.1. Fix some interval a, b and an integer m G 1.
Ž .Let t s a q j b y a rm andj

Dt s t y t ,j jq1 j

D B s B y B ,j t tjq1 j

DZ s Z y Z ,j t tjq 1 j

2 'DU s Z y Z y 1 q i 2 B y B ,Ž .Ž . Ž .j t t t tjq 1 j jq1 j

4
DV s Z y Z y 3 t y t .Ž .Ž .j t t jq1 jjq 1 j

Recall that f is a polynomial and Z s 0. Let d be the degree of f. We0

have
jy1

Z s Z y ZŽ .Ýt t tj kq1 k

ks0

and

d Žk .f ZŽ .t kjX
f Z y f Z y f Z DZ s Z y Z .Ž . Ž . Ž . Ž .Ýt t t j t tjq 1 j j jq1 jk!ks2

Ž .Therefore, 4.1 is a limit of
Ym f ZŽ .t 2j 'EE Z y Z y 1 q i 2 B y BŽ .Ž . Ž .Ý t t t tjq 1 j jq1 jž 2!js0

f Ž3. ZŽ .t 3j

q Z y ZŽ .t tjq 1 j3!

Ž4.f ZŽ .t 4j

q Z y Z y 3 t y tŽ .Ž .t t jq1 jjq1 j4!
p

Žk .d f ZŽ .t kj

q Z y ZŽ .Ý t tjq1 j /k!ks5

Y jy1m f Ý Z y ZŽ .Ž .ks0 t tkq 1 ks EE Ý ž 2!js0

4.2Ž .

2 '= Z y Z y 1 q i 2 B y BŽ .Ž . Ž .t t t tjq 1 j jq1 j

f Ž3. Ý jy1 Z y ZŽ .Ž . 3ks0 t tkq 1 kq Z y ZŽ .t tjq 1 j3!

Ž4. jy1f Ý Z y ZŽ .Ž . 4ks0 t tkq 1 kq Z y Z y 3 t y tŽ .Ž .t t jq1 jjq 1 j4!
p

Žr . jy1d f Ý Z y ZŽ . rŽ .ks0 t tkq 1 kq Z y Z .Ž .Ý t tjq 1 j /r !rs5
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The last expression is equal to

� 4 � 4EE c a , b , g� 4Ž .Ý j j jž
� 4 � 4 � 4a , b , gj j j

4.3Ž .

=

N
a gbj jj

DZ DU DV ,Ž . Ž . Ž .Ý Ł k k kj j j /js0k , . . . , k1 N

where:

Ž . � 4 � 4 � 4i the first sum is taken over all sequences of integers a , b , gj j j

Ž .between and including 0 and N s pd;
Ž . Ž � 4 � 4 � 4.ii the second sum is taken over a subset depending on a , b , g ofj j j

Ž .all sequences k , . . . , k of integers between and including 0 and m;1 N

Ž . Ž� 4 � 4 � 4. � 4 � 4 � 4iii the coefficients c a , b , g can be equal to 0 for some a , b , g .j j j j j j

Ž .Let us consider the expectation of a single term in 4.3 . It follows easily

from Lemma 4.1 that

N N
a g a gb bj j j jj j

4.4 EE DZ DU DV s EE DZ DU DV .Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ł Łk k k k k kj j j j j jž /js0 js0

wŽ .a jŽ . b jŽ .g j xWe will analyze expectations of the form EE DZ DU DV . Firstk k kj j j

suppose that g G 1 and writej

a g ab b g y1j j jj j j
4.5 EE DZ DU DV s EE DZ DU DV DV .Ž . Ž . Ž . Ž . Ž . Ž . Ž .k k k k k k kj j j j j j j

Ž .a jŽ . b jŽ .g jy1Observe that DZ DU DV is a sum of terms of the formk k kj j j

Ž Ž . Ž ..a Ž Ž . Ž ..b Ž Ž . Ž ..aŽ Ž .c Z t y Z t or c B t y B t or c Z t y Z t B tk q1 k k q1 k k q1 k k q1j j j j j j j

Ž ..b Ž .yB t , where a and b are integers. Here c may contain the nonrandomk j

factor Dt . If a is divisible by 4 and a ) 0, then, according to Theoremk j

Ž .2.2 iv ,

a

EE c Z t y Z t DVŽ . Ž .ž /k q1 k kj j j

a

s EE c Z t y Z tŽ . Ž .ž /k q1 kj j

4.6Ž .

=
4

Z t y Z t y 3 t y tŽ . Ž . Ž .ž /k q1 k k q1 kž /j j j j

a1qar4 1qar4 1qar4 1

s c Dt y c Dt s c Dt s c Dt ,Ž . Ž . Ž . Ž .1 k 2 k 3 k 3 kj j j j

where a s 1 q ar4 G 2. If a ) 0 but a is not a multiple of 4, then the same1

Ž .theorem implies that the expectation in 4.6 is equal to 0. Another applica-

tion of the same theorem shows that EE DV s 0 and so we conclude that thek j

Ž . Ž .expectation in 4.6 is equal to 0 if a s 0. We see that 4.6 holds for all a if

we allow c to be equal to 0.3



ˆITO FORMULA 213

A similar argument based on Lemma 4.2 shows that

b

EE c B t y B t DVŽ . Ž .ž /k q1 k kj j j

b

s EE c B t y B tŽ . Ž .ž /k q1 kj j

4.7Ž .
4

= Z t y Z t y 3 t y tŽ . Ž . Ž .ž /k q1 k k q1 kž /j j j j

a1qbr2 1qbr2 1qbr2 2

s c Dt y c Dt s c Dt s c Dt ,Ž . Ž . Ž . Ž .1 k 2 k 3 k 3 kj j j j

with a s 1 q br2 G 2 provided b is even and greater than 0. Otherwise the2

Ž .expectation is 0 so 4.7 holds with c s 0.3

Finally, we analyze the most complicated case. We observe that

a b

EE c Z t y Z t B t y B t DVŽ . Ž . Ž . Ž .ž / ž /k q1 k k q1 k kj j j j j

a b

s EE c Z t y Z t B t y B tŽ . Ž . Ž . Ž .ž / ž /k q1 k k q1 kj j j j

4

= Z t y Z t y 3 t y tŽ . Ž . Ž .ž /k q1 k k q1 kž /j j j j

4.8Ž .

1qar4qbr2 1qar4qbr2
s c Dt y c DtŽ . Ž .1 k 2 kj j

a1qar4qbr2 3

s c Dt s c Dt ,Ž . Ž .3 k 3 kj j

Žwith a s 1 q ar4 q br2 G 2 assuming a is divisible by 4 and b is even see3

.Lemma 4.2 . In other cases the expression is equal to 0.
Ž . Ž . Ž .When we combine 4.6 ] 4.8 and assume that g G 1, 4.5 shows thatj

a g abj j 4j
4.9 EE DZ DU DV s c Dt ,Ž . Ž . Ž . Ž . Ž .k k k kj j j j

where a G 2 and c is a constant which may be equal to 0.4

Ž .Next we assume that g s 0. Hence, the expectation in 4.5 becomesj

wŽ .a jŽ . b j x Ž .EE DZ DU . Assume first that b G 2 and write, as in 4.5 ,k k jj j

a ab b y2 2j jj j
4.10 EE DZ DU s EE DZ DU DU .Ž . Ž . Ž . Ž . Ž . Ž .k k k k kj j j j j

If a s 0 and b y 2 s 0, then we can show just as in the proof of Theoremj j

Ž .5.1 of Burdzy and Ma̧drecki 1995 that

a b 2j j
4.11 EE DZ DU s EE DU s 0.Ž . Ž . Ž . Ž .k k kj j j
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Ž .a jŽ . b jy2Now suppose that either a ) 0 or b y 2 ) 0. Then DZ DU is ak kj j j j

Ž .aŽ .bsum of terms of the form c DZ D B where a and b are integers. Wek kj j

have

a b 2
EE c DZ D B DUŽ . Ž . Ž .k k kj j j

a b 4
s EE c DZ D B DZŽ . Ž . Ž .k k kj j j

a b 2'y 2 1 q i 2 EE c DZ D B DZ D BŽ . Ž . Ž . Ž .k k k kj j j j

4.12Ž .

a2 b 2'q 1 q i 2 EE c DZ D B D B .Ž . Ž . Ž . Ž .k k kj j j

Ž .Since either a or b is greater than 0, Lemma 4.2 and Theorem 2.2 iv show
Ž .that each expectation on the right-hand side of 4.12 is either equal to 0 or is

Ž .r Ž .equal to c Dt with r G 2. It follows from this and 4.11 that if b G 2,k jj

then

a rbj j
4.13 EE DZ DU s c Dt ,Ž . Ž . Ž . Ž .k k kj j j

with r G 2 and some c which may be equal to 0.

Suppose that b s 1. Thenj

a bj j
EE DZ DUŽ . Ž .k kj j

4.14Ž .
a a2j j's EE DZ DZ y 1 q i 2 EE DZ D B ,Ž .Ž . Ž . Ž .k k k kj j j j

Ž .and another application of Lemma 4.2 and Theorem 2.2 iv shows that the
Ž .rexpectations on the right-hand side are either equal to 0 or equal to c Dtk j

Ž .with r G 2, provided a / 2. Thus 4.13 is true also in the case b s 1 andj j

a / 2.j

If b s 1 and a s 2, thenj j

a b 2 2j j
EE DZ DU s EE DZ DZŽ . Ž . Ž . Ž .k k k kj j j j

4.15Ž .
2'y 1 q i 2 EE DZ D B s c Dt .Ž . Ž .k k kj j j

Ž .By analyzing all possible products in 4.2 , we see that we may remove from
Ž . N Ž .a jŽ . b jŽ .g jformula 4.3 all the products Ł DZ DU DV with g s 0, b s 1kjs0 k k j jj j j

and a s 2 unless there is m / j such that g G 1 or a G 3, a / 4.j m m m

Ž .Finally, assume that both b and g are equal to 0. Then Theorem 2.2 ivj j

yields
a rj

4.16 EE DZ s c DtŽ . Ž . Ž .k kj j

Ž .for some r G 2 if a / 4 c may be equal to 0 . If a s 4, thenj j

a j

4.17 EE DZ s c Dt .Ž . Ž .k kj j
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However, if a s 4, then we may assume that there exists m / j such thatj

a G 3, a / 4. The products which do not satisfy this condition do notm m

Ž .contribute anything to the expectation in 4.2 .
Ž . Ž . Ž .Now we combine the estimates contained in 4.9 , 4.13 and 4.16 to

obtain
a g rbj jj

4.18 EE DZ DU DV s c DtŽ . Ž . Ž . Ž . Ž .k k k kj j j j

for some r G 2 unless one of the following conditions is true:

Ž .i g s 0, b s 1 and a s 2, orj j j

Ž .ii g s 0, b s 0 and a s 4.j j j

If any of these two conditions holds, then

a gbj jj
4.19 EE DZ DU DV s c DtŽ . Ž . Ž . Ž .k k k kj j j j

and there exists m / j such that
a g rbm mm4.20 EE DZ DU DV s c Dt ,Ž . Ž . Ž . Ž . Ž .k k k km m m m

Ž . Ž . Ž .with r G 2. Hence, in view of 4.3 , estimates 4.18 ] 4.20 give

N
a gbj jj

EE DZ DU DVŽ . Ž . Ž .Ý Ł k k kj j jž /js0k , . . . , k1 N

N
a gbj jjs EE DZ DU DVŽ . Ž . Ž .Ý Ł k k kj j jž /js0k , . . . , k1 N

N
a gbj jjs EE DZ DU DVŽ . Ž . Ž .Ý Ł k k kj j j

js0k , . . . , k1 N

4.21Ž .

N
r j

s c DtŽ .Ý Ł j k j
js0k , . . . , k1 N

N m
r j

F c Dt ,Ž .Ł Ýj k j
js0 k s0j

Ž .where at least one r is greater than 1. The inequality sign in 4.21 is due toj

Ž .the fact that the summation in 4.3 is taken over some but not necessarily all
U Ž .k ’s between 0 and m. Let D t s max Dt . Then the right-hand side in 4.21j j j

is less than or equal to
rN Ub y a D t ,Ž . Ž .

with some r G 1 and, therefore,

N
a gbj jj

EE DZ DU DVŽ . Ž . Ž .Ý Ł k k kj j jž /js0k , . . . , k1 N

U Ž .converges to 0 as D t ª 0. The first sum in 4.3 extends over a finite set of
Ž . Usequences, so the expectation in 4.3 goes to 0 as D t ª 0. I
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XŽ .For many functions f , the process f B is a martingale and thent

b Y1Ef B y Ef B s Ef B ds.Ž . Ž . Ž .Hb a s2
a

We have the following analog of this identity for the asymptotically 4-stable

process Z.

COROLLARY 4.1. If f is a polynomial, then

b1 Ž4.E f Z y E f Z s EE f Z ds.Ž . Ž . Ž .Hb a s8
a

PROOF. If we apply Theorem 4.1 with p s 1, we see that it will suffice to
b XŽ . b YŽ .show that H f Z dZ s 0 and H f Z dB s 0. It will be enough to showa s s a s s

that
my1

X
EE f X n Z n y Z n s 0Ž . Ž . Ž .Ý Ž . Ž .t t tj jq1 j

js0

and
my1

Y
EE f X n B y B s 0.Ž . Ž .Ý Ž .t t tj jq1 j

js0

We obtain these identities from the fact that the increments of Z and B are
w‘‘asymptotically uncorrelated’’ recall that f is a polynomial and use Theorem

Ž . x2.2 vi and Lemma 4.1 . I

We owe the following remark to an anonymous referee.

Ž .REMARK 4.1. i One may consider an asymptotic integral given by

my1
3

X n Z n y Z n ;Ž . Ž . Ž .Ý Ž .t t tj jq1 j

js0

Ž .cf. Definition 3.1 i . This integral is analogous to an integral considered by
Ž .Hochberg 1978 . In a sense, this is ‘‘an integral with respect to a process

composed of a 3r2-stable process and a Brownian motion.’’
Ž .ii It seems that Theorem 4.1 should hold for holomorphic functions.
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