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A MULTICLASS CLOSED QUEUEING NETWORK WITH
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We consider a multiclass closed queueing network model analogous to

the open network models of Rybko and Stolyar and of Lu and Kumar. The

closed network has two single-server stations and a fixed customer popu-

lation of size n. Customers are routed in cyclic fashion through four

distinct classes, two of which are served at each station, and each server

uses a preemptive-resume priority discipline. The service time distribu-

tion for each customer class is exponential, and attention is focused on the

critical case where all four classes have the same mean service time.

Letting n approach infinity, we prove a heavy traffic limit theorem that is

unconventional in three regards. First, in our heavy traffic scaling of both

queue-length processes and cumulative idleness processes, time is com-

pressed by a factor of n rather than the factor of n2 occurring in

conventional theory. Second, the spatial scaling applied to some compo-

nents of the queue-length and idleness processes is that associated with

the central limit theorem, but the scaling applied to other components is

that associated with the law of large numbers. Thus, in the language of

queueing theory, our heavy traffic limit theorem involves a mixture of

Brownian scaling and fluid scaling. Finally, the limit process that we

obtain is not an ordinary reflected Brownian motion, as in conventional

heavy traffic theorems, although it is related to or derived from Brownian

motion.
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1. Introduction. This paper is part of a long-term research project on

Brownian models of complex queueing networks. Such Brownian system

models, or Brownian approximations, arise as heavy traffic limits of conven-

tional queueing models after an appropriate scaling of time and state space.

In all of the heavy traffic limit theorems that have been proved to date, the

scaling that gives convergence to a Brownian limit is that associated with the
Ž .central limit theorem CLT , and the Brownian model that emerges as the

Ž .heavy traffic limit is some kind of reflected Brownian motion RBM . For open

queueing networks, the current state of knowledge regarding heavy traffic
w x w xlimit theory is surveyed by Harrison and Nguyen 10 , and Williams 22

provides an up-to-date review of mathematical theory for the associated

Brownian system models. For a restrictive class of closed queueing networks,

analogous results on Brownian approximations and heavy traffic limit theory
w xwere proved by Chen and Mandelbaum 4 and by Harrison, Williams and

w xChen 12 , but overall, less is known about Brownian limits or Brownian

approximations for closed queueing networks than for open ones.

The theory referred to in the previous paragraph is useful because the

Brownian system model that one obtains as a heavy traffic approximation,

although subtle and complex in its own right, is simpler in all important

regards than the conventional network model it replaces. A key point is that

reflected Brownian motions form a cohesive class of stochastic processes for

which both general mathematical theory and general methods of numerical

analysis are available.

How broadly applicable is the conventional heavy traffic framework, where

CLT scaling of a multidimensional queue-length process gives weak conver-

gence to an RBM under heavy traffic conditions? To be more precise, what are

the limits of its applicability and, for queueing networks outside those limits,

are there other kinds of heavy traffic theorems from which one can derive

useful approximate system models? To shed some light on these important

questions, we consider in this paper a simple network model for which the

conventional heavy traffic framework is inadequate. For this model we prove

a heavy traffic limit theorem that is unconventional in three respects. First,

our theorem involves a milder scaling of time than what one sees in conven-

tional theory. Even with this relatively mild compression of the time scale, a

legitimately stochastic limit is obtained, which shows that the model under

study here has a higher degree of intrinsic stochastic variability than net-

work models previously studied. The second unconventional feature of our

heavy traffic limit theorem is that different components of the stochastic

processes under study are subjected to different spatial scalings. As a result,

our limit theorem involves a mixture of CLT scaling with what queueing

theorists call fluid scaling. Finally, the multidimensional stochastic process

obtained as a limit in our heavy traffic theorem is not an ordinary RBM,

although it is related to or derived from Brownian motion. Some components

of our limit process exhibit the unbounded variation characteristic of Brown-
Žian paths, while other components have bounded variation this is to be

.expected from the mixture of CLT scaling and fluid scaling . Sample paths of
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the limit process also exhibit jumps in certain components. The convergence

for these components is relative to the Skorokhod M topology rather than1

Ž .the usual J topology on path space see Section 2 for more details .1

The model on which we focus is a multiclass closed queueing network first
w xstudied by Harrison and Nguyen 11 . It is precisely analogous to the open

w xnetwork models introduced by Rybko and Stolyar 18 and by Lu and Kumar
w x15 , which have played an important role in the recent explosion of research

on open network stability. It has been shown that these open networks may

be unstable, depending on parameter values, even when each station has a

traffic intensity parameter strictly less than 1. The subtle behavior observed

in our closed network analog derives from the same underlying structure that

creates the potential for such instability.

The paper is organized as follows. First, some notation and mathematical

preliminaries are laid out in Section 2. The closed network model to be

studied is introduced in Section 3. There we also review a key observation by
w xHarrison and Nguyen 11 and identify a parameter combination that pro-

duces the most delicate system behavior. A heavy traffic limit theorem for

that ‘‘critical case’’ is stated in Section 5, after a review of conventional heavy

traffic theory in Section 4. Our unconventional heavy traffic limit theorem for

the critical case is proved in Sections 6 through 8, with heavy reliance on a

system representation that fully exploits the special structure of our model.

To make the flow of logic in Sections 7 and 8 more transparent, the proofs of

certain properties are isolated in Appendixes A and B. Throughout the paper,

results that are labelled as propositions, lemmas, theorems or corollaries are

numbered according to a single sequential scheme, for example, Corollary 5.2

is the result immediately following Theorem 5.1.

2. Notation and preliminaries. For each positive integer m, let Dm be
m w .the space of ‘‘Skorokhod paths’’ in R having time domain R s 0, ` . Thatq

m w . mis, D consists of all functions x: 0, ` ª R that are right continuous on
Ž . m

R and have finite left limits on 0, ` . The subspace of D consisting only ofq

continuous functions is denoted by Cm. When m s 1, we shall simply write

D, C instead of Dm, C m, respectively. At different points in this paper we

consider Dm under both the Skorokhod J topology and the weaker M1 1

topology. The original reference for these topologies on the space of Sko-
w x w xrokhod paths defined over 0, 1 is 20 . For the extension to paths defined

w . w x w xover 0, ` , see 21 and also 8 for the J topology. When either the J or M1 1 1

topology is relativized to Cm, it is the topology of uniform convergence on

compact time intervals. We shall write u.o.c. as an abbreviation for uniformly
m Ž m.on compacts, to indicate that a sequence of functions in D or C is
m Ž m.converging uniformly on compact time intervals to a limit in D or C .

w xWe refer the reader to 20, 21, 8 for the precise definitions of the J and1

M topologies. Heuristically, convergence in these topologies may be de-1

� 4 mscribed as follows. Consider a sequence x in D that converges in the J orn 1

M topology to x g Dm. Then for either topology, at a continuity point t of x,1

Ž . Ž .x t ª x t as n ª `. The distinction between the topologies comes inn
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convergence near jumps of x. In the case of J convergence, around the time1

of a jump of x, x must have a single jump that is close in location andn

magnitude to that of x. In the case of M convergence, around the time of a1

jump of x, x may have several jumps and the graph of x must be almost an n

‘‘monotone staircase’’ which converges to the graph of x as n ª `. For

certain components of the multidimensional queue-length, we shall be prov-
Ž .ing weak convergence of processes with many small jumps to a limit process

in which these small jumps may coalesce to big jumps. For this the M1

topology will prove to be the appropriate topology. The space Dm with the J1

Ž w x.or the M topology is a Polish space see 16, 21 and so we shall be able to1

Ž w x .use the Skorokhod representation theorem see 8 , Theorem 3.1.8 to reduce

many of our weak convergence arguments to ones involving almost sure

convergence. For this, the following properties of path convergence will be

useful.

Ž .PROPOSITION 2.1. i Suppose x ª x in either the J or M topology onn 1 1

Dm. If x g C m, then x ª x u.o.c.n

Ž . Ž .ii Suppose that x ª x and y ª y in the J respectively, M topologyn n 1 1
m Ž .on D . Then x q y ª x q y in the J respectively, M topology if x and yn n 1 1

have no points of discontinuity in common.

Ž .iii Suppose x and x are nonnegative, nondecreasing functions in D. Thenn

Ž . Ž . Ž . Ž .x ª x in the M topology if and only if a x 0 ª x 0 as n ª `, and b xn 1 n n

converges pointwise to x at a dense set of times.

Ž . Ž . Ž .REMARK. In iii , a and b may be replaced by ‘‘x converges to x at alln

Žcontinuity points of x ’’ this includes convergence at t s 0 by the right
.continuity of x .

Ž . w x Ž . w xPROOF OF PROPOSITION 2.1. For i , see 20 ; for ii , see 16 , Section III,
Ž . w xTheorem 3.1; for iii and the Remark, see 21 , Remark following Theorem

w x7.1, and 20 , Section 2.4.1. I

Now the space Dm is equal as a set to the Cartesian product of m copies of

D. However, the product topology on Dm, where each copy of D is endowed
Ž . Žwith the J respectively M topology, is weaker than the J respectively1 1 1

. m Ž w x w x .M topology on D cf. 1 and 21 , Section 4 . In the sequel we shall need1

both the J or M topology on Dm and the product topology on Dm, where the1 1

copies of D in the product have either the J or M topology; we shall even1 1

allow some copies of D in the product to have the J topology and the1

remainder to have the M topology. Whenever we need to use a product1

topology on Dm, this will be clearly indicated. Otherwise, J or M conver-1 1

gence refers to the usual J or M topology on Dm.1 1

For stochastic processes X , X , . . . , X whose paths lie almost surely in1 2

Dm, we write ‘‘X « X in the J topology’’ to mean that the probabilityn 1

measures induced by the X on Dm endowed with the J topology convergen 1

weakly to the probability measure induced on Dm by X; this same state of
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affairs may be expressed by the statement ‘‘X converges weakly in the Jn 1

topology to X as n ª `.’’ Weak convergence under the M topology is1

expressed similarly. On the other hand, when Dm is to be considered as a

product of m copies of D, each with the J topology, we shall write ‘‘X « X1 n

with the product topology on Dm, where each copy of D has the J topology.’’1

Similar terminology will be used when we have a product of m copies of D,

each with the M topology or with some mixture of the M and J topologies1 1 1

Ž .see Theorem 5.1 .

Let D be the subspace of D consisting of those functions x g D with0

Ž . w x finitial value x 0 g 0, 1 . Let D denote the subspace of D consisting of0 0

those functions in D which jump at most finitely many times in any compact0

time interval.

The following proposition serves to define and characterize the two-sided
Ž . f 3 w xreflection mapping h , h , r : D ª D , which is also called by Harrison 91 2 0

the two-sided regulator. Critical continuity and measurability properties of

this mapping are stated in Propositions 2.3 and 2.4. These three propositions
Žw xcan be obtained from the results in Chen and Mandelbaum 3 ; see Proposi-

.tion 2.4, Theorem 2.5 and the Remark following it and Theorem 2.6 by first
w xperforming a linear transformation of the unit interval 0, 1 to the line

� Ž . 2 4segment x s x , x g R : x q x s 1 .1 2 1 2

f Ž . 3PROPOSITION 2.2. For each x g D there is a unique triple y , y , z g D0 1 2

satisfying

2.1 z t s x t q y t y y t , t G 0,Ž . Ž . Ž . Ž . Ž .1 2

2.2 0 F z t F 1, t G 0,Ž . Ž .

2.3 y and y are nondecreasing with y 0 s y 0 s 0,Ž . Ž . Ž .1 2 1 2

2.4 z t s 0 at every time t G 0 that is a point of increase for yŽ . Ž . 1

and

2.5 z t s 1 at every time t G 0 that is a point of increase for y .Ž . Ž . 2

Ž . Ž .Moreover, y and y are the least functions satisfying 2.1 ] 2.3 , in the1 2

Ž X X . Ž . Ž .following sense: If y , y , z9 is another triple satisfying 2.1 ] 2.3 , then1 2

Ž . X Ž . Ž . X Ž .y t F y t and y t F y t for all t G 0.1 1 2 2

f Ž . Ž . Ž .DEFINITION. Given x g D , let h x s y , h x s y and r x s z, where0 1 1 2 2

Ž . Ž . Ž .y , y , z is the unique solution of 2.1 ] 2.5 .1 2

� 4 fPROPOSITION 2.3. If x is a sequence in D which converges u.o.c. ton 0

�Ž . Ž .4 Ž .Ž . 3x g C, then h , h , r x converges u.o.c. to h , h , r x g C as n ª `.1 2 n 1 2

PROPOSITION 2.4. If X is a one-dimensional stochastic process that has
Ž f .continuous paths respectively, paths locally of bounded variation in D0

w x Ž .Ž . Žstarting in 0, 1 , then h , h , r X is a continuous respectively, locally of1 2

.bounded variation stochastic process that is adapted to X.
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As usual, given a Borel set A ; R, we define the indicator function 1 :A

� 4 Ž .R ª 0, 1 by setting 1 x s 1 if x g A and s 0 otherwise.A

3. The closed queueing network. Consider a closed system with two

single-server stations and n customers who circulate perpetually with the

deterministic routing pictured in Figure 1. A customer cycle consists of four

services at stations 1, 2, 2 and 1 again, in that order. Customers that are

waiting for or undergoing the kth service of their cycle will be called class k
Ž .customers k s 1, 2, 3, 4 . All service times are independent and class k

service times are assumed to have an exponential distribution with mean

m ) 0. Finally, each server follows a preemptive-resume priority discipline,k

as shown in Figure 1.

Ž .Let Q t denote the number of class k customers existing at time t,k

calling this the queue-length for class k, and define a four-dimensional
� Ž . 4queue-length process Q s Q t , t G 0 in the obvious way. With the assump-

tions enunciated above, Q is a continuous time Markov chain with finite state
w xspace. The following proposition is due to Harrison and Nguyen 11 . Its proof

is included for completeness.

Ž .PROPOSITION 3.1. Given any initial queue-length vector Q 0 , let

t s inf t G 0: Q t s 0 or Q t s 0 .� 4Ž . Ž .2 4

Ž . Ž .Then, almost surely, t - ` and Q t Q t s 0 for all t G t .2 4

REMARK. In words, this says that after a finite initial time interval, the

two servers will never again have priority work to do at the same time.

Ž . Ž .PROOF OF PROPOSITION 3.1. Suppose that Q 0 s i ) 0 and Q 0 s j ) 02 4

Ž . Ž .that is, each server has priority work to do initially . Let S i be the sum of2

Ž .the first i class 2 service times and define S j similarly. Now t s4

� Ž . Ž .4 w xmin S i , S j . During the interval 0, t no effort is devoted to service of2 4

the nonpriority customers in classes 1 and 3, so the priority queue-lengths Q2

and Q are nonincreasing over that interval. It follows that t is the stopping4

Ž .time identified in the statement of the proposition, and clearly E t - `.

FIG. 1. A multiclass closed queueing network with priority service.
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Let us now consider the evolution of the system beginning from a state in
Žwhich one or both of the priority queues that is, the queues for classes 2 and

. Ž . Ž .4 are empty. For the sake of concreteness, assume Q 0 ) 0 and Q 0 s 0.2 4

Ž .Then server 2 will work on class 2 priority customers up until the first time
Ž . w xs at which Q s s 0, and during the interval 0, s no effort will be devoted2

to service of the nonpriority customers in class 3, so no new customers of class
Ž . Ž .4 can be created. Thus we have Q s s Q s s 0. When the next service is2 4

completed at some time t ) s , the system will return to a condition in which
Ž .one but not both of the priority queues those for classes 2 and 4 is empty,

and now the argument repeats: when just one of the priority classes is being

served, no new customers of the other priority class can be created and so
Ž . Ž .Q ? Q ? s 0. I2 4

Proposition 3.1 shows that some states of the Markov chain Q are tran-

sient, namely, those with Q ) 0 and Q ) 0. To avoid trivial complications,2 4

Ž . Ž .we assume hereafter that Q 0 Q 0 s 0. The queue-length process Q is2 4

then effectively two dimensional, because

4

3.1 Q t Q t s 0 and Q t s n for all t G 0.Ž . Ž . Ž . Ž .Ý2 4 k

ks1

For our purposes a particularly convenient two-dimensional representation is

the following. Let

3.2 V t s Q t y Q t and V t s Q t q Q t .Ž . Ž . Ž . Ž . Ž . Ž . Ž .1 2 4 2 1 2

Ž . Ž .From 3.1 we see that the four-vector Q t can be recovered from the
Ž .two-vector V t by means of the identities

q
3.3 Q t s V t ,Ž . Ž . Ž .2 1

y
3.4 Q t s V t ,Ž . Ž . Ž .4 1

3.5 Q t s V t y Q tŽ . Ž . Ž . Ž .1 2 2

and

3.6 Q t s n y Q t q Q t q Q t .Ž . Ž . Ž . Ž . Ž .3 1 2 4

Thus V is also a Markov chain. Its state space and transition structure are

pictured in Figure 2, and it is easy to write out the intensity parameters for
Žthe various transitions pictured each transition occurs at rate m s 1rm fork k

.some k .

To close this section we shall summarize some implications of Proposition
Ž .3.1 with regard to the long-run system throughput rate. Let T t denote thek

Žtotal amount of time devoted to service of class k by whichever server
. w xhandles that class over the interval 0, t . Assuming as before that

Ž . Ž .Q 0 Q 0 s 0, it follows from Proposition 3.1 that2 4

3.7 T t q T t F t , t G 0.Ž . Ž . Ž .2 4
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Ž .FIG. 2. Transition structure of the Markov chain V for n s 3 .

ŽFor each class k there is a constant u it is easy to express these constantsk

.in terms of the stationary distribution of the Markov chain Q such that
w Ž .xE T t ; u t as t ª `, independent of initial conditions. Moreover, from thek k

Ž .simple cyclic routing pictured in Figure 1 it follows that recall m ' 1rmk k

3.8 m u s m u s m u s m u s lŽ . 1 1 2 2 3 3 4 4

Ž .for some constant l called the system throughput rate, and 3.8 can be

written equivalently as

3.9 u s lm for each class k s 1, 2, 3, 4.Ž . k k

Obviously, u q u F 1 because classes 1 and 4 are both served at station 1,1 4

Ž .and similarly u q u F 1. However, 3.7 further implies that u q u F 1,2 3 2 4

Ž .and combining these three inequalities with 3.9 gives

y1 y1 y1
3.10 l F l* ' min m q m , m q m , m q m .Ž . Ž . Ž . Ž .� 41 4 2 3 2 4

Ž .The upper bound l* in 3.10 is independent of n and the arguments in
w xHarrison and Nguyen 11 can be extended to show that l does in fact

approach this bound as n ª `.

Ž .y1Obviously, m q m represents the maximum rate at which server 11 4

Žcan process incoming customers or equivalently, the server’s average pro-
. Ž .y1cessing rate if never starved for work and m q m is the analogous2 3

quantity for server 2. To get an interesting heavy traffic limit theorem, we

shall assume hereafter that the two servers’ maximum processing rates are

equal, calling this a balanced loading condition. By choosing units appropri-

ately, we can express the balanced loading condition as

3.11 m q m s m q m s 1.Ž . 1 4 2 3

Ž . Ž .Combining 3.8 with assumption 3.11 , one has

3.12 u q u s u q u s l,Ž . 1 4 2 3

which means that the long-run utilization rate for both server 1 and server 2

is equal to the system throughput rate l.
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Ž .An unsuspecting analyst might paraphrase 3.11 by saying that server 1

and server 2 are tied for bottleneck status, and expect that l ª 1 as n ª `.

Ž .However, 3.10 shows that a hidden bottleneck exists if m q m ) 1, and in2 4

that circumstance the long-run utilization rate remains bounded away from 1
Ž .or equivalently, the long-run idleness rate remains bounded away from 0 for

both server 1 and server 2 as n ª `. Given our balanced loading condition
Ž .3.11 , one has m q m ) 1 if and only if2 4

3.13 m - m and m - m .Ž . 1 2 3 4

That is, the hidden bottleneck emerges in our balanced closed network when

the nonpriority service operations are faster on average than the priority

service operations which they precede. Readers who wish to understand

exactly how the hidden bottleneck affects system dynamics are referred to the
w xbrilliant analysis by Dai and Weiss 6 of the open network models of Lu and

Kumar and of Rybko and Stolyar.

Ž .Maintaining the balanced loading assumption 3.11 and motivated by the

discussion above, we shall identify the following parameter ranges later in

this paper:

subcritical case:

m q m - 1 that is, m ) m and m ) m .Ž .2 4 1 2 3 4

critical case:

m q m s 1 that is, m s m and m s m .Ž .2 4 1 2 3 4

supercritical case:

m q m ) 1 that is, m - m and m - m .Ž .2 4 1 2 3 4

As discussed above, neither server is able to approach full utilization as

n ª ` in the supercritical case, where a hidden bottleneck emerges as the

unique limiting factor on server utilization or system throughput. In the
Ž .critical and subcritical cases, full utilization is approached i.e., l ª 1 as

n ª `, but it will be shown later that the hidden bottleneck still asserts itself

in a certain sense as n ª ` in the critical case.

4. Heavy traffic behavior when priorities are reversed. A closed

queueing network is said to be ‘‘in heavy traffic’’ if its population size n is

large, and a ‘‘heavy traffic limit’’ involves letting n ª `. The central purpose

of this paper is to state and prove a heavy traffic limit theorem for the critical
Ž .case m s m and m s m identified at the end of Section 3. To set the1 2 3 4

stage, we describe in this section a ‘‘conventional’’ heavy traffic limit theorem

that provides a useful point of comparison for our main result.

The conventional heavy traffic limit theorem involves a sequence of closed

networks indexed by n s 1, 2, . . . , each having the structure described in

Section 3 except that the service priorities at each station are reversed. That is,

for purposes of this section only, let us assume that class 1 has preemptive-

resume priority at station 1 and class 3 has preemptive-resume priority at

station 2. Thus each server gives preference to exiting customers over enter-
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ing customers. The nth system has a population of size n and the mean
Ž .service times m are fixed not depending on n and are assumed to satisfyk

Ž . � nŽ . 4the balanced loading condition 3.11 . Denoting by Q t , t G 0 the four-di-

mensional queue-length process associated with the nth system, let us as-

sume the convenient initial conditions

4.1 Qn 0 s 0, 0, 0, n for all n.Ž . Ž . Ž .

With the reversed priorities assumed in this section, there can never be more

than one customer of class 1, because each service of a low-priority class 4

customer at station 1 is followed immediately by the high-priority class 1

service of that same customer. Similarly, each service of a low-priority class 2

customer at station 2 is followed immediately by the high-priority class 3

service of that same customer.

Given this state of affairs, our original multiclass closed network is equiva-

lent to a closed network with a single class served at each station. In the

equivalent single-class network customers visit stations 1 and 2 alternately,

each service at station 1 is distributed as the sum of a class 4 and a class 1

service, and each service at station 2 is distributed as the sum of a class 2
Ž .and a class 3 service. According to 3.11 , the expected total service time at

each station is 1 and the total service time at each station obviously has finite
Žvariance recall that each class’s service time distribution was assumed to be

.exponential .

w xChen and Mandelbaum 4 proved a heavy traffic limit theorem for single-

class closed networks, which specializes to the case at hand as follows. First
˜nŽ .define a sequence of four-dimensional scaled queue-length processes Q t

via

1
n n 2˜4.2 Q t s Q n t , t G 0.Ž . Ž . Ž .

n

˜nŽ .The scaling of queue lengths by a factor of n is entirely natural, since Q ?k

expresses the class k queue length as a fraction of the total population, and

then CLT scaling requires a corresponding compression of the time scale by a
2 Ž .factor of n . By analogy with 4.2 we define a sequence of two-dimensional

scaled idleness processes

1
n n 2˜4.3 I t s I n t , t G 0,Ž . Ž . Ž .

n

nŽ . Ž nŽ . nŽ .. nŽ .where I t s I t , I t and I t is the cumulative idleness suffered by1 2 j

server j up to time t in the nth system. From the Chen]Mandelbaum limit

theorem one easily deduces that, as n ª `,

˜n ñ4.4 Q , I « Q*, I* in the J topology.Ž . Ž .Ž . 1

Ž .The six-dimensional limit process Q*, I* is given by

4.5 Q*, I* s 0, Z*, 0, 1 y Z*, Y U , Y U ,Ž . Ž . Ž .1 2
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where Z* is a one-dimensional reflected Brownian motion on the interval
w x 2 Ž0, 1 with zero drift and a certain variance parameter s ) 0 computable

. Ufrom the mean service times m , Y is a multiple of the local time processk 1

associated with the boundary Z* s 1 and Y U is a multiple of the local time2

process associated with the boundary Z* s 0. Given our assumed initial
Ž . Ž .condition 4.1 , the limit process Q*, I* has initial state

4.6 Q* 0 , I* 0 s 0, 0, 0, 1, 0, 0 .Ž . Ž . Ž . Ž .Ž .

In applications of closed network theory, greatest interest usually attaches

to questions of system throughput or, equivalently, to questions of server
Ž .idleness, and the heavy traffic limit theorem 4.4 has a great deal to say in

Ž .this regard. First, assuming the necessary uniform integrability, from 4.4 it

follows that

1
n n 2˜E I t ' E I n tŽ . Ž .1 1

n4.7Ž .
U

ª E I t as n ª ` for each fixed t ) 0.Ž .1

Now let us define

1 1
Un ng t s E I t and g* t s E I t ,Ž . Ž . Ž . Ž .1 1

t t
nŽ . w xso that g t is the average idleness rate over 0, t for server 1 in the nth

Ž .queueing network and g* t is an analogous quantity for the limiting Brown-
Ž .ian system model. Then 4.7 can be rewritten as

n 24.8 lim ng n t s g* t for fixed t ) 0.Ž . Ž . Ž .
nª`

nŽ . nŽ .A long-run average idleness rate g ` ' lim g t is known to exist fort ª`

Žeach system n in our sequence this limit is independent of the particular
. Ž . Žinitial conditions assumed here and the limit g* ` is also known to exist it

.too is independent of initial conditions . If an exchange of limits can be
Ž .justified, then 4.8 will give

1
n4.9 g ` ; g* ` as n ª `,Ž . Ž . Ž .

n

thus quantifying the rate at which long-run server idleness vanishes as the
Ž .system’s population size n grows large. Of course, 4.7 further suggests that

a time span which is large compared to n2 is necessary for the long-run
Ž .average to be approached, so one must be careful about facile use of 4.9 .

Again as a point of comparison for results developed later, let us define
n nscaled queue-length processes Q and scaled idleness processes I via

1
n n4.10 Q t s Q nt , t G 0,Ž . Ž . Ž .

n

and

1
n n4.11 I t s I nt , t G 0.Ž . Ž . Ž .

n
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Ž . Ž .The scaling embodied in 4.10 and 4.11 , wherein the space and time scales

are compressed by the same factor, is that associated with the law of large

numbers, and in queueing theory it is often called ‘‘fluid scaling.’’ Given our
Ž . Ž .balanced loading condition 3.11 and initial condition 4.1 , one has from the
w xChen]Mandelbaum theory 4 that

n n4.12 Q , I « 0, 0, 0, 1, 0, 0 in the J topology as n ª `,Ž . Ž .Ž . 1

Ž .where the right-hand side of 4.12 is understood to mean a constant process

whose fourth component has value 1 at all times t G 0 and so forth. Roughly
Ž .speaking, 4.12 says that if n is large and we begin with all customers in

class 4, then over a time span of order n, changes in the queue-length vector
Ž .and cumulative idleness will both be o n .

Ž . Ž .Comparing the CLT or Brownian scaling in 4.2 and 4.3 with the fluid
Ž . Ž .scaling in 4.10 and 4.11 , we see that they rescale space variables in the

same way, but Brownian scaling involves a more severe compression of the

time scale, leading us to observe queue-lengths and cumulative idleness over

time spans of order n2 rather than order n. Thus it is plausible that

processes which appear to be nearly constant for large n under fluid scaling

would have significant stochastic variability when observed on the Brownian

time scale.

To recapitulate, we have considered in this section the simple closed

network model that one obtains when the priority rankings originally speci-

fied in Figure 1 are reversed. We have described a ‘‘conventional’’ heavy

traffic limit theorem for that simple network, assuming that its mean service
Ž .times m satisfy the balanced loading condition 3.11 , but imposing nok

further restrictions on them. Consider now the original priority rankings
Žspecified in Figure 1, maintaining the balanced loading assumption m q m1 4

.s m q m s 1 . For the subcritical case identified at the end of Section 32 3

Ž .m ) m and m ) m we conjecture that the conventional limit theorem1 2 3 4

Ž . Ž4.4 holds after just trivial changes e.g., it is the high-priority scaled
.queue-length processes, now for classes 2 and 4, that vanish in the limit . For

Ž .the critical case m s m and m s m it will now be shown that a very1 2 3 4

different sort of system behavior emerges in the heavy traffic limit. In the
Ž .supercritical case m - m and m - m one presumably obtains yet an-1 2 3 4

other mode of system behavior as n ª `, but we shall not even venture a

guess at this time as to the form that branch of the heavy traffic theory will

take.

( )5. The heavy traffic limit theorem critical case . Let us return

now to the closed priority network pictured in Figure 1, analysis of which was

begun in Section 3. As explained there, the critical parameter combination is

that where m s m and m s m . For ease of exposition, we shall further1 2 3 4

specialize to the case where all mean service times are equal and then the

unit of time can be chosen so that

15.1 m s m s m s m s .Ž . 1 2 3 4 2
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Ž .With 5.1 assumed hereafter, we consider a sequence of networks with

n ª `, using a superscript n to denote a process associated with the nth

system. Maintaining the notation introduced in Sections 3 and 4, let us define
ˆnscaled queue-length processes Q and scaled cumulative idleness processes

n̂I as

1 1
n n n nˆ ˆ5.2 Q t s Q nt and Q t s Q nt ,Ž . Ž . Ž . Ž . Ž .1 1 3 3

n n

1 1
n n n nˆ ˆ5.3 Q t s Q nt and Q t s Q nt ,Ž . Ž . Ž . Ž . Ž .2 2 4 4' 'n n

1 1
n n n nˆ ˆ5.4 I t s I nt and I t s I nt .Ž . Ž . Ž . Ž . Ž .1 1 2 2' 'n n

In the current context it will be convenient to assume that all customers in

each system are initially waiting for class 1 service. Thus

ˆn n̂5.5 Q 0 , I 0 s 1, 0, 0, 0, 0, 0 for all n.Ž . Ž . Ž . Ž .Ž .

6 ˆn n̂Ž .THEOREM 5.1. Let the space D , where Q , I takes its values, be

endowed with the product topology for the product of six copies of D, where the

first and third copies of D are endowed with the J topology and the other1

copies are endowed with the M topology. That is, think of D6 with this1

topology as the product:

D , J = D , M = D , J = D , M = D , M = D , M .Ž . Ž . Ž . Ž . Ž . Ž .1 1 1 1 1 1

Then, as n ª `,

ˆn n̂ 6Q , I « Q*, I* with the product topology on D specified above,Ž .Ž .
Ž .where Q*, I* is the stochastic process defined immediately below.

REMARK. In fact, the convergence in the product topology can be refined

slightly. For this, see the comments in the second to the last paragraph of

Section 8.

Ž .Actually, the weak limit Q*, I* in Theorem 5.1 is defined in terms of a

Markov process U* whose precise mathematical construction will be delayed

until Section 7. Informally, however, it is quite easy to explain how U*

behaves. First, its state space is the infinite strip pictured in Figure 3.

Second, when 0 - UU
- 1, the horizontal component UU evolves as a Brown-2 1

ian motion with drift parameter equal to zero and variance parameter equal

to 4. Third, UU moves upward at the deterministic rate 2 on the left side of2

the strip and moves downward at rate 2 on the right side. Finally, when

either the upper left or lower right portion of the strip’s boundary is hit, there
U Ž . Uis an immediate jump to U s 0 see Figure 3 . Thus U can be decom-1 1

posed as

5.6 UU t s 2W * t y JU t q JU t , t G 0,Ž . Ž . Ž . Ž . Ž .1 1 2
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FIG. 3. The Markov process U*.

where W * is a standard Brownian motion, JU is a nondecreasing process1

associated with the lower right boundary segment and JU is a nondecreasing2

process associated with the upper left boundary segment. Furthermore, UU
2

Ž .has the decomposition see Section 7

t tU U U5.7 U t s 1 q 2 1 U s ds y 2 1 U s ds.Ž . Ž . Ž . Ž .Ž . Ž .H H2 Žy` , 0. 1 Ž0 , `. 1
0 0

Ž .The limit Q*, I* is defined in terms of U* as

5.8 QU t s UU t and QU t s 1 y UU t ,Ž . Ž . Ž . Ž . Ž .1 2 3 2

q yU U U U5.9 Q t s U t and Q t s U t ,Ž . Ž . Ž . Ž . Ž .2 1 4 1

U 1 U U 1 U5.10 I t s J t and I t s J t .Ž . Ž . Ž . Ž . Ž .1 1 2 22 2

After U* has been defined precisely in Section 7, Theorem 5.1 will be proved

in Section 8. The remainder of this section is devoted to a discussion of the

theorem’s intuitive content, particularly its differences from the conventional

heavy traffic limit theory sketched earlier in Section 4.

Ž . Ž .All six of the processes defined by 5.8 ] 5.10 are nondeterministic. If we
n ndefine fluid-scaled processes Q and I via

1 1
n n n n5.11 Q t s Q nt and I t s I nt , t G 0,Ž . Ž . Ž . Ž . Ž .

n n

as in Section 4, then the following corollary is immediate from Theorem 5.1.

COROLLARY 5.2. We have

U Un n5.12 Q , I « Q , 0, Q , 0, 0, 0 in the J topology as n ª `.Ž . Ž .Ž . 1 3 1

Thus, both priority queue-length processes and both cumulative idleness

processes are asymptotically null under fluid scaling, as in conventional

heavy traffic theory, but in the critical case fluid scaling gives a stochastic

limit for the nonpriority queue lengths. By adopting the more delicate scaling
Ž . Ž .5.3 and 5.4 for priority queue-lengths and cumulative idleness, respec-

Ž . U Utively, we have obtained a refinement of 5.12 . Moreover, the limits Q , Q2 4
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under the milder scaling are needed to describe the stochastic behavior of the

fluid limits QU, QU
.1 3

Given our emphasis on the unconventional heavy traffic scaling in Theo-

rem 5.1, the following question is natural: for any one of the queue-length

processes or cumulative idleness processes, is there another scaling of time
Ž . Ž .and state space, different from that used in 5.2 ] 5.4 , that also gives weak

convergence to a nondeterministic limit? A preliminary investigation has

shown this question to be surprisingly subtle, and having identified it as an

attractive topic for future research, we shall make no further comment on the

matter in this paper.

An appealing feature of heavy traffic theory for closed queueing networks

is that the large parameter n used for purposes of scaling is the total
Žpopulation size, a quantity with intrinsic significance. In contrast, heavy

traffic theorems for open networks are customarily stated in terms of a large

parameter n that quantifies the rate of convergence in a sequence of system

parameters hypothesized by the mathematical analyst, which makes physical
.interpretation of the limit theory difficult. In the current context we have

found that for a large population size n, stochastic variability in queue-

lengths and cumulative idleness processes can be observed over time spans of

order n, and over such time spans the variability in some processes is of
'order n, while for others it is of order n . The conventional Brownian limit

Ž .theorem 4.4 described earlier says that for large n one must observe the

network for longer time spans of order n2 to see significant stochastic

variability, and that over such time spans the variability in both queue-length

and cumulative idleness processes is of order n.

As stated earlier in Section 4, questions involving system throughput are

usually of greatest interest in applications of closed queueing network mod-

els, and these can be equivalently recast as questions about cumulative

server idleness. Again, assuming the necessary uniform integrability, as an
Ž .analog of the conventional heavy traffic result 4.7 for expected cumulative

idleness, we obtain from Theorem 5.1 that for all but countably many t ) 0,

1
Un nˆ5.13 E I t ' E I nt ª E I t as n ª `.Ž . Ž . Ž . Ž .1 1 1'n

w Ž .The exceptional set of t ’s where 5.13 may fail to hold consists of those at
U Žmost countably many t at which I has a jump with positive probability cf.1

w x . x nŽ . Ž .1 , page 124 . Now let the average idleness rates g t and g* t be defined

as in Section 4, meaning that

1 1
Un ng t s E I t and g* t s E I t .Ž . Ž . Ž . Ž .1 1

t t

Ž .Then 5.13 can be rewritten as

n'5.14 lim n g nt s g* t .Ž . Ž . Ž .
nª`
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nŽ . Ž .Assuming that the limits g ` and g* ` exist and that an exchange of
Ž .limits can be justified, we arrive at the following analog of 4.9 :

1
n5.15 g ` ; g* ` as n ª `.Ž . Ž . Ž .'n

For large values of n, of course, a long-run idleness rate of order ny1r2 is
y1 Ž .much less favorable than the idleness rate of order n predicted by 4.9 as a

part of conventional heavy traffic theory. If, for example, we simply set
Ž . Ž . Ž .g* ` s 1 in both 4.9 and 5.15 , the former estimates long-run server

utilization at 99% with a population of size n s 100, while the latter esti-

mates utilization of 90% for the same case.

6. A convenient representation of the queueing process. Consider

a single closed queueing network of the type described in Section 3, with the

population size n fixed throughout this section. Restricting attention to the
1critical case with m s for all four customer classes k, we can construct allk 2

stochastic processes of interest from two independent Poisson processes as

follows.

� Ž . 4 � Ž . 4Let A s A t , t G 0 and A s A t , t G 0 be independent, right1 1 2 2

Ž .continuous Poisson processes, each with arrival rate or intensity parameter
Ž . Ž . Ž .2 and with A 0 s A 0 s 0, defined on some probability space V, FF, P .1 2

One may interpret A and A as the cumulative potential service processes1 2

at stations 1 and 2, respectively. Defining the two-dimensional process A s
Ž . � 4A , A , let FF , t G 0 be the filtration generated by A, satisfying the usual1 2 t

Ž .conditions. Defining the two-dimensional vector e s 1, 1 , it will be useful to
Ž w x .recall the martingale characterization of A cf. 2 , Theorem T6, page 26 : the

� Ž . 4 Ž .process A t y 2 et, t G 0 is a right continuous martingale with respect to
� 4FF , A is a pure jump process and at each of its jump points one componentt

increases by 1 while the other stays constant.

The first step in our construction is to define a two-dimensional process
Ž . wX s X , X on the integer lattice as follows. Here and later, identities1 2

Ž . tinvolving t are understood to hold almost surely a.s. for all t G 0 and H will0

xmean H . Letw0, t x

6.1 X t s A t y A t ,Ž . Ž . Ž . Ž .1 1 2

t
X t s n q 1 X s y dA sŽ . Ž . Ž .Ž .H2 Žy` , 0. 1 1

0
6.2Ž .

t
y 1 X s y dA s .Ž . Ž .Ž .H Ž0, `. 1 2

0

Ž .The integrands in 6.2 are predictable since 1 and 1 can be writtenŽy`, 0. Ž0, `.

Ž .as limits of sequences of continuous functions and X ?y is left continuous1

� 4 Ž .and adapted to FF . Thus, the integrals in 6.2 are well defined as stochastict

wintegrals and define semimartingales with paths in D a.s. A similar justifi-
Ž . Ž . Ž . Ž . Ž .cation shows that the integrals in 6.13 , 6.20 ] 6.22 , 6.33 and 6.34 below

Ž � 4 � 4are well defined via stochastic calculus and yield adapted to FF or GG ast t

. xappropriate processes with paths in D a.s.
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FIG. 4. Transition structure of the Markov chain X.

Ž . Ž . Ž . Ž .Equations 6.1 and 6.2 define a Markov chain X with X 0 s 0, n and
Ž .the transition structure pictured in Figure 4. From each state i, j there are

two possible transitions, and the possible directions differ depending on

whether i - 0, i s 0 or i ) 0.

The second step in our construction is to define another Markov chain Z
Ž . Ž . Žthat has Z 0 s X 0 and the transition structure pictured in Figure 5 again

.all transitions occur at rate 2 . This will be accomplished by setting

6.3 Z s XŽ . 1 1

and defining Z in terms of X by a minor modification of the two-sided2 2

reflection mapping described in Section 2. To be specific, let

6.4 Z s X q Y y Y ,Ž . 2 2 1 2

Ž .where Y , Y is the least pair of nondecreasing, right continuous processes1 2

Ž . Ž . Ž .such that Y 0 s Y 0 s 0 and the process Z defined by 6.4 satisfies1 2 2

6.5 0 F Z t F n for all t G 0.Ž . Ž .2

Ž .FIG. 5. Transition structure of the reflected Markov chain Z for n s 3 .
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In words, Z is obtained from X by means of a reflection mapping that2 2

w x Ž .confines Z to the interval 0, n . The reflection mapping h , h , r described2 1 2

w xin Section 2 confines its image process to 0, 1 and by rescaling by n we see

that

Y s nh ny1 X , Y s nh ny1 X , Z s nr ny1 X .Ž . Ž . Ž .1 1 2 2 2 2 2 2

The state space of Z is the strip S of integer lattice points pictured in Figure

5. In symbols,

6.6 S s i , j : 0 F j F n .� 4Ž . Ž .
w Ž . xIt is implicit here and hereafter that i and j are integers. The transition

structure of Z is the same as that for X except that the vertical component of

any transition which would have carried Z above the upper boundary of S is
Ž .‘‘given back’’ the horizontal component of the transition is still recorded , and

similarly for transitions that would have carried Z below the lower boundary

of S.

The third step in our construction is to modify Z by means of a time scale

transformation, thus creating a new Markov chain U which is identical to Z

except that time spent by Z in certain ‘‘forbidden’’ boundary states of S is

eliminated. The forbidden states are those covered by the dark arrows in
Ž . Ž .Figure 6, excluding the endpoints 0, 0 and 0, n . In symbols, the set of

forbidden boundary states is

6.7 D s i , j : i ) 0 and j s 0, or i - 0 and j s n� 4Ž . Ž .

and it will be convenient to define the complement

6.8 L s S y D .Ž .
For reasons that will become apparent, the letters D and L may be consid-

ered mnemonic for ‘‘dead’’ and ‘‘live,’’ respectively. We define continuous,

nondecreasing processes d and l via

t
6.9 d t s 1 Z s dsŽ . Ž . Ž .Ž .H D

0

Ž .FIG. 6. Transition structure of the Markov chain U for n s 3 .
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and

t
6.10 l t s 1 Z s ds.Ž . Ž . Ž .Ž .H L

0

Ž . Ž .so that d t q l t s t. Now let t be the right continuous inverse of l,

meaning that

6.11 t t s inf s G 0: l s ) t , t G 0.� 4Ž . Ž . Ž .

To animate this definition, one may imagine a clock whose hands stop moving
Ž . Žin this sense they are dead when Z is in D, but move at the normal rate in

. Ž .this sense they are live when Z is in L. Then t t represents the amount of

time required for the hands of this clock to advance by t time units. It follows
Ž .from the nature of Z in particular, Z is a symmetric random walk that a.s.1

Ž . Ž . Ž .t t - ` for each t G 0 and since l t F t, we have that t t ª ` as t ª `.

We now define

6.12 U t s Z t t .Ž . Ž . Ž .Ž .
Ž w x .Because Z is Markov, a standard result cf. 19 , Section 65 on time change

implies that U is Markov as well, and its transition structure is that pictured

in Figure 6. That is, transitions of U are like those of Z except that, at the

instant of a transition which would have caused entry into a forbidden state,
Ž . Ž .there is immediate displacement to either 0, 0 or 0, n , as shown by the

dark arrows in Figure 6.

Lemma 6.2 below gives a decomposition of U that will prove useful later.1

Ž .In preparation we define two-dimensional processes b s b , b and B s1 2

Ž .B , B via1 2

t
6.13 b t s 1 Z s y dA s , j s 1, 2Ž . Ž . Ž . Ž .Ž .Hj L j

0

and
6.14 B t s b t t .Ž . Ž . Ž .Ž .

� Ž . 4LEMMA 6.1. Let GG s FF for t G 0. Then B t y 2 et, GG , t G 0 is at t Ž t . t

martingale. Furthermore, B has the same distribution as A. That is, its

components are independent Poisson processes starting from zero, each with

arrival rate 2.

Ž . Ž .PROOF. Combining the definition 6.10 of l with the definition 6.13 of

b, we have that

t
6.15 b t y 2l t s 1 Z s y d A s y 2 s .Ž . Ž . Ž . Ž . Ž .Ž . Ž .Hj L j

0

� 4 � Ž . 4Since Z is adapted to FF and A t y 2 et, FF , t G 0 is a martingale,t t

� Ž . Ž . 4it follows from stochastic calculus that b t y 2 el t , FF , t G 0 is at

martingale. Then by the optional stopping theorem, for each integer k G 0,
� Ž Ž . . Ž Ž . . 4 Ž w x .b t t n k y 2 el t t n k , GG , t G 0 is a martingale cf. 5 , Theorem 1.6 .t

� Ž Ž . . Ž Ž . . 4Now, for each fixed t, b t t n k y 2 el t t n k , k G 0 is uniformly

integrable, since by quadratic variation estimates,
2

E b t t n k y 2 el t t n k F 4E l t t n k F 4t .Ž . Ž . Ž .Ž . Ž . Ž .
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� Ž Ž .. Ž Ž .. 4 Ž w xIt follows that b t t y 2 el t t , GG , t G 0 is a martingale cf. 5 , Proposi-t

. Ž Ž .. Ž Ž .. Ž .tion 1.8 , but b t t y 2 el t t s B t y 2 et by definition, and so the first

statement in Lemma 6.1 is proved.

Obviously B is a pure jump process by construction and at each jump a

single component increases by 1, which together with the aforementioned
Ž . Žmartingale property of B t y 2 et establishes the second statement in

Ž w x .Lemma 6.1 cf. 2 , page 25 . I

Ž .LEMMA 6.2. The Markov chain U s U , U satisfies1 2

6.16 U t s B t y B t y J t q J t ,Ž . Ž . Ž . Ž . Ž . Ž .Ž .1 1 2 1 2

where

J and J are right continuous, nondecreasing pure jump1 2

processes, with only finitely many jumps in each compact6.17Ž .
time interval,

6.18 U t s 0, 0 for every t that is a jump time of JŽ . Ž . Ž . 1

and

6.19 U t s 0, n for every t that is a jump time of J .Ž . Ž . Ž . 2

Ž .REMARK. Because all processes here are right continuous, 6.18 says that
Ž . Ž .all jumps of J carry U into 0, 0 and similarly for 6.19 . Combining this1

with our constructive definition of B, it is easy to show the following: at every
Ž .time t ) 0 when U enters state 0, 0 there is a unit increase in B plus a2

Ž .possible jump of J ; similarly, at every time t ) 0 when U enters state 0, n1

there is unit increase in B plus a possible jump in J .1 2

PROOF OF LEMMA 6.2. At this point we need to distinguish notationally
Ž .between the upper and lower sets of forbidden boundary states see Figure 6 .

Let

F s i , j : i ) 0 and j s 0 and C s i , j : i - 0 and j s n .� 4 � 4Ž . Ž .

ŽThen D s F j C, and F and C are obviously disjoint. Unfortunately, there
.is no mnemonic motivation for this choice of notation. Now define

t16.20 M t s 1 Z s y dX s ,Ž . Ž . Ž . Ž .Ž .H L 12
0

t
6.21 N t s y 1 Z s y dX s ,Ž . Ž . Ž . Ž .Ž .H1 F 1

0

t
6.22 N t s 1 Z s y dX s ,Ž . Ž . Ž . Ž .Ž .H2 C 1

0

6.23 J t s N t t and J t s N t t .Ž . Ž . Ž . Ž . Ž .Ž . Ž .1 1 2 2

Ž . Ž . Ž . Ž . Ž . Ž .Because X t s A t y A t , it is immediate from 6.20 , 6.13 and 6.141 1 2

that

6.24 2 M t t s B t y B t .Ž . Ž . Ž . Ž .Ž . 1 2
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Also, because L, F and C are disjoint and their union is the entire state
Ž . Ž .space S of Z, we have from 6.20 ] 6.22 that

X t s 2 M t y N t q N t .Ž . Ž . Ž . Ž .1 1 2

Ž . Ž . Ž . Ž . Ž .Replacing t by t t in the above and using 6.3 , 6.12 , 6.23 and 6.24 , we
Ž .arrive at 6.16 .

Ž .It remains to show that the processes J and J defined by 6.23 satisfy1 2

Ž . Ž .6.17 ] 6.19 . The proof is simplified by the fact that there are only finitely

many jumps of X in any finite time interval. We shall prove only the1

statements involving J since those involving J follow from symmetric1 2

arguments.

Ž .For 6.17 , the right continuity of J follows from that of N and t . For the1 1

proof of the jump property, let T , T , . . . denote the jump times of X ,1 2 1

arranged in increasing order and let T s 0. Then,0

N t t s y X T y X T 1 Z T ,Ž . Ž . Ž . Ž .Ž . Ž . Ž .Ž .Ý1 1 n 1 ny1 F ny1

Ž .T Ft tn

Ž . w Ž . Ž ..where Z T g F implies n ) 1 and T g t s y , t s / B for someny1 ny1

Ž . Ž .time s. Let t , t , . . . denote the random jump times of t ? , arranged in1 2

increasing order. Because of the nature of the Markov chain Z, almost surely

there are only finitely many of these times in any compact time interval and
Ž . Ž . Ž .t t - ` for each m. Note that t t y and t t must be jump times of X .m m m 1

Ž Ž ..Now the above expression for N t t may be rewritten as1

N t t s y X T y X T 1 Z TŽ . Ž . Ž . Ž .Ž . Ž . Ž .Ý Ý1 1 n 1 ny1 F ny1

t Ft w Ž . Ž ..T g t t y , t tm ny1 m m

s y X t t y X t t y 1 Z t t y ,Ž . Ž . Ž .Ž . Ž . Ž .Ž . Ž .Ý 1 m 1 m F m

t Ftm

6.25Ž .

Ž Ž .. Ž Ž .. Ž Ž ..where for Z t t y g F, X t t s 0 and X t t y ) 0. It followsm 1 m 1 m

from this that J is a nondecreasing pure jump process with only finitely1

Ž .many jumps in any compact time interval. Finally, to establish 6.18 , let t be
Ž . Ž Ž ..any jump time of J . Then by 6.25 , t s t for some m and Z t t y g F.1 m m

Ž . Ž Ž .. Ž .Since U t s Z t t g L it follows that t t is a time at which Z jumps from
Ž . Ž Ž .. Ž . Ž .F to L, but this can only be true if U t s Z t t s 0, 0 see Figure 5 . I

ŽLet us denote by S the state space of V pictured in Figure 2 it consists of
.integer lattice points lying within a parallelogram . Comparing Figures 2 and

5, we see that U has the same transition structure as the desired process V

except that in constructing U we have allowed horizontal transitions that

carry U outside the right and left boundaries of S. However, the cumulative
Ž .effects of those transitions are corrected each time U reenters state 0, 0 or

Ž .0, n . Thus V can be constructed from U by simply collapsing the state1 1

space of the latter, as follows. Letting

6.26 L s i , j : 0 F j F n and i F j y n� 4Ž . Ž .

and

6.27 R s i , j : 0 F j F n and i G j� 4Ž . Ž .
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Ž .the letters L and R are mnemonic for ‘‘left’’ and ‘‘right,’’ respectively , we set

¡U t y n , if U t g L,Ž . Ž .2

~U t , if U t g R ,Ž . Ž .6.28 V t sŽ . Ž . 21 ¢U t , otherwise,Ž .1

6.29 V t s U t .Ž . Ž . Ž .2 2

Ž . Ž .To repeat, the process V defined by 6.28 and 6.29 has the desired transi-

tion structure pictured in Figure 2 and thus it provides a Markovian repre-

sentation of the closed queueing network under consideration. Server 1 is idle

if and only if V is on the right boundary of its state space S and, in like

fashion, cumulative idleness of server 2 is equivalent to cumulative occupa-
Ž .tion time of the left boundary. From 6.28 we see that V g R if and only if

U g R and, similarly, V g L if and only if U g L, so the cumulative idleness
Ž .processes see Section 2 can be written as

t t
6.30 I t s 1 V s ds s 1 U s ds,Ž . Ž . Ž . Ž .Ž . Ž .H H1 R R

0 0

t t
6.31 I t s 1 V s ds s 1 U s ds.Ž . Ž . Ž . Ž .Ž . Ž .H H2 L L

0 0

Ž .As an alternative to 6.28 , one can describe the construction of V from U1

as follows: each time there occurs a horizontal transition of U that begins
�Ž .4 �Ž .4 Žfrom a state in L _ 0, n or R _ 0, 0 such transitions always have the

.effect of carrying U farther from the desired state space S , the transition is
Ž .simply ‘‘given back.’’ That is, one can reexpress 6.28 in terms of the

Ž .processes B that occur in 6.16 by writingj

6.32 V t s B t y B t y K t q K t ,Ž . Ž . Ž . Ž . Ž . Ž .Ž .1 1 2 1 2

where

t
6.33 K t s 1 U s y dB sŽ . Ž . Ž . Ž .Ž .H1 R 1

0

and

t
6.34 K t s 1 U s y dB s .Ž . Ž . Ž . Ž .Ž .H2 L 2

0

Ž . Ž .The processes K y J and K y J are both nonnegative and they cannot1 1 2 2

Ž . Ž .both be strictly positive at the same time, and when U is at 0, 0 or 0, n ,
Ž . Ž .K y J and K y J are both zero. Thus, from 6.16 and 6.32 it follows1 1 2 2

that

6.35 U t y V t s K t y J t q K t y J t .Ž . Ž . Ž . Ž . Ž . Ž . Ž .1 1 1 1 2 2

Ž .A key step in the proof of Theorem 5.1 is to show that K y J vanishes

under our heavy traffic scaling and hence V is indistinguishable from U in
Ž . Ž .the heavy traffic limit. Moreover, the parallel structure of 6.30 , 6.31 and

Ž . Ž .6.33 , 6.34 will allow us to show that the processes K and 2 I are asymptoti-

cally indistinguishable under heavy traffic scaling, implying asymptotic

equivalence of J and 2 I under that scaling.
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7. Construction of the limit process. In this section we rigorously

construct the limit process that was described heuristically in Section 5 and

we prove a semimartingale decomposition for this process. Here the term

diffusion will mean a continuous strong Markov process.

Let XU be a one-dimensional Brownian motion with drift parameter equal1
U Ž .to zero, variance parameter equal to 4 and such that X 0 s 0. Define1

t tU U U7.1 X t s 1 q 2 1 X s ds y 2 1 X s ds.Ž . Ž . Ž . Ž .Ž . Ž .H H2 Žy` , 0. 1 Ž0 , `. 1
0 0

Ž .Then for any possibly random time T G 0,

tU U UX t q T s X T q 2 1 X s q T dsŽ . Ž . Ž .Ž .H2 2 Žy` , 0. 1
0

7.2Ž .
t Uy 2 1 X s q T ds.Ž .Ž .H Ž0, `. 1

0

It follows from this and the strong Markov property of XU that the two-1

Ž U U .dimensional process X* s X , X is a diffusion process.1 2

We now construct a reflected diffusion process Z* that lives in the strip
w xS* ' R = 0, 1 and that has normal reflection at the boundary of S*. This is

Ž .achieved by applying the two-sided reflection mapping h , h , r described in1 2
U Ž U U .Section 2 to X . We define Z* s Z , Z :2 1 2

7.3 ZU s XU ,Ž . 1 1

7.4 ZU s r XU s XU q Y U y Y U ,Ž . Ž .2 2 2 1 2

U Ž U . U Ž U .where Y s h X and Y s h X . It follows from the uniqueness cited in1 1 2 2 2 2

Ž .Proposition 2.2 that for any possibly random time T G 0 and for all t G 0,

ZU t q T s r ZU T q XU t q T y XU T ,Ž . Ž . Ž . Ž .Ž .2 2 2 2

Y U t q T y Y U T s h ZU T q XU t q T y XU T ,Ž . Ž . Ž . Ž . Ž .Ž .1 1 1 2 2 27.5Ž .

Y U t q T y Y U T s h ZU T q XU t q T y XU T .Ž . Ž . Ž . Ž . Ž .Ž .2 2 2 2 2 2

Ž .This, together with 7.2 and the stationarity and independence of the incre-
U U Ž U U .ments of X s Z , implies that Z* s Z , Z is a diffusion process.1 1 1 2

Ž .One can heuristically describe the behavior of Z* as follows see Figure 7 .

Of course, ZU is a one-dimensional Brownian motion with zero drift and1

variance parameter 4. When Z* is in the interior of S*, ZU is a drift process2
U U Žwhere its state dependent drift is q2 if Z - 0 and y2 if Z ) 0. The drift1 1

of ZU when ZU s 0 does not have to be carefully specified because the2 1
U .amount of time that Z is zero has zero Lebesgue measure almost surely. At1

the boundaries of the strip, Z* is confined to S* by instantaneous reflection
Ž .or pushing where the directions of reflection are vertical and up or down as

ZU s 0 or ZU s 1, respectively.2 2
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FIG. 7. Drifts and directions of reflection for the diffusion Z*.

Now define

� U U U U 47.6 D* s z* g S*: z ) 0 and z s 0, or z - 0 and z s 1 ,Ž . 1 2 1 2

7.7 L* s S* _ D*,Ž .

t
7.8 l* t s 1 Z* s dsŽ . Ž . Ž .Ž .H L*

0

and let t * be the right continuous inverse of l* defined by

7.9 t * t s inf s G 0: l* s ) t .� 4Ž . Ž . Ž .

By analogy with the notation in Section 6, we decompose D* into lower and

upper boundary parts:

� U U 4F* s z* g S*: z ) 0 and z s 0 and1 2

� U U 4C* s z* g S*: z - 0 and z s 1 ,1 2

so that D* s F* j C*.

The following lemma is proved in Appendix A.

LEMMA 7.1. Almost surely:

Ž . Ž . Ž . Ž .i l* ` ' lim l* t s ` and hence t * t - ` for all t G 0;t ª`

Ž . Ž . Ž .ii l* t ) 0 for all t ) 0 and hence t * 0 s 0.

Define

7.10 U* t s Z* t * t .Ž . Ž . Ž .Ž .

Now once Z* hits D*, it remains in that set until it reaches one of the
Ž . Ž .endpoints 0, 0 or 0, 1 . Moreover, the time change t * deletes the time that

Z* is in D*. It then follows from an easy argument by contradiction that U*

lives in L*. We now obtain a semimartingale decomposition of U*, which in
Ž .particular yields 5.6 . The process

t U1M* t s 1 Z* s dX sŽ . Ž . Ž .Ž .H L* 12
0
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is a continuous local martingale with respect to the filtration generated by Z*

and its quadratic variation pocess is given by

t
w xM* t s 1 Z* s ds s l* t .Ž . Ž . Ž .Ž .H A*

0

w xŽ .It is well known that any continuous local martingale M* with M* ` s `
Ž w x.a.s. can be time changed to a Brownian motion cf. Theorem 9.3 of 5 . Thus,

Ž .t * t U17.11 W * t ' M* t * t s 1 Z* s dX sŽ . Ž . Ž . Ž . Ž .Ž . Ž .H L* 12
0

is a driftless Brownian motion with variance parameter equal to 1.

Combining the above relations we have a.s. for all t G 0,

Ž .t * tU UU t s 2W * t q 1 Z* s dX sŽ . Ž . Ž . Ž .Ž .H1 D* 1
7.12 0Ž .

s 2W * t y JU t q JU t ,Ž . Ž . Ž .1 2

where

Ž .t * tU U UJ t ' N t * t s y 1 Z* s dX s ,Ž . Ž . Ž . Ž .Ž . Ž .H1 1 F* 1
0

Ž .t * tU U UJ t ' N t * t s 1 Z* s dX s ,Ž . Ž . Ž . Ž .Ž . Ž .H2 2 C* 1
0

7.13Ž .
tU UN t s y 1 Z* s dX s ,Ž . Ž . Ž .Ž .H1 F* 1

0

tU UN t s 1 Z* s dX s .Ž . Ž . Ž .Ž .H2 C* 1
0

The following lemma is proved in Appendix A using an approximate decompo-
U Ž . Ž .sition of the J according to excursions of Z* from 0, 0 and 0, 1 . With this,j

Ž .the justification of the decomposition 5.6 is complete.

LEMMA 7.2. Almost surely:

Ž . U Ui J and J are nondecreasing;1 2

Ž . U Ž . U Ž .ii J 0 s J 0 s 0;1 2

Ž . U Ž . Ž . Uiii J can have a point of increase at time t only if U* t s 0, 0 and J1 2

Ž . Ž .can have a point of increase at time t only if U* t s 0, 1 .

Ž . UTo obtain the decomposition 5.7 of U , we first need to establish that the2
U U � Ž . 4supports of Y and Y as integrators are contained in t G 0: Z* t g D* .1 2

For this, let
U � U U 4L s z* g S*: z F 0 and z s 0 ,1 1 2

U � U U 4L s z* g S*: z G 0 and z s 1 .2 1 2

The following lemma is proved in Appendix A using estimates obtained by

applying Ito’s formula to suitable test functions.ˆ
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LEMMA 7.3. We have

`
U U7.14 1 Z* s ds s 0 a.s.,Ž . Ž .Ž .H L j L1 2

0

`
U

U7.15 1 Z* s dY s s 0 a.s.,Ž . Ž . Ž .Ž .H L 11
0

`
U

U7.16 1 Z* s dY s s 0 a.s.Ž . Ž . Ž .Ž .H L 22
0

REMARK. Now, by definition, Y U can increase only when ZU s 0. Combin-1 2

Ž . Uing this with 7.15 , we see that as an integrator Y only charges the set of1

times for which Z* is in F* ; D*. Similarly, Y U only charges the set of times2

Ž . Ufor which Z* is in C*. Furthermore, it follows from 7.14 that since X is a2

w Ž .x Udrift process cf. 7.1 , X as an integrator can only charge the set of times2
U Ž .for which Z is in 0, 1 or Z* is in D*.2

Ž .Combining the above results with 7.4 , we have

t tU U U U7.17 Z t s 1 q 1 Z s dX s q 1 Z* s dZ s .Ž . Ž . Ž . Ž . Ž . Ž .Ž .Ž .H H2 Ž0 , 1. 2 2 D* 2
0 0

The following lemma is shown in Appendix A.

LEMMA 7.4. Almost surely, for all t G 0,

t U7.18 1 Z* s dZ s s 0Ž . Ž . Ž .Ž .H D* 2
0

and

tUZ t s 1 q 2 1 Z* s dsŽ . Ž .Ž .H2 Žy` , 0.=Ž0 , 1.
0

7.19Ž .
t

y 2 1 Z* s ds.Ž .Ž .H Ž0, `.=Ž0 , 1.
0

REMARK. Lemma 7.4 corresponds to the intuitive fact that when Z* is in

D*, it does not move vertically.

Ž . � U Ž . Ž .4Since dl* s s ds on s G 0: Z s g 0, 1 , we can change variables2

w Ž .x Ž . Ž .s s t * u in the integrations in 7.19 and use 7.10 to obtain

tUU t s 1 q 2 1 U* u duŽ . Ž .Ž .H2 Žy` , 0.=Ž0 , 1.
0

7.20Ž .
t

y 2 1 U* u du.Ž .Ž .H Ž0, `.=Ž0 , 1.
0
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Finally, note that by the reverse change of variables and Lemma 7.3,

t U1 U u duŽ .Ž .H Ž0, 1. 2
0

Ž .t * t Us 1 Z s dsŽ .Ž .H Ž0, 1. 2
0

7.21Ž .
Ž .t * t Us t * t y 1 Z s dsŽ . Ž .Ž .H �0, 14 2

0

Ž .t * t
s t * t y 1 Z* s ds s l* t * t s t .Ž . Ž . Ž .Ž . Ž .H D*

0

Ž .Hence 5.7 holds.

8. Proof of the heavy traffic limit theorem. In this section we prove

Theorem 5.1. To elucidate the skeleton of this argument, we defer intricate

proofs to Appendix B. In the statements of convergence in this section and

Appendix B, we shall frequently suppress the qualifier ‘‘n ª `’’ when its

implicit presence is clear from the context.

Ž . Ž . Ž . Ž .From 3.3 ] 3.6 and 6.30 , 6.31 , we see that the queue-length and

idleness processes for the nth system can be represented in terms of the

Markov chain V, which in turn can be constructed from the process X defined

in Section 6. As in Section 5, we shall use a superscript n to indicate the

dependence on n of the processes defined in Section 6. Thus, X will be

written as X n, but the process A will not have a superscript n because it

does not vary with n. We begin by rescaling X n so that its first component

ˆn ˆnhas a CLT type of rescaling like that for Q , Q and its second component2 4

ˆn ˆn w Ž .has a law of large numbers type of rescaling like that for Q , Q cf. 5.2 and1 3

Ž .x5.3 :

1
nˆ8.1 A t ' A nt y 2nt , j s 1, 2,Ž . Ž . Ž .Ž .j j'n

1
n n n nˆ ˆ ˆ8.2 X t ' X nt s A t y A t ,Ž . Ž . Ž . Ž . Ž .1 1 1 2'n

1
n8.3 A t ' A nt , j s 1, 2,Ž . Ž . Ž .j j

n

1
n nX̂ t ' X ntŽ . Ž .2 2

n

t
n nˆs 1 q 1 X s y dA sŽ . Ž .Ž .H Žy` , 0. 1 1

0

8.4Ž .

t
n nˆy 1 X s y dA s .Ž . Ž .Ž .H Ž0, `. 1 2

0
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Similarly,

1
n n nˆ ˆ8.5 Z t ' Z nt s X t ,Ž . Ž . Ž . Ž .1 1 1'n

1
n n n n nˆ ˆ ˆ ˆ8.6 Z t ' Z nt s X t q Y t y Y t ,Ž . Ž . Ž . Ž . Ž . Ž .2 2 2 1 2

n

where

1
n n nˆ ˆ8.7 Y t ' Y nt s h X t , j s 1, 2.Ž . Ž . Ž . Ž .Ž .j j j 2

n

Let

8.8 A* t s 2 tŽ . Ž .

and let BU, j s 1, 2, be two independent driftless one-dimensional Brownianj

motions such that each starts from the origin and has variance parameter

equal to 2. Without loss of generality, we suppose that XU s BU y BU
. Now,1 1 2

by the functional law of large numbers and central limit theorems for the
Ž w x .independent Poisson processes A , j s 1, 2 cf. 1 , Theorem 17.3 ,j

Un nˆA « A* and A « B in the J topology, for j s 1, 2.j j j 1

Ž U .Indeed, since A* is deterministic and A respectively, B is independent of1 1

Ž U . Ž w x .A respectively, B , we have cf. 1 , page 272 2

U Un n n nˆ ˆA , A , A , A « A*, B , A*, BŽ .ž /1 1 2 2 1 2

with the product topology on D4 s D = D = D = D, where each copy of D is
ˆn ˆnendowed with the J topology. Finally, since X is the difference of A and1 1 1

ˆn U U wA , and the limit processes B , B are continuous, it follows cf. Proposition2 1 2

Ž .x2.1 ii that

U U Un n n n nˆ ˆ ˆ8.9 X , A , A , A , A « X , A*, B , A*, B ,Ž . Ž .1 1 1 2 2 1 1 2ž /
with the product topology on D5, where each copy of D has the J topology.1

In fact, this weak convergence holds with the J topology on D5 since the1

limit processes are all continuous. To see this, note that by the Skorokhod
Žw x .representation theorem 8 , Theorem 3.1.8 , we could suppose that the

Ž .convergence in 8.9 is a.s. in the product topology and since the limit

processes are continuous, this convergence is almost surely u.o.c. for each
w Ž .xcomponent cf. Proposition 2.1 i and hence u.o.c. for the vector of compo-

nents, which implies convergence in the J topology on D5.1
n n nˆ ˆŽ .Observe that by 8.4 , X is defined from X and the A , j s 1, 2, and by2 1 j

Ž . U U7.1 , X is defined from X . Using these representations and the weak2 1

Ž . Ž .convergence in 8.9 , together with B.4 to take care of the discontinuity of
Ž .the integrands in 7.1 , the following lemma is proved in Appendix B.
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LEMMA 8.1. We have

n n n n n nˆ ˆ ˆ ˆX , X , A , A , A , A1 2 1 1 2 2ž /8.10Ž .
« XU , XU , A*, BU , A*, BU in the J topology.Ž .1 2 1 2 1

Now by Proposition 2.3 and the continuous mapping theorem, we can add

ˆn ˆn U UŽ . Ž .Z s r X « r X s Z as an additional component in the conver-2 2 2 2

ˆn ˆn U UŽ .gence in 8.10 . Also, Z s X and Z s X . Hence we have1 1 1 1

n n n n n n n nˆ ˆ ˆ ˆ ˆ ˆZ , Z , X , X , A , A , A , A1 2 1 2 1 1 2 2ž /8.11Ž .

« ZU , ZU , XU , XU , A*, BU , A*, BUŽ .1 2 1 2 1 2

in the J topology.1

We now continue with the normalization of quantities introduced in Sec-
ˆn ˆn n ˆntion 6 to define L , l , t and U . Letˆ

i j
nL̂ ' , : 0 - j - n , or i F 0 and j s 0,½ ž /' nn

or i G 0 and j s n ,5
8.12Ž .

1 t t
n n n nˆ ˆ ˆn8.13 l t ' l nt s 1 Z s ds s 1 Z s ds,Ž . Ž . Ž . Ž . Ž .Ž . Ž .ˆH HL L*

n 0 0

t t
n n n nˆ ˆ ˆ ˆ8.14 f t ' 1 Z s ds, c t ' 1 Z s ds,Ž . Ž . Ž . Ž . Ž .Ž . Ž .H HF* C*

0 0

1
n n nˆ8.15 t t ' t nt s inf s G 0: l s ) t ,Ž . Ž . Ž . Ž .� 4ˆ

n

1
n nˆ8.16 U t ' U nt ,Ž . Ž . Ž .1 1'n

1
n nˆ8.17 U t ' U nt ,Ž . Ž . Ž .2 2

n

so that

ˆn ˆn n8.18 U t s Z t t .Ž . Ž . Ž .Ž .ˆ

Ž . Ž . Ž . Ž .Now, by 8.16 , 6.16 and 6.20 ] 6.24 ,

ˆn ˆ n ˆn ˆn8.19 U t s 2W t y J t q J t ,Ž . Ž . Ž . Ž . Ž .1 1 2

where

ˆ n ˆ n nW t s M t t ,Ž . Ž .Ž .ˆ
1

n n n nˆ ˆJ t ' J nt s N t t , j s 1, 2,Ž . Ž . Ž .Ž .ˆj j j'n

8.20Ž .

1 1 t
n n n nˆ ˆ ˆ8.21 M t ' M nt s 1 Z s y dZ s ,Ž . Ž . Ž . Ž . Ž .Ž .H L* 1' 2n 0
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1 t
n n n nˆ ˆ ˆ8.22 N t ' N nt s y 1 Z s y dZ s ,Ž . Ž . Ž . Ž . Ž .Ž .H1 1 F* 1'n 0

1 t
n n n nˆ ˆ ˆ8.23 N t ' N nt s 1 Z s y dZ s .Ž . Ž . Ž . Ž . Ž .Ž .H2 2 C* 1'n 0

In addition to the definitions of starred processes made in Section 7, we

define

t t
8.24 f* t s 1 Z* s ds, c * t s 1 Z* s ds.Ž . Ž . Ž . Ž . Ž .Ž . Ž .H HF* C*

0 0

The following lemma is proved in Appendix B.

LEMMA 8.2. We have

n n n n n n n n n n n n n nˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆZ , Z , X , X , A , A , A , A , l , f , c , M , N , N1 2 1 2 1 1 2 2 1 2ž /8.25Ž .
U U U U U U U U

« Z , Z , X , X , A*, B , A*, B , l*, f*, c *, M*, N , NŽ .1 2 1 2 1 2 1 2

in the J topology.1

Having established the above preliminaries, we now turn to the main part

of the proof of Theorem 5.1. By Skorokhod’s representation theorem we may
Ž .assume that the convergence in 8.25 is almost surely u.o.c. as n ª `. Now,

ˆn nŽ w x . Ž . Ž .l ª l* u.o.c. almost surely implies cf. 13 , page 1018 that a.s. t t ª t * tˆ
ˆ nas n ª ` at each continuity point t of t *. Then, since a.s. M ª M* u.o.c. as

n ª ` and M* is constant on any interval where its quadratic variation
Ž w x .process l* is constant cf. 5 , page 189 , it follows from Lemma 2.3 of Kurtz

w x13 that a.s. as n ª `,

ˆ n ˆ n n8.26 W ' M t ª M* t * ' W * u.o.c.Ž . Ž . Ž .ˆ

Furthermore, for j s 1, 2, since NU is continuous, by the proof of Lemmaj

Ž . w x2.3 a of Kurtz 13 , a.s. as n ª `,

ˆn ˆn n U U8.27 J t ' N t t ª N t * t ' J tŽ . Ž . Ž . Ž . Ž .Ž . Ž .ˆj j j j

at all continuity points t of t *. By the right continuity of t *, t s 0 is a
ˆn Ucontinuity point of t *. Then, since J and J are a.s. nonnegative andj j

Ž . Ž .nondecreasing cf. Lemmas 6.2 and 7.2 , it follows from Proposition 2.1 iii

that a.s. as n ª `,

ˆn U8.28 J ª J in the M topology as n ª ` for j s 1, 2.Ž . j j 1

Ž . U UBy Lemma 7.2, a.s. the sets of times of discontinuity jumps of J and J1 2

are disjoint. Then since J convergence implies M convergence, it follows1 1

Ž . Ž . Ž . Ž . Ž .from 8.26 , 8.28 , 8.19 , 7.12 and Proposition 2.1 ii that a.s. as n ª `,

ˆn U8.29 U ª U in the M topology.Ž . 1 1 1
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w xAnother application of Lemma 2.3 of Kurtz 13 , together with the a.s.
ˆn ˆn ` U U�Ž .4 Ž . Ž .convergence of Z , l to Z , l* u.o.c. and the fact 7.18 that a.s. Z2 ns1 2 2

remains constant on any interval where l* is constant, yields a.s. as n ª `,

ˆn ˆn n U U8.30 U s Z t ª Z t * s U u.o.c.Ž . Ž . Ž .ˆ2 2 2 2

Rescaling V n in the same way as U n, we define

1 1
n n n nˆ ˆ8.31 V t s V nt , V t s V nt ,Ž . Ž . Ž . Ž . Ž .1 1 2 2' nn

Ž . Ž . Ž . Ž .so that by 6.28 , 6.29 , 8.16 and 8.17 , we have

n n n¡ ˆ ˆ ˆ' 'n U t y n , if U t g L ,Ž . Ž .2

n n n n~ˆ ˆ ˆ ˆ'8.32 V t s n U t , if U t g R ,Ž . Ž . Ž . Ž .1 2

n¢Û t , otherwise,Ž .1

ˆn ˆn8.33 V t s U t ,Ž . Ž . Ž .2 2

where

i j j i j
nˆ ' '8.34 L s , : 0 F F 1 and F n y n ,Ž . ½ 5ž /ž /' 'n n nn n

i j j i j
nˆ '8.35 R s , : 0 F F 1 and G n .Ž . ½ 5ž /ž /' 'n n nn n

ˆnThen the state space of V is

i j j
nŜ ' , : 0 F F 1 and½ ž /' n nn

j i j
' ' 'n y n F F n .5ž / ž /'n nn

8.36Ž .

Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .Using 6.24 , 6.20 , 6.3 , 8.5 , 8.15 ] 8.17 , 8.20 , 8.21 , 6.26 , 6.27 , 8.34
Ž . Ž . Ž . Ž .and 8.35 to follow the rescaling 8.31 of the representation 6.32 ] 6.34 for

V n, we obtain1

ˆn ˆ n ˆn ˆn8.37 V t s 2W t y K t q K t ,Ž . Ž . Ž . Ž . Ž .1 1 2

where

1 t
n n n nˆ ˆ ˆn8.38 K t ' K nt s 1 U s y dB s ,Ž . Ž . Ž . Ž . Ž .Ž .ˆH1 1 R 1'n 0

1 t
n n n nˆ ˆ ˆn8.39 K t ' K nt s 1 U s y dB s ,Ž . Ž . Ž . Ž . Ž .Ž .ˆH2 2 L 2'n 0

1
n nˆ8.40 B t s B nt , j s 1, 2.Ž . Ž . Ž .j j'n
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ˆnNote that K is the magnitude of the cumulative excess movement to the1

ˆn ˆn ˆnŽ .right in R associated with the movement of U outside of S . Similarly,
ˆn ˆn ˆnŽ .K is the magnitude of the excess movement of U to the left in L outside2

ˆn ˆnof S . These movements need to be ‘‘given back’’ in order to recover V from
ˆn Ž .U . From 6.35 we have

n n n n n nˆ ˆ ˆ ˆ ˆ ˆ8.41 U t y V t s K t y J t q K t y J t .Ž . Ž . Ž . Ž . Ž . Ž . Ž .1 1 1 1 2 2

By Lemma 7.3 and the construction of U* from Z* by deletion of time, almost

surely U* spends zero Lebesgue time in LU j LU and hence is in the interior1 2

Ž U U .S8 s L* _ L j L of the strip S* for all but a set of times of Lebesgue1 2

measure zero.

Let V denote the sample space on which all of our processes are defined.

When we wish to indicate the dependence of a given process A on v g V, we
Ž .shall use A ?, v to denote the sample path of the process associated with v.

Ž .In particular, A t, v will denote the position of that path at time t. When

there is no need to indicate the dependence of the process on v, we shall
Ž . Ž .simply write A t for the random value of the process A at time t. Let

v g V be such that the following hold:

Ž .1. U* ?, v is in S8 for all but a set of times of Lebesgue measure zero.
ˆn ˆnŽ . Ž .2. K ?, v is nondecreasing and K 0, v s 0 for all n and j s 1, 2.j j

3. The properties of JU, j s 1, 2, listed in Lemma 7.2 hold at v.j

Ž .4. Z* ?, v is continuous.

5. As n ª `,

ˆ n ˆn ˆn ˆn U U8.42 W , U , J , J ?, v ª W *, U*, J , J ?, vŽ . Ž . Ž . Ž .ž /1 2 1 2

with the product topology on D5, where each copy of D has the M1

topology.

w Ž . Ž . Ž . Ž .The set of such v has probability 1 cf. 6.33 , 6.34 , Lemma 7.2, 8.26 , 8.28
Ž .x Ž . Ž .and 8.29 . Now, if U* t, v g S8, then t is a continuity point of t * v and

Ž .hence of U* ?, v , and so by the M convergence,1

ˆn8.43 U t , v ª U* t , v as n ª `.Ž . Ž . Ž .
Let

n ' ' '8.44 S s x , y : 0 F y F 1 and n y y n F x F n y .Ž . Ž .� 4
n n n nˆ Ž .Note that S ; S for all n, and the interior S 8 of S is increasing with n

and the union over n of these interiors equals S8. It follows that there is
nŽ . Ž . Ž . Ž .n s n t, v such that U* t, v g S 8 for all n G n , and then by 8.431 1 1

n n n2ˆŽ . Ž . Ž . Ž . Ž .there is n s n t, v G n t, v such that U t, v g S 8 ; S 8 for all2 2 1

ˆn ˆnw Ž .x Ž . Ž .n G n . It follows cf. 8.32 that V t, v s U t, v for all n G n . Then by2 1 1 2

Ž .8.41 ,

ˆn ˆn8.45 J t , v s K t , v for all n G n , j s 1, 2.Ž . Ž . Ž .j j 2

U Ž . Ž .Since t will also be a continuity point of J ?, v for j s 1, 2, then by 8.42 ,j

ˆn UŽ . Ž . Ž .J t, v ª J t, v as n ª ` for j s 1, 2 and, hence, by 8.45 ,j j

ˆn U8.46 K t , v ª J t , v as n ª ` for j s 1, 2.Ž . Ž . Ž .j j
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ˆn UŽ . Ž .Since K ?, v and J ?, v are nonnegative and nondecreasing functions,j j

Ž .and the set of t ’s for which 8.46 holds is dense and includes t s 0, it follows
ˆn ˆUŽ . Ž . Ž .from Proposition 2.1 iii that K ?, v ª J ?, v in the M topology asj j 1

n ª `, for j s 1, 2. Thus, as n ª `,

ˆ n ˆn ˆn U U8.47 W , K , K ?, v ª W *, J , J ?, v ,Ž . Ž . Ž . Ž .ž /1 2 1 2

with the product topology on D3 s D = D = D, where the first copy of D has

the J topology and the other two copies each have the M topology. Now by1 1

Ž . U Ž . U Ž .Lemma 7.2 iii , the sets of times of discontinuity of J ?, v and J ?, v are1 2

Ž .disjoint and W * ?, v is continuous. Thus, it follows from the continuity of
w Ž .xaddition under these conditions see Proposition 2.1 ii that as n ª `,

ˆn ˆ n ˆn ˆnV ?, v ' 2W y K q K ?, vŽ . Ž .ž /1 1 2
8.48Ž .

ª 2W * y JU q JU ?, v ' UU ?, vŽ . Ž . Ž .1 2 1

in the M topology. Hence, a.s. as n ª `,1

ˆn U8.49 V ª U in the M topology.Ž . 1 1 1

Ž . Ž .Combining this with 8.30 and 8.33 , we have that a.s. as n ª `,

ˆn ˆn U U8.50 V , V ª U , UŽ . Ž .ž /1 2 1 2

with the product topology on D2 s D = D, where the first copy of D has the

M topology and the second copy of D has the J topology.1 1

Ž . Ž . Ž . Ž .Turning to the idleness processes, we have by 5.4 , 6.30 , 8.16 , 8.17 ,
Ž . Ž . Ž .8.35 , 8.38 and 8.40 ,

1 t
n n nˆ ˆ' nI t s I nt s n 1 U s dsŽ . Ž . Ž .Ž .ˆH1 1 R'n 0

8.51Ž .
1

n nˆ ˆs P t q K t ,Ž . Ž .1 1
2

where

t 1n n nˆ ˆ ˆ'n8.52 P t s 1 U s y d n s y B s .Ž . Ž . Ž . Ž .Ž . Ž .ˆH1 R 12
0

ˆnBy Lemma 6.1 and stochastic integration, P is a martingale relative to the1

� 4 2 2filtration GG , t G 0 . Then by Doob’s L maximal inequality, the L isometrynt

Žw x .for stochastic integrals 17 , pages 66]68 and the martingale property of
1 n y1 nˆ ˆ' 'Ž . Ž . Ž .B t y n t, which has quadratic variation 4 n B t , we have1 12

2 2
n nˆ ˆE sup P s F 4E P tŽ . Ž .1 1

0FsFt

1 t
n nˆ ˆns E 1 U s y dB sŽ . Ž .Ž .ˆH R 1'n 0

8.53Ž .

1
nˆs E K t .Ž .1'n
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ˆn U UŽ . Ž . Ž . Ž w xBy 8.47 , a.s. K t ª J t at all continuity points t of J . It follows cf. 1 ,1 1 1

ˆn. Ž . Ž .page 124 that for all but countably many t not depending on v , K t ª1
U nˆ'Ž . Ž . Ž .J t a.s. and hence 1r n K t ª 0 a.s. Furthermore, for each t,1 1

n `ˆ'�Ž . Ž .41r n K t is uniformly integrable since for all n,1 ns1

2 2
1 1t

n n nˆ ˆ ˆnE K t s 4E 1 U s ds y P tŽ . Ž . Ž .Ž .ˆH1 R 1ž / ž /' 'n n0

2 8 2t
n nˆ ˆnF 8 E 1 U s ds q E P tŽ . Ž .Ž . Ž .ˆH R 1ž / n0

2 t
2 n nˆ ˆnF 8t q E 1 U s y dB sŽ . Ž .Ž .ˆH R 13r2n 0

8.54Ž .

4 t
2 nˆnF 8t q E 1 U s dsŽ .Ž .ˆH R

n 0

F 8 t 2 q t ,Ž .

ˆnŽ . Ž . Ž .where we have used 8.51 to rewrite K t , used part of 8.53 to rewrite the1
n 2 nˆ ˆ 'Ž Ž .. Ž .mean of P t and used the fact that B t y 2 n t defines a martingale to1 1

evaluate it. It follows that for all but countably many t,

1
nˆ8.55 E K t ª 0 as n ª `.Ž . Ž .1'n

1n n `ˆ ˆŽ . Ž . � < Ž . Ž . <4Combining 8.51 ] 8.55 yields that sup I s y K s converges0 F sF t 1 1 ns12

to zero in L2 for each t G 0. The same result holds with the subscript 2 in
Ž .place of 1. It follows from this and the a.s. convergence expressed in 8.47

that

1 U Un nˆ ˆ8.56 I , I ª J , J in probabiity as n ª `,Ž . Ž .ž /1 2 1 22

where D2 s D = D has the product topology in which each copy of D has the

M topology.1

Ž . Ž . Ž . Ž . Ž . Ž . Ž .Combining 5.2 ] 5.4 , 3.3 ] 3.6 , 8.31 , 8.50 and 8.56 , we have, as

n ª `,

1 q qUn n nˆ ˆQ ? s Q n ? s V ? ª U ? a.s. in the M topology,Ž . Ž . Ž . Ž .2 2 1 1 1'n

1 y yUn n nˆ ˆQ ? s Q n ? s V ? ª U ? a.s. in the M topology,Ž . Ž . Ž . Ž .4 4 1 1 1'n

1 1
Un n n nˆ ˆ ˆQ ? s Q n ? s V ? y Q ? ª U ? a.s. in the J topology,Ž . Ž . Ž . Ž . Ž .1 1 2 2 2 1'n n
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1 1 1
n n n n nˆ ˆ ˆ ˆQ ? s Q n ? s 1 y Q ? q Q ? q Q ?Ž . Ž . Ž . Ž . Ž .3 3 1 2 4ž /' 'n n n

ª 1 y UU ? a.s. in the J topology,Ž .2 1

1 1
Un nÎ ? s I n ? ª J in probability for the M topology, j s 1, 2.Ž . Ž .j j j 1' 2n

ˆn n̂Ž . Ž . Ž . Ž .It follows that for Q* and I* defined by 5.8 ] 5.10 , Q , I ª Q*, I* in

probability as n ª `, where D6 has the product topology described in

Theorem 5.1. Thus Theorem 5.1 follows.

In fact, the limit processes QU and QU are continuous and so the weak1 3

ˆn ˆn U U 2Ž . Ž . w Ž .xconvergence Q , Q « Q , Q is in the J topology on D cf. 8.9 .1 3 1 3 1

Ž q y.Furthermore, the mapping x ª x , x from D with the M topology into1
2 ˆn ˆn U UŽ . Ž .D with the M topology is continuous, and Q , Q , Q , Q are defined by1 2 4 2 4

ˆn U Ž .applying this mapping to V , U , respectively. Thus, it follows from 8.491 1

ˆn ˆn U UŽ . Ž .and the continuous mapping theorem that Q , Q « Q , Q in the M2 4 2 4 1

topology on D2.

Corollary 5.2 follows from Theorem 5.1 plus the realization that the

convergence in the product topology there can be replaced by that in the J1

topology on D6 because all of the limit processes are continuous.

APPENDIX A

Proofs for decomposition of the limit process.

Ž . � Ž . 4PROOF OF LEMMA 7.1. For part i , let T s inf t G 0: Z* t g D* . If1

T s `, then the desired result is clearly true. So we assume T - ` and by1 1

Ž . � Ž .symmetry we may suppose that Z* T g F*. Let S s inf t G T : Z* t s1 1 1

Ž .4 � U Ž . 40, 0 . Fix d ) 0. Let a s inf t G T : Z t - yd . Since Z* sticks to F*1 1 1

Ž . Uuntil it reaches 0, 0 and Z is a one-dimensional Brownian motion, we have1

� Ž . U Ž . 4a.s. S F a - `. Let g s inf t G a : Z* t g C* or Z t s 0 . Then for1 1 1 1 1
U Ž . U Ž .a F t - g , dZ t s 2 dt and Z t behaves like a one-dimensional Brown-1 1 2 1

ian motion. It follows that g - ` a.s. and there is « ) 0 such that1

inf P Z* g g C* Z* a s xŽ . Ž .Ž .1 1
x : x Fyd1

U U1G P Z a q y Z a - d s « ) 0.Ž .Ž .Ž .1 1 1 12

� U Ž . 4 � Ž .Similarly, if a s inf t G g : Z t G d and g s inf t G a : Z* t g F* or2 1 1 2 2
U Ž . 4Z t s 0 , then a F g - ` a.s. and1 2 2

inf P Z* g g F* Z* a s x G « ) 0.Ž . Ž .Ž .2 2
x : x Gd1

�One can now use a regeneration argument to show that T ' inf t G S :2 1

Ž . 4 Ž .Z* t g C* - ` a.s. Since the quickest way for Z* to go from 0, 0 to C* is to

drift upward at rate 2, it follows that

T2 11 Z* s ds G .Ž .Ž .H L* 2
S1
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� Ž . Ž .4Let S s inf t G T : Z* t s 0, 1 . Continuing in this manner, defining2 2

T , S for n G 2, associated in the obvious way with alternating visits tonq1 nq1

the boundary segments F*, C*, we obtain a.s.
` `

Tnq1 1l* ` G 1 Z* s ds G s `.Ž . Ž .Ž .Ý ÝH L* 2
Snns1 ns1

Ž .For part ii , observe that

tng Ul* t G 1 Z s ds,Ž . Ž .Ž .H Ž0, `. 1
0

� Ž . 4 Ž . Ž .where g s inf s G 0: Z* s g F* . Since Z* 0 s 0, 1 and Z* has continuous

paths, the stopping time g ) 0. Now ZU is a one-dimensional Brownian1
t Ž U Ž ..motion and so H 1 Z s ds ) 0 for all t ) 0 a.s. The desired result then0 Ž0, `. 1

follows.

We note that the statements about t * in Lemma 7.1 follow immediately

from the properties of l* and the definition of t * as the right continuous

inverse of l*. I

PROOF OF LEMMA 7.2. We shall prove the properties of JU ; the proof is2
U Ž .analogous for J . We first prove i . For each m G 1, let1

1
U U UC s z* g S*: z F y , z s 1m 1 2½ 5m

�Ž n n.4̀and define a sequence of pairs of stopping times g , d such thatm m ns0

g 0 s inf t G 0: Z* t g CU ,� 4Ž .m m

d 0 s inf t G g 0 : ZU t s 0 ,Ž .� 4m m 1

g n s inf t G d ny1 : Z* t g CU , n G 1,Ž .� 4m m m

d n s inf t G g n : ZU t s 0 , n G 1.� 4Ž .m m 1

` w n n.Let G s D g , d andm ns0 m m

tU UN t s 1 s dX s .Ž . Ž . Ž .H2, m G 1m
0

Ž . t Ž . t Ž Ž ..For s g G , Z* s g C* and for each t G 0, H 1 s ds ª H 1 Z* s ds a.s.m 0 G 0 C*m
2 Žw xas m ª `. It then follows from the L -isometry of stochastic calculus 17 ,

. U Ž . U Ž . 2pages 66]68 that for each t G 0, N t ª N t in L as m ª `, and2, m 2

Ž w x. � U 4̀hence cf. Theorem 2.6 of 5 there is a subsequence N that a.s.2, m ks1k
U Ž . � U Ž Ž ..4̀converges u.o.c. to N . Hence, since t * t - ` a.s., N t * t converges2 2, m ks1k

U Ž .in probability to J t for each t G 0. Thus, if we show that for each m,2
U Ž Ž ..N t * ? is nondecreasing a.s., it will follow that this property is inherited2, m

by JU
.2

w n n. Ž . Ž . Ž n. Ž .For s g g , d , Z* s g C* and l* s s l* g . It follows that t * t f Gm m m m

for all t G 0. Hence, a.s. for all t G 0,
`

U U Un n
nN t * t s X d y X g 1Ž .Ž . Ž . Ž .Ž .Ý2, m 1 m 1 m �d Ft *Ž t .4m

ns0
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Ž .which is clearly an a.s. nondecreasing process, since t * ? is nondecreasing,
U Ž n. U Ž n. U Ž n. � n Ž .4 � n 4X d s Z d s 0 and X g - 0 on d F t * t ; d - ` a.s. This1 m 1 m 1 m m m

completes the proof that JU is a.s. nondecreasing.2

Ž . Ž . wProperty ii follows immediately from the facts that t * 0 s 0 a.s. see
Ž .x U Ž .Lemma 7.1 ii and N 0 s 0.2

Ž .For property iii , we argue sample path by sample path. For this, consider
U Ž .a realization of J and corresponding realizations of U*, Z* and t * .2

Suppose that t is a point of increase of JU and for a contradiction, suppose2

Ž . Ž . Ž . Ž Ž .. �Ž .4that U* t / 0, 1 . Then U* t ' Z* t * t g L* _ 0, 1 . It follows from the

continuity of the paths of Z*, the fact that t * only deletes the time that Z* is
Ž . Ž .in F* j C* and Lemma 7.1 i that there is an « ) 0 such that Z* s f C* for

w Ž . Ž .xall s g t * t y « , t * t q « . Now

JU t q « y JU t y « s NU t * t q « y NU t * t y « .Ž . Ž . Ž . Ž .Ž . Ž .2 2 2 2

Ž .The latter is zero for all except a null set not depending on t of realizations

because a.s. NU does not change while Z* is in S* _ C*. This yields the2

desired contradiction. I

n kŽ .PROOF OF LEMMA 7.3. For G ; R and any integer k G 1, let C Gb

denote the space of real-valued functions that have derivatives up to and

including order k on some domain containing G and which together with

these derivatives are continuous and bounded on G.

We shall first prove that for each t G 0,

t U
UA.1 E 1 Z* s d s q Y s s 0.Ž . Ž . Ž .Ž . Ž .H L _�Ž0 , 0.4 11

0

Ž . U �Ž .4 UA similar argument can be used to prove that A.1 holds with L _ 0, 1 , Y2 2
U �Ž .4 Uin place of L _ 0, 0 , Y , respectively.1 1

2Ž . 2Žw x.Fix d ) 0 and « ) 0. Let g g C R and h g C 0, 1 such that g isb b

Ž x w .nonincreasing, g ' 1 on y`, y2d , g ' 0 on yd , ` , h9 is nonincreasing,
w x w x Ž . x Ž .h9 ' 1 on 0, « , h9 ' 0 on 2« , 1 and h x ' H h9 u du. In particular,0

< Ž . < Ž . Ž . Ž . Ž .h x F 2« . Define f z s g z h z for all z s z , z g S*. Then by Ito’sˆ1 2 1 2

formula we have a.s. for each t G 0,

f Z* t y f Z* 0Ž . Ž .Ž . Ž .

t U U Us g 9 Z s h Z s dZ sŽ . Ž . Ž .Ž . Ž .H 1 2 1
0

t U Uq 2 g Z s h9 Z s dsŽ . Ž .Ž . Ž .H 1 2
0A.2Ž .

t U Uq g Z s h9 0 dY sŽ . Ž . Ž .Ž .H 1 1
0

t U Uq 2 g 0 Z s h Z s ds.Ž . Ž .Ž . Ž .H 1 2
0



J. M. HARRISON AND R. J. WILLIAMS38

w . Ž .Here we have used the fact that g ' 0 on yd , ` and h9 1 s 0 to simplify
U Ž .the integrals involving the drift and the boundary controls for Z . In A.2 ,2

the stochastic integral with respect to the Brownian motion ZU is a martin-1

gale relative to the filtration generated by Z* and so taking expectations in
Ž .A.2 yields

t U UE f Z* t y f Z* 0 y 2 E g 0 Z s h Z s dsŽ . Ž . Ž . Ž .Ž . Ž . Ž . Ž .H 1 2
0

t tU U U Us 2 E g Z s h9 Z s ds q E g Z s dY sŽ . Ž . Ž . Ž .Ž . Ž . Ž .H H1 2 1 1
0 0

t U UG 2 E 1 Z s 1 Z s dsŽ . Ž .Ž . Ž .H Žy` , y2 d x 1 w0, « x 2
0

t U Uq E 1 Z s dY s .Ž . Ž .Ž .H Žy` , y2 d x 1 1
0

� < Ž . <Now the left-hand member above is dominated by 4« q 4« t max g 0 x :
w x4 Ž .x g y2d , yd and so letting « x0 and then d x0 we obtain A.1 by Fatou’s

Ž U U .lemma recall that Y can only increase when Z is zero .1 2

Note that since ZU is a one-dimensional Brownian motion, the following is1

immediate:

`
UA.3 1 Z s ds s 0 a.s.Ž . Ž .Ž .H �04 1

0

Furthermore, XU is a pure drift process. For such a continuous process, the2

two-sided reflection mapping can be obtained by piecing together one-sided

reflection mappings using a sequence of stopping times. From this and the
Ž w x .explicit nature of the one-sided reflection mapping cf. 5 , Lemma 8.1 , it

U Ž . U Ž .follows that dY s and dY s are absolutely continuous with respect to ds.1 2

Combining the above statements yields

`
U U UA.4 1 Z s d Y q Y s s 0 a.s.Ž . Ž . Ž . Ž .Ž .H �04 1 1 2

0

Ž . Ž .Putting all of the above results together yields 7.14 ] 7.16 . I

PROOF OF LEMMA 7.4. For each m G 1, let

1 1
U U U U UD s z* g S*: z G and z s 0, or z F y and z s 1m 1 2 1 2½ 5m m

�Ž n n.4̀and define a sequence of pairs of stopping times g , d as in the proofm m ns0

of Lemma 7.2 but with DU in place of CU there. Then in a similar manner tom m

that in Lemma 7.2, except that we have pathwise integrals here rather than

stochastic integrals, we have a.s. for all t G 0,

`
t U U Un nA.5 1 Z* s dZ s s lim Z d n t y Z g n t .Ž . Ž . Ž .Ž . Ž . Ž .Ž .ÝH D* 2 2 m 2 m

m0 ns0
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U Ž U U . w n n.Now Z sticks to the boundary either Z s 0 or Z s 1 on g , d and so2 2 2 m m

Ž .the summands in the right-hand member above are all zero a.s. Hence 7.18
Ž . Ž . Ž .holds. Combining this with 7.17 and 7.1 , we obtain 7.19 . I

APPENDIX B

Key results for the heavy traffic limit theorem. In this section, the
Ž . w . ncentered dot ? will denote a generic time t in 0, ` . In particular, if x ,

m nŽ . Ž . nx g D , then x ? ª x ? u.o.c. will mean that x converges uniformly on

compact time intervals to x as n ª `.

Ž w xPROOF OF LEMMA 8.1. By the Skorokhod representation theorem cf. 8 ,
. Ž .Theorem 3.1.8 and since all of the limit processes in 8.9 are continuous, we

may assume that the convergence there is almost surely u.o.c. Given this, we

shall prove that a.s.,

? ?
Un nˆB.1 1 X s y dA s ª 2 1 X s ds u.o.c.Ž . Ž . Ž . Ž .Ž .Ž .H HŽy` , 0. 1 1 Žy` , 0. 1

0 0

nŽ .One can similarly show that the same result holds with 0, ` , A , in place of2
nŽ .y`, 0 , A , respectively. Then we can subtract these limit results and com-1

ˆn UŽ . Ž .bine the result with 8.4 and 7.1 to obtain a.s. X ª X u.o.c. Lemma 8.12 2

follows from this and the almost sure convergence assumed at the beginning

of this proof.
Ž .Proposition B.1 below is used for the proof of B.1 . This proposition follows

w xby essentially the same proof as that for Lemma 2.4 in Dai and Williams 7 .

Ž n w xThe fact that our a are in D, rather than in C as they would be in 7 , does

not affect the validity of the proof, provided one replaces s by s y in the
n .integrands and observes that a converges to a u.o.c. since a is continuous.

The proposition is stated in slightly greater generality than is needed here
w xand the reader is referred to 7 for details of the proof.

PROPOSITION B.1. Let m G 1 and consider Dm and D to be endowed with

their J topologies. Suppose that j n ª j in Dm and a n ª a in D. Assume1

a n is nondecreasing for each n and that a is continuous. Then, for any
Ž m.f g C R ,b

B.2 f j n s y da n s ª f j s da s u.o.c.Ž . Ž . Ž . Ž . Ž .Ž . Ž .H H
w x w x0, ? 0, ?

Ž .Continuing now with the proof of B.1 , we have from Proposition B.1 and

the a.s. convergence assumed at the beginning of the proof of Lemma 8.1, it
Ž .follows that for any fixed f g C R , a.s.,b

? ?
Un nˆB.3 f X s y dA s ª 2 f X s ds u.o.c.Ž . Ž . Ž . Ž .Ž .Ž .H H1 1 1

0 0
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It remains to show that we can replace f by 1 in the above. This followsŽy`, 0.

from the property of the one-dimensional Brownian motion XU that1

`
UB.4 1 X s ds s 0 a.s.Ž . Ž .Ž .H �04 1

0

Indeed, if for each « ) 0, f is a continuous nonincreasing function on R such«

Ž x w .that f s 1 on y`, y« and f s 0 on 0, ` , and if g is a continuous« « «

Ž xfunction on R such that 0 F g F 1, g s 1 on y« , 0 and g s 0 on« « «

Ž . Ž .y`, y2« j « , ` , then

? ?
Un nˆ1 X s y dA s y 2 1 X s dsŽ . Ž . Ž .Ž .Ž .H HŽy` , 0. 1 1 Žy` , 0. 1

0 0

? ?
Un nˆF f X s y dA s y 2 f X s dsŽ . Ž . Ž .Ž .Ž .H H« 1 1 « 1

0 0
B.5Ž .

? ?
Un nˆq g X s y dA s y 2 g X s dsŽ . Ž . Ž .Ž .Ž .H H« 1 1 « 1

0 0

?
Uq 4 g X s ds .Ž .Ž .H « 1

0

Ž .Since g ª 1 as « ª 0, it follows from dominated convergence and B.4« �04

Ž .that a.s. the last term in B.5 tends to zero u.o.c. as « ª 0. Furthermore, for
Ž .each fixed « ) 0, by B.3 , almost surely the remaining terms in the

Ž . Ž .last member of B.5 tend to zero u.o.c. as n ª `. The desired result B.1

follows. I

PROOF OF LEMMA 8.2. We first prove that

n n n n n n n n n n nˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆZ , Z , X , X , A , A , A , A , l , f , c1 2 1 2 1 1 2 2ž /B.6Ž .

« ZU , ZU , XU , XU , A*, BU , A*, BU , l*, f*, c *Ž .1 2 1 2 1 2

in the J topology.1

ˆn ˆn ˆnŽ .Since we have 8.11 and l , f , c are all Lipschitz continuous with

Lipschitz constant bounded by 1, we immediately have tightness of the
Ž .sequence in the left-hand member of B.6 . Thus, it suffices to show that any

Ž .weak limit point along a subsequence of the left member has the same
Ž .distribution as the right member of B.6 .

Ž .For this, suppose a subsequence of the left member of B.6 converges

weakly to a limit process. To minimize notation, we use the same notation for

this subsequence as for the original sequence and by the Skorokhod represen-
Ž .tation theorem we may assume the convergence is a.s. In view of 8.11 , the

first eight components of the limit have the same joint distribution as the
Ž .right member of 8.11 . Thus, if we take the limit process to have its first

Ž .eight components given by the right member of 8.11 , it suffices to show that

given

ˆn ˆn ˆn ˜ ˜ ˜l , f , c ª l, f , c u.o.c. almost surely,ž / ž /
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˜ ˜ ˜Ž . Ž .we have l, f, c s l*, f*, c * a.s., where l*, f*, c * are determined from
ˆn ˆn ˆnŽ . Ž . Ž .Ž . Ž .Ž .Z* by 7.8 and 8.24 . Indeed, since l q f q c t s l* q f* q c * t

s t, it suffices to prove the identity of any two of the components. We give the
˜detailed proof that l s l* a.s. and sketch the similar idea for the proof that

f̃ s f* a.s.

By the a.s. convergence assumed above and since Z* has continuous paths,
ˆn Ž .we have that a.s. Z ª Z* u.o.c. and hence for any f g C S* , a.s.,b

ˆnB.7 f Z ª f Z* u.o.c.Ž . Ž .Ž .

Ž . w xFor « ) 0, let f g C R such that 0 F f F 1, f s 1 on « , 1 y « and f s 0« b « « «

Ž .on R _ 0, 1 . Then,

?
n nˆ ˆl ? y l* ? F 1 Z s y 1 Z* s dsŽ . Ž . Ž . Ž .Ž .Ž .H L* L*

0

?
UnˆF f Z s y f Z s dsŽ . Ž .Ž .Ž .H « 2 « 2

0
B.8Ž .

?
n nˆ ˆq 1 Z s y f Z s dsŽ . Ž .Ž . Ž .H L* « 2

0

?
Uq f Z s y 1 Z* s ds.Ž . Ž .Ž .Ž .H « 2 L*

0

Ž . Ž .Note that for fixed « ) 0, by B.7 , a.s. the second integral in B.8 tends to

zero u.o.c. as n ª `. For the last integral, note that f ­1 as « x0 and by« Ž0, 1.

Ž . Ž U Ž .. Ž Ž ..7.14 , a.s. 1 Z s s 1 Z* s for m-a.e. s, where m denotes LebesgueŽ0, 1. 2 L*

w .measure on 0, ` . It follows by dominated convergence that a.s.

?
UB.9 f Z s y 1 Z* s ds ª 0 u.o.c. as « ª 0.Ž . Ž . Ž .Ž .Ž .H « 2 L*

0

Ž .It remains to analyze the behavior of the third integral in B.8 . Now for
10 - « - d - ,4

? ?
n n nˆ ˆ ˆB.10 1 Z s y f Z s ds F 1 Z s ds,Ž . Ž . Ž . Ž .Ž . Ž .Ž .H HL* « 2 L j Dd d , «

0 0

where

x w x w w xL s y`, d = 0, d j yd, ` = 1 y d , 1 ,Ž .Ž . Ž .d

D s F j C ,d , « d , « d , «

w x wF s d, ` = 0, « , C s y`, yd = 1 y « , 1 .. Ž Ž . .d , « d , «

Ž .Let g g C S* such that 0 F g F 1, g s 1 on L and g s 0 ond b d d d d

w w x x w x2d, ` = 0, 1 y 2d j y`, y2d = 2d , 1. ŽŽ . Ž .

w xj y`, ` = 2d , 1 y 2d .Ž .Ž .

Now, for d fixed,

? ?
n nˆ ˆB.11 1 Z s ds F g Z s ds,Ž . Ž . Ž .Ž . Ž .H HL dd

0 0
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Ž .where by B.7 , we have a.s.

? ?
nˆB.12 g Z s ds ª g Z* s ds u.o.c.Ž . Ž . Ž .Ž .Ž .H Hd d

0 0

Furthermore, by dominated convergence, a.s.

? ?
U UB.13 g Z* s ds ª 1 Z* s ds u.o.c. as d x0,Ž . Ž . Ž .Ž . Ž .H Hd L j L1 2

0 0

Ž .where the right member above is a.s. identically zero by 7.14 .
1 2 ? nˆŽ . Ž Ž ..Now fix d g 0, and consider n ) 16rd . We shall study H 1 Z s ds.0 F4 d , «

The integral with C in place of F can be analyzed by a symmetricd , « d , «

argument. For 0 - « - d , let

h z , z s k z l z ,Ž . Ž . Ž .1 2 1 2

2Ž . 1Žw x. Ž .where k g C R , l g C 0, 1 such that k is nondecreasing, k z s 0 forb b 1

Ž . < Ž . < < Ž . < 2z F dr4, k z s 1 for z G dr2 and k9 z F 8rd , k0 z F 100rd for all1 1 1 1 1

Ž . w x Ž .z ; l9 z s 1 for z g 0, « , l9 z s 0 for z G 2« , l9 is nonincreasing and1 2 2 2 2

Ž . z2 Ž . w x Ž . w xl z s H l9 u du, z g 0, 1 . In particular, 0 F l z F 2« for all z g 0, 1 .2 0 2 2 2

Ž w x .Now by Dynkin’s formula cf. 8 , Proposition 4.1.7 , we have for each t G 0,

t
n n n nˆ ˆ ˆ ˆB.14 E h Z t y h Z 0 s E G h Z s ds ,Ž . Ž . Ž . Ž .Ž .Ž . Ž . Ž .H

0

ˆn ˆn ˆnŽ .Ž .where G is the infinitesimal generator for Z . Now, G h z s 0 for z F 01
nˆ 'w Ž . xsince k z s 0 for z F dr4 and the steps of Z are of size 1r n - dr41 1 1

and for z: z ) 0 and z ) 0,1 2

1
nĜ h z s 2n h z q , z y h z , zŽ . Ž .Ž . 1 2 1 2ž /'n

1
qh z y , z y h z , zŽ .1 2 1 2ž /'n

B.15Ž .

1 1 1
qh z y , z y y h z y , z ,1 2 1 2ž / ž /' 'nn n

ˆn � 4since the transitions of Z from z g S*: z ) 0, z ) 0 are at rate 4n and1 2
nˆ 'are such that Z is equally likely to move to the left or right by 1r n and if1

ˆn ˆnit moves to the left, then Z also moves down by 1rn, whereas when Z2 1

ˆn Ž .moves to the right, Z stays constant cf. Figure 5 . Now by the mean value2

Ž .theorem, B.15 can be rewritten as

1
U Unˆ 'B.16 G h z s 2 n h z , z z y 2h z y , z ,Ž . Ž . Ž .Ž . ˜Ž .z z 1 2 1 z 1 21 1 2 ž /'n

where the subscripts on h denote partial differentiation with respect to those
U U' ' 'w x < < wvariables and z g z y 1r n , z q 1r n , z F 2r n , z g z y˜1 1 1 1 2 2

x1rn, z . Thus, using the positivity of k, l9 and bounds on k0 and l, we have2
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for z ) 0, z ) 0,1 2

1
U Unˆ 'G h z F 2 n k0 z l z z y 2k z y l9 zŽ . Ž . Ž . Ž .Ž . ˜1 2 1 1 2ž /'n

B.17Ž .
100

F 4 ? ? 2« y 2 ? 1 z 1 z .Ž . Ž ..w d r2q1r n , ` 1 Ž0 , « x 2'2d

Similarly, for z ) 0, z s 0,1 2

1 1 800«
nĜ h z s2n h z q , z qh z y , z y2h z , z F .Ž . Ž .Ž . 1 2 1 2 1 2 2ž / ž /' ' dn n

ˆnŽ .Ž .Since G h z s 0 for z F 0, the above estimate also applies in this case.1

Ž .Substituting these estimates in B.14 and rearranging yields for all t G 0,

t
n nˆ ˆ2 E 1 Z s 1 Z s dsŽ . Ž .Ž . Ž .H .w d r2q1r n , ` 1 Ž0 , « x 2'

0

n n y2ˆ ˆF E h Z 0 y h Z t q 800«d tŽ . Ž .Ž . Ž .
B.18Ž .

F 4« q 800«dy2 t .

'Thus since 1r n - dr4 - dr2,

t 1n y2ˆB.19 E 1 Z s ds F 4« q 800«d t for all t G 0.Ž . Ž . Ž .Ž .H F 2d , «
0

By symmetry, the same estimate holds with C in place of F .d , « d , «

Combining the above results, we have for all t G 0,

n˜ ˆE l t y l* t s lim E l t y l* tŽ . Ž . Ž . Ž .
nª`

t
n nˆ ˆF lim sup E 1 Z s y f Z s dsŽ . Ž .Ž . Ž .H L* « 2

0nª`

t Uq E f Z s y 1 Z* s dsŽ . Ž .Ž .Ž .H « 2 L*
0

t t
n nˆ ˆF lim sup E g Z s ds q E 1 Z s dsŽ . Ž .Ž . Ž .H Hd Dd , «ž /

0 0nª`
B.20Ž .

t Uq E f Z s y 1 Z* s dsŽ . Ž .Ž .Ž .H « 2 L*
0

t y2F E g Z* s ds q 4« q 800«d tŽ .Ž .H d
0

t Uq E f Z s y 1 Z* s ds ,Ž . Ž .Ž .Ž .H « 2 L*
0

Ž . Ž .where we have used dominated convergence for the first line, B.8 , B.7 and
Ž . Ž .dominated convergence for the second line, B.10 and B.11 for the third line

Ž . Ž .and B.12 and B.19 for the fourth line. Now by first letting « x0 and then
Ž . Ž .d x0, we conclude using B.9 , B.13 and dominated convergence that the left
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˜Ž . Ž . Ž .member of B.20 is zero and hence l t s l* t a.s. Since t was arbitrary and
˜ ˜by the regularity of l, l*, it follows that a.s. l s l*.

˜The above proof can be modified to show that f s f* a.s. Essentially one
w x w xchooses f to equal 1 on « , 1 and to be 0 on 0, «r2 . A similar argument to«

that given above then yields a.s.

t
n nˆ ˆt y f t s 1 Z s dsŽ . Ž .Ž .H S*_F*

0

t
ª 1 Z* s ds s t y f* t as n ª `,Ž . Ž .Ž .H S*_F*

0

B.21Ž .

where the convergence is uniform for t in each compact time interval. Hence
˜ Ž .f s f* a.s. This completes the verification of B.6 .

Ž .We now turn to verification of the full statement 8.25 . By the Skorokhod

representation theorem and the continuity of the limit processes, we may
Ž .assume the convergence in B.6 is almost surely u.o.c. We shall prove that for

each t G 0,

nˆB.22 sup M s y M* s ª 0 in probability as n ª `.Ž . Ž . Ž .
0FsFt

ˆn U ˆ nThe same result with N , N in place of M , M*, respectively, for j s 1, 2,j j

can be proved in a similar manner. It follows from this and the a.s. conver-
Ž . Ž .gence assumed for B.6 that 8.25 holds.

Ž . Ž .For the proof of B.22 , let f be as in the above proof of B.6 . Then for«

each t G 0,

t1n n n nˆ ˆ ˆ ˆM t y M* t s 1 Z s y y f Z s y dZ sŽ . Ž . Ž . Ž . Ž .Ž . Ž .H ž /L* « 2 12
0

t t U U1 1n nˆ ˆq f Z s y dZ s y f Z s dZ sŽ . Ž . Ž . Ž .Ž .Ž .H H« 2 1 « 2 12 2
0 0

B.23Ž .

t U U1q f Z s y 1 Z* s dZ s .Ž . Ž . Ž .Ž .Ž .Ž .H « 2 L* 12
0

For fixed « ) 0, by the a.s. uniform convergence on compacts assumed for
Ž .B.6 and the continuity of f , we have a.s.«

ˆn ˆn U UB.24 Z , f Z ª Z , f Z u.o.c.Ž . Ž .Ž .Ž .ž /1 « 2 1 « 2

nˆ 'Now, Z is a pure jump martingale which moves by jumps of size 1r n and1

Ž w x .its quadratic variation process is given cf. 17 , page 63 by

2 2 2
n n n nˆ ˆ ˆ ˆZ t s DZ s s D A s q D A sŽ . Ž . Ž . Ž .Ž . Ž . Ž .Ý Ý1 1 1 2ž / ž /

0FsFt 0FsFt

1 1
s D A ns q D A nsŽ . Ž .Ý 1 2ž /n n0FsFt

B.25Ž .

1
s A nt q A nt s A t q A t ,Ž . Ž . Ž . Ž .Ž .1 2 1 2

n



UNCONVENTIONAL HEAVY TRAFFIC BEHAVIOR 45

ˆn ˆnŽ . Ž .where DZ s denotes the jump of Z at s and so forth. In B.25 we have1 1

used the fact that the A , j s 1, 2, are independent and have upward jumpsj

Ž .of unit length. Since A t y 2 t defines a martingale for j s 1, 2, we havej

nˆB.26 E Z t s 4t , t G 0.Ž . Ž .ž /1

Ž . Ž . w xIt then follows from B.24 , B.26 and Theorem 2.2 of Kurtz and Protter 14

that

u u
U Un nˆ ˆsup f Z s y dZ s y f Z s dZ sŽ . Ž . Ž . Ž .Ž .Ž .H H« 2 1 « 2 1

0 00FuFt

ª 0 in probability as n ª `.

Ž .This takes care of the second and third integrals in B.23 . For the first
Ž . 2integral in B.23 , note that by Doob’s maximal inequality for L martingales,

2 Ž w x .the L isometry for stochastic integrals cf. 17 , pages 66]68 and the
ˆnw xŽ .martingale property of Z t y 4t, we have1

2
u

n n nˆ ˆ ˆE sup 1 Z s y y f Z s y dZ sŽ . Ž . Ž .Ž . Ž .H ž /L* « 2 1
00FuFt

2
t

n n nˆ ˆ ˆF 4E 1 Z s y y f Z s y dZ sŽ . Ž . Ž .Ž . Ž .H ž /L* « 2 1
0B.27Ž .

2t
n n nˆ ˆ ˆs 4E 1 Z s y y f Z s y d Z sŽ . Ž . Ž .Ž . Ž .H L* « 2 1

0

2t
n nˆ ˆs 16E 1 Z s y f Z s ds .Ž . Ž .Ž . Ž .H L* « 2

0

Ž .Now for all z g S*, in the notation of B.10 ,

0 F 1 z y f z F 1 zŽ . Ž . Ž .L* « 2 L j Dd d , «

Ž . Ž .and so combining this with B.11 and B.19 , we see that the last member of
1 2Ž .B.27 is dominated for 0 - « - d - and n ) 16rd by4

t
n y2ˆB.28 16 E g Z s ds q 4« q 800«d t .Ž . Ž . Ž .Ž .H dž /

0

Ž . Ž .It then follows from B.12 and B.13 that the lim sup of the first membernª`

Ž .of B.27 can be made arbitrarily small, provided « and d are sufficiently
Ž .small. Finally, for the last integral in B.23 , we note that similar manipula-

Ž .tions to those for B.27 yield

2
u

U UE sup f Z s y 1 Z* s dZ sŽ . Ž . Ž .Ž .Ž .Ž .H « 2 L* 1
00FuFt

t 2UF 16E f Z s y 1 Z* s ds ,Ž . Ž .Ž .Ž .H « 2 L*
0

where the last member above tends to zero as « ª 0, by dominated conver-
w Ž .xgence cf. B.9 .
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Ž .Combining all of the above results, we see that B.22 holds. This completes
Ž .the proof of 8.25 . I
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