
The Annals of Applied Probability
1999, Vol. 9, No. 3, 706–718

LARGE DEVIATIONS AND YOUNG MEASURES FOR
A POISSONIAN MODEL OF BIPHASED MATERIAL

By Didier Piau

Université Lyon I

We prove a large deviations principle for the Young measures of a
stochastic homogenization model of Poissonian biphased material.

0. Introduction.

0.1. Stochastic homogenization. Assume that a nonhomogeneous material
occupies a domain D of Rd and that its properties at point x are described by
a parameter a�x�. The complete determination of the function a� D → R is
equivalent to a microscopic description of the material. However, if the scale
of the inhomogeneities is small, the function a is highly irregular and such
a description is impossible to get. It is at the same time irrelevant if one is
interested only in the macroscopic properties of the material. To get round
this difficulty, one replaces a by a well-chosen family of random functions,

aε� �×D → R� �ω�x� �→ aε�ω�x��
where � is a probability space endowed with the probability measure P. Here,
ω ∈ � represents the randomness of aε, that is, of the material, and ε is the
typical scale of the irregularities of this material. When ε goes to zero, one
hopes that the behavior of the random material aε�ω� ·� converges, in a sense
which has to be precised, to the behavior of the actual material. This “mean”
description, called stochastic homogenization, is the subject of an extensive
physical and mathematical literature; see Kozlov (1980), Yurinskiı̌ (1991) and
Jikov, Kozlov and Oleinik (1994), for instance. In the model studied below, the
convergence is easy to establish and we describe the speed of this convergence.

0.2. Young measures. One is often led to describe nonlinear functionals of
the functions aε and of their limit. To this end, an efficient approach is to
study, instead of the functions aε, their Young measures νε. Following Young
(1942) and others, this formalism is developped by Michel and Robert (1994)
in the context of the thermodynamical limit of infinite dimensional dynamical
systems. The Young measure ν associated to a measurable function a� D → R
is defined by

ν�B� =
∫
D

1B�x� a�x��dx
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for every Borel set B of D × R, where 1B is the characteristic function of B.
Two functions a which yield the same measure ν must coı̈ncide, up to null sets.
More importantly, a mixture of different functions a can still be described by a
similar measure [see Section 0.4 and Michel and Robert (1994) for the physical
meaning of Young measures]. The main asset of the random Young measures
νε associated to aε is that νε can converge, even though aε does not converge
in a usual sense. In Theorem 1 of this paper, we characterize the asymptotic
behavior of

P�νε ∈ A�
for ε going to zero, when A is an asymptotically rare measurable set, that is,
when A does not contain the limit of the νε.

0.3. Poissonian biphased material. This model describes a biphased ma-
terial whose irregularities have random scale and shape. Another random
model, studied in dimension 1 by Baldi (1988), and subsequently in any di-
mension by Michel and Robert (1994) and by Michel and Piau (1998), assumes
that the scale of the irregularities of the function aε, for a given value of ε, is
constant through the material. On the other hand, in Baldi’s model, the values
of the parameter a�x� are random, whereas in the present one, they are fixed.
This Poissonian biphased model is called Poisson blob model or Swiss cheese
model in Meester and Roy (1996). It is extensively studied by Sznitman in a
series of papers. See, for example, Sznitman (1995), which gives, among other
results, the behavior of a standard Brownian motion in the nonoccupied part
of the material, that is, in one of its two phases (the part Dε, in our notations
below).

We choose two values of the parameter a�x�, for example 0 and 1, a shape
S, that is, a bounded domain of Rd, and a bounded domain D of Rd of volume

D
 = 1, for example, D �= �0�1�d. For given κ > 0 and ε > 0, �ε �= � �κε−d�
is the support of a random Poisson measure on Rd with constant intensity
κε−d. The set Oε�S� of the Poissonian obstacles is then

Oε�S� �= �ε + εS = ⋃
x∈�ε

x+ εS

and Dε �= D \Oε�S� is the part of D which is not covered by the obstacles.
Set aε�x� �= 1 if x ∈ Dε and aε�x� �= 0 if x ∈ D \Dε. Hence,

aε�ω�x� = 1�x ∈ Dε�ω���
Lastly, νε is the random Young measure associated to aε.

0.4. Notations and result. We give some conventions that will be in force
below, before stating our result. The relation

P�νε ∈ A� ∼ exp�−ε−d i�A��
is a shorthand for the following assertion. The sign ∼ means that the lower
and the upper bounds of a large deviations principle (LDP) “à la Varadhan”
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hold: there exists a function i with values in �0�+∞�, called the rate function
of the LDP, such that, for every open set G and every closed set F, one has

lim inf
ε→∞ εd logP�νε ∈ G� ≥ −i�G��

lim sup
ε→∞

εd logP�νε ∈ F� ≤ −i�F��

For every set A, one writes i�A� = inf�i�ν�� ν ∈ A�� The level sets i−1��0� t��
of the rate function i are supposed to be compact. (This implies that i is lower
semicontinuous.)

Notation 1. Call � the set of the Young measures νp for any measurable
function p� D → �0�1�, where νp is defined by

νp�B� =
∫
D
�p�x�1B�x�1� + �1 − p�x��1B�x�0���dx�

Call � the subset of � which corresponds to the �0�1� valued functions p.

The Young measures ν0 and ν1 describe a homogeneous material of constant
characteristic. The Young measures of � describe biphased materials. For in-
stance, setting p = 1�Dε�, one recovers the Young measures νε introduced
in Section 0.3. Any value of p�x� between 0 and 1 should be viewed as the
representation of a mixture at point x of the 1-material and of the 0-material
in the proportions p�x� and 1 − p�x�.

Recall that the weak topology on the space of Borel bounded measures on
a Hausdorff topological space X is defined as follows: µn converges weakly
to µ iff µn�f� converges to µ�f� for every f bounded continuous on X; see
Dembo and Zeitouni (1992) for instance. The vague topology is defined in a
similar way with the continuous and compactly supported functions. As the
weak topology contains the vague topology, a LDP has more content if it is
valid for the weak topology than for the vague one. About the weak and vague
topologies, see the discussion of Remark 1 in Section 1.1.

Theorem 1. (i) When ε goes to zero, the volume 
Dε
 converges in prob-
ability to a constant s �= exp�−κ 
S
�. Furthermore, νε converges weakly in
probability to the measure νs = sν1 + �1 − s�ν0.

(ii) The volume 
Dε
 satisfies a LDP of rate function j; that is,

P�
Dε
 ∈ A� ∼ exp�−ε−d j�A���

The function j is convex, null at s, finite on �0�1� and infinite on R \ �0�1�.
(iii) The measures �νε�ε satisfy a LDP in the space of bounded Borel mea-

sures, endowed with the topology of the weak convergence, of the form

P�νε ∈ A� ∼ exp�−ε−d i�A���
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The rate function i is given by

i�νp� =
∫
D
j�p�x��dx

for any νp ∈ � , and by i�ν� = +∞ if ν /∈ � .

0.5. Remarks. The only Young measures of � associated to a function a
are the elements of �. Hence, the weak limit νs = sν1+�1−s�ν0 of νε is not the
Young measure of the constant function a�x� = s (nor of any other function),
although a�·� = s is the weak limit of aε. The same phenomenon occurs for
the models of Baldi and of Facchinetti and Russo, which are studied in Michel
and Piau (1998).

Any νp ∈ � is a weak limit of elements of �, that is, of Young measures
νpn which describe a real material. To see this in dimension 1, assume first
that p is continuous and define pn as follows: if x ∈ �0�1� is such that nx ∈
�k� k + p�k/n�� for an integer k, then pn�x� = 1; else pn�x� = 0. If p is not
continuous, replace p�k/n� by the mean value of p over �k/n� �k + 1�/n� in
this construction.

In fact, the convex set � is the weak closure of �. (Furthermore, the mea-
sures of � are the extremal points of � .) Hence, it is not a surprise that the
domain of the rate function of a LDP for the measures νε in the weak topology
contains � (and in fact, is equal to � ). (We do not use this remark in our
proofs.)

The rate function j is the solution of an optimization problem but the ex-
plicit form of j is unknown. For computations in dimension 1, see section 2.4.
In higher dimensions, an open problem is to know whether j depends of the
shape of the obstacle S, or only of its volume 
S
, that is, only of the point s
where j is null.

Theorem 1 can be generalized to the case where D is a bounded domain
of Rd of volume 
D
 = 1 with rectifiable boundary. One can also replace �ε

by a Poisson process of intensity ε−dκ�x�dx on Rd for any locally integrable
function κ ≥ 0. The regularity of D ensures, for every k, the existence of
an “almost k-uniform” partition of D, that is a partition of D such that the
following properties hold:

(i) The partition has at most c k cells.
(ii) The volume of each cell is at most k−1.

(iii) The diameter of the cells goes uniformly to zero.
(iv) The total volume of the cells whose volume is different of k−1 goes to

zero [see condition (P1) in Michel and Piau (1997)].

The existence of these partitions allows working with D as with �0�1�d and
we refer to Michel and Piau (1998) for a discussion. Denote by j�κ� ·� the rate
function of the LDP for 
Dε
 when �ε is of constant intensity ε−dκ and by
jκ this rate function when the intensity of the Poisson process is ε−dκ�x�dx.
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Then, one has

jκ�v� = inf
{∫

D
j�κ�x�� h�x��dx�

∫
D
h�x�dx = v

}
�

The above infimum may be restricted to the functions h with values in �0�1�.
The Young measures νε then satisfy a LDP of rate function

iκ�νp� =
∫
D
j�κ�x�� p�x��dx

for any νp ∈ � , and iκ�ν� = +∞ if ν /∈ � .
The rest of the paper is devoted to the proof of Theorem 1. Note that part

(i) of the theorem is a consequence of parts (ii) and (iii). Section 1 contains the
proof that a LDP for 
Dε
 implies a LDP for νε [(ii) implies (iii)] and Section 2
contains the proof of a LDP for 
Dε
 [(ii) holds].

1. Large deviations for the Young measures.

1.1. Legendre transforms. In order to prove that (iii) holds when (ii) holds,
we show, as in Michel and Piau (1998), that (ii) implies that the family �νε�ε
satisfies the hypotheses of a known theorem. Recall that the space of bounded
Borel measures on D × �0�1� endowed with the topology of the weak con-
vergence is a locally convex topological space. Its dual can be identified with
the space Cb of bounded continuous functions on D×�0�1�; see Section 6.2 of
Dembo and Zeitouni (1992). Assume first that the family �νε�ε is exponentially
tight. Assume also that the functional

τε�f� �= εd logE�exp�ε−dνε�f���
converges as ε goes to zero to a limit τ�f�, for every f ∈ Cb. Assume lastly
that τ is finite and Gateaux differentiable on Cb. Then, by Corollary 4.6.14
of Dembo and Zeitouni (1992), the family �νε�ε satisfies a LDP whose rate
function i is the Legendre transform of τ; that is,

i�ν� �= sup�ν�f� − τ�f�� f ∈ Cb��
In our situation, the law of νε charges only the measures whose first marginal
is the Lebesgue measure on D (or, in the usual terminology, the Young mea-
sures of base the Lebesgue measure). As D× �0�1� is a compact set, this set
of measures is compact, hence �νε�ε is exponentially tight.

Remark 1. When the measures are defined on a noncompact space, the set
of Young measures is a closed set, noncompact, for the weak topology. But the
closure of this set for the vague topology is compact. Hence, the argument of
exponential tightness is valid with the vague topology and one has to deduce
the LDP for the weak topology from the LDP for the vague topology. This
detour is needed when the set of values of a or D itself are not compact. Then,
a LDP for the weak topology has more content than a LDP for the vague one.
For the details of this discussion, see Michel and Piau (1998).



LDP FOR POISSONIAN YOUNG MEASURES 711

1.2. Computation of τ. We compute the limit of τε�f� for every bounded
continuous function f. As in Michel and Piau (1998), the main idea is to use
the case where f is piecewise constant. The restrictions of the Poisson process
are then independent and their laws are still Poisson.

Notation 2. For any function f� D × �0�1� → R, we use the following
shorthands: f0 �= f�·�0�, f1 �= f�·�1� and f̃ = f1 − f0�

For any continuous bounded f, since D is compact, f0, f1 and f̃ are bounded
and uniformly continuous on D. For k ≥ 1, there exists a function gk� D → R
which is constant on each cell

Dk
n �= k−1�n+D�� n ∈ Zd�

such that the uniform norm εk of gk − f̃ goes to zero when k goes to infinity.
One has

νε�f� = νs�f� +
∫
D
�1�Dε��f̃ � − s f̃ ��

Replacing f̃ by gk in the last term above yields an error on νε�f� which is
between −εk and εk. Denote by gk

n the value of gk on Dk
n and introduce

σε�gk� �= E

[
exp

(
ε−d

∫
D
�1�Dε� − s�gk

)]

= E

[∏
n

exp
(
ε−d gk

n �
Dk
n ∩Dε
 − s 
Dk

n
�
)]
�

The random variables 
Dk
n ∩Dε
 are “almost” independent from each other. To

see this, denote by Vk
n the volume of the part of Dk

n which is not covered by the
obstacles attached to points of the Poisson process �ε which belong themselves
to the cell Dk

n. Denote by Vε the volume of the part of D which is not covered
by the obstacles attached to points of the Poisson process � �κ �kε�−d� which
belong to D. Then, the random variables �Vk

n�n are i.i.d. and the homogeneity
and scaling properties of the Poisson process imply that Vk

n has the law of
k−d Vε. Furthermore,


Dk
n ∩Dε
 ≤ Vk

n ≤ 
Dk
n ∩Dε
 +O�k−�d−1�ε��

To see this, notice that the difference between the two volumes can only be
caused by points x ∈ Dk

n which are covered by an obstacle εS attached to a
point y /∈ Dk

n. Hence, the point x must be at distance O�ε� from the boundary
of Dk

n. The total volume of such points is O�k−�d−1�ε�, hence the above inequal-
ities hold. For a given k, the error due to the replacement of each 
Dk

n ∩Dε

by Vk

n in σε�gk� is at most

exp�ε−d kO�ε�� = exp�ε−d O�ε���
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This shows that

σε�gk� = exp�ε−d O�ε��∏
n

E�exp�ε−d k−d gk
n �Vε − s����(1)

The difference between Vε and 
Dkε
 is seen to be O�ε� by the same method,
hence one can replace Vε by 
Dkε
 in each factor of (1), causing an error on
the exponent of each exponential of at most O�ε�. One goes back to τε�f� by
summing these errors and this yields

τε�f� = νs�f� + ε�k� +O�ε� +∑
n

εd logE�exp��kε�−d gk
n �
Dkε
 − s����

where ε�k� is a number between −εk and εk. We use now the LDP satisfied
by 
Dε
. By Varadhan’s lemma, for any value of t, one has

lim
ε→0

εd logE�exp�k−d ε−d t 
Dkε
�� = k−d j∗�t��
where j∗ is the Legendre transform of the rate function j, also called its
convex conjugate. For a given k, we apply the estimate of Varadhan’s lemma
for the kd values t = gk

n. One gets

τε�f� = νs�f� +O�ε� + ε�k� +∑
n

k−d�j∗�gk
n� − sgk

n + c�gk
n� kε��

= νs�f� +O�ε� + ε�k� +
∫
D
�j∗�gk� − sgk + c�gk� kε���

Here, the functions c�t� kε� go to zero when ε goes to zero, for any given t and
k. Hence, the limit points of τε�f� are of the form

νs�f� + ε�k� +
∫
D
�j∗�gk� − sgk��(2)

Since 
Dε
 ∈ �0�1� and �0�1� is closed, the rate function j for 
Dε
 is infinite
outside of �0�1�. Hence, its Legendre transform j∗ is 1-Lipschitz continuous.

The proof of this basic fact is as follows: assume that a rate function m
is infinite outside of �−v0� v0�. Then, its Legendre transform m∗ is given a
priori by

m∗�x� = sup�mx�v�� v ∈ R�� mx�v� = xv−m�v��
but the assumption on m implies that the supremum defining m∗ can be
restricted to v ∈ �−v0� v0�. Hence, the difference 
m∗�x� −m∗�y�
 is bounded
by the uniform norm of mx −my on �−v0� v0�, which is 
x− y
v0.

Similarly, 
Dε
 − s ∈ �−1�+1�, the rate function for 
Dε
 − s is the translate
j�· + s� of j and the Legendre transform of j�· + s� is

x �→ j∗�x� − sx�

Hence, this last function is 1-Lipschitz continuous. The replacement of gk by
f̃ in (2) yields an error on the result of at most ε�k�. When k goes to infinity,
ε�k� goes to zero, so that we proved the following:

lim
ε→0

τε�f� = νs�f� +
∫
D
�j∗�f̃ � − s f̃ � =� τ�f��
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The function f �→ τ�f� is finite on Cb. We now show that τ is Gateaux differ-
entiable at any f ∈ Cb. For any h ∈ Cb and t > 0,

t−1�τ�f+ th� − τ�f�� = νs�h� − s
∫
D
h̃+

∫
D
t−1�j∗�f̃+ th̃ � − j∗�f̃ ���

We split the last integral into an integral where h̃ > 0 and another integral
where h̃ < 0. Because j∗ is convex, these two integrals converge monotonically
when t goes to 0+ to an integral of the right derivative j∗

r of j∗, respectively,
of its left derivative j∗

l . Hence the Gateaux differential of τ at f computed on
h exists and is

νs�h� +
∫
D
�j∗

r�f̃ �1�h̃ > 0� + j∗
l �f̃ �1�h̃ < 0� − s h̃ ��

1.3. Evaluation of i. The Legendre transform of τ is

i�ν� �= sup�ν�f� − τ�f�� f ∈ Cb��
We first show that i�ν� is infinite if ν /∈ � . Assume that i�ν� is finite. Since
we know that 
j∗�x� − sx
 ≤ 
x
, one has, for any f ∈ Cb,

t�ν�f� − νs�f�� − 
t

∫
D

f̃ 
 ≤ ν�tf� − τ�tf� ≤ i�ν�

for any value of t. (Recall that f̃ �= f1 −f0.) Letting t go to ±∞, one sees that

ν�f� − νs�f�
 is bounded by the integral of 
f̃ 
. The same relation holds for
measurable functions.

The choice of f = 1A⊗1 gives ν�A×�0�1�� = νs�A×�0�1�� = 
A
, hence the
first marginal of ν is the Lebesgue measure. In particular, ν is a probability
measure which may be decomposed along its first marginal into probability
measures over �0�1�. Since D is a Borel space, a measurable version of this
conditioning exists. Denoting by p�x�δ1+�1−p�x��δ0 the conditioned measure
at x, one sees that there exists a measurable function p� D → �0�1� such that
ν = νp. We now compute i�νp�. One has

νp�f� − τ�f� = νp�f� − νs�f� −
∫
D
�j∗�f̃ � − s f̃ �

=
∫
D
�p�x� f̃�x� − j∗�f̃�x���dx�

From the definition of the Legendre transform and from the convexity of j,
one has for every y the following inequality:

p�x�y− j∗�y� ≤ �j∗�∗�p�x�� = j�p�x���
Hence, i�νp� is at most the integral of j�p�. We now show that this is its exact
value.

The application f �→ νp�f� − τ�f� is continuous for the L1 norm and the
continuous bounded functions are a dense subset of L1. Hence, i�νp� is also
the supremum of the integrals of pg−j∗�g� on D for all the functions g ∈ L1.
Assume for the moment that j is finite on �0�1� (we prove in Section 2.3 that
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j is finite on �0�1�). By convexity, for every x ∈�0�1�, there exists a supporting
line of the graph of j at point x, that is, a slope y�x� such that

j�x′� ≥ j�x� + y�x� �x′ − x�
for every x′. One sees then that x′ y�x� − j�x′� is maximum at x′ = x, that is,
that j∗�y�x�� = xy�x� −j�x�. For every a > 0 such that a ≤ s ≤ 1−a, denote
by pa the truncation of p at levels a and 1 − a, that is,

pa �= �1 − a� ∧ �p ∨ a��
Then, ga �= y ◦ pa is bounded, hence integrable, and

pa ga − j∗�ga� = j�pa��
Furthermore, still from the convexity of j, y�a� ≤ 0 ≤ y�1 − a�. One gets

pga − j∗�ga� = j�pa� − y�a� �p− a�− + y�1 − a� �p− �1 − a��+

≥ j�pa��
Finally, i�νp� is at least the integral of j�pa� on D. When a goes to zero, pa

goes to p. The rate function j is lower semicontinuous hence the lim inf of the
integral of j�pa� is greater than the integral of j�p�, and this ends the proof
that (ii) implies (iii).

2. Large deviations for the volumes. Section 2.1 is not logically nec-
essary, but it can help the reader to understand in a simple setting the proofs
of the following sections.

2.1. Dimension 1. The Poisson process �ε of intensity κ/ε is invariant by
translations and the scaled process �t�ε� is a Poisson process of intensity
κ/�tε�. Hence, it suffices to show that, for a Poisson process � �a� of given
intensity a �= κ 
S
 and for k �= �ε 
S
�−1 going to infinity, the measure of the
part of �0� k� which is not covered by the obstacles � �a� + �0�1� satisfies a
LDP. Denote by Wn the measure of the uncovered part of �n�n+ 1� and

Xn �= sup�x ∈ �0�1�� �n�n+ x� ∩� �a� = ���
Yn �= sup�y ∈ �0�1�� �n+ 1 − y�n+ 1� ∩� �a� = ���

The measure Vk of the uncovered part of �0� k� is the sum of Wn from n = 0
to k− 1. The random variables Wn are not independent but

Wn = f�Xn�Yn−1� �= �Xn +Yn−1 − 1�+�
The random variables Zn �= �Xn�Yn� are i.i.d. and their law is known (see
below). Hence, the process �Wn�n is stationary, with values in the compact set
�0�1�, and mixing since Wn and Wm are independent as soon as 
n−m
 ≥ 2.
The LDP for stationary sequences [see Theorem 6.4.4 of Dembo and Zeitouni
(1992)] ensures the existence of the limit

λ�t� �= lim
k→∞

k−1 logE�exp�tVk���
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as well as a LDP for Vk/k. Its rate function j is convex, since it is the Legendre
transform of λ; that is,

j�v� �= sup�t v− λ�t�� t ∈ R��
Since λ�·� is convex, λ is in fact the function j∗ of Section 1. Notice that
expj∗�t� is the largest eigenvalue of a Perron–Frobenius operator (see below
for an explicit formula in dimension 1) and that j�v� is also the solution
of a problem of entropy minimization, a problem whose effective solution is
impossible without the value of expj∗�t�.

2.2. Higher dimensions. In dimension d ≥ 2, few things change. After a
translation and a scaling, we can and will assume that S ⊂ �0�1�d. Call π�n�
the part of � �a� which belongs to the elementary cube c�n� �= n+ �0�1�d for
n ∈ Zd. More precisely,

π�n� �= �� �a� ∩ c�n�� − n�

The field �π�n�� n ∈ Zd� is i.i.d. and each π�n� takes values in the space of
the finite subsets of �0�1�d, endowed with the Hausdorff distance between
compact sets. We claim that the volume Wn of the uncovered part of c�n� is a
continuous functional of the family �π�n− e�� e ∈ �0�1�d�� To see this, notice
that, if the Hausdorff distance between two samples �π�n−e��e and �π ′�n−e��e
is less than ε, the uncovered points for π which are at distance more than ε of
the covered part for π are uncovered by π ′. Hence, Wn is Lipschitz continuous
with respect to �π�n− e�� e ∈ �0�1�d��

Finally, we may apply a contraction principle to the LDP for lattice systems
with finite range interactions of Deuschel, Stroock and Zessin (1991) (see their
Theorem 1.3). It proves that k−d Vk satisfies a LDP of speed kd and rate
function j, where

Vk �= ∑
n∈N�k�

Wn� N�k� �= �n ∈ Zd� c�n� ⊂ �0� k�d�

is the volume of the uncovered part of �0� k�d. Once again, the rate function
j is convex and may be seen, either as the Cramér transform of the largest
positive eigenvalue of a Perron–Frobenius operator or as the solution of a
problem of minimization of an entropy.

2.3. Properties of j. In any dimension, Vk/k
d belongs to �0�1� and con-

verges almost surely to s. To see this, consider the translation operator

θm� �Wn� n ∈ Zd� �→ �Wn+m� n ∈ Zd��

For any m ∈ Zd, θm is ergodic on �0�1�Z
d

for the law of �Wn�n. To see this,
notice that such an operator is equivalent to a translation of all the Poisson
process by −m, which does not change its law. The ergodicity follows from the
fact that, due to the i.i.d. property of the process �π�n�� n ∈ Zd�, any possible
local configuration of the Poisson process is a.s. approximately realized around
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some point of mZ; this is equivalent to saying that, for any neighborhood of
any given local configuration, there exists a translation which is a power of
θm and which sends �Wn�n in this neighborhood. Hence, the ergodic theorem
yields the a.s. convergence of Vk/k

d to

E�W1� = E�
Dε
� =
∫
D
P�x /∈ �ε + εS�dx

= P��ε ∩ �−εS� = �� = exp�−κ 
S
��
The function j is null at point s and infinite outside of �0�1�. Let us show that
j�0� and j�1� are finite; this will imply that j is finite on �0�1�. First, Dε = D
if and only if no point of �ε is in D− εS. This shows that

P�
Dε
 = 1� = P��ε ∩ �D− εS� = �� = exp�−κε−d�1 + o�1����
hence j�1� = κ. On the other hand, since S is an open set, there exists a finite
number c of cells of volumes less than v such that A+S completely covers D
as soon as A contains at least one point in each cell. Hence, the existence of
at least one point of �ε in cε−d cells of volumes at most vεd ensures that D
is completely covered by Oε�S�. In other words,

P�
Dε
 = 0� ≥ �1 − exp�−κε−dvεd��cε−d�
hence j�0� ≤ −c log�1 − exp�−κv��. This ends the proof of (ii).

2.4. Explicit formulas in dimension 1. In dimension 1, one can estimate
j∗�t� explicitly. The common law of the random variables Zn = �Xn�Yn� (see
above) is

P�Z0 ∈ �dx�dy�� = exp�−a� δ1�dx� δ1�dy� + a exp�−a� δ1−x�dy�1�0�1��x�dx
+ a2 exp�−a�x+ y��1�0�1��x�1�0�1��y�1�0�1��x+ y�dxdy�

The random variables Xn and Yn follow the law of � ∧ 1 where � is an
exponential random variable of mean a−1. Hence,

P�X0 ∈ dx� = P�Y0 ∈ dx� = e−a δ1�dx� + a e−ax 1�0�1��x�dx�
Recall that f�x�y� �= �x+ y− 1�+ and define Qt on L1��0�1�� by

Qth�x� �= E�h�X0� exp�t f�x�Y0����
Setting h0 �= 1 and hk+1 �= Qthk, one gets

hk�x� = E�exp�tVk� 
Xk = x��
E�exp�tVk�� = E�hk�X0�� = E�Qk

t �1��X0���
Hence, k−1 logE�exp�tVk�� is equivalent, when k goes to infinity, to log:�t�,
where :�t� is the largest positive eigenvalue of the Perron–Frobenius operator
Qt. One sees that :�t� = expj∗�t�.
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Although an explicit formula of j�v� seems difficult to get, one can write
down the operator Qt, for any t  = a, as the following:

Qth�x� = exp�−a� exp�tx�h�1� +
∫ 1

0
a exp�−ay�h�y�dy

+
∫ x

0
a exp�a� t

t− a
�exp�t�x− y�� − exp�a�x− y���h�y�dy�

The expression of Qa can be deduced by continuity. Furthermore, the very
definition of Qt and the fact that Wn ∈ �0�1� show that j∗�t� has the sign of t
and is between 0 and t.

Notice that Qt operates by duality on the finite measures µ over �0�1� by
Q∗

t �µ��h� = µ�Qt�h��� The usual method of computation of :�t� is to find
βt > 0 and a positive measure µt such that Q∗

t �µt� = βtµt. Then, βt = :�t�.
In the present case, such a measure can be explicitly written down as

µt�dx� = δ1�dx� + �r− t� exp�r�1 − x��1�0�1��x�dx�
provided βt = er and for a suitable value of r. We skip the details of this
computation and give the implicit equation that it yields for j∗�t� = log:�t�,

2j∗�t� = �t− a� + (�t− a�2 + 4ate−a exp�−j∗�t��)1/2
�(3)

Equation (3) has a unique solution j∗�t� in �0� t� for t > 0 and in �−t�0� for
t < 0. For instance,

j∗�a�2 exp�j∗�a�� = a2 exp�−a��
The fact that j∗�t� is the solution of (3) seems to imply that no closed formula
for j∗�t� or j�v� holds.

Finally, we mention that, for t ≥ 0, one can get an upper bound of j∗�t�,
which is better than the obvious one, j∗�t� ≤ t, by writing

1 ≤ exp�2j∗�t�� ≤ E�exp�2t f�X1�Y0��� = E�exp�2tW1���
This last inequality is a consequence of the Cauchy–Schwarz inequality, ap-
plied to the random variables

exp
(
t
∑
n

W2n

)
and exp

(
t
∑
n

W2n+1

)
�

and of the fact that the random variables Wn that are in one of these two
sums are independent.
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