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MAXIMIZING THE PROBABILITY OF A PERFECT HEDGE1

By Gennady Spivak and Jakša Cvitanić

Goldman Sachs & Co. and Columbia University

In the framework of continuous-time, Itô processes models for financial
markets, we study the problem of maximizing the probability of an agent’s
wealth at time T being no less than the value C of a contingent claim
with expiration time T. The solution to the problem has been known in
the context of complete markets and recently also for incomplete markets;
we rederive the complete markets solution using a powerful and simple
duality method, developed in utility maximization literature. We then show
how to modify this approach to solve the problem in a market with partial
information, the one in which we have only a prior distribution on the
vector of return rates of the risky assets. Finally, the same problem is solved
in markets in which the wealth process of the agent has a nonlinear drift.
These include the case of different borrowing and lending rates, as well
as “large investor” models. We also provide a number of explicitly solved
examples.

1. Introduction. In a complete financial market any contingent claim C
can be replicated on a finite-time horizon �0�T� starting with initial capital
x equal to the “Black–Scholes” price C�0� of the claim. In the case x < C�0��
however, it is not a priori clear what strategy should be used to offset the
future liability C. One possible criterion is to maximize the probability of a
“perfect hedge,” P�Xx�π�T� ≥ C� over the set of admissible portfolio processes
π�·�, where Xx�π�·� is the wealth process of the agent starting with initial
capital x and investing according to the investment strategy π�·�. In a special
case of a one-dimensional Brownian model with zero interest rate, volatility 1
and constant claim C, this problem was solved in Kulldorff (1993) and Heath
(1993). In Browne (1996) the problem is solved in the context of more general
claims, and a general, deterministic-coefficients, multidimensional Brownian
motion model, using a PDE approach. The solution in the general case of con-
tinuous semimartingales and an arbitrary European claim C is provided in
Föllmer and Leukert (1998). The latter paper uses the methodology of test-
ing statistical hypothesis (Neyman–Pearson lemma), first suggested in Heath
(1993) [see also Karatzas (1997)]. It also analyzes the problem in the difficult
context of incomplete markets.

In this paper we start by introducing the problem and rederiving the solu-
tion in the context of a general Itô processes-type model in Section 2. We show
that the problem can be solved in an elegant and straightforward way by using
the well-known duality approach from the literature on utility maximization
[the duality approach to utility maximization problems was implicitly used in
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Pliska (1986), Karatzas, Lehoczky and Shreve (1987), Cox and Huang (1989),
in the case of complete markets, and explicitly in He and Pearson (1991),
Karatzas, Lehoczky, Shreve and Xu (1991), Xu and Shreve (1992), Cvitanić
and Karatzas (1992) for incomplete markets with constraints; see Cvitanić
(1997b) or Karatzas (1996) for an overview and further references]. The same
approach has been used recently in Cvitanić and Karatzas (1998) for the risk-
management problem of minimizing the expected loss E�C −Xx�π�T��+. We
also extend results available in most of the existing literature by consider-
ing general margin requirements of the type Xx�π�·� ≥ A�·� for some given
process A�·�, not necessarily equal to zero [see also Browne (1996)].

In Section 3 we apply this technique to a market with partial observations.
Namely, we assume that the vector of the mean return rates of the risky assets
is an unobservable random variable with a known a priori distribution that is
being updated as the agent observes the asset prices. We describe the optimal
solution and calculate it explicitly in the case of normally distributed return
rates. This “Bayesian” problem is studied in detail in Karatzas (1997), in the
special case of one stock, zero interest rate, volatility 1 and a constant claim C.
Lakner (1994), Browne and Whitt (1996) and Karatzas and Zhao (1998) study
utility maximization problems under partial observations.

In Section 4 we consider the case of “nonlinear market dynamics” in which
the drift of the wealth process Xx�π�·� is a nonlinear (concave) function of the
investment strategy of the agent. This includes the examples of different in-
terest rates for borrowing and lending, as well as a case of a “large investor”
whose policy can influence market prices. The approach is again based on the
duality methodology developed in utility maximization contexts. In particu-
lar, we follow ideas of Cvitanić (1997a) and Cuoco and Cvitanić (1998). We
formulate a dual problem and use its optimal solution to construct an optimal
solution to the primal problem.

2. A complete market model. We put ourselves in the framework of
a financial market � that consists of one riskless asset, called bank ac-
count, and several risky assets, called stocks. The price processes S0�·� and
S1�·�� � � � � Sd�·� of these assets are modeled by the following dynamics:

dS0�t� = S0�t�r�t�dt� S0�0� = 1

dSi�t� = Si�t�
[
bi�t�dt+

d∑
j=1

σij�t�dWj�t�
]
�

Si�0� = si > 0
 i = 1� � � � � d�

(2.1)

The standard Brownian motion W�·� = �W1�·�� � � � �Wd�·��′ in R
d is defined

on a complete probability space ���� �P�, endowed with a filtration F =
�� �t�0≤t≤T, the P-augmentation of the filtration � W�t� �= σ�W�s�
0 ≤ s ≤
t�� 0 ≤ t ≤ T� generated by W�·�. The market coefficients r�·� (interest rate),
b�·� = �b1�·�� � � � � bd�·��′ (vector of stock return rates) and σ�·� = �σij�·�1≤i� j≤d
(volatility matrix) are all assumed to be progressively measurable with respect
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to F. Moreover, the matrix σ�·� is assumed to be invertible, and all processes
r�·�, b�·�, σ�·�, σ−1�·� are assumed to be bounded, uniformly in �t�ω� ∈ �0�T�×
��

We introduce the “risk premium” process,

θ0�t� �= σ−1�t�[b�t� − r�t�1̃]� 0 ≤ t ≤ T�(2.2)

where 1̃ = �1� � � � �1�′ ∈ R
d, that is then also bounded. Consequently, the P-

supermartingale,

Z0�t� �= exp
[
−
∫ t

0
θ′0�s�dW�s� − 1

2

∫ t

0
�θ0�s��2 ds

]
� 0 ≤ t ≤ T(2.3)

is actually a P-martingale, and

P0��� �= E
[
Z0�T�1�

]
� � ∈ �(2.4)

is a probability measure equivalent to P. We also introduce the discount
process,

γ0�t� �=
1

S0�t�
= exp

(
−
∫ t

0
r�s�ds

)
� 0 ≤ t ≤ T�(2.5)

The discounted stock prices γ0�·�S1�·�� � � � � γ0�·�Sd�·� are martingales under
the equivalent martingale measure P0, and the process

W0�t� �=W�t� +
∫ t

0
θ0�s�ds� 0 ≤ t ≤ T(2.6)

is a P0-Brownian motion, by the Girsanov theorem. This is a standard, contin-
uous-time complete financial market model.

Imagine now a (“small”) agent in this market with initial capital x who
has to choose, at each time t ∈ �0�T�, which amount πi�t� to invest in each of
the stocks i = 1� � � � � d. He invests the amount X�t� −∑d

i=1 πi�t� in the bank
account, at time t. Here X�·� ≡ Xx�π�·� denotes his wealth process, which
satisfies the equation

dX�t� =
[
X�t� −

d∑
i=1

πi�t�
]
r�t�dt+

d∑
i=1

πi�t�
[
bi�t�dt+

d∑
j=1

σij�t�dWj�t�
]

= r�t�X�t�dt+ π ′�t�σ�t�dW0�t�
 X�0� = x�

or, by Itô’s rule, in discounted form,

d
(
γ0�t�X�t�

) = γ0�t�π ′�t�σ�t�dW0�t�
 X�0� = x�(2.7)

More formally, we have the following definition.

Definition 2.1. (i) Process π� �0�T�×�→ R
d is a portfolio process if it is

F-progressively measurable and satisfies
∫ T

0 �π�t��2 dt <∞, a.s.
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(ii) For a given portfolio process π�·�, the process X�·� ≡ Xx�π�·� defined
by (2.7) is called the wealth process corresponding to portfolio π�·� and initial
capital x.

(iii) Given a random variable A ∈ L2���� �T��P�, a portfolio process π�·�
is called admissible for the initial capital x, and we write π�·� ∈ � �x�, if

Xx�π�t� ≥ S0�t�E0
[
γ0�T�A

∣∣� �t�] =� A�t�� 0 ≤ t ≤ T(2.8)

holds almost surely. Here E0 denotes expectation with respect to the proba-
bility measure P0 of (2.4). ✷

Remark 2.1. Standard results on complete financial markets imply that

A�0� �= E0
[
γ0�T�A

] ≤ x(2.9)

in (2.8) is the “Black–Scholes price” of the contingent claim A at time t = 0;
namely, it is equal to the minimum of those values of the initial capital y, for
which there exists a “tame” portfolio π�·� with Xy�π�T� ≥ A, a.s. Accordingly,
we call A�t� the “Black–Scholes price” of A at time t, for any given t ∈ �0�T�.
The bound of (2.8) can be interpreted as a margin requirement: the value
Xx�π�·� of the portfolio π�·� is never allowed to fall below the value A�·� ≡
XA�0�� πA�·� of the “Black–Scholes hedging portfolio” πA�·� for the contingent
claim A, where

γ0�t�A�t� = E0
[
γ0�T�A

∣∣� �t�]
= A�0� +

∫ t

0
γ0�u�π ′A�u�σ�u�dW0�u�� 0 ≤ t ≤ T�

(2.10)

Remark 2.2. We note from (2.7) and (2.10) that γ0�t��Xx�π�·� − A�·�� is
a P0-local martingale, and it is nonnegative by (2.8). It is therefore a P0-
supermartingale. Since (2.10) implies that γ0�·�A�·� is a P0-martingale, we
deduce that γ0�·�Xx�π�·� is a P0-supermartingale, and thus

E0
[
γ0�T�Xx�π�T�] ≤ x ∀π�·� ∈ � �x��(2.11)

Imagine now that, at time t = T, the agent has to deliver a payoff described
by a contingent claim C, a random variable in L2���� �T��P�, with

P�C ≥ A� = 1 and P�C > A� > 0�(2.12)

We denote the Black–Scholes price of C by

C�0� �= E0
[
γ0�T�C

]
�(2.13)

C�t� �= S0�t�E0
[
γ0�T�C

∣∣� �t�]
= S0�t�

(
C�0� +

∫ t

0
γ0�u�π ′C�u�σ�u�dW0�u�

)
� 0 ≤ t ≤ T�

(2.14)

By Remark 2.1, if x ≥ C�0�, we have

Xx�π�T� ≥ C a.s. for some π�·� ∈ � �x��(2.15)
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In particular, if we have x = C�0� and π�·� ≡ πC�·�, the Black–Scholes hedging
portfolio of the contingent claim C in (2.14), we get Xx�π�T� = C, a.s.

In the case A�0� ≤ x < C�0�� it is no longer possible to have the inequality
of (2.15) with probability 1. Instead, we are going to study the problem of
maximizing the probability of a perfect hedge,

V�x� ≡ V�x
C� �= sup
π�·�∈� �x�

P
[
Xx�π�T� ≥ C

]
�(2.16)

Remark 2.3. The following is an interesting margin requirement that also
turns out to be relatively easy to deal with:

Xx�π�t� ≥ C�t� − kS0�t� for all 0 ≤ t ≤ T(2.17)

for some given, fixed k > 0. This means that the value of the hedging portfolio
π�·� is never allowed to fall below the current price C�·� of the contingent claim
[as in (2.14)], by more than the value of k dollars invested (at time zero) in
the bank account. The requirement (2.17) is the special case of (2.8), if we set

A = C− kS0�T��(2.18)

We concentrate now on the stochastic control problem (2.16). If x ≥ C�0�, it
follows from (2.15) that V�x� = 1. We therefore analyze only the case A�0� ≤
x < C�0�.

We use a duality approach, familiar from utility maximization literature,
and start with the function U�z� = 1�z≤0 and its (random, � �T�-measurable)
Legendre–Fenchel transform

Ũ�ζ�ω� �= max
z≤C�ω�−A�ω�

[
1�z≤0 + ζz

]

=
{
ζ
[
C�ω� −A�ω�] ζ

[
C�ω� −A�ω�] ≥ 1�

1 0 ≤ ζ
[�C�ω� −A�ω�] < 1�

(2.19)

for 0 < ζ ≤ ∞. It is easily seen that the minimum is attained by any random
variable of the form

I�ζ�ω� �=



C�ω� −A�ω� ζ

[
C�ω� −A�ω�] > 1�

0 0 ≤ ζ
[
C�ω� −A�ω�] < 1�[

C�ω� −A�ω�]1E�ω� ζ
[
C�ω� −A�ω�] = 1�

(2.20)

for some event E ∈ � �T�.
Denote

H0�t� �= γ0�t�Z0�t�� 0 ≤ t ≤ T�(2.21)

We see from (2.19) that, for any initial capital x ∈ �A�0��C�0�� and any
π�·� ∈ � �x�, ζ > 0 we have

1�C−Xx�π�T�≤0 ≤ Ũ�ζH0�T�� − ζH0�T��C−Xx�π�T�� a.s.(2.22)
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Taking expectations, and recalling (2.11), (2.13) and (2.19), we obtain

P
[
Xx�π�T� ≥ C

] ≤ E
[
Ũ�ζH0�T��

]− ζE
[
H0�T��C−Xx�π�T��]

≤ E
[
Ũ�ζH0�T��

]− ζ�C�0� − x�
= G0�ζ� − ζ

[�C�0� − x� −K0�ζ�
] =� F0�ζ��

(2.23)

where we have denoted

G0�ζ� �= P
[�C−A�ζH0�T� < 1

]
� 0 < ζ ≤ ∞�(2.24)

K0�ζ� �= E
[
H0�T��C−A�1��C−A�ζH0�T�≥1

]
� 0 < ζ ≤ ∞�(2.25)

Both these functions are right-continuous and monotone, with G0�0+� = 1,
K0�0+� = 0 and

G0�∞� = P�A = C�� K0�∞� = E
[
H0�T��C−A�] = C�0� −A�0��

G0�ζ� + ζK0�ζ� = 1+E
(
ζH0�T��C−A� − 1

)+ = 1+
∫ ζ

0
K0�u�du�

(2.26)

for 0 ≤ ζ < ∞. We see from this that function F0�·� of (2.23) is convex and
that it attains its minimum at ζ̂ > 0 given by (2.29) below.

Remark 2.4. The inequalities of (2.23) become equalities for some π̂�·� ∈
� �x� and ζ̂ > 0, if and only if we have

E
[
H0�T�Xx� π̂�T�] = x(2.27)

and

C−Xx� π̂�T� = �C−A�1�ζ̂H0�T��C−A�>1

+ �C−A�1E∩�ζ̂H0�T��C−A�=1 a.s.
(2.28)

for some set E ∈ � �T�. In this case, π̂�·� is optimal, since the upper bound of
(2.23) on the value function V�x� is attained.

Moreover, we shall see that we can take

ζ̂ = inf
{
ζ > 0/K0�ζ� ≥ C�0� − x

}
�(2.29)

Proposition 2.1. For every x ∈ �A�0��C�0�� and ζ̂ ∈ �0�∞� given by (2.29),
there exists a set E ∈ � �T� such that the random variable

X̂�T� �= C1�ζ̂H0�T��C−A�≤1

+A1�ζ̂H0�T��C−A�>1 − �C−A�1E∩�ζ̂H0�T��C−A�=1
(2.30)

satisfies

E
[
H0�T�X̂�T�

] = x�(2.31)
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Proof. From (2.25), (2.13) and K0�ζ̂� ≥ C�0� − x, we see that

x ≥ E
[
H0�T�

(
C1�ζ̂H0�T��C−A�<1 +A1�ζ̂H0�T��C−A�≥1

)]
(2.32)

Thus, we see that (2.31) holds for X̂�T� of (2.30) for some set E ∈ � �T�, if we
show that

x ≤ E
[
H0�T�

(
C1�ζ̂H0�T��C−A�≤1 +A1�ζ̂H0�T��C−A�>1

)]
�(2.33)

Indeed, the difference between the right-hand sides of (2.33) and (2.32) is
equal to

E
[�C−A�H0�T�1�ζ̂H0�T��C−A�=1

] = 1

ζ̂
P
[
ζ̂H0�T��C−A� = 1

]
�

Since for any number 0 ≤ y ≤ �1/ζ̂�P�ζ̂H0�T��C−A� = 1�� we can find a set
E ∈ � �T� such that

y = 1

ζ̂
P
[
E ∩ �ζ̂H0�T��C−A� = 1] = E

[
H0�T��C−A�1E∩�ζ̂H0�T��C−A�=1

]
�

(2.31) follows from (2.32) and (2.33).
We now prove (2.33). We know that function F0�·� attains its minimum at

ζ̂, so that for any −ζ̂ < ε < 0 we have ε−1�F0�ζ̂� −F0�ζ̂ + ε� ≥ 0, implying

x ≤ 1
ε
E
[��ζ̂ + ε��A−C�H0�T�� ∨ 1

]
−E

[�ζ̂�A−C�H0�T�� ∨ 1
]+E

[
H0�T�C

]
= E

[�A−C�H0�T�1��ζ̂+ε�H0�T��C−A�>1 +H0�T�C
]

− 1
ε
E
[�1− ζ̂�C−A�H0�T��1��1/ζ̂�<H0�T��C−A�≤1/�ζ̂+ε�

]
�

We note that the last term is nonpositive, and we obtain (4.22) by omitting it
and letting ε→ 0. ✷

Theorem 2.1. For any given x ∈ �A�0��C�0��, ζ̂ ∈ �0�∞� given by (2.29),
and set E as in Proposition 2.1, there exists a portfolio process π̂�·� ∈ � �x�
such that (2.27) and (2.28) hold and that portfolio is optimal for the problem
of (2.16),

V�x� = P
[
Xx� π̂�T� ≥ C

] = F0�ζ̂��(2.34)

Proof. Recall the random variable X̂�T� of (2.30) and define the P0-
martingale,

X̂�t�γ0�t� �= E0
[
X̂�T�γ0�T� � � �t�

]
= x+

∫ t

0
π̂ ′�u�γ0�u�σ�u�dW0�u�� 0 ≤ t ≤ T�

(2.35)
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where π̂�·� is a portfolio process determined through the martingale represen-
tation theorem [see Karatzas and Shreve (1991)]. The process X̂�·� defined by
(2.35) clearly satisfies X̂�0� = x, X̂�·� ≡ Xx� π̂�·�, as well as (2.28) and (2.27)
by Proposition 2.1. Optimality of π̂�·� now follows from Remark 2.4. ✷

We see that the optimal portfolio π̂�·� of (2.34) coincides with the hedging
portfolio for the contingent claim X̂�T� of (2.30); in the special case A = 0
and P�ζ̂H0�T��C − A� = 1� = 0, X̂�T� is a “knock-out” option with payoff
C, “knocked out” on the event �ζ̂H0�T��C − A� > 1. The knock-out option
interpretation of the optimal policy in this context was first given in Browne
(1996). For x = A�0�, the conditions (2.27) and (2.29) are satisfied by ζ̂ = ∞
and the optimal portfolio π̂�·� of Theorem 2.1 coincides with π̂A�·�, the hedging
portfolio for the contingent claim A in (2.10).

We state separately the result for the special case when H0�T��C −A� is
a constant. In particular, this holds in the interesting risk-neutral case with
θ0�·� ≡ 0, r�·� and C−A constant.

Proposition 2.2. Suppose that H0�T��C −A� is a (nonrandom) positive
constant. Then we have

V�x� = P�Xx�π̂�T� ≥ C� = x−A�0�
H0�T��C−A� for A�0� ≤ x < C�0��(2.36)

where π̂�·� is any portfolio in � �x� for which (2.27) holds and such that

Xx� π̂�T� = C1Ec +A1E(2.37)

for some E ∈ � �T�.

Proof. We have K0�ζ� = 0 and G0�ζ� = 1 for 0 < ζ < �H0�T��C−A��−1,
and K0�ζ� = C�0� − A�0�, G0�ζ� = 0 for ζ ≥ �H0�T��C − A��−1. Therefore,
ζ̂ = �H0�T��C−A��−1 in (2.29). Moreover, (2.23) with ζ = ζ̂ implies

P
[
Xx�π�T� ≥ C

] ≤ x−A�0�
H0�T��C−A� �

But the right-hand side is attained for any portfolio π̂ ∈ � �x� satisfying (2.37)
for some E ∈ � �T� and (2.27); indeed, we have then

E
[
H0�T�Xx� π̂�T�] = E

[
H0�T��C1Ec +A1E�

] = x

and hence

P
[
Xx� π̂�T� ≥ C

] = P�Ec� = ζ̂E
[
H0�T��C−A�1Ec

] = ζ̂�x−A�0��� ✷

Example 2.1. Deterministic coefficients. Consider the case of an arbitrary
contingent claim C and the margin requirements in the form A = C−kS0�T�
for some k > 0. We also assume that r�·�, σ�·� and b�·� are deterministic and
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that �θ0�t�� > 0, for all t ∈ �0�T�. Then we have

K0�ζ� = kP0
[
kζZ0�T� ≥ 1

]
� G0�ζ� = P

[
kζZ0�T� < 1

]
and

V�x� �= sup
π�·�∈� �x�

P
[
Xx�π�T� ≥ C

] = F0�ζ̂�x��� A�0� < x < C�0��(2.38)

where ζ̂�x� = ζ̂ is given by (2.29). From (2.35) (taking E = �), the optimal
portfolio π̂�·� ∈ � �x� and wealth X̂�·� ≡ Xx� π̂�·� processes for this problem
are given by

γ0�t�X̂�t� = γ0�t�C�t� − kP0
[
kζ̂Z0�T� ≥ 1 � � �t�]

= x+
∫ t

0
γ0�u�π̂ ′�u�σ�u�dW0�u�� 0 ≤ t ≤ T�

(2.39)

It is easily computed that

P0
[
kζ̂Z0�T� ≥ 1 � � �t�]
= ,

(
log�kζ̂� − ∫ t

0 θ
′
0�u�dW0�u� + 1

2

∫ T
0 �θ0�u��2 du√∫ T

t �θ0�u��2 du

)
� 0 ≤ t ≤ T�

(2.40)

where ,�·� is the cumulative standard normal distribution function. In par-
ticular, this implies that we shall have K0�ζ̂� = C�0� − x if and only if

log�kζ̂� + 1
2

∫ T

0
�θ0�u��2 du =

√∫ T

0
�θ0�u��2 du,−1

(
C�0� − x

k

)
(2.41)

is satisfied. In conjunction with (2.39) and (2.40), we obtain

γ0�t�X̂�t� = γ0�t�C�t� − k

×,

(− ∫ t
0 θ

′
0�u�dW0�u� +

√∫ T
0 �θ0�u��2 du,−1��C�0� − x�/k�√∫ T

t �θ0�u��2 du

)
�

0 ≤ t ≤ T�

(2.42)

Next, an application of Itô’s rule on the right-hand side of (2.42), together
with (2.39) and (2.14), implies [with ϕ�·� denoting the standard normal density
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function]

γ0�t�π̂�t� = γ0�t�πC�t� + k
�σ−1�t��′θ0�t�√∫ T
t �θ0�u��2 du

× ϕ

(− ∫ t
0 θ

′
0�u�dW0�u� +

√∫ T
0 �θ0�u��2 du,−1��C�0� − x�/k�√∫ T

t �θ0�u��2 du

)

= γ0�t�πC�t� + k
�σ−1�t��′θ0�t�√∫ T
t �θ0�u��2 du

× ϕ

(
,−1

(
γ0�t��C�t� − X̂�t��

k

))
� 0 ≤ t ≤ T�

(2.43)

Note that if d = 1 and θ0�·� ≡ θ0 is constant, X̂�·� and π̂�·� do not depend on θ0
(except through its sign), similarly to the case of the standard, Black–Scholes
“delta hedging.”

It is equally straightforward to calculate

V�x� = P
[
kζ̂Z0�T� < 1

]

= ,

(
−,−1

(
C�0� − x

k

)
+

√∫ T

0
�θ0�u��2 du

)
�

(2.44)

This recovers and generalizes results of Kulldorff (1993), Heath (1993) and
Browne (1996).

3. A market model with partial information. In this section we study
the following variation on the stochastic control problem of Section 2: given
a contingent claim C we want to maximize the probability of a perfect hedge
P�Xx�π�T� ≥ C� over a class of portfolio processes π�·� which are adapted to
the natural filtration generated by the stock prices; in the formulation of the
adaptive stochastic control problem studied here, we assume that the vector of
stock appreciation rates b is not directly observable, so that, as the underlying
price process evolves, the investor observes the outcomes and thus obtains
information about the true value of b. The case when d = 1, C ≡ 1, r�·� ≡ 0
and σ�·� ≡ 1 was studied by Karatzas (1997). We study a more general case by
modifying the duality approach presented in Section 2. We prove the existence
of an optimal control process π̂�·� and provide an example in which the value
of the problem and the optimal portfolio is found explicitly.

We start with a given probability space ���� �P0�� Let W0�·� = �W0�t��0 ≤
t ≤ T be an R

d-valued Brownian motion on this probability space on the finite
time horizon �0�T�� and B� � �→ R

d be a random vector independent of the
process W0�·� under the probability measure P0� and with known distribution
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µ��� = P0�B ∈ ��� � ∈ ��Rd� that satisfies∫
R

d
�b�µ�db� <∞�(3.1)

We will denote by F = �� �t��0 ≤ t ≤ T the augmentation of the filtration

� �t� �= σ
(
W0�s��0 ≤ s ≤ t

)
(3.2)

generated by the process W0�·�� and by G = �� �t�� 0 ≤ t ≤ T the augmenta-
tion of the enlarged filtration

�B�W0�t� �= σ
(
B�W0�s��0 ≤ s ≤ t

)
(3.3)

generated by process W0�·� and random variable B�
We introduce the interest rate process r�·�� which is assumed to be a

bounded F-progressively measurable scalar process, and the volatility process
σ�·�� which is a bounded, F-progressively measurable process with values in
the space of full-rank d× d matrices with bounded inverse. Furthermore, we
assume that r�·� and σ�·� are functions of past and present stock prices defined
by (3.7) below; more precisely, of the form r�t� = R�t�S�·��� 0 ≤ t ≤ T and
σij�t� = 1ij�t�S�·��� 0 ≤ t ≤ T� 1 ≤ i� j ≤ d� where R� �0�T�×C��0�T�
Rd

+� �→
R and 1ij� �0�T�×C��0�T�
Rd

+� �→ R are progressively measurable functionals
[see Karatzas and Shreve (1991), Definition 3.5.15].

As before, we introduce the risk premium θ0�t�� = σ−1�t��B − r�t�1̃�� 0 ≤
t ≤ T�

The following two lemmas are straightforward to prove. The proof is similar
to that in Karatzas and Zhao (1998), Lemmas 2.1 and 2.2 [see also Lakner
(1994)].

Lemma 3.1. W0�·� is a �G�P0�-Brownian motion, and the exponential pro-
cess

Z�t� �= exp
(∫ t

0
θ′0�s�dW0�s� − 1

2

∫ t

0

∥∥θ0�s�
∥∥2
sds

)
� 0 ≤ t ≤ T(3.4)

is a �G�P0�-martingale.

We can now define a new probability measure P by

P�1� �= E0�Z�T�11�� 1 ∈ � �T��(3.5)

where E0 is the expectation operator under the measure P0� The two proba-
bility measures P and P0 are equivalent on � �T�.

Lemma 3.2. Under the probability measure P of (3.5), the process

W�t� �=W0�t� −
∫ t

0
θ0�s�ds�� �t�� 0 ≤ t ≤ T(3.6)

is a standard d-dimensional Brownian motion, independent of the random
variable B� Furthermore, we have

P�B ∈ �� = P0�B ∈ �� = µ��� ∀� ∈ ��Rd��
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Consider now a financial market � with a bank account and d stocks. The
price processes S0�·� and S1�·�� � � � � Sd�·� of these assets evolve according to
the equations,

dS0�t� = S0�t�r�t�dt� S0�0� = 1�

dSi�t� = Si�t�
[
Bi dt+

d∑
j=1

σij�t�dWj�t�
]

= Si�t�
[
r�t�dt+

d∑
j=1

σij�t�dWj
0�t�

]
�

Si�0� = si > 0
 i = 1� � � � � d�

(3.7)

We assume that the functionals R and 1ij are such that the last equation has
a unique, F-adapted solution [see Protter (1990) for sufficient conditions].

Remark 3.1. Filtration F of (3.2) is generated by the stock-price vector
S�·� �= �S1�·�� � � � � Sd�·��
 namely, � �t� = σ�S�u�, 0 ≤ u ≤ t� =� � ′�t�� Indeed,
the inclusion � �t� ⊂ � ′�t� is valid since (3.7) can be solved for W0�t�� thanks
to invertability of σ�·�� which, together with � ′�t�-measurability of r�t� and
σ�t�, shows that W0�t� is � ′�t�-measurable. The reverse inclusion follows from
the assumption that (3.7) has a unique, F-adapted solution S�t�.

We now define a wealth process, a portfolio process and admissible portfolio
processes as in Definition 2.1, but we emphasize here that � is the filtration of
the “available information” and that neither the stock driftB nor the Brownian
motion W�·� is adapted to it, so that the investor’s portfolio choices should
be affected by the information contained in the stock prices only. We define
contingent claims C and A as in Section 2, with the interpretation of �T-
measurability of C as the requirement that the random payoff made at T
be independent of any information other than the stock prices up to (and
including) time T�

Lemma 3.3. The priceC�t� of a contingent claim C at any time t� 0 ≤ t ≤ T�
is given by (2.14). Furthermore, the “hedging portfolio” πC�·� is admissible;
in particular, it is adapted to the filtration F generated by the stock price
process S�·�.

The proof is shown as usual, using the martingale representation theorem
and dynamics (2.7), which are still valid, due to (3.7).

We now study the stochastic control problem (2.16) in the market with
restricted information and we suppose that the investor’s initial wealth x
satisfies A�0� ≤ x < C�0�� We start by introducing the �F�P0�-martingale,

Ẑ�t� �= E0
[
Z�T� � � �t�] = E0

[
E0

[
Z�T� � � �t�] � � �t�]

= E0
[
Z�t� � � �t�]�(3.8)
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Denote Z0�t� �= �Z�t��−1 and Ẑ0�t� �= �Ẑ�t��−1. Note that by the “Bayes rule”
we have

E
[
Z0�t� � � �t�

] = E0
[
Z0�t�Z�t� � � �t�

]
E0

[
Z�t� � � �t�] = �Ẑ�t��−1 = Ẑ0�t��(3.9)

To use the duality approach, we introduce the functions U� Ũ and I as in
Section 2; see, in particular, (2.19) and (2.20). Denote

Ĥ0�t� �= γ0�t�Ẑ0�t��(3.10)

the analogue of the process H0�·� of (2.21). We recall (2.22), with H0�T� re-
placed by Ĥ0�T�. Furthermore, since for any admissible π the random variable
Xx�π�T� is �T-measurable, we have, from (3.9) and the analogue of (2.11),

E
[
Ĥ0�T�Xx�π�T�] = E

[
γ0�T��Ẑ�T��−1Xx�π�T�]

= E0
[
γ�T�Xx�π�T�] ≤ x�

(3.11)

Taking expectations in the analogue of (2.22) and using (3.11) and (2.19), we
see that the analogue of (2.23) holds. Moreover, the same proofs as before show
that

Proposition 2.1 and Theorem 2.1 remain valid, with H0�T�
replaced by Ĥ0�T�.

(3.12)

Example 3.1. Consider an arbitrary contingent claim C and the margin
requirement of the form A = C − kS0�T� for some k > 0� We assume that
d = 1 and that the random variable B has a normal distribution with mean
f and variance l2� From (3.8) we have

Ẑ�t� = σ√
l2t+ σ2

exp
[
−�f− r�2

2l2
+ �l

2W0�t� + �f− r�σ�2
2l2�l2t+ σ2�

]
�(3.13)

The function K0�·� is given by

K0�ζ� = kP0
[
kζẐ0�T� ≥ 1

]

=




k,

(
D�ζ� − �f− r�σ

l2
√
T

)
− k,

(−D�ζ� − �f− r�σ
l2
√
T

)
�

if ζ >
σ

k
√
l2T+ σ2

exp
(
−�f− r�2

2l2

)
�

0� if 0 ≤ ζ ≤ σ

k
√
l2T+ σ2

exp
(
−�f− r�2

2l2

)
�

(3.14)

where

D�ζ� =
√{

2l2�l2T+ σ2�
[�f− r�2

2l2
+ log

(
kζ
√
l2T+ σ2

σ

)]}
∨ 0�
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Therefore, the requirement K0�ζ̂� = C�0� − x is equivalent to

,

(
D�ζ̂� + �f− r�σ

l2
√
T

)
+,

(
D�ζ̂� − �f− r�σ

l2
√
T

)
= C�0� − x

k
+ 1�(3.15)

For any real a and b� let

J�a
 b� �= ,�a+ b� +,�a− b��
which is an increasing function in its first argument, and let J−1�·� b� be an
inverse of J�·� b� for any real b� Then

D�ζ̂� = l2
√
TJ−1

(
C�0� − x

k
+ 1�

�f− r�σ
l2
√
T

)
�(3.16)

Using the fact that, under the measure P, the random variable W0�T� =
W�T� + θ0T has a normal distribution with the mean ��f − r�/σ�T and the
variance T+T2l2/σ2� we can find

G0�ζ� = P
[
kζẐ0�T� < 1

] = P
[∣∣l2W0�T� + �f− r�σ∣∣ > D�ζ�]

= ,

(
− σD�ζ�
l2
√
T�l2T+ σ2� −

�f− r�√l2T+ σ2

l2
√
T

)

+,

(
− σD�ζ�
l2
√
T�l2T+ σ2� +

�f− r�√l2T+ σ2

l2
√
T

)
�

(3.17)

Therefore, the value function is

V�x� = G0�ζ̂�

= ,

(−σJ−1
(��C�0� − x�/k� + 1� �f− r�σ/l2√T)

√
l2T+ σ2

− �f− r�√l2T+ σ2

l2
√
T

)

+,

(−σJ−1
(��C�0� − x�/k� + 1� �f− r�σ/l2√T)

√
l2T+ σ2

+ �f− r�√l2T+ σ2

l2
√
T

)
�

(3.18)

In particular, if f = r� we have

V�x� = 2,
(
− σ√

l2T+ σ2
,−1

(
C�0� − x

2k
+ 1

2

))

This is somewhat surprising at the first glance: the value function is an in-
creasing function of the variance l2 of the drift, and when l2 → ∞, the
value function tends to one. It becomes less surprising if we recall (2.44),
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which shows that, for constant drift, the value function is an increasing func-
tion of the drift’s absolute value. Note that if f = r and l = 0� we get
V�x� = 1+ �x−C�0��/k, in accordance with Proposition 2.2.

Optimal wealth X̂�·� and optimal portfolio π̂�·� can be found as in (2.39).
We have

P0
[
kζẐ0�T� ≥ 1�� �t�]
= P0

[∣∣l2W0�T� + �f− r�σ∣∣ < D�ζ� � � �t�]
= ,

(
D�ζ̂� − �f− r�σ − l2W0�t�

l2
√
T− t

)

−,

(−D�ζ̂� − �f− r�σ − l2W0�t�
l2
√
T− t

)
(3.19)

= ,

(√
TJ−1

(��C�0� − x�/k)+ 1� �f− r�σ/l2√T)−W0�t�√
T− t

− �f− r�σ
l2
√
T− t

)

−,

(−√TJ−1
(��C�0� − x�/k� + 1� �f− r�σ/l2√T)−W0�t�√

T− t

− �f− r�σ
l2
√
T− t

)
�

so that

X̂�t� = C�t� − kert,

(√
TJ−1

(��C�0� − x�/k� + 1� �f− r�σ/l2√T)−W0�t�√
T− t

− �f− r�σ
l2
√
T− t

)
(3.20)

+ kert,

(−√TJ−1
(��C�0� − x�/k� + 1� �f− r�σ/l2√T)−W0�t�√

T− t

− �f− r�σ
l2
√
T− t

)
�

An application of Itô’s rule to the right-hand side of (3.20) together with (2.39)
and (2.14), implies

π̂�t� = πC�t� +
kert

σ
√
T− t

×ϕ
[√

TJ−1
(��C�0� − x�/k�+1� �f− r�σ/l2√T)−W0�t�√

T− t − �f− r�σ
l2
√
T− t

]
(3.21)
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− kert

σ
√
T− t

ϕ

×
[−√TJ−1

(��C�0�−x�/k�+1� �f− r�σ/l2√T)−W0�t�√
T− t − �f− r�σ

l2
√
T− t

]
�

Note that S�t� = S�0� exp�σW0�t�+�r−σ2/2�t so that W0�t� is known if S�t�
is observed, and the last expression depends only on the model parameters
and the observed price of the stock.

4. The case of a concave drift. In this section we generalize the stan-
dard model by allowing the drift of the wealth process to be nonlinear. This
allows, for example, the model with different interest rates for borrowing and
for lending, as well as some “large investor” models [see, for example, Cuoco
and Cvitanić (1998)]. More precisely, we now assume the following dynamics
of the wealth process:

dXx�π�t� = g
(
t� π�t��Xx�π�t��dt+ π ′�t�σ�t�dW�t�


Xx�π�0� = x�
(4.1)

Here, we impose the following assumption.

Assumption 4.1. The random field g� � × �0�T� × R
d × � → R is � ⊗

��Rd� ⊗��R�/��R�-measurable (where � is the σ-algebra of all predictable
sets in �× �0�T�), and satisfies

g�ω� t�0�0� = 0 ∀ �ω� t� ∈ �× �0�T��(4.2)

Moreover, the function �π�x� �→ g�ω� t� π� x� is concave for all �ω� t� ∈ � ×
�0�T�, and is also Lipschitz, uniformly in �ω� t� ∈ �× �0�T�.

We define the convex conjugate

g̃�ω� t� ν� µ� �= sup
�π�x�∈Rd+1

[
g�ω� t� π� x� + π ′ν + xµ

] ≥ 0(4.3)

on its effective domain

�ω� t �=
{�ν� µ� ∈ R

d+1
 g̃�ω� t� ν� µ� <∞}
(4.4)

for �t�ω� ∈ � × �0�T�. As in El Karoui, Peng and Quenez (1997) (hereafter
[EPQ]), one can show that �ω� t is included in a bounded set R̃ in R

d+1, inde-
pendent of �ω� t�. Denote by � the set of all pairs of progressively measurable
processes �ν�·�� µ�·�� which satisfy �ν�t�� µ�t�� ∈ �ω� t, a.e.-ω× t. We note that
class � is not empty since the zero process (in R

d+1) is an element of � . Moti-
vated by the L2 theory of backward stochastic differential equations, hereafter
BSDEs (as presented in [EPQ], for example), we somewhat change our defini-
tions of admissibility of portfolio processes by requiring that

E

[∫ T

0
�π�u��2 du

]
<∞ and E

[
sup

0≤t≤T

∣∣Xx�π�t�∣∣2] <∞(4.5)
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and

Xx�π�T� ≥ A a.s.,(4.6)

where the � �T�-measurable random variable A, as well as our contingent
claim C, are elements of the set L2���� �T��P�. We study the optimization
problem of maximizing the probability of a perfect hedge,

V�x� ≡ V�x
C� �= sup
π�·�∈� �x�

P
[
Xx�π�T� ≥ C

]
�(4.7)

where � �x� is again the set of admissible portfolios, in the sense of the above
definition.

For any given �ν� µ� ∈ � , we now introduce the processes

Zν�t� �= exp
[∫ t

0
�σ−1�s�ν�s��′ dW�s� − 1

2

∫ t

0

∥∥σ−1�s�ν�s�∥∥2
ds

]
(4.8)

and

γµ�t� �= exp
(∫ t

0
µ�s�ds

)
�(4.9)

which correspond to changes of measure and discounting in so-called shadow
markets associated with the market with dynamics of a wealth process as
in (4.1). Denote by Eν the expectation under the probability measure

Pν �= E�Zν�T�1E�� E ∈ � �T��
under which the process

Wν�t� �=W�t� −
∫ t

0
σ−1�s�ν�s�ds

is a Brownian motion (by the Girsanov theorem). Let us also introduce

Hµ�ν�t� �= γµ�t�Zν�t�� 0 ≤ t ≤ T�

It follows from the theory of BSDEs that there exist admissible portfolios πC�·�
and πA�·� and (minimal) initial wealthsC�0� andA�0� such thatXC�0�� πC�T� =
C and XA�0�� πA�T� = A, a.s. We denote C�·� �=XC�0�� πC�·�, A�·� =XA�0�� πA�·�.
It is also known that, for example for claim C, we have

C�t� = sup
�ν� µ�∈�

E

[
Hµ�ν�T�
Hµ�ν�t�

C−
∫ T

t

Hµ� ν�s�
Hµ�ν�t�

g̃�s� ν�s�� µ�s��ds
∣∣∣∣� �t�

]
�(4.10)

and similarly for A�t� (see [EPQ] or Cvitanić, Karatzas and Soner (1998)).
Moreover, the comparison theorem for BSDEs implies that if Xx1� π1�T� ≥
Xx2� π2�T�, a.s., for some admissible π1�·�, π2�·�, then Xx1� π1�·� ≥ Xx2� π2�·�,
a.s., and, in particular, x1 ≥ x2. Because of this, we restrict ourselves to the
case A�0� < x < C�0�.
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We have, by Itô’s rule,

Hµ�ν�t�Xx�π�t� −
∫ t

0
Hµ�ν�s�g̃�s� ν�s�� µ�s��ds

= x+
∫ t

0
Hµ�ν�s�π ′�s�σ�s�dW�s�

−
∫ t

0
Hµ�ν�s�

[
g̃�s� ν�s�� µ�s�� − g�s� π�s��X�s��

− π ′�s�ν�s� −X�s�µ�s�]ds

(4.11)

for all �ν�·�� µ�·�� ∈ � and π�·� ∈ � �x�. We notice now that the right-hand
side process is a P-supermartingale, since the second term is a nonincreasing
process, and the first term is a P-martingale due to the Burkholder–Davis–
Gundy inequalities [see Karatzas and Shreve (1991)], because

E

(∫ T

0
�Hµ�ν�s�π ′�s�σ�s��2 ds

)1/2

≤
(
E

[
sup

0≤t≤T
H2

µ� ν�t�
]
E

∫ T

0

∥∥γµ�s�π ′�s�σ�s�∥∥2
ds

)1/2

<∞�

We are using here the boundedness of the processes ν�·�, µ�·�, σ�·�, σ−1�·�, as
well as the definition of admissibility of π�·�.

The consequence of the above supermartingale property is

Lemma 4.1. For every �ν�·�� µ�·�� ∈ � and π�·� ∈ � �x�� we have

E
[
Hµ�ν�T�Xx�π�T�] ≤ x+E

∫ T

0
Hµ�ν�s�g̃�s� ν�s�� µ�s��ds�

As in the complete market case, it follows from the previous lemma and
(2.19) that, for any initial capital x ∈ �A�0��C�0�� and any π�·� ∈ � �x�, ζ > 0
and �ν� µ� ∈ � , we have

P�Xx�π�T� ≥ C� ≤ E
[
Ũ�ζHµ� ν�T�� − ζHµ� ν�T��C−Xx�π�T��]

≤ E

[
Ũ�ζHµ� ν�T�� − ζHµ� ν�T�C

+ ζ
∫ T

0
Hµ�ν�s�g̃�s� ν�s�� µ�s��ds

]
+ ζx�

(4.12)

The following remark is the analogue of Remark 2.4.

Remark 4.1. The inequalities of (4.12) hold, in fact, as equalities for some
π̂�·� ∈ � �x�, ζ̂ > 0, �ν̂� µ̂� ∈ � if and only if we have

E

[
Hµ̂� ν̂�T�Xx� π̂�T� −

∫ T

0
Hµ̂� ν̂�s�g̃�s� ν̂�s�� µ̂�s��ds

]
= x(4.13)
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and

Xx� π̂�T� = A1�ζ̂Hµ̂� ν̂�T��C−A�>1 +C1�ζ̂Hµ̂� ν̂�T��C−A�≤1

−�C−A�1E∩�ζ̂Hµ̂� ν̂�T��C−A�=1 a.s.
(4.14)

for some set E ∈ � �T�. If the preceding is true, then π̂�·� is optimal, since it
attains the upper bound of (4.12).

The idea now is to consider the dual problem

Ṽ�ζ� �= inf
�ν� µ�∈�

E

[
Ũ�ζHµ� ν�T�� − ζHµ� ν�T�C

+ ζ
∫ T

0
Hµ�ν�s�g̃�s� ν�s�� µ�s��ds

]
�

(4.15)

show that it has an optimal solution �ν̂ζ� µ̂ζ� ∈ � for every ζ > 0 and find
π̂�·� ∈ � �x� and ζ̂ > 0 such that the conditions of Remark 4.1 hold. The duality
approach to utility maximization problems employed here was implicitly used
in Pliska (1986), Karatzas, Lehoczky and Shreve (1987), Cox and Huang (1989)
in the case of complete markets, and explicitly in He and Pearson (1991),
Karatzas, Lehoczky, Shreve and Xu (1991), Xu and Shreve (1992), Cvitanić and
Karatzas (1992) for (incomplete) markets with constraints. We follow Cuoco
and Cvitanić (1998), since their methods apply to our dual problem, which is
not convex in �ν� µ�, but is convex in the (random) variables Hµ�ν�T�, which
are bounded in L2���� �T��P�, uniformly in �ν� µ� ∈ � .

Theorem 4.1. For every given ζ > 0, there exists an optimal pair �ν̂ζ� µ̂ζ� ∈
� for the dual problem (4.15).

This theorem is proved exactly as in Cuoco and Cvitanić (1998), Appendix B.

Lemma 4.2. The function

α�ζ� �= Ṽ�ζ� + xζ� ζ ≥ 0

is Lipschitz-continuous for any given A�0� < x < C�0�.

Proof. Since D �= C −A ∈ L2���� �T��P�, it follows by BSDEs theory
[by analogy with (4.10)] that

D�0� �= sup
�ν� µ�∈�

E

[
Hµ�ν�T��C−A� −

∫ T

0
Hµ�ν�s�g̃�s� ν�s�� µ�s��ds

]

< ∞�

(4.16)

Note also that

Ũ�ζHµ� ν�T�� =
(
ζHµ� ν�T��C−A�) ∨ 1�
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We have then, for ζ1 ≥ 0, ζ2 ≥ 0,

E

[
Ũ�ζ1Hµ�ν�T�� − ζ1Hµ�ν�T�C+ ζ1

∫ T

0
Hµ�ν�s�g̃�s� ν�s�� µ�s��ds

]

≥ E

[
Ũ�ζ2Hµ�ν�T�� − ζ2Hµ�ν�T�C+ ζ2

∫ T

0
Hµ�ν�s�g̃�s� ν�s�� µ�s��ds

]

−E

[
Hµ�ν�T��2C−A� +

∫ T

0
Hµ�ν�s�g̃�s� ν�s�� µ�s��ds

]
�ζ1 − ζ2�

≥ Ṽ�ζ2� − �D�0� +C�0���ζ1 − ζ2��

Taking the infimum over �ν� µ� ∈ � we get Ṽ�ζ2�− Ṽ�ζ1� ≤ �D�0�+C�0���ζ1−
ζ2�. Since we can do the same by interchanging the roles of ζ1 and ζ2, we are
done. ✷

Proposition 4.1. For every A�0� < x < C�0�� there exists ζ̂ = ζ̂x > 0 that
attains the infimum inf ζ≥0 α�ζ�.

Proof. First we show that the infimum cannot be attained at infinity.
Suppose that there exists a sequence ζn →∞ such that limn α�ζn� ≤ 0. Denote
Hn�T� =Hµ̂ζn � ν̂ζn

�T�. We have then

x ≤ lim
n
E

[
Hn�T�C−

(
�C−A�Hn�T� ∨

1
ζn

)

−
∫ T

0
Hn�s�g̃�s� ν�s�� µ�s��ds

]
�

(4.17)

Since

E

[(
�C−A�Hn�T� ∧

1
ζn

)]
≤ 1
ζn
→ 0�

inequality (4.17) implies

x ≤ lim
n
E

[
Hn�T�A−

∫ T

0
Hn�s�g̃�s� ν�s�� µ�s��ds

]
≤ A�0��

where the last inequality follows from the representation of A�0� analogous
to (4.10). This is in contradiction with x > A�0�, and we conclude lim inf ζ→∞
α�ζ� > 0� Consequently, being continuous, α�ζ� either attains its infimum at
some ζ̂ > 0 or α�ζ� ≥ α�0� = 0 for all ζ > 0. Suppose that the latter is true.
We have then

x ≥ E

[
Hµ�ν�T�C−

(
�C−A�Hµ�ν�T� ∨

1
ζ

)
−

∫ T

0
Hµ�ν�s�g̃�s� ν�s�� µ�s��ds

]

≥ E

[
Hµ�ν�T�C1�ζHµ� ν�T��C−A�≤1 −

∫ T

0
Hµ�ν�s�g̃�s� ν�s�� µ�s��ds

]
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for all �ν� µ� ∈ � . Letting ζ → 0, we get

x ≥ E

[
Hµ�ν�T�C−

∫ T

0
Hµ�ν�s�g̃�s� ν�s�� µ�s��ds

]

and, taking the supremum over �ν� µ� ∈ � ,

x ≥ C�0��
a contradiction. ✷

In the following proposition we identify a candidate for the terminal wealth
of an optimal portfolio process, and show that, loosely speaking, its initial
wealth in the “optimal shadow market” is equal to x. We denote by QC a
complement of a set Q.

Proposition 4.2. Fix an arbitrary x ∈ �A�0��C�0��, and let ζ̂ be the one
from Proposition 4.1. Let �ν̂� µ̂� ∈ � be optimal for the dual problem with value

function Ṽ�ζ̂�, let Ĥ�T� =Hµ̂� ν̂�T�, and introduce the set

Q �= {
ζ̂Ĥ�T��C−A� > 1

} ∈ � �T��(4.18)

There exists then a set E ∈ � �T� such that the random variable

X̂�T� �= C1QC +A1Q − �C−A�1E∩�ζ̂Ĥ�T��C−A�=1(4.19)

satisfies

E

[
Ĥ�T�X̂�T� −

∫ T

0
Ĥ�s�g̃�s� ν̂�s�� µ̂�s��ds

]
= x�(4.20)

Proof. Note that

α�ζ̂� ≤ α�ζ� ≤ E

[
Ũ�ζĤ�T�� + ζĤ�T�C+ ζ

∫ T

0
Ĥ�s�g̃�s� ν̂�s�� µ̂�s��

]
+ ζx�

It follows that ζ̂ also minimizes the function

f�ζ� �= E

[
Ũ�ζĤ�T�� + ζĤ�T�C+ ζ

∫ T

0
Ĥ�s�g̃�s� ν̂�s�� µ̂�s��

]

+ ζx� ζ > 0�

Take ε > 0. Since f�ζ̂ + ε� − f�ζ̂� ≥ 0, we get

x ≥ 1
ε
E
[��ζ̂ + ε��A−C�Ĥ�T�� ∨ 1

]−E
[�ζ̂�A−C�Ĥ�T�� ∨ 1

]

+E

[
CĤ�T� −

∫ T

0
Ĥ�s�g̃�s� ν̂�s�� µ̂�s��ds

]
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= E

[
�A−C�Ĥ�T�1�ζ̂Ĥ�T��C−A�≥1 +CĤ�T�

−
∫ T

0
Ĥ�s�g̃�s� ν̂�s�� µ̂�s��ds

]

+ 1
ε
E
[��A−C��ζ̂ + ε�Ĥ�T� − 1�1�1/�ζ̂+ε�<Ĥ�T��C−A�≤1/ζ̂

]
�

By the dominated convergence theorem, the last term tends to 0 as ε → 0,
and we get

x ≥ E

[
AĤ�T�1�ζ̂Ĥ�T��C−A�≥1 +CĤ�T�1�ζ̂Ĥ�T��C−A�<1

−
∫ T

0
Ĥ�s�g̃�s� ν̂�s�� µ̂�s��ds

]
�

(4.21)

Similarly, if ε < 0 and close enough to zero, we obtain

x ≤ 1
ε
E
[��ζ̂ + ε��A−C�Ĥ�T�� ∨ 1

]−E
[�ζ̂�A−C�Ĥ�T�� ∨ 1

]
+E

[
CĤ�T� −

∫ T

0
Ĥ�s�g̃�s� ν̂�s�� µ̂�s��ds

]

= E

[
�A−C�Ĥ�T�1��ζ̂+ε�Ĥ�T��C−A�>1 +CĤ�T�

−
∫ T

0
Ĥ�s�g̃�s� ν̂�s�� µ̂�s��ds

]

− 1
ε
E
[�1− ζ̂�C−A�Ĥ�T��1�1/ζ̂<Ĥ�T��C−A�≤1/�ζ̂+ε�

]

≤ E

[
�A−C�Ĥ�T�1��ζ̂+ε�Ĥ�T��C−A�>1 +CĤ�T�

−
∫ T

0
Ĥ�s�g̃�s� ν̂�s�� µ̂�s��ds

]
�

Letting ε→ 0, we obtain

x ≤ E

[
AĤ�T�1�ζ̂Ĥ�T��C−A�>1 +CĤ�T�1�ζ̂Ĥ�T��C−A�≤1

−
∫ T

0
Ĥ�s�g̃�s� ν̂�s�� µ̂�s��ds

]
�

(4.22)

The difference between the right-hand sides of (4.22) and (4.21) is equal to

E
[�C−A�Ĥ�T�1�ζ̂Ĥ�T��C−A�=1

] = 1

ζ̂
P
[
ζ̂Ĥ�T��C−A� = 1

]
�
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Since for any number 0 ≤ y ≤ �1/ζ̂�P�ζ̂Ĥ�T��C −A� = 1� we can find a set
E ∈ � �T� such that

y = 1

ζ̂
P
[
E ∩ �ζ̂Ĥ�T��C−A� = 1] = E

[
Ĥ�T��C−A�1E∩�ζ̂Ĥ�T��C−A�=1

]
�

(4.20) follows from (4.21) and (4.22). ✷

We now want to show that the random variable of (4.19) can be replicated
starting with initial wealth x and using some admissible portfolio π̂�·�.

Assumption 4.2. For any given x ∈ �A�0��C�0��, we have

P�ζ̂Ĥ�T��C−A� = 1� = 0

Remark 4.2. This assumption is introduced for simplicity only. It can be
avoided by using nonsmooth optimization techniques, as in Cvitanić (1998).

Proposition 4.3. Let x ∈ �A�0��C�0�� be given. Under Assumption 4.2,
there exists a portfolio π̂�·� ∈ � �x�� such that

Xx� π̂�T� = X̂�T� = C1QC +A1Q�

the random variable of (4.19).

Proof. From [EPQ] and Proposition 4.2, it is sufficient to show that

E

[
Hµ�ν�T�X̂�T� −

∫ T

0
Hµ�ν�s�g̃�s� ν�s�� µ�s��ds

]

≤ E

[
Ĥ�T�X̂�T� −

∫ T

0
Ĥ�s�g̃�s� ν̂�s�� µ̂�s��ds

]
= x

(4.23)

for all �ν� µ� ∈ � [i.e, that the supremum over � of the left-hand side is
attained at �ν̂� µ̂�]. Fix ε ∈ �0�1� and �ν� µ� ∈ � . Define processes (suppressing
dependence on t),

Gε �= �1− ε�Ĥ+ εHµ� ν� νε �= G−1
ε ��1− ε�ν̂Ĥ+ ενHµ� ν��

µε �= G−1
ε ��1− ε�µ̂Ĥ+ εµHµ�ν��

It is easy to check (by Itô’s rule) that

Gε�·� =Hνε�µε
�·��

By optimality of �ν̂� µ̂� in the dual problem, since �νε� µε� ∈ � , and by convexity
of g̃�·�, we get

0 ≤ 1
ε
E

[
�ζ̂Gε�T��C−A�� ∨ 1− ζ̂Gε�T�C+

∫ T

0
Gε�s�g̃�s� νε�s�� µε�s��ds

]

− 1
ε
E

[
�ζ̂Ĥ�T��C−A�� ∨ 1− ζ̂Ĥ�T�C+

∫ T

0
Ĥ�s�g̃�s� ν̂�s�� µ̂�s��ds

]
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≤ E
[
ζ̂C�Ĥ�T� −Hµ�ν�T��
+ ζ̂�C−A��Hµ�ν�T� − Ĥ�T��1�ζ̂Ĥ�T��C−A�>1� ζ̂Gε�T��C−A�>1

]
+E

[
ζ̂

(∫ T

0
Hµ�ν�s�g̃�s� ν�s�� µ�s��ds−

∫ T

0
Ĥ�s�g̃�s� ν̂�s�� µ̂�s��ds

)]

+ 1
ε
E
[�ζ̂�C−A�Gε�T� − 1�1�ζ̂Ĥ�T��C−A�≤1� ζ̂Gε�T��C−A�>1

]
+ 1
ε
E
[�1− ζ̂�C−A�Ĥ�T��1�ζ̂Ĥ�T��C−A�>1� ζ̂Gε�T��C−A�≤1

]
≤ (since this last term is nonpositive)

E
[
ζ̂C�Ĥ�T� −Hµ�ν�T��
+ ζ̂�C−A��Hµ�ν�T� − Ĥ�T��1�ζ̂Ĥ�T��C−A�>1� ζ̂Gε�T��C−A�>1

]
+E

[
ζ̂

(∫ T

0
Hµ�ν�s�g̃�s� ν�s�� µ�s��ds−

∫ T

0
Ĥ�s�g̃�s� ν̂�s�� µ̂�s��ds

)]

+E
[
ζ̂�C−A��Hµ�ν�T� − Ĥ�T��1�ζ̂Ĥ�T��C−A�≤1� ζ̂Gε�T��C−A�>1

]
�

Letting ε→ 0 and invoking Assumption 4.2, we see that the last term tends
to zero, and we complete the proof of (4.23). ✷

The following theorem is now a consequence of Propositions 4.2 and 4.3 and
Remark 4.1.

Theorem 4.2. Under Assumption 4.2 and given initial wealth x ∈ �A�0��
C�0��, there exists an optimal portfolio π̂ ∈ � �x� for the problem (4.7) under
the dynamics (4.1). It can be taken as the portfolio that replicates, at time t = T,
the value X̂�T� of (4.19), with E = �.

Example 4.1. Price pressure. Let d = 1, C = 1, A = 0, r�·� ≡ 0, σ�·� ≡ 1,
b1�·� = b > 0 and 0 < ε < b. Suppose also that the wealth dynamics are given
by

dX�t� = (
π�t�b− �π�t��ε)dt+ π�t�dW�t�� X�0� = x ∈ �0�1��(4.24)

This can be interpreted as a “large investor” model in which buying the risky
asset depresses its expected return, while shorting it increases the expected
return [see Cuoco and Cvitanić (1998)]. For ε = 0, this example is a special
case of Example 2.1 with k = 1. It is seen from (2.43) [with πC�·� ≡ 0], that
the optimal portfolio in that case depends only on the sign of the drift if
the drift is constant, and it is then nonnegative if the drift is nonnegative.
Since we have b − ε > 0, we should expect from the dynamics (4.24) that
the corresponding optimal portfolio will still be given by (2.43), which for our
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values of the parameters becomes

π̂�t� = 1√
T− t

ϕ
(
,−1�X̂�t��)�(4.25)

We justify this rigorously by looking at the dual problem. It is easily seen that

g̃�ω� t� ν� µ� = 0 for µ = 0� �ν + b� ≤ ε

and g̃�ω� t� ν� µ� = ∞ otherwise. Thus, the dual problem (4.15) becomes

Ṽ�ζ� = inf
ν∈�ε

E
[�1− ζZν�T��+

]
�

where �ε is the set of progressively measurable processes ν�·� such that �ν�·�+
b� ≤ ε, a.s. We see that we are minimizing a nonincreasing convex functional
of the value at time T of the martingale Zν�·�. By Theorem 5.2 in Xu and
Shreve (1992) we conclude that the optimal solution is given by the process
ν̂�·� ≡ ε − b. Therefore, the optimal terminal wealth X̂�T� of (4.19) is the
same as the optimal terminal wealth for the problem of Example 2.1 with
θ0�·� ≡ b− ε, and the same feedback form of (2.43), nameley (4.25), is valid.
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