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LEVEL CROSSINGS OF ABSOLUTELY CONTINUOUS
STATIONARY SYMMETRIC a-STABLE PROCESSES

BY ROBERT ADLER1 AND GENNADY SAMORODNITSKY2

Technion]Israel Institute of Technology and Cornell University

We describe the mean rate at which a general absolutely continuous
stationary SaS process crosses a high level. Only nondegeneracy assump-
tions are imposed in the case 1 - a - 2. The same results hold for
0 - a F 1 under certain conditions, ensuring existence of the required
conditional moments and the applicability of the classical integral formula
for the expected number of level crossings.

� Ž . 41. Introduction. Let X t , t g R be a real, stationary, symmetric,
Ž .a-stable SaS process, 0 - a - 2 with absolutely continuous sample paths,

representable as

1.1 X t s f t , x M dx , t g R ,Ž . Ž . Ž . Ž .H
S

Ž .where S, SS is a measurable space, M is an independently scattered s-ad-
Ž .ditive SaS random measure on S, SS with a s-finite control measure m,

Ž . a Ž . Ž w xand f t, ? g L S, SS , m for every t g R. cf. Samorodnitsky and Taqqu 19
for more details on SaS random measures and stochastic integrals with

.respect to them.
Ž .For l G 0, let C T be the number of upcrossings of the level l in thel

w x Žinterval 0, T , provided that this quantity is well defined. cf. Cramer and´
w xLeadbetter 6 for a formal definition. We will deal with the issue of ‘‘well

.defined’’ below. It is of fundamental importance for the application of stable
processes to be able to say as much as possible about the distribution of

Ž .C T . In particular, one would like to be able to calculate the expectationl

Ž Ž ..E C T . Of course, by stationarity and the continuity of a-stable distribu-l

Ž Ž .. Ž Ž ..tions, E C T s TE C 1 , so that the parameter T is not important. Wel l

Ž Ž ..will study, therefore, EC s E C 1 .l l
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In the well-known Gaussian case, the famous Rice formula

1r2Y 21 yR 0 lŽ .
EC s exp yl ž / ž /2p R 0 2 R 0Ž . Ž .

gives the expected number of level upcrossings for a stationary Gaussian
w x w xprocess with a covariance function R. See 16 and 6 .

The Rice formula is generally derived in two stages. In the first, EC isl

Ž .represented as a general expression involving the joint bivariate normal
density of the process and its derivative at a given point. This expression is
then evaluated via a straightforward exercise in integration. We shall show
below that, under appropriate conditions, the first stage of this argument also
carries over to the stable situation. However, since even the univariate
density of a stable random variable is generally not available in closed form,
the second stage of this argument cannot be carried out, and so a precise,
closed form expression for EC is not accessible in the general stable casel

0 - a - 2. The route that one is forced to take is therefore one of bounds and
asymptotics.

w xThe first result of this type is due to Marcus 12 , and deals with a
particular class of stationary SaS processes, that of the real, harmonizable

Ž . Xones. Adopting the representation 1.1 , these have S s R = V and SS s BB =
X Ž X X X.FF , where V , FF , P is a probability space supporting two independent

X Žstandard normal random variables G and G . Furthermore, m s F = P F1 2
.being a finite measure on R , and

f t , y , vX s G vX cos ty q G vX sin ty, y g R , vX g V
X .Ž . Ž . Ž .Ž . 1 2

An alternative, and probably more familiar, representation in this case is

`
i t x ˜X t s a Re e M dx , t g R ,Ž . Ž .Ha ½ 5

y`

˜where M is a complex valued rotationally invariant SaS random measure
with the same control measure m, and a is a constant depending only on a .a

Using the fact that a real harmonizable stationary SaS process can be
w xwritten as a mixture of stationary Gaussian processes, Marcus 12 applied

the Rice formula conditionally, allowing him to derive bounds on the expected
w xnumber of level upcrossings. Later, Adler, Samorodnitsky and Gadrich 1

improved Marcus’ results for harmonizable processes, while using the same
approach. In particular, they showed that, if the process is regular enough to
guarantee the finiteness of EC , then0

1.2 lim laEC s k l ,Ž . l a 1
lª`

where for 0 - a - 2, k is a finite positive constant depending only on a , anda

`
< <l s x F dx .Ž .H1

y`
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Given the success of this approach in the harmonizable case, it is natural
to try to extend it to more general stable processes, particularly in view of the
fact that essentially all the SaS processes described above can, in fact, be
represented as mixtures of Gaussians. However, in the general case, the
conditional Gaussian processes are no longer stationary, so that the simple
Rice formula no longer applies to them and the computations involved
become forbiddingly complicated. Consequently, there has been no further
development along this line.

In the present paper we shall determine the asymptotic behavior of the
expected number of level upcrossings for general, stationary, SaS processes,

Ž .obtaining a result similar to 1.2 . Clearly, we need to take a different path
from that described above, based on a specific, mixed Gaussian, representa-
tion of SaS processes. While more general representations are also available
and the overall structure of stationary SaS processes is understood today

Žmuch better than a few years ago primarily due to the work of J. Rosinski; cf.
w x.18 , our approach will not use this general structure either. Instead, we will,
essentially, revert to first principles, and proceed as follows.

� Ž . 4 Ž .Let X t , t g R be a stationary SaS process given in the form 1.1 . We
Ž .will assume that for m almost every x g S, f ?, x is an absolutely continu-

ous function, with

t ˙f t , x s f 0, x q f s, x ds, 0 F t F 1Ž . Ž . Ž .H
0

˙ w xsuch that f : 0, 1 = S ª R is jointly measurable and satisfies one of the
following three conditions:

1ra
a1 ˙1.3 f t , x m dx dt - ` if 1 - a - 2,Ž . Ž . Ž .H Hž /0 S

1˙ ˙f t , x H H f u , v du m dvŽ . Ž . Ž .1 0 S
ḟ t , x 1 q log m dx dtŽ . Ž .H H q 11.4Ž . ˙ ˙0 S H f t , v m dv H f u , x duŽ . Ž . Ž .S 0

- ` if a s 1,

Ž .where, for a ) 0, log a s max log a, 0 , andq

a
1 ˙1.5 f t , x dt m dx - ` if 0 - a - 1.Ž . Ž . Ž .H Hž /S 0

w x � Ž . 4Under these conditions, it follows from 17 that X t , t g R has an
Žabsolutely continuous version which we henceforth identify with the process

.itself , and that is derivative in the sense of absolute continuity is given by

˙ ˙1.6 X t s f t , x M dx , 0 F t F 1.Ž . Ž . Ž . Ž .H
S

Ž w x .See also Section 11.7 of 19 .
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ŽThese conditions are not only sufficient for existence of an absolutely
continuous version of the process, but also necessary for it. Furthermore, they
are not as forbidding or as difficult to check as they may seem. Example 1.1
below shows how they simplify in the case of a stationary moving average

.process.
The first step towards developing an asymptotic formula for C will be tol

establish when we are justified in using the standard, exact, formula

`

1.7 EC s yg l, y dy,Ž . Ž .Hl
0

˙Ž . Ž . Ž w x.where g is the joint density of X 0 and X 0 see, e.g., Theorem 7.2.4 of 9 .
We will see that, apart from nondegeneracy conditions, in the case 1 - a - 2,

Ž .the integral formula 1.7 holds for any absolutely continuous SaS process as
above. In the case 0 - a F 1 we will have to impose certain additional

� Ž . 4 Ž .regularity assumptions on the process X t , t g R to justify 1.7 .
Ž .As mentioned above, it would be nice to be able to actually evaluate 1.7 ,

but this is not possible. Hence we turn to a study of the asymptotic behavior
Ž .of the integral in the right-hand side of 1.7 as l ª `. The two steps in the

derivation are mathematically independent of one another and appear in the
Sections 3 and 4, respectively.

Our approach to the asymptotic behavior of the integral is, once again, via
conditional Gaussianity. However, instead of dealing with the entire process,
we merely rely on the facts that an SaS process and its derivative at any
fixed time are jointly SaS, and that any SaS random vector is a mixture of

Ž .Gaussian random vectors. Thus the joint density g in 1.7 can be viewed as a
mixture of bivariate normal densities, and the corresponding integral for a
bivariate normal density can, to a certain extent, be simplified. The problem
is then to determine the asymptotic behavior of the expectation of the
resulting expression, and the reader will find the details of that in Section 4.

This approach leads to the following theorem, which is the main result of
this paper.

� Ž . 4THEOREM 1.1. Let X t , t g R be a real stationary SaS process given in
Ž . Ž . Ž . Ž . Ž .the form 1.1 satisfying 1.3 , 1.4 or 1.5 depending on the value of a ,

Ž .with absolutely continuous sample paths satisfying 1.6 . Assume that for
every g g R, i s 1, 2, g q g / 0,i 1 2

˙1.8 m x g S : g f 0, x y g f 0, x / 0 ) 0,Ž . Ž . Ž .� 41 2

and for all n large enough and g g R, i s 1, 2,i

1.9 m x g S : g f 2yn , x y g f 0, x / 0 ) 0.� 4Ž . Ž . Ž .1 2

If a s 1, we assume additionally that

ḟ 0, xŽ .˙1.10 f 0, x log m dx - `.Ž . Ž . Ž .H f 0, xŽ .S
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If 0 - a - 1, we assume additionally that

ḟ 0, xŽ .
1.11 m dx - `.Ž . Ž .H 1ya

S f 0, xŽ .
Finally, in the case 0 - a F 1 we assume that there is a d ) 0 and

Ž yn x0 - M - ` such that for all n large enough and t g 0, 2 ,
1qdn yn2 f 2 , x y f 0, xŽ . Ž .Ž .

1.12 m dx F M .Ž . Ž .H 1qdyan ynS 2 t f 2 , x y f 0, x q f 0, xŽ . Ž . Ž .Ž .
Ž .Then 1.7 holds for every l g R, and, furthermore,

lim laECl
lª`

1q1raa q 1
ay1r2 yŽ1q1ra .r2 y1ras a 2 p G Caž /ž /21.13Ž .

ay1˙ ˙= f 0, x f 0, x 1 f 0, x f 0, x ) 0 m dx ,Ž . Ž . Ž . Ž . Ž .Ž .H
S

Ž .where C is given by 2.11 .a

The following is an immediate application of this result.

EXAMPLE 1.1. An important class of stationary SaS processes is that of
moving averages. These are processes of the form

`

1.14 X t s f t q x M dx , t g R ,Ž . Ž . Ž . Ž .H
y`

where the SaS random measure M has Lebesgue control measure on R, and
a Ž .f g L R . Unlike the harmonizable stationary processes described above,

w xmoving average processes are mixing 13 , and so provide an attractive
modeling tool. To ensure absolute continuity of a moving average process, we

Ž w x .need to assume cf. 19 , Section 11.7 that

b ˙f b y f a s f s ds, a - b ,Ž . Ž . Ž .H
a

˙with f satisfying
` a

ḟ x dx - ` if 1 - a - 2,Ž .H
y`

˙` f xŽ .1
ḟ x 1 q log dx dt - ` if a s 1,Ž .H H q F x q tŽ .0 y` 1

1.15Ž .

` a
F x dx - ` if 0 - a - 1.Ž .H 1

y`
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Here
xq1 ˙F x s f s ds.Ž . Ž .H1

x

Ž . Ž .It is obvious that, in this case, conditions 1.8 and 1.9 hold automatically
Ž .as long as the process is not identically equal to 0. The conditions 1.10 ,

Ž . Ž .1.11 and 1.12 take, in the present case, the form of, correspondingly,

˙` f xŽ .˙1.16 f x log dx - `,Ž . Ž .H f xŽ .y`

˙` f xŽ .
1.17 dx - `Ž . H 1ya

y` f xŽ .
and

1qdn yn
` 2 f 2 q x y f xŽ . Ž .Ž .

1.18 dx F M .Ž . H 1qdyan yny` 2 t f 2 q x y f x q f xŽ . Ž . Ž .Ž .
Therefore, for every absolutely continuous stationary SaS moving average

w Ž . Ž . Ž .xprocess with 1 - a - 2 or with 0 - a F 1, under 1.16 , 1.17 and 1.18 we
have

1q1raa q 1
a ay1r2 yŽ1q1ra .r2 y1ralim l EC s a 2 p G Cl až /ž /2lª`1.19Ž .

` ay1˙ ˙= f x f x 1 f x f x ) 0 dx ,Ž . Ž . Ž . Ž .Ž .H
y`

Ž . � Ž .with C given by 2.11 . To give an even more explicit example, let X t ,a

4t g R be the two-sided Ornstein]Uhlenbeck process, that is, a moving aver-
age process with

1ra yg < x <f x s agr2 e , x g R , g ) 0.Ž . Ž .
Ž . Ž . Ž .Then the conditions 1.10 , 1.11 and 1.12 are easily seen to hold, and so we

have
1q1raa q 1

a ay1r2 yŽ1q1ra .r2 y1ra ay11.20 lim l EC s a 2 p G C gŽ . l až /ž /2lª`

for all 0 - a - 2 and g ) 0.
We now turn to the proof of Theorem 1.1. The following section contains

certain technical lemmas needed later. As noted above, the main work is in
Sections 3 and 4.

2. Some lemmas. We collect in this section some technical results that
will be used later.

LEMMA 2.1. Let R , R , . . . be a sequence of i.i.d. nonnegative random1 2
variables independent of the sequence G , G , . . . of the arrival times of a unit1 2
rate Poisson process. Let 0 - a - 1. Assume that ERa - `.1
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Ž . ` y1rai The sum Ý G R converges with probability 1, andjs1 j j

`
a y1ra2.1 lim l P G R ) l s 0.Ž . Ý j jž /lª` js2

Moreover, if ER - `, then for every l ) 0,1

`
y1ra yminŽ1 , 2 a .2.2 P G R ) l F ClŽ . Ý j jž /

js2

for some finite positive constant C depending on a and the distribution of R .1
Ž .ii Assume that

E Ra log 1 q R - `.Ž .Ž .1 1

Then
a

`
y1raE j R - `.Ý jž /

js1

Ž .iii Let

Ý` Gy1raRjs1 j j
2.3 F s .Ž . ` y1raÝ Gjs1 j

Then for any p ) a , EF p - ` if and only if ER p - `. Moreover,1

2.4 cy1 ER p F EF p F c ER pŽ . a , p 1 a , p 1

Ž .for some c g 0, ` that depends only on a and p.a , p
Ž . aFurthermore, under the assumption of part ii we have EF - `, and,

moreover,

1
a a a2.5 EF F c E R log 2 q R q ER logŽ . Ž .Ž .a 1 1 1 až /ER1

Ž .for some c g 0, ` that depends only on a .a

Ž .PROOF. i The fact that the series converges with probability 1 is well
Ž w x. Ž .known e.g., Theorem 1.4.5 in 19 , and one shows 2.1 by retracing the steps

Ž .of the proof of Property 1.4.4 there. For 2.2 with 1r2 - a - 1, note that
Ž ` y1ra .E Ý G R - `, while in the case 0 - a F 1r2, note that for all j G 2js2 j j

Ž y1ra . y2 a Ž ` y1ra .we have P G R ) l F Cl , while E Ý G R - ` for K largej j jsK j j
Ž .enough. Hence 2.2 follows in this case, since for every K we have

`
y1raP G R ) lÝ j jž /

js2

K `
y1ra y1raF P G R ) lr2 K q P G R ) lr2 .Ž .Ý Ýj j j jž /

js2 jsKq1
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Ž . w xii This is a consequence of Proposition 5.2 of 3 .
Ž .iii Clearly,

py1raG1p pEF G ER E ,1 ` y1raž /Ý Gjs1 j

Ž .proving the left-hand side inequality in 2.4 . To prove the other inequality we
consider two cases.

Suppose first that p G 1. Then by Holder’s inequality,¨
py1ra y1ra` `G Gj jp pF s R F R ,Ý Ýj j` y1ra ` y1raž /Ý G Ý Gis1 i is1 ijs1 js1

p p w xand so EF F ER . If a - p - 1, set K s 2 pra and note that for every1
k ) K, EGy2 pra - `, which implies thatk

2`
yp raE G - `.Ý jž /

jsKq1

Therefore,

K ` ypra pÝ G RjsKq1 j jp pEF F E R qÝ pj
` y1raž /Ý Gjs1 Ž .js1 j

Ý` Gyp ra
jsKq1 jpF ER K q E p1
` y1raž /Ý GŽ .js1 j

1r2 1r22 y2 p` `
p ypra y1raF ER K q E G E G ,Ý Ý1 j jž / ž /ž / ž /� 0jsKq1 js1

Ž .thus proving the second inequality in 2.4 in all cases.
Ž .For 2.5 let

1raŽ1ya .r2 a aa s n ER , n G 1.Ž .n 1

We have

a
` y1raÝ G R 1 R F aŽ .js1 j j j jaEF F E

` y1raž /Ý Gjs1 j
2.6Ž .

a
` y1raÝ G R 1 R ) aŽ .js1 j j j j a aqE [ EF q EF .1 2` y1raž /Ý Gjs1 j
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w 1r2 xClearly, taking now K s 1ra q 1, one has
a a

` y1ra ` y1ra Ž1ya .r2 aÝ G a Ý G jjs1 j j js1 ja aEF F E F ER E1 1` y1ra ` y1raž / ž /Ý G Ý Gjs1 j js1 j

a
` y1ra Ž1ya .r2 aÝ G jjsKq1 ja Ž1ya .r2 aF ER K q E1 ` y1raž /Ý Gjs1 j

1r2a1r2a`
a Ž1ya .r2 a y1ra Ž1ya .r2 aF ER K q E G jÝ1 jž /ž /jsKq1

2.7Ž .

1r21ya1r2Ž .yar 1ya`
y1ra= E GÝ jž /ž /js1

s c ERa ,a 1

where c is a finite positive constant that depends only on a and that maya

change from line to line. To see why the latter two expectations are finite, one
only has to recall the two simple facts that for any p g R we have EG p ; z j p

j p
as p ª `, where z is a finite positive constant that depends only on p, andp

Ž .that a positive a-stable random variable 0 - a - 1 has a density that
decays faster than exponentially fast at the origin, so that it has negative
moments of all orders. These two observations will be used throughout this
paper, often without additional comment.

ŽIt is easy to check using, for example, the fact that the event G - jr2 hasj
.low probability that

2
j

2.8 E sup - `.Ž . ž /Gj)2 j

Then, as before, we have

Ý` Gy1Ra1 R ) aŽ .js3 j j j ja aEF F 2 ER q E a2 1
` y1raÝ GŽ .js1 j

`sup jrGj) 2 ja y1 aF 2 ER q E j ER 1 R ) aŽ .Ýa1 1 1 j
` y1raÝ G js3Ž .js1 j

2.9Ž .
` Ž .2 ar 1ya1raa y1 aF c E R 1 q j 1 j F R r ERŽ .Ý Ž .a 1 1 1ž /

js1

1
a aF c E R log 2 q R q ER log .Ž .Ž .a 1 1 1 až /ER1

Ž . Ž . Ž . Ž .Now 2.5 follows from 2.6 , 2.7 and 2.9 . This completes the proof of the
lemma. I
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We will also need the following lemma.

Ž .LEMMA 2.2. i Let X be a positive, ar2 strictly stable random variable
� 4with scale parameter s , so that it has Laplace transform E exp yu X s

Ž ar2 a r2 Ž ..exp ys u rcos par4 . Then for any p ) yar2 we have

2.10 lim laq2 pE Xyp exp yl2rX s s ar2 ar2 C G p q ar2 ,Ž . Ž . Ž .Ž .Ž . ar2
lª`

where for 0 - a - 2, C is given bya

y1
`

ya2.11 C s x sin x dx .Ž . Ha ž /0

Ž .ii Let 0 - a - 2 and let X be a nonnegative random variable such that
Ž . Ž ya r2 .P X ) l s o l as l ª `. Then for every p ) yar2,

lim laq2 pE Xyp exp yl2rX s 0.Ž .Ž .
lª`

Ž .PROOF. i Let f denote the density function of X. Then

f x ; ar2 C s ar2 xyŽ1 qa r2. as x ª `.Ž . Ž . ar2

Ž w xSee, e.g., Property 1.2.15 in 19 and use the eventual monotonicity of the
.density. Therefore, for any fixed M ) 0,

lim laq2 pE Xyp exp yl2rXŽ .Ž .
lª`

`
ar2 aq2 p yp 2 yŽ1qa r2.s ar2 C s lim l x exp yl rx x dxŽ . Ž .Har2

lª` M

`
ar2 yŽ pq1qa r2.s ar2 C s exp y1rx x dxŽ . Ž .Har2

0

s ar2 C s ar2 G p q ar2 ,Ž . Ž .ar2

Ž .thus establishing 2.10 .
Ž .ii Suppose first that yar2 - p F 0. Observe that for every « ) 0 there is

an a G 0 such that X F « Y q a, where Y is a positive, ar2 strictlyst a r2 a r2
stable random variable with scale parameter s s 1. Therefore, letting C be a
finite positive constant that may change from line to line, we have

E Xyp exp yl2rXŽ .Ž .
yp 2F E « Y q a exp yl r « Y q aŽ . Ž .Ž .ž /ar2 a r2

yp 2s E « Y q a exp yl r « Y q a 1 « Y F aŽ . Ž . Ž .Ž .ž /ar2 a r2 a r2

yp 2q E « Y q a exp yl r « Y q a 1 « Y ) aŽ . Ž . Ž .Ž .ž /ar2 a r2 a r2

yp2 2F C exp yl rC q E 2« Y exp yl r 2« Y .Ž . Ž . Ž .Ž .ž /ar2 a r2
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Ž .We conclude by part ii of this lemma that

lim sup laq2 pE Xyp exp yl2rX F C« ar2 ,Ž .Ž .
lª`

and since « can be taken arbitrarily close to zero, our claim follows. If p ) 0,
use the elementary observation that for any such p and l ) 0,

2.12 sup zyp exp yl2rz s c ly2 pŽ . Ž . p
z)0

Ž .for a c g 0, ` , to conclude thatp

E Xyp exp yl2rX F Cly2 pE exp yl2r2 X ,Ž . Ž .Ž . Ž .
and apply the case p s 0, which we have just established. I

3. The expected number of level upcrossings. This section contains
the proof of the main result of the paper, Theorem 1.1. As we mentioned

Ž .above, this amounts to justifying the formula 1.7 . The asymptotic behavior
of the integral appearing in the right-hand side of this formula is computed in
the next section.

Ž .To justify the integral formula 1.7 we start with the approach of Marcus
w x w x11 to level crossings. Other available results, such as those of Brillinger 2

w x Ž .or Geman and Horowitz 7 only deliver 1.7 for almost every, but not for
w x Ž .every, l. The result of Michna and Rychlik 14 also establishes 1.7 for SaS

processes. However, it assumes continuous differentiability for the process,
Ž w xfor which tight conditions are unknown see, e.g., Chapter 12 of 10 , Chapter

w x w x.10 of 19 and 15 . For completeness, we list below the conditions of
w x ŽTheorem 2.1 of Marcus 11 simplified to our particular case, of a stationary

.process and the first moment only that we will check to establish the validity
Ž .of 1.7 .

� Ž . 4Let X t , t g R be a stationary stochastic process with absolutely con-
Ž .tinuous sample paths. Let g x, y denote the joint density function of

˙ ˙Ž Ž . Ž ..X 0 , X 0 , with X being the derivative in the sense of absolute continuity.
Let

`

3.1 h l s yg l, y dy.Ž . Ž . Ž .H
0

w yn . Ž .Furthermore, for n G 1 and t g 0, 2 , let g x, y denote the jointt, n
n Ž Ž yn . Ž .. Ž . nŽ Ž yn . Ž ..density of 2 t X 2 y X 0 q X 0 and 2 X 2 y X 0 , and set

`

3.2 h l s yg l, y dy.Ž . Ž . Ž .Ht , n t , n
0

Ž w x.Then Marcus Theorem 2.1, Marcus 11 sets out a set of seven conditions
Ž .that guarantee the veracity of 1.7 . These are the following.

Ž .M1 The density g exists.
Ž .M2 The function h is bounded in a neighborhood of l.
Ž .M3 The function h is continuous at l.
Ž . w yn .M4 The density g exists for all n large enough and t g 0, 2 .t, n
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Ž .M5 The functions h are uniformly bounded in a neighborhood of l, fort, n
w yn .all n large enough and all t g 0, 2 .

Ž .M6 The function h is continuous at l for all n large enough and allt, n
w yn .t g 0, 2 .

Ž . � 4 w yn .M7 For any sequence t such that t g 0, 2 for all n we haven n
Ž . Ž .lim h l s h l .nª` t , nn

With these conditions in front of us, we can now commence the proof of our
main result.

PROOF OF THEOREM 1.1. As a first step, we need to check the veracity of
Ž .1.7 , so that all we really need do is to check that the conditions of our

Ž . Ž .theorem guarantee that Marcus’ M1 ] M7 are satisfied.
To simplify things, assume for the moment that the control measure m of

the SaS random measure M is a probability measure on S.
˙Ž . Ž Ž . Ž ..It follows from 1.8 that the SaS random vector X 0 , X 0 is not

concentrated on any proper subspace of R 2, and so it has an absolutely
continuous distribution with respect to the Lebesgue measure there. This

Ž .verifies condition M1 above.
Ž . Ž .To check the conditions M2 and M3 we observe that, since m is a

Ž .probability measure, we can write in distribution
`

y1raX 0 s b G G f 0, U ,Ž . Ž .Ýa j j j
js1

`
y1ra˙ ˙X 0 s b G G f 0, U ,Ž . Ž .Ýa j j j

js1

3.3Ž .

where
1ray1a q 1

ya r2 1r23.4 b s 2 p G C ,Ž . a až /ž /ž /2

and where G , j G 1, G , j G 1, and U , j G 1, are three independent se-j j j
quences of random variables, such that G , j G 1, are i.i.d. standard normalj
random variables, G , j G 1, are the arrival times of a unit rate Poissonj

Ž .process on 0, ` , and U , j G 1, are i.i.d. S-valued random variables with aj
w xcommon law m. See, for example, Chapter 3 of 19 . Observe that, condition-

˙Ž . Ž .ally on G , j G 1, and U , j G 1, the random variables X 0 and X 0 arej j
jointly normal, with zero means and a variance-covariance matrix with
elements

`
22 2 y2ras s b G f 0, U ,Ž .Ý1 a j j

js1
`

22 2 y2ra ˙s s b G f 0, U ,Ž .Ý2 a j j
js1

3.5Ž .

`
2 y2ra ˙s s b G f 0, U f 0, U .Ž . Ž .Ý12 a j j j

js1
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Let h be the density function of a standardized normal random vectorr

< <with covariance r, r - 1. That is,

1 x 2 y 2 r xy q y2

h x , y s exp y .Ž .r 22 ž /2 1 y rŽ .'2p 1 y r

We conclude then that

`
y1 y1h l s Es s yh lrs , yrs dyŽ . Ž .H1 2 r 1 2

0

with

r s s r s s ,Ž .12 1 2

and so

`

3.6 h l s E s rs yh lrs , y dy.Ž . Ž . Ž . Ž .H2 1 r 1
0

Easy manipulations of the integral show that for any l G 0,

2 2'` 1 y r l
yh l, y dy s exp yŽ .H r 2ž /2p 2 1 y rŽ .0

3.7Ž .
2

`
2lr l y

q exp y exp y dy.Hž / ž /22p 2 2'ylrr 1yr

In particular,

h l F CE s rs .Ž . Ž .2 1

Ž . Ž . Ž . Ž .Therefore, both M2 and M3 will follow from 3.6 and 3.7 once we show
that

3.8 E s rs - `.Ž . Ž .2 1

Ž . ŽNow, 3.8 is trivial for 1 - a - 2 recall that all negative moments of a
.positive ar2-stable random variable are finite . In the case 0 - a F 1, it

Ž . Ž . 2follows from 1.10 and 1.11 that s cannot have a component independent2
2 wof s in the sense that the spectral measure of the ar2-stable random1
Ž 2 2 . Ž . Ž .xvector s , s cannot have atoms at the points 0, 1 and 0, y1 , and so we1 2

can write

` `
y2 2 2 2ra y2ra y2ra 23.9 b s , s s b G , G R ,Ž . Ž . Ý Ýa 1 2 d j j jž /

js1 js1

where
a

3.10 b s E f 0, U ,Ž . Ž .1
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and R , j G 1, is a sequence of i.i.d. random variables, independent of G ’s,j j
such that

˙R s f 0, W rf 0, W ,Ž . Ž .1 d

where W has a distribution which is absolutely continuous with respect to
the law of U , with Radon]Nikodym derivative given by1

dF aW y1x s b f 0, x .Ž . Ž .
dFU1

Ž .The representation 3.9 follows, for example, from Corollary 3.10.2 and
w x Ž .Property 3.2.1 of 19 . The passage from the representation 3.5 to the

Ž .representation 3.9 is a version of the change of variables described in
w xProposition 3.5.5 in 19 . We will use such a change of variables a number of

times below without further comment.
Ž .Observe that in the case 0 - a - 1, by 1.11 ,

ḟ 0, xŽ .y1< <E R s b m dx - `Ž .H1 1ya
S f 0, xŽ .

Ž .and the same is trivially true if 1 F a - 2 . Moreover, if a s 1, it follows
Ž .from 1.10 that

ḟ 0, xŽ .y1 ˙< <E R log 1 q R s b f 0, x log 1 q m dx - `.Ž . Ž .Ž . H1 1 ž /f 0, xŽ .S

Ž . Ž .Therefore, 3.8 follows from Lemma 2.1 iii for all 0 - a F 1, and so for all
Ž . Ž .0 - a - 2, which establishes M2 and M3 .

Ž . Ž .Condition M4 follows from 1.9 in exactly the same way as condition
Ž . Ž .M1 followed from 1.8 .

Ž . Ž . Ž .It remains to check the conditions M5 , M6 and M7 . To this end, we
Ž . Ž .start by noticing that the same argument as in 3.6 and 3.7 gives us

2 2's n 1 y r t , n lŽ . Ž .2
h l s E exp yŽ .t , n 2 2ž /s t , n 2pž 2s t , n 1 y r t , nŽ . Ž . Ž .Ž .1 1

lr t , nŽ .
2 2q exp yl r2s t , nŽ .Ž .12ps t , nŽ .1

3.11Ž .

=
2

` y
exp y dy .H ž /2 2 /Ž Ž . .'ylrr s t , n 1yr1
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Ž .Here, in parallel to 3.5 ,
` 2

2 2 y2ra n yns t , n s b G 2 t f 2 , U y f 0, U q f 0, U ,Ž . Ž . Ž .Ž .Ž .Ý ž /1 a j j j j
js1

` 2
2 2 y2ra n yn3.12 s n s b G 2 f 2 , U y f 0, U ,Ž . Ž . Ž .Ž .Ž .Ý ž /2 a j j j

js1

`
2 y2ra n yns t , n s b G 2 t f 2 , U y f 0, U q f 0, UŽ . Ž . Ž .Ž .Ž .Ý ž /12 a j j j j

js1

= 2 n f 2yn , U y f 0, U ,Ž .Ž .Ž .ž /j j

and
r t , n s s t , n rs t , n s n .Ž . Ž . Ž . Ž .12 1 2

We claim that there is a positive number d and an M - ` such that for all n
w yn .large enough and t g 0, 2 ,

1qd
s nŽ .2

3.13 E F M .Ž . ž /s t , nŽ .1

Ž . Ž . Ž .Before proving 3.13 note that, once proved, it will imply M5 and M6 in
Ž . Ž . Ž .the same way as 3.8 implies M2 and M3 . The following argument also

Ž . Ž .shows that 3.13 implies M7 . Since our process is absolutely continuous, for
every v g V it is differentiable for almost every t g R, and its derivative

˙Ž .there is equal to X t . By Fubini’s theorem, for almost every t g R,

X t q a y X tŽ . Ž .n ˙3.14 P lim s X t s 1Ž . Ž .ž /anª` n

for every sequence of nonzero numbers a , n G 1, that converges to 0. Sincen
� Ž . 4 Ž .X t , t g R is also stationary, 3.14 must hold for every t g R. This
implies, in particular, that for every t g R,

f t q a , ? y f t , ?Ž . Ž .n ˙ª f t , ?Ž .
an

a Ž .in L m as n ª ` for every sequence a , n G 1, as above, and son

f t q h , ? y f t , ?Ž . Ž . ˙3.15 ª f t , ?Ž . Ž .
h

Ž yn xas h ª 0. Therefore, for every sequence t g 0, 2 , n G 1, we have, inn
ar2Ž .L m ,

2 2n yn2 t f 2 , ? y f 0, ? q f 0, ? ª f 0, ? ,Ž . Ž . Ž . Ž .Ž . Ž .Ž .n

22n yn ˙2 f 2 , ? y f 0, ? ª f 0, ? ,Ž . Ž . Ž .Ž .Ž . Ž .3.16Ž .
2 nt f 2yn , ? y f 0, ? q f 0, ?Ž . Ž . Ž .Ž .Ž .n

n yn ˙= 2 f 2 , ? y f 0, ? ª f 0, ? f 0, ?Ž . Ž . Ž . Ž .Ž .Ž .
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Ž 2Ž . 2Ž . Ž ..as n ª `. Therefore, the sequence V s s t , n , s n , s t , n , n G 1,n 1 n 2 12 n
3 Ž .of ar2-stable random vectors in R , defined by 3.12 , converges in probabil-

Ž 2 2 .ity, as n ª `, to the ar2-stable random vector V s s , s , s defined by1 2 12
Ž . Ž . Ž . Ž .3.5 . It follows from 3.6 , 3.7 and 3.11 that for every l G 0,

h l s EF V ,Ž . Ž .t , n n

h l s EF V ,Ž . Ž .

where F is a measurable function, from R 3 ª R, with a negligible set of
Ž .discontinuities with respect to the distribution of V . Therefore, by the

continuous mapping theorem,

F V « F VŽ . Ž .n

Ž . Ž .as n ª `. However, 3.13 implies that the sequence F V , n G 1 is uni-n
Ž .formly integrable, which implies M7 . Therefore, to complete the proof of the

Ž .theorem we only have to check 3.13 .
Suppose first that 1 - a - 2. Choose d s a 1r2 y 1. Then, by Holder’s¨

inequality,

1qd
s nŽ .2

E ž /s t , nŽ .1

a 1r2

s nŽ .2s E ž /s t , nŽ .1

ay1 r4 1yay1 r4
3r4 1r2 y1r4Ž .a ya r 1yaF Es n Es t , nŽ . Ž .ž / ž /2 1

1r2aynf 2 , ? y f 0, ?Ž . Ž . 1r2yan ynF C 2 t f 2 , ? y f 0, ? q f 0, ?Ž . Ž . Ž .Ž . ayn2 a

F M

Ž .for some finite constant M by 3.16 , where C is also a finite positive
Ž .constant. This proves 3.13 in the case 1 - a - 2.

Ž . 2Ž .We turn now to the case 0 - a F 1. It follows from 1.12 that s n2
2Ž . Ž .cannot have a component independent of s t, n , and so similarly to 3.9 we1

obtain

` `
y2 2 2 2ra y2ra y2ra 23.17 b s t , n , s n s g G , G T ,Ž . Ž . Ž .Ž . Ý Ýa 1 2 d t , n j j jž /

js1 js1

where

an yn3.18 g s E 2 t f 2 , U y f 0, U q f 0, U ,Ž . Ž . Ž .Ž .Ž .t , n 1 1 1



R. ADLER AND G. SAMORODNITSKY476

and T , j G 1, is now a sequence of i.i.d. random variables, independent of thej
Poisson arrivals such that

2 n f 2yn , V y f 0, VŽ . Ž .Ž .
T s ,1 d n yn2 t f 2 , V y f 0, V q f 0, VŽ . Ž . Ž .Ž .

where V has a distribution which is absolutely continuous with respect to the
law of U , with Radon]Nikodym derivative given by1

dF aV y1 n ynx s g 2 t f 2 , x y f 0, x q f 0, x .Ž . Ž . Ž . Ž .Ž .t , ndFU1

Ž yn xObserve that for all n big enough and t g 0, 2 ,

a
g G E f 0, U r2 ) 0.Ž .t , n 1

Ž .Therefore, with d as in 1.12 and for all n and t as above, we have

1qdn yn2 f 2 , x y f 0, xŽ . Ž .Ž .1qd y1< <E T s g m dxŽ .H1 t , n 1qdyan ynS 2 t f 2 , x y f 0, x q f 0, xŽ . Ž . Ž .Ž .
aF 2 MrE f 0, U - `,Ž .1

Ž . Ž .and so 3.13 in the case 0 - a F 1 follows from Lemma 2.1 iii .
Ž .The integral formula 1.7 is, therefore, proved completely in the case when

the control measure m of the SaS random measure M is a probability
measure. In the general case of a s-finite control measure m, let h be a

Ž . Ž .Ž .probability measure on S equivalent to m. Let b x s dmrdh x , x g S.
˙� Ž . 4 � Ž .Then we can represent the process X t , t g R and its derivative X t ,

4 Ž . Ž . Ž .t g R as in 1.1 and 1.6 , with m replaced by h, f t, x replaced by
1r a ˜ 1r a˜ ˙ ˙ ˙Ž . Ž . Ž . Ž . Ž . Ž . Ž .f t, x s f t, x b x and f t, x replaced by f t, x s f t, x b x .

˜˜ ˙Clearly, f , f and h satisfy the conditions of the theorem. Therefore, the
Ž .integral formula 1.7 holds in the general case as well.

This completes the main part of the proof of the theorem. What remains
Ž .is to show the veracity of the asymptotic formula 1.13 . This, however, fol-

Ž . Ž .lows from Proposition 4.1 of the following section, with g x s f 0, x and1
˙Ž . Ž . Ž . Ž . Ž .g x s f 0, x , x g S. Observe that 4.3 and 4.4 follow from 1.11 and2

Ž . Ž .1.10 , correspondingly. Therefore, 1.13 is an immediate consequence of the
above proposition, and the proof of the theorem is complete. I

REMARK. Inspecting the assumptions of Proposition 4.1 in the next section
Ž . Ž .shows that one cannot dispense with conditions 1.10 and 1.11 in Theorem

Ž . Ž1.1. Condition 1.12 can, on the other hand, most likely be relaxed and, in
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.particular cases, replaced by neater conditions , either by using an argument
different from the uniform integrability one in our proof, or just by using a set

w xof conditions different from those given in Marcus 11 . In other words, the
Ž . Ž . Ž . Ž .conclusion 1.13 remains true whenever 1.7 , 1.10 and 1.11 hold. In
Ž . Ž . Ž .particular, 1.13 holds under 1.10 and 1.11 for continuously differentiable

w xstationary processes, by the result of Michna and Rychlik 14 .

4. The asymptotic behavior of an integral. In this section we deal
with the second step in the proof of Theorem 1.1}the asymptotic behavior of

Ž .the integral in the right-hand side of 1.7 . This is described in Proposition
4.1. This proposition may be of independent interest, and so our notation in
this section is to a certain degree independent of that of the previous section,
which is tied in more closely to the specific application of Proposition 4.1
there.

Ž . ŽLet U, W be a nondegenerate i.e., not concentrated on any proper
2 .subspace of R SaS random vector, 0 - a - 2, given in the form

U s g x M dx ,Ž . Ž .H 1
S

4.1Ž .
W s g x M dx ,Ž . Ž .H 2

S

where M is, as before, an SaS random measure on S with a control measure
a Ž .m, and g g L m , i s 1, 2. We denote the joint density of U and W by fi U, W

and the marginal densities by f and f accordingly. LetU W

`

4.2 I l s yf l, y dy, l G 0.Ž . Ž . Ž .H U , W
0

Ž .The main result of this section is the asymptotic behavior of I l as l ª `.

Ž . Ž .PROPOSITION 4.1. Let I l be given by 4.2 . If 0 - a - 1, assume that

ay1
4.3 g x g x m dx - `,Ž . Ž . Ž . Ž .H 2 1

S

while in the case a s 1 assume that

2 2
4.4 g x log 1 q g x rg x m dx - `.Ž . Ž . Ž . Ž . Ž .H ž /2 2 1

S

Ž . Ž .No extra assumptions are needed for 1 - a - 2. Then I l - ` for all l G 0,
and

1q1raa q 1
a ay1r2 yŽ1q1ra .r2 y1ra4.5 lim l I l s a 2 p G C k g , g ,Ž . Ž . Ž .a a 1 2ž /ž /2lª`

Ž .where C is given by 2.11 anda

ay1
4.6 k g , g s g x g x 1 g x g x ) 0 m dx ,Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .Ha 1 2 2 1 1 2

S

Ž .where here and below 1 ? is the usual indicator function.
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PROOF. Obviously,
< < <4.7 I l F f l E W U s l .Ž . Ž . Ž . Ž .U

Ž .The right-hand side of 4.7 is clearly finite if 1 - a - 2. In the case 0 - a - 1
Ž . Ž .the finiteness of the right-hand side of 4.7 under assumption 4.3 follows

w x Ž .from 4 , while in the case a s 1, the finiteness of the right-hand side of 4.7
Ž . w xunder the assumption 4.4 follows from 5 .

Assume for the moment that the control measure m of the SaS random
Ž .measure M in 4.1 is actually a probability measure on S. Then, as we have

Ž .done before, one can represent the random vector U, W in the form
`

y1raU s b G G g U ,Ž .Ýa j j 1 j
js1

`
y1raW s b G G g UŽ .Ýa j j 2 j

js1

4.8Ž .

Ž . Ž .the representation is, of course, in distribution , where b is given by 3.4 ,a

and where, as before, G , j G 1, G , j G 1, and U , j G 1, are three indepen-j j j
dent sequences of random variables, such that G , j G 1, are i.i.d. standardj
normal random variables, G , j G 1, are the arrival times of a unit ratej

Ž .Poisson process on 0, ` and U , j G 1, are i.i.d. S-valued random variablesj
with a common law m. We have seen before that, conditionally on G , j G 1,j
and U , j G 1, the random variables U and W are jointly normal, with zeroj
means and a variance-covariance matrix with elements

`
22 2 y2ras s b G g U ,Ž .Ý1 a j 1 j

js1
`

22 2 y2ras s b G g U ,Ž .Ý2 a j 2 j
js1

4.9Ž .

`
2 y2ras s b G g U g U .Ž . Ž .Ý12 a j 1 j 2 j

js1

Again, using the technique developed in the previous section, we conclude
Ž . Ž .by 3.6 and 3.7 that

2 2's 1 y r l2
I l s E exp yŽ . 2 2ž /ž /s 2p 2s 1 y rŽ .1 1

2
`

2s r l y2q E l exp y exp y dyH2 2 ž /2ž /ž /22ps 2s Ž .'ylrr s 1yr1 1 1

2 2's 1 y r l2s E exp y 2 2ž /ž /s 2p 2s 1 y rŽ .1 1

s r l2
2q E l exp y 1 r ) 0Ž .22 ž /'ž /2s2p s 11

4.10Ž .
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2
`

2s r l y2q E l exp y exp y dy1 r F 0Ž .H2 2 ž /2ž /ž /22ps 2s Ž .'ylrr s 1yr1 1 1

2 2
2s r l yŽ .'2 ylrr s 1yr1y E l exp y exp y dy1 r ) 0Ž .H2 2 ž /ž /ž /22ps 2s y`1 1

4

[ EC l .Ž .Ý i
is1

We will prove that

lim laEC lŽ .2
lª`

1q1raa q 1
ay1r2 yŽ1q1ra .r2 y1ras a 2 p G C k g , g ,Ž .a a 1 2ž /ž /2

4.11Ž .

and

4.12 lim laEC l s 0Ž . Ž .i
lª`

Ž .for i s 1, 3, 4, which will imply the conclusion of the proposition by 4.10 .
Ž .We start with the proof of 4.11 . We have

1 s l2 112
EC l s lE exp y 1 s ) 0 [ lH l ,Ž . Ž . Ž .2 12 13 2ž /' 'ž /s 2s2p 2p1 1

Ž .and so the proof of 4.11 reduces to proving that

1q1raa q 1
aq1 a y1r2 a y1ra4.13 lim l H l s a 2 p G C k g , g .Ž . Ž . Ž .1 a a 1 2ž /ž /2lª`

Ž .Observe that by 4.9

Ý` Gy2ra g U g U l2Ž . Ž .js1 j 1 j 2 jy1H l sb E exp yŽ .1 a 3r2 2` y2ra2 ž /` y2ra� 2Ý G g UŽ .js1 j 1 jÝ G g UŽ .ž /js1 j 1 j4.14Ž .
`

y2ra= 1 G g U g U )0 .Ž . Ž .Ý j 1 j 2 jž / /js1

Ž .Furthermore, we can change the representation in 4.9 in the same way as
was done in the proof of Theorem 1.1 to obtain

` `
y2 2 2ra y2ra y2ra4.15 b s , s s b G , G R ,Ž . Ž . Ý Ýa 1 12 d j j jž /

js1 js1

where this time
a

4.16 b s E g U ,Ž . Ž .1 1
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and R , j G 1, is an independent of the Poisson arrivals sequence of i.i.d.j
random variables, such that

R s g W rg W ,Ž . Ž .1 d 2 1

where W has a distribution which is absolutely continuous with respect to
the law of U , with the Radon]Nikodym derivative given by1

dF aW y1x s b g x .Ž . Ž .1dFU1

Once again, we have

ay1y1< <4.17 E R s b E g U g U - `.Ž . Ž . Ž .1 2 1

Ž Ž . .This is trivial for 1 F a - 2 and follows from 4.3 if 0 - a - 1.
Therefore,

Ý` Gy2raR l2
js1 j jy1 y1raH l s b b E exp yŽ .1 a 3r2 2ra ` y2ra

` y2ra ž /2b Ý Gž js1 jÝ GŽ .js1 j

=
`

y2ra1 G R ) 0Ý j jž / /js1

4.18Ž .

[ by1by1raEZ.a

Ž . Ž .We now decompose H l in the following way. For a 1 k a - u - 2 and1
0 - « - 1 write

`
y1 y1ra y2ra uH l s b b E Z1 G F lŽ . Ý1 a jž /ž /js1

` y2raG1y1 y1ra y2ra uq b b E Z1 G ) l , F 1 y «Ýa j ` y2raž /ž /Ý Gjs1 jjs14.19Ž .
` y2raG1y1 y1ra y2ra uq b b E Z1 G ) l , ) 1 y «Ýa j ` y2raž /ž /Ý Gjs1 jjs1

[ H l q H l q H l .Ž . Ž . Ž .11 12 13

Ž .In the sequel we will be using, in addition to 2.12 , the following elementary
Ž .1rŽ2yu .observation. For any p ) 0, u - 2 and l ) 2 p ,

4.20 sup zyp exp yl2r2 z s lyu p exp yl2yur2 .Ž . Ž . Ž .
u0-zFl
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Ž .Using 4.20 we immediately conclude that for all l big enough

1 l2
y1 y1ra < <H l F b b E R E exp yŽ .11 a 1 1r2 2ra ` y2ra

` y2ra ž /2b Ý Gž js1 jÝ GŽ .js1 j

=
`

y2ra u1 G F lÝ jž / /js1

F Clyu r2exp yl2yurC ,Ž .
where C is a finite positive constant that in the sequel may be expected to
change from line to line. We see that

4.21 lim laq1H l s 0.Ž . Ž .11
lª`

Let
` y2raG1y2ra uA s G ) l , F 1 y « .Ý j ` y2ra½ 5Ý Gjs1 jjs1

Ž .Observe that by Lemma 2.1 i

`
y2ra u yu minŽ1 , a .P A F P G ) «l F Cl ,Ž . Ý jž /

js2

and so

1 l2
y1 y1ra < <H l F b b E R E exp y 1Ž .12 a 1 A1r2 2ra ` y2ra

` y2ra ž /2b Ý Gž /js1 jÝ GŽ .js1 j

1r2
21 l 1r2F C E exp y P AŽ .Ž .` y2ra 2ra ` y2raž /ž /ž /Ý G b Ý Gjs1 j js1 j

F ClyŽ aq2.r2lyu minŽ1 , a .r2 ,
Ž .by Lemma 2.2 i . Since u ) 1 k a , we obtain immediately that

4.22 lim laq1H l s 0.Ž . Ž .12
lª`

Ž . Ž . Ž .We conclude by 4.21 and 4.22 that 4.13 reduces to proving that

1q1raa q 1
aq1 a y1r2 a y1ra4.23 lim l H l s a 2 p G C k g , g .Ž . Ž . Ž .13 a a 1 2ž /ž /2lª`

We further decompose H as follows. Set13

` ` y2raG1y2ra y2ra uB s G R ) 0, G ) l , ) 1 y « .Ý Ýj j j ` y2ra½ 5Ý Gjs1 jjs1 js1
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We have

Gy2raR l2
1 1y1 y1raH l s b b E exp y 1Ž .13 a B3r2 2ra ` y2ra

` y2ra ž /2b Ý Gž /js1 jÝ GŽ .js1 j

Ý` Gy2raR l2
js2 j jy1 y1raq b b E exp y 1a B3r2 2ra ` y2ra

` y2ra ž /2b Ý Gž /js1 jÝ GŽ .js1 j

4.24Ž .

[ H l q H l .Ž . Ž .131 132

Ž . Ž .We will see that H l is the main term in 4.23 . We start by showing131
Ž . Ž .that H l is small. Specifically, we claim that there is a C g 0, ` such132

that
aq14.25 lim sup l H l F C« .Ž . Ž .132

lª`

Indeed,

Ý` Gy2ra l2
js2 j

< <H l F CE R E exp yŽ .132 1 3r2 2ra ` y2ra
` y2ra ž /2b Ý Gž js1 jÝ GŽ .js1 j

`
y2ra y2ra=1 G ) 1 y « GŽ . Ý1 jž / /js1

1 l2

F C« E exp y1r2 2ra ` y2ra
` y2ra ž /2b Ý Gž /js1 jÝ GŽ .js1 j

F C«lyŽ aq1.

Ž . Ž .once again by Lemma 2.2 i . This establishes 4.25 .
Ž .We now consider H l , which we decompose once more. Let131

Gy2raR l2
1 1y1 y1raZ s b b exp y .1 a 3r2 2ra ` y2ra

` y2ra ž /2b Ý Gjs1 jÝ GŽ .js1 j

Ž .For a d g 0, 1 write

< < < <H l s E Z 1 1 R ) d q E Z 1 1 R F dŽ . Ž . Ž .Ž . Ž .131 1 B 1 1 B 1
4.26Ž .

[ H l q H l .Ž . Ž .1 2

Note that, as before,

H lŽ .2

1 l2

< < < <F CE R 1 R F d E exp yŽ .Ž .1 1 1r2 2ra ` y2ra
` y2ra ž /2b Ý Gž /js1 jÝ GŽ .js1 j

F Ch d lyŽ aq1. ,Ž .
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Ž . Ž < < Ž < < .. Ž .where h d s E R 1 R F d and h d ª 0 as d ª 0. Therefore,1 1

aq14.27 lim sup l H l F Ch d .Ž . Ž . Ž .2
lª`

Consider now H and write1

Gy2raR l2
1 1y1 y1raH l s b b E exp yŽ .1 a 3r2 2ra ` y2ra

` y2ra ž /2b Ý Gž js1 jÝ GŽ .js1 j

` `
y2ra u y2ra y2ra=1 R )d , G )l , G ) 1y« GŽ .Ý Ý1 j 1 jž / /js1 js1

Gy2raR l2
1 1y1 y1raqb b E exp ya 3r2 2ra ` y2ra

` y2ra ž /2b Ý Gž js1 jÝ GŽ .js1 j
4.28Ž .

` `
y2ra u y2ra y2ra=1 G ) l , G ) 1 y « GŽ .Ý Ýj 1 jž /

js1 js1

`
y2ra< <= y1 R ) d q 1 R ) d , G R ) 0Ž . Ý1 1 j jž /ž /js1

[ H l q H l .Ž . Ž .11 12

We claim that
aq14.29 lim sup l H l s 0.Ž . Ž .12

lª`

To this end denote

Gy2raR l2
1 1y1 y1raZ s b b exp y2 a 3r2 2ra ` y2ra

` y2ra ž /2b Ý Gjs1 jÝ GŽ .js1 j

` `
y2ra u y2ra y2ra= 1 G ) l , G ) 1 y « GŽ .Ý Ýj 1 jž /

js1 js1

and observe that
`

y2raH l F E Z 1 R ) d , G R F 0Ž . Ý12 2 1 j jž /ž /js1

`
y2raq E Z 1 R - yd , G R ) 0Ý2 1 j jž /ž /js1

y2ra < < 2G R l1 1F CE exp y3r2 2ra ` y2ra
` y2ra ž /2b Ý Gž js1 jÝ GŽ .js1 j

`
y2ra y2ra y2ra u< <=1 G R ) d G , G ) 1 y « lŽ .Ý j j 1 1ž / /js2
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y2ra < < 2G R l1 1F CE exp y3r2 2ra ` y2ra
` y2ra ž /2b Ý Gž js1 jÝ GŽ .js1 j

=
`

y2ra u< <1 G R ) d 1 y « l .Ž .Ý j jž / /js2

Now define
`

y2ra u< <B s G R ) d 1 y « l .Ž .Ý1 j j½ 5
js2

Ž . Ž . yu minŽ1, a .It follows once again from Lemma 2.1 i that P B F Cl , and so1
Ž . Ž .4.29 follows at once as in 4.21 .

Ž .It only remains therefore to consider H l . We have11

y1 y1raH l s b b E R 1 R ) dŽ . Ž .Ž .11 a 1 1

Gy2ra l2
1

= E exp y3r2 2ra ` y2ra
` y2ra ž /2b Ý Gž js1 jÝ GŽ .js1 j

4.30Ž .
` `

y2ra u y2ra y2ra=1 G ) l , G ) 1 y « GŽ .Ý Ýj 1 jž / /js1 js1

[ by1by1raE R 1 R ) d T l .Ž . Ž .Ž .a 1 1

Observe that

4.31 1 y « T l F T l F T l ,Ž . Ž . Ž . Ž . Ž .q q

where

y1r2 2` l
y2raT l s E G exp yŽ . Ýq j 2ra ` y2raž / ž /2b Ý Gž js1 jjs1

` `
y2ra u y2ra y2ra=1 G ) l , G ) 1 y « G .Ž .Ý Ýj 1 jž / /js1 js1

Ž . Ž .It follows from our derivation of 4.21 and 4.22 that

lim laq1T lŽ .q
lª`

y1r2 2` l
aq1 y2ras lim l E G exp yÝ j 2ra ` y2raž / ž /2b Ý Gž /lª` js1 jjs1

4.32Ž .

a a q 1 Ž .aq1 r22ras G 2b ,Ž .ž /2 2



LEVEL CROSSINGS OF STABLE PROCESSES 485

Ž .where to compute the limit we have used Lemma 2.2 i and the fact that the
` y2ra y2ra Ž w x.scale parameter s of Ý G is equal to C see Theorem 1.4.5 of 19 .js1 j a r2
Ž . Ž . Ž . Ž . Ž .We now conclude by 4.25 , 4.27 , 4.29 and 4.30 ] 4.32 that
a aq1 Ž .aq1 r22ra y1 y1rayC«yCh d q 1y« G 2b b b E R 1 R )dŽ . Ž . Ž .Ž .Ž . a 1 1ž /2 2

F lim inf laq1H l F lim sup laq1H lŽ . Ž .13 13
lª` lª`

a a q 1 Ž .aq1 r22ra y1 y1raF C« q Ch d q G 2b b b E R 1 R ) dŽ . Ž .Ž .Ž . a 1 1ž /2 2
for any 0 - « , d - 1. Letting « and d go to zero, we conclude that

a a q 1 Ž .aq1 r2aq1 2ra y1 y1ralim l H l s G 2b b b E RŽ . Ž .Ž .13 a 1 qž /2 2lª`

1q1raa q 1
a y1r2 a y1ras a 2 p G Caž /ž /2

=
ay1

g x g x 1 g x g x ) 0 m dx ,Ž . Ž . Ž . Ž . Ž .Ž .H 2 1 1 2
S

Ž . Ž .thus proving 4.13 and so 4.11 as well.
Ž .It remains to prove 4.12 for i s 1, 3, 4. We start with i s 1. We now

consider separately the three cases, 1 - a - 2, 0 - a - 1 and a s 1.
Assume first that 1 - a - 2. Clearly,

1 s l2 12
4.33 EC l F E exp y [ G l .Ž . Ž . Ž .1 2 2 2ž /ž /2p s 2p2 s y s rsŽ .1 1 12 2

Observe that, changing a variable, we can write

4.34 s 2 , s 2 , s s X , 0, 0 q C s2 , s2 , s ,Ž . Ž .Ž . Ž .1 2 12 d 1 2 12

Ž .with the terms in the right-hand side of 4.34 being independent, where
Ž .C ) 0 is a constant, X has an S s , 0, 0 distribution withar2 X

aa r2s s E g U 1 g U s 0Ž . Ž .Ž .Ž .X 1 2

and
`

2 y2ra 2s s G V ,Ý1 j j
js1

`
2 y2ras s G ,Ý2 j

js1
4.35Ž .

`
y2ras s G V .Ý12 j j

js1

Here V , j G 1 is an independent of the Poisson arrivals sequence of i.i.d.j
random variables such that

˜ ˜V s g W rg W ,Ž . Ž .1 d 1 2
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˜where W has a distribution which is absolutely continuous with respect to
the law of U , with the Radon]Nikodym derivative given by1

dF ˜ aW y1˜x s b g xŽ . Ž .2dFU1

˜ a< Ž . <and b s E g U .2 1
Therefore,

s l2
21r24.36 G l s C E exp y .Ž . Ž . 1r2 2 2 22 ž /ž /2 Cs q X y Cs rsŽ .1 12 2Cs q XŽ .1

Observe that for all a, b ) 0

y1r2 2E X q a q b exp yl r2 X q aŽ . Ž .Ž .Ž .
y1r2 2s E X q a q b exp yl r2 X q a 1 X F aŽ . Ž . Ž .Ž .Ž .

4.37Ž .
y1r2 2q E X q a q b exp yl r2 X q a 1 X ) aŽ . Ž . Ž .Ž .Ž .

y1r2 2 y1r2 2F a q b exp yl r4a q E X exp yl r4X .Ž . Ž . Ž .Ž .
Ž .Therefore, using 4.37 with

a s C s2 y s2 rs2 ,Ž .1 12 2

b s Cs2 rs2
12 2

Ž .and Lemma 2.2 i , we conclude that

s l2
2yŽaq1.4.38 G l F Cl Es q CE exp y .Ž . Ž . 2 2 2 2ž /ž /s C s y s rsŽ .1 1 12 2

Recall that C stands for a finite positive constant that may change from line
Ž .to line. Therefore, 4.12 with i s 1 will follow if we show that

s l2
2a4.39 lim l E exp y s 0.Ž . 2 2 2ž /ž /s s y s rslª` 1 1 12 2

Ž .Observe that by 2.12

s l2
2

E exp y 2 2 2ž /ž /s s y s rsŽ .1 1 12 2

l2 l2
y1F E s exp y s exp y2 1 22 2 2 ž /ž / ž /ž /2 s2 s y s rsŽ . 11 12 2

4.40Ž .

l2
y1F Cl E s exp y ,2 ž /ž /2Z
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where Z s s2 y s2 rs2. We have1 12 2

22 ` y2ra`s Ý G VŽ .12 js1 j j2 y2ra 2Z s s y s G V yÝ1 j j2 ` y2ras Ý G2 js1 jjs1

y1` ` `
y2ra y2ra y2ra 2 2 y2ras G G G V q V GÝ Ý Ýj 1 j j 1 jž / ž /

js1 js2 js2

` `
y2ra 2 y2raq G V GÝ Ýj j j

js2 js2

2` `
y2ra y2ra y2ray2G V G V y G VÝ Ý1 1 j j j jž /

js2 js2

4.41Ž .

y1` ` ` `
2y2ra y2ra y2ra y2ra 2 y2ras G G G V y V q G V GŽ .Ý Ý Ý Ýj 1 j 1 j j j jž / žjs1 js2 js2 js2

2`
y2ray G V .Ý j jž / /js2

` `
2y2ra y2ra 2F G V y V q G V [ Z .Ž .Ý Ýj 1 j j j 0

js2 js2

In particular,

s l2 l2
2 y14.42 E exp y F Cl E s exp y .Ž . 22 2 2 ž /ž / ž /ž /s 2Zs y s rsŽ .1 01 12 2

Note that

` `
2 y2ra y2ra 2P Z ) l F P V G ) lr4 q P G V ) lr6Ž . Ý Ý0 1 j j jž / ž /4.43Ž . js2 js2

ya r2s o lŽ .

Ž . Žby Lemma 2.1 i . Since the conditional distribution of G given FF s s G ,1 G 2 n
. Ž .n G 2 is uniform in the interval 0, G , we conclude that2

1r2`
y1ra y2raE s N FF F E G N FF q GŽ . Ž . Ý2 G 2 1 G 2 jž /

js2

1r2`
y1ra y2ras CG q G [ D ,Ý2 jž /

js2
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Ž . Ž . Ž ya .and by Lemma 2.1 i , P D ) l s o l as l ª `. Therefore,

l2 l2

E s exp y F E D exp y2 ž / ž /ž / ž /2Z 2Z0 0

l2
1r22 1yaF E D q Z exp y s o lŽ .Ž .0 2ž /ž /2 D q ZŽ .0

Ž . Ž .by Lemma 2.2 ii . This proves 4.12 with i s 1 in the case 1 - a - 2.
Ž .We now turn to the proof of 4.12 for i s 1 in the case 0 - a - 1.

Inspecting the above proof for 1 - a - 2 shows that the only problem in the
present case is that Es s CEs s `. Therefore, we start with the following2 2
decomposition. For an M ) 0 write

21 s l2 2'EC l s E 1 s ) M 1 y r exp yŽ . Ž .1 2 2 2ž /ž /2p s 2s 1 y rŽ .1 1

21 s l2 2'q E 1 s F M 1 y r exp yŽ .2 2 2ž /ž /2p s 2s 1 y rŽ .1 1

4.44Ž .

[ G l q G l .Ž . Ž .1 2

The above remark shows that for any M ) 0,

lim laG l s 0.Ž .2
lª`

Ž .Therefore, 4.12 with i s 1 will follow in this case once we establish that for
any « ) 0 there is an M ) 0 so big that

4.45 lim sup laG l F « .Ž . Ž .1
lª`

Ž .We use 2.12 to conclude that

s Ž .2 1qa r22G l s CE 1 s ) M 1 y rŽ . Ž . Ž .1 2ar21ya a 2ž s s 1 y rŽ .ž /1 1

=
l2

exp y 2 2ž /2s 1 y r /Ž .1

s Ž .2 1qa r2ya 2F Cl E 1 s ) M 1 y r .Ž . Ž .21yaž /s1

Therefore,
s Ž .2 1qa r2a 2lim sup l G l F CE 1 s ) M 1 y r ,Ž . Ž . Ž .1 21yaž /slª` 1

Ž .and so 4.45 will follow once we prove that
s Ž .2 1qa r224.46 E 1 y r - `.Ž . Ž .1yaž /s1
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Ž .To this end we note that, in the case 0 - a F 1, 4.15 extends to

` ` `
y2 2 2 2ra y2ra y2ra 2 y2ra4.47 b s , s , s s b G , G R , G R .Ž . Ž . Ý Ý Ýa 1 2 12 d j j j j jž /

js1 js1 js1

Ž Ž . Ž .Note that it follows by 4.3 and 4.4 that in this case s cannot have a2
. Ž .component independent of s . Therefore, we can write by 4.47 , for a fixed1

K ) 1,

Ks Ž . 1r22 1qa r22 y1 2 y1< < < <E 1 y r F E G R 1 y r q E G RŽ . Ž . Ýž /1 1 j j1yaž / ž /s1 js2

1r2
` y2ra 2Ý G RŽ .jsKq1 j jq E Ž .1ya r2` y2ra� 0Ý GŽ .js1 j

4.48Ž .

[ M q M q M .1 2 3

Ž .It follows from 4.17 that M - ` for every K G 2. Furthermore,2

Ý` Gy1ra
jsKq1 j

< <M F E R E3 1 Ž .1ya r2` y2raž /Ý GŽ .js1 j

1r2Ž .2 y 1ya` `
y1ra y2raF C E G E G - `Ý Ýj jž / ž /ž /jsKq1 js1

as long as K is large enough, once again because positive a-stable random
Ž .variables have negative moments of all orders. Therefore, 4.46 will follow if

Ž .we establish that M - `. To do so we recall that by 4.41 we have1

` ` `1 22 y2ra y2ra y2ra 2 y2ra4.49 1yr F G G R yR q G R G .Ž . Ž .Ý Ý Ý1 j 1 j j j j2 2 ž /s s1 2 js2 js2 js2

Therefore,

1r2yŽ1q1ra . `< <G R1 1 2y2raM F E G R y RŽ .Ý1 j 1 jž /s sž /1 2 js2
4.50Ž .

1r2y1 ` `< <G R1 1 y2ra 2 y2raqE G R G [ M q M .Ý Ýj j j 11 12ž /s sž /1 2 js2 js2

Notice that

1r2 1r2 1r2` ` `
2y2ra 1r2 y2ra 2 1r2 y2ra< <G R y R F 2 G R q 2 R G ,Ž .Ý Ý Ýj 1 j j j 1 jž / ž / ž /

js2 js2 js2
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and so we can bound M from above as follows:11

1r2 1r2
` y2ra 2 ` y2raÝ G R Ý Gjs2 j j js2 jy1 y1< < < <M F CE G R q CE G R11 1 1 1 1` y2ra 2 ` y2raž / ž /Ý G R Ý Gž / ž /js1 j j js1 j

1r2 1r2
` y2ra 2 ` y2raÝ G R Ý GŽ . Ž .js2 j j js2 j1ya< <F CE R q CE1 Ž . Ž .1ya r2 1ya r2` y2ra 2 ` y2ra� 0 � 0Ý G R Ý GŽ . Ž .js1 j j js1 j

ar2 ar2` `
1ya y2ra 2 y2ra< <F CE R G R q CE G - `Ý Ý1 j j jž / ž /ž / ž /js2 js2

Ž . Ž .by 4.17 and Lemma 2.1 i . Furthermore,
1r2

` y2raÝ Gjs2 jy1 < <M F E G R - `12 1 1 ` y2raž /Ý Gž /js1 j

Ž . Ž .as above. This proves 4.46 , and so we have proved 4.12 with i s 1 in the
case 0 - a - 1.

This leaves us only with the case a s 1 to consider. The argument of
0 - a - 1 works verbatim in the present case, provided we can show that for
a K large enough,

1r2`
y2 24.51 E G R - `.Ž . Ý j jž /ž /jsK

Ž .However, it follows from 4.4 that

< < 2E R log 1 q R - `,Ž .Ž .1 1

Ž .and so we can use Lemma 2.1 ii to conclude that for K G 3,
1r2 1r2` `

y2 2 y2 2E G R F CE j R - `.Ý Ýj j jž / ž /ž / ž /jsK jsK

Ž . Ž .This proves 4.51 , and so 4.12 with i s 1 has been proved in all cases.
Ž .We now turn to proving 4.12 for i s 3 and i s 4. Using the formula

`
2 y1 2exp yy r2 dy F t exp yt r2 , t ) 0,Ž . Ž .H

t

we immediately conclude that
2

`
2s r l y2

EC l s E l exp y exp y dy 1 r F 0Ž . Ž .H3 2 2 ž /2ž /ž /22ps 2s Ž .'ylrr s 1yr1 1 1

2 2's 1 y r l2F E exp y 1 r F 0 F EC l ,Ž . Ž .12 2ž /ž /s 2p 2s 1 y rŽ .1 1
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Ž .and so 4.12 for i s 3 follows from the already proven case i s 1. In exactly
the same manner we see that

2 2
2s r l yŽ .'2 ylrr s 1yr1E C l s E l exp y exp y dy 1 r ) 0Ž . Ž .H4 2 2 ž /ž /ž /22ps 2s y`1 1

2 2's 1 y r l2F E exp y 1 r ) 0 F EC l ,Ž . Ž .12 2ž /ž /s 2p 2s 1 y rŽ .1 1

Ž .and so 4.12 for i s 4 also follows from the case i s 1.
This completes the proof of the proposition in the case when the control

measure m of the SaS random measure M is a probability measure. In the
general case of a s-finite control measure m, we proceed as in the proof of
Theorem 1.1. That is, let h be a probability measure on S equivalent to m.

Ž . Ž .Ž . Ž .Let b x s dmrdh x , x g S. Then we can represent in distribution the
Ž .random vector U, W in the form

1raU s g x b x M dx ,Ž . Ž . Ž .H 1 1
S

4.52Ž .
1raW s g x b x M dx ,Ž . Ž . Ž .H 2 1

S

where M is now an SaS random measure on S with a control measure h.1
Observe that we have reduced the situation to that of the control measure
being a probability measure, with the new functions

1rag x s g x b xŽ . Ž . Ž .˜1 1

and

1rag x s g x b x .Ž . Ž . Ž .˜2 2

Ž . Ž . ŽIt is obvious that the functions g and g satisfy 4.3 or 4.4 with m˜ ˜1 2
. Ž .replaced by h whenever g and g do. Therefore, we have 4.5 with1 2

ay1
k g , g s g x g x 1 g x g x ) 0 h dxŽ . Ž . Ž . Ž . Ž . Ž .Ž .˜ ˜ ˜ ˜Ha 1 2 2 1 1 2

S

ay1
= g x g x 1 g x g x ) 0 m dx ,Ž . Ž . Ž . Ž . Ž .Ž .H 2 1 1 2

S

and so the proposition has been proved in its full generality. I

REMARK. As mentioned above, Proposition 4.1 is of interest independent
Ž w x.of its use in the proof of Theorem 1.1. It is known see 8 that the conditional

law of Wrl given U s l converges, as l ª `, to the normalized spectral
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Ž . Ž . Žmeasure mapped to the real line of the SaS random vector U, W thus
showing that the set of conditional distributions of bivariate stable random
vectors is weakly dense in the set of all univariate probability

.distributions}very much unlike the normal case . Proposition 4.1 gives, in
the symmetric case, convergence of certain moments of these conditional
distributions. Indeed, it shows that the expectation of the positive part of

wWrl given U s l which is finite even in the case 0 - a F 1 under the
Ž . Ž .xassumptions 4.3 and 4.4 converges to the expectation of the positive part

of a random variable distributed according to the normalized spectral mea-
sure, mapped to the real line.

Moreover, an argument identical to that of Proposition 4.1 shows that both
the expectation of the whole of Wrl, given U s l, and the expectation of the
absolute value of Wrl, given U s l, which are finite under the same assump-
tions, converge, correspondingly, to the expectation and the expectation of the
absolute value, of the above random variable distributed according to the
normalized spectral measure, mapped to the real line.
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