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POISSON APPROXIMATION IN CONNECTION WITH
CLUSTERING OF RANDOM POINTS1

BY MARIANNE MANSSON˚
Chalmers University of Technology

Let n particles be independently and uniformly distributed in a
rectangle A ; R2. Each subset consisting of k F n particles may possibly
aggregate in such a way that it is covered by some translate of a given
convex set C ; A. The number of k-subsets which actually are covered by
translates of C is denoted by W. The positions of such subsets constitute a
point process on A. Each point of this process can be marked with the
smallest necessary ‘‘size’’ of a set, of the same shape and orientation as C,
which covers the particles determining the point. This results in a marked
point process.

Ž .The purpose of this paper is to consider Poisson process approxima-
tions of W and of the above point processes, by means of Stein’s method.
To this end, the exact probability for k specific particles to be covered by
some translate of C is given.

1. Introduction. Assume n particles are uniformly and independently
distributed in a rectangle A ; R2, and let C ; A be a convex set, small
relative to A. To avoid problems with the boundaries of A, the torus conven-
tion will be used throughout the paper. The aim of this paper is to investigate
Poisson approximation of certain variables and point processes which concern
subsets of particles which are covered by some translate of C.

First, a brief review of related problems will be given. Thereafter, neces-
sary notation and some general Poisson approximation theorems are pre-
sented. In Section 3 the probability that a fixed number of particles aggregate
in such a way that they are all covered by some translate of C is given, and
its connection with integral geometry is discussed.

Section 4 constitutes the bulk of the paper. First, the number of subsets
consisting of k - n particles, called k-subsets in the following, which are
covered by some translate of C is considered. The Stein]Chen method is used
to bound the error made in the approximation of this number by a Poisson
variable.

To each k-subset, which is covered by some translate of C, can be attached
its position on A and the smallest s g Rq for which some translate of sC
covers the k particles. Poisson process approximation of three point processes
determined by these positions and sizes is also dealt with in Section 4, as is

1Parts of this work was done while the author was visiting Universitat Zurich, supported by¨ ¨
Ž .the Swedish Natural Science Research Council NFR .
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the joint distribution of the number of covered k-subsets, and the correspond-
ing processes, for different k. The next section deals with asymptotic aspects,
such as rates of convergence. The paper concludes with some problems of
possible interest for more detailed investigation.

Note that the parameters used in the approximations follow from results
in Section 3. For those readers whose main interest is the approximations
and not the geometrical considerations leading to the parameters, it is
enough to use Section 3 as a reference.

n1.1. A brief historical account. There are different k-subsets ofž /k
particles, some of which are covered by translates of C. Order the k-subsets
in some way and let W denote the number of k-subsets which actually are
covered by some translate of C. Then W can be written as

nŽ .k

W s I ,Ý i
is1

where

1, if the ith k-subset is covered by some translate of C ,
I si ½ 0, otherwise.

A k-subset which is covered by some translate of C will in this introduction
be referred to as a k-aggregate in accordance with previous literature.

Ž . Ž . Ž .Silberstein 1945 , Mak 1948, 1949 and Eggleton and Kormack 1944 are
concerned mainly with the calculation of the expected number of k-aggre-

w x Ž .gates, E W , in one dimension then C obviously is a line segment and,
for certain shapes of C, in two dimensions. Circular sets are handled by

Ž . Ž .Mack 1948 and Silberstein 1945 , while rectangular sets are handled
Ž . Ž . Ž .by Mack 1949 and Eggleton and Kormack 1944 . Mack 1949 discusses

arbitrary shapes in two dimension and also gives some results in higher
Ž .dimensions, and Mack 1948 argues for a Poisson limit of the number of

k-aggregates as n tends to infinity.
Ž .The cases of a disc and a square are treated by Aldous 1989 . He gives

Ž .approximate formulas for the distribution of the radius side length of the
Ž .smallest disc square which can be translated to a position where it covers at

least k particles.
In the special case of k s 2 and a circular set, C, the number of k-aggre-

gates equals the number of pairs of particles with interpoint distance less
than the diameter of C. Convergence of this number to a Poisson limit is

Ž .discussed in Silverman and Brown 1978 . The results therein are comple-
mented with a bound for the total variation distance in Silverman and Brown
Ž . Ž .1979 . In, for example, Kryscio and Saunders 1983 Poisson convergence of
the interpoint distances is considered in the case where the underlying
process of particles is not necessarily stationary.

Ž .In Silverman and Brown 1978 the number of close pairs is given as an
example of the classical U-statistics. Poisson approximation of U-statistics
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Ž .and sums of dissociated variables defined in Section 2.2 are treated by
Ž . Ž .Barbour and Eagleson 1984 and Barbour, Holst and Janson 1992 . In these

two references, the Stein]Chen method is used to bound the total variation
distance for Poisson approximations of the sums, in particular, the bound in

Ž .Silverman and Brown 1979 is improved.
The number of close pairs is sometimes used to test the null hypothesis

that a sample is uniformly distributed against some clustering or regular
Ž .alternative. This is discussed, for example, in Silverman and Brown 1978

Ž .and in Barbour, Holst and Janson 1992 , page 34.
Another related concept is the so-called scan statistic, that is, the maximal

number of particles which are covered by some translate of C. In this context
the particles usually constitute a Poisson process rather than being a fixed
number. In one dimension, considerable attention has been devoted toward
finding approximations of the distribution of the scan statistic; see, for

Ž . Ž . Ž . Ž .example, Naus 1982 , Alm 1983 , Janson 1984 and Glaz 1989 . The
references on scan statistics in higher dimension are more scattered. The

Ž . Ž .two-dimensional case is treated in Alm 1997 and Loader 1991 , the latter,
however, being restricted to rectangular sets.

In one dimension, the scan statistic is used in the same way as the number
of close pairs is used in two dimensions, in testing the null hypothesis of an
underlying Poisson process against a clustering or regular alternative.

2. Preliminaries.

2.1. Notions and notation. Let R2 denote the two-dimensional Euclidean
space, with a fixed origin, O, and orthogonal coordinate-axes. The area of a
Ž . 2measurable subset of R is its two-dimensional Lebesgue measure, which
we denote by m.

For B, C ; R2 and c g R, the Minkowski sum and scalar multiple are
defined as

� 4 � 4B q C s x q y : x g B , y g C and cB s cx : x g B ,

ˇ � 4respectively. If c s y1 we get B s yx: x g B , which we call the reflected
2 � 4set of B. For x g R , B q x is the translate of B by x, which is denoted by

ˇ 2B q x. If B s B q x for some x g R , B is said to be centrally symmetric. An
alternative, and for us more useful, way of writing the Minkowski sum is

ˇ2.1 B q C s x : B l C q x / B .Ž . Ž .� 4
For the set xB q yC, where x, y g Rq and B, C ; R2 are nonempty

convex sets, the area can be written as

2.2 m xB q yC s x 2m B q 2 xyn B , C q y2m C ,Ž . Ž . Ž . Ž . Ž .
Ž .where n B, C is the mixed area of B and C, which is actually defined by

Ž . w Ž . x2.2 see, e.g., Bonnesen and Fenchel 1948 , page 40 . These mixed areas are
usually only defined for nonempty sets. We make the natural extension that
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Ž .if B or C s B, then n B, C s 0. It can be shown that if C is a convex set in
R2, then

ˇ2.3 m C F n C , C F 2m C ,Ž . Ž . Ž .Ž .
where the lower bound is attained if and only if C is centrally symmetric,
while the upper bound is attained if and only if C is a triangle. For a proof of

Ž .these facts, see, for example, Bonnesen and Fenchel 1948 , page 105.
Assume that the rectangle in which the particles are distributed, A, is

centered at the origin. Let KK denote the family of convex sets, C ; R2, with
ˇthe properties that C q C ; A and that O is an interior point of C.

Ž .Let XX , AA be any measurable space. The total variation distance, d ,TV
between two probability measures m and n on XX is defined to be

d m , n s sup m A y n A .Ž . Ž . Ž .TV
AgAA

If the state space is discrete, then
1 � 4 � 4d m , n s m i y n i ,Ž . ÝTV 2

igXX

Ž Ž . Ž ..and in this case convergence in total variation distance, d LL X , LL XTV n
� 4ª 0, is equivalent to X converging in distribution to X.n

2.2. General Poisson approximation theorems. Following the notation of
Ž .Barbour, Holst and Janson 1992 , let G be an arbitrary finite collection

of indices and let

w x w xW s I , p s E I and l s E W ,Ý a a a
agG

where I , a g G, are possible dependent, indicator variables. The followinga

method for bounding the total variation distance between the distribution of
Ž .LL W and a Poisson variable with parameter l is called the local approach of

the Stein]Chen method. It is based on Stein’s method, which is a general
mean for approximating the distribution of random quantities. For Poisson

Ž .approximations, it was worked out by Chen 1975 , and further developed by
Ž . Ž .Barbour and Eagleson 1983 , Arratia, Goldstein and Gordon 1989 and by

Ž .Barbour, Holst and Janson 1992 , which hereafter is referred to as BHJ
Ž .1992 . The Stein]Chen method is suitable to use when there is a natural
dependence structure which allows every pair of indicators to be classified as

� 4either strongly or weakly dependent. For each a g G, let G R a be divided
into two subsets, one consisting of those b g G for which I is weaklyb

dependent on I , and one consisting of the indices of the indicators which area

strongly dependent on I . Denote these subsets by Gw and G s, respectively,a a a

and let
Y s I and Z s I .Ý Ýa b a b

w sbgG bgGa a

The function g: Zqª R in the theorem below, is a solution of the Stein
Ž . Ž . � 4 Ž .� 4 q Ž .equation lg j q 1 y jg j s I j g A y Po l A , A ; Z . See BHJ 1992

for details.
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w Ž . xTHEOREM 2.1 Theorem 1.A, BHJ 1992 . Let G be an arbitrary finite
collection of indices. With the above definitions, for any choice of the index sets
Gw and G s, a g G,a a

2 w x w x y1 yld LL W , Po l F p q p E Z q E I Z l 1 y eŽ . Ž . Ž .Ž . Ž .Ý a a a a a
agG

q h min 1, ly1r2 ,Ž .Ý a
agG

where h is any quantity satisfyinga

E I g Y q 1 y p E g Y q 1 F h sup g j ,Ž . Ž . Ž .a a a a a
jG1

for instance,
wh s E E I I , b g G y p .Ž .a a b a a

The next theorem concerns approximation of marked point processes. Let
J s Ý I d , where d denotes the unit point mass at y and the Y ’s area g G a Y y aa

random variables with state space YY , which is assumed to be metric and
separable. Then J is a random element on the space ZZ of configurations of
finite point processes over YY. Assume that a measure on YY is defined for
each a g G by

2.4 L A s P I s 1, Y g AŽ . Ž . Ž .a a a

and let
L s L .Ý a

agG

Furthermore, let

Jw s I d and J s s I d .Ý Ýa b Y a b Yb b
w sbgG bgGa a

The following theorem is the ‘‘local’’ version of Theorem 10.E in BHJ
Ž .1992 . Its proof is a combination of the proofs of Theorem 10.A and Theo-
rem 10.E of that reference, which should be consulted for more details.

THEOREM 2.2. Let J and L be defined as above. Then

d LL J , Po LŽ . Ž .Ž .TV

2 w x w xF p q p E Z q E I ZÝ a a a a až
agG

w < wq d LL J I s 1, Y s x , LL J L dx .Ž .Ž .Ž .Ž .H TV a a a a a /YY

PROOF. Let

� 4AAh j s h j q d y h j L dx q h j y d y h j j dx ,Ž . Ž . Ž . Ž . Ž . Ž . Ž .H Hx x
YY YY
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j g ZZ, be the generator of the immigration-death process on YY with immi-
gration intensity L s Ý L and unit per capita death rate, whose equilib-a g G a

rium distribution is that of the Poisson process on YY with intensity L. Let
h be the solution ofl, B

AAh j s I j g B y Po L B ,Ž . Ž . Ž . Ž . Ž .
Ž .which can be found in Proposition 10.1.1 in BHJ 1992 . Then

d LL J , Po L s sup E AAh J .Ž . Ž . Ž . Ž .Ž .TV l , B
B;YY

< wŽ .Ž .x <In order to bound E AAh J we writel, B

E AAh J s E h J q d y h J L dxŽ . Ž . Ž . Ž . Ž .Ý H x a½
YYagG

� 4q h J y d y h J I d dxŽ . Ž . Ž .Ý H x a Ya 5
YYagG

� 4s h J y d y h J I d dxŽ . Ž . Ž .Ý H x a Y½ 5a
YYagG

w w2.5 yE I h J y h J q dŽ . Ž . Ž .Ž .a a a Ya

q E h J q d y h J L dxŽ . Ž . Ž .Ý H x a
YYagG

w wq E h J y h J q d L dxŽ .Ž . Ž .Ý H a a x a
YYagG

w wq E I h J y h J q dŽ . Ž .Ý Ž .a a a Ya

agG

w wy E h J y h J q d L dx .Ž .Ž . Ž .Ý H a a x a
YYagG

Ž .Arguing much the same as in the proof of Theorem 10.A in BHJ 1992 , the
Ž .absolute value of the four lines following the second equality in 2.5 can be

bounded by

w x w x w xE I Z q E I q Z E I ,Ý Ýa a a a a
agG agG

Ž .respectively. Furthermore, the absolute value of the two last lines of 2.5 is
equal to

w wE h J y h J q d N I s 1, Y s x� Ž . Ž .Ý H a a x a a
YYagG

2.6Ž .
w wyE h J y h J q d L dx .Ž .4Ž . Ž .a a x a
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Ž . < Ž w . Ž w . <By Lemma 10.1.3 in BHJ 1992 , h J y h J q d F 1, and hence, usinga a x
Ž .the definition of total variation distance, 2.6 is bounded by

w < wd LL J I s 1, Y s x , LL J L dx ,Ž .Ž .Ž .Ž .Ý H TV a a a a a
YYagG

and the theorem is proved. I

� 4 � 4If G is a collection of k-subsets of 1, 2, . . . , n , then the family X : a g Ga

of random variables is said to be dissociated, as defined by McGinley and
Ž . Ž . Ž .Sibson 1975 , if X : a g A and X : a g B are independent whenevera a

Ž . Ž .D a l D a s B. If k s 1, ‘‘dissociated’’ is equivalent to ‘‘indepen-a g A a g B
dent.’’ In the following theorem, families of indicator variables belonging to a
somewhat wider group are considered; instead of just one value of k, we let G

� 4be a collection of arbitrary subsets of 1, 2, . . . , n .

Ž . � 4THEOREM 2.3. i Let G be a collection of subsets of 1, 2, . . . , n and the
� 4 Ž . Ž .family I : a g G be such that I : a g A and I : a g B are independenta a a

Ž . Ž . s � 4whenever D a l D a s B. If G s b g G: b / a , b l a / B ,a g A a g B a

then
2 w x w x y1 yld LL W , Po l F p q p E Z q E I Z l 1 y e .Ž . Ž . Ž .Ž . Ž .ÝTV a a a a a

agG

Ž . s �ii Let G and G be defined as above, and assume that the family I d :a a Ya

4 Ž . Ž .a g G is such that I d : a g A and I d : a g B are independenta Y a Ya a

Ž . Ž .whenever D a l D a s B. Thena g A a g B

2 w x w xd LL J , Po L F p q p E Z q E I Z .Ž . Ž .Ž . ÝTV a a a a a
agT

PROOF. The result is an immediate consequence of Theorem 2.1 and 2.2,
since by the definition of G s it follows that I and I d , b g Gw, area b b Y ab

independent of I and I d , respectively. Ia a Ya

REMARK 2.4. In the case of dissociated indicators, i.e. if all subsets of G
Ž .are of the same size, Theorem 2.3 i coincides with Theorem 2.N in BHJ

Ž .1992 .

Ž . Ž .REMARK 2.5. Note that the bounds in Theorem 2.3 i and ii are equal
Ž � 4.except for the factor 1 y exp yl rl.

3. The probability of covering of all particles. Assume p , . . . , p1 k
are independently and uniformly distributed particles in the rectangle A ; R2

and let C g KK. In this subsection we will derive the probability

3.1 P ' x g A: p , . . . , p g C q xŽ . Ž .1 k

by means of results in integral geometry and give some historical back-
ground.
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First, the case of two particles will be considered, so as to give some
Ž .understanding of the formula for the probability 3.1 , given in Theorem 3.2.

In this case, the probability can be found by fixing one of the particles in an
arbitrary position, and considering all possible positions for the other one,
such that both particles are covered by some translate of C. By the indepen-
dence and the uniform distribution of p and p , and the torus convention, it1 2
does not matter where the first particle lies, and the quotient of the ‘‘possible’’

Ž . Ž .area for the second particle and m A equals P ' x g A: p , p g C q x .1 2

EXAMPLE 3.1. If C g KK is a circle of radius r, the possible area for the
second particle is a circle of radius 2r. Then

P ' x g A: p , p g C q x s 4p r 2rm A s 4m C rm A .Ž . Ž . Ž . Ž .1 2

EXAMPLE 3.2. Let C g KK be a triangle. Figure 1 shows C and the possible
area for the second particle, given the position of p . As seen by the figure,1
this area is six times as large as that of the original triangle. Hence

P ' x g A: p , p g C q x s 6m C rm A .Ž . Ž . Ž .1 2

Ž .By these examples which will turn out to be extreme; see Corollary 3.3 ,
we learn that for the probability of covering the particles, it is not only the
area of the sets which is of importance.

To handle the case of a general C g KK, the following simple lemma is of
considerable use, by giving an equivalent way of viewing the problem. Recall

ˇ � 4the definition of the reflection of C at the origin; C s yx: x g C .

LEMMA 3.1. Let x , . . . , x be arbitrary fixed particles in R d and C ; R d.1 k
Then

' x g R d such that x , . . . , x g C q x1 k

if and only if

k

Č q x / B.Ž .F i
is1

FIG. 1. The possible area for the second particle.
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PROOF. First note that

ˇ ˇx g C q x m x y x g C m x y x g C m x g C q x ,i i i i

for every i s 1, . . . , k. Hence
k k

dˇ ˇC q x / B m ' x g R : x g C q xŽ . Ž .F Fi i
is1 is1

m ' x g R d : x , . . . , x g C q x . I1 k

By this lemma it follows that
k

P ' x g A: p , . . . , p g C q x s P C q p / B ,Ž . Ž .F1 k iž /
is1

when the torus convention is used. It is now easy to derive an expression for
the probability in case of two particles and a general convex set C g KK. Since
we may let p s O, we are looking for the probability that p belongs to the1 2

ˇ� Ž . 4 Ž .set x: C l C q x / B which is precisely C q C by 2.1 . Thus

P ' x g A: p , p g C q x s P C q p l C q p / BŽ . Ž . Ž .Ž .1 2 1 2

ˇs m C q C rm AŽ .Ž .
ˇs 2 m C q n C , C rm A ,Ž . Ž .Ž .Ž .

Ž .where the last equality follows from 2.2 . What determines the probability is
hence the area and the mixed area of the set, where the latter is dependent
on the shape of the set. This carries over to the case of more than two
particles, as can be seen in Theorem 3.2.

ŽŽ .A generalization of the problem to find an expression for P C q p1
Ž . .l ??? l C q p / B , is to let sets C , . . . , C of possibly unequal size andk 1 k

Žshape be translated by p , . . . , p , respectively. Note that in the case of1 k
unequal sets there is obviously no equivalence corresponding to that in

.Lemma 3.1. In fact it needs no more effort to handle this generalized case;
thus we search the probability

P C q p l C q p l ??? l C q p / B ,Ž . Ž . Ž .Ž .1 1 2 2 k k

where C , . . . , C g KK. Furthermore, for a while we extend the discussion to1 k
concern an arbitrary dimension, R d.

A consequence of using the torus convention is that we may assume that
the first particle lies at the origin. Because of the assumptions that the origin
lies in the centre of A and is an interior point of C , . . . , C and of the1 k

Ž .restrictions on the sizes of C , . . . , C , all vectors x , . . . , x such that1 k 2 k

C l C q x l ??? l C q x / BŽ . Ž .1 2 2 k k

satisfy x g A, i s 2, . . . , k, without using the torus convention. Hence, oncei
the assumption that the first particle lies at the origin is made, we may treat
A as a ‘‘normal’’ d-dimensional rectangle and not as a torus.
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Since p , . . . , p are independently and uniformly distributed in A, the2 k
Ž . ky1vector p , . . . , p is uniformly distributed in the product space A . Let2 k

ky1 Ž .m denote the k y 1 -fold product measure of m , the d-dimensionald d
ky1Ž ky1. Ž .ky1Lebesgue measure. Now m A s m A andd d

P C l C q p l ??? l C q p / BŽ . Ž .Ž .1 2 2 k k

s mky1 x , . . . , x : x g R d ,Ž .�d 2 k i

ky1C l C q x l ??? l C q x / B rm A .Ž . Ž . Ž .41 2 2 k k d

To see the connection with integral geometry, we write

mky1 x , . . . , x : x g R d , C l C q x l ??? l C q x / BŽ . Ž . Ž .� 4d 2 k i 1 2 2 k k

s ??? V C l C q x l ??? l C q x dx ??? dx ,Ž . Ž .Ž .H H 0 1 2 2 k k 2 k
d dR R

3.2Ž .

where

1, if C / B,V C sŽ .0 ½ 0, if C s B.

Ž . Ž .The functional V C is one of the so-called intrinsic volumes of C, V C ,0 i
i s 0, . . . , d, defined for compact, convex subsets of R d. The intrinsic volumes
can be defined by the classical Steiner formula as follows. Let Bd be the
d-dimensional unit ball, k its volume and l g Rq. Thend

d
d dyim C q lB s k l V C .Ž . Ž .Ýd dyi i

is0

The most interesting, and therefore most studied, cases are i s 0, d y 1, d.
As already mentioned, V is the indicator of nonempty sets, while 2V is0 dy1
surface area, and V is volume.d

Ž .As early as 1937, explicit expressions for 3.2 were given for k s 2, 3 in
Ž .two and three dimensions. Blaschke 1937 discusses both dimensions while

Ž .Berwald and Varga 1937 handle three dimensions. In a probabilistic con-
Žtext, the planar case, including an iterated version i.e., for an arbitrary

. Ž .number of sets , was rediscovered by Miles 1974 , and the two- and three-
Ž .dimensional cases by Mansson 1996 .˚

Ž .In an arbitrary dimension and for general V , the integral in 3.2 isi
Ž .handled in Weil 1990 , where it is a special case of an even more general

Ž k Ž . .situation. Hence the formula for P F C q p / B follows directly in anis1 i i
arbitrary dimension. However, in higher dimensions, the formulas involve
complicated functionals for which explicit descriptions are known only in
special cases. Since the setting in this paper is two-dimensional, we present
here only the probability in this case.

THEOREM 3.2. Suppose C g KK, i s 1, . . . , k, and that p , i s 1, . . . , k, arei i
independently and uniformly distributed particles in A, and k s 2, 3, . . . .
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Then, using the torus convention,

k k k k k
ˇP C q p / B s m C q n C , C m CŽ . Ž .Ž .F Ý Ł Ý Łž /i i j i j lž / � 0js1 ls1is1 is1 i , js1

l/i , jj/i i/j

1
= .ky1

m AŽ .
In particular, if C s C, i s 1, . . . , k, theni

k

P ' x g A: p , . . . , p g C q x s P C q p / BŽ . Ž .F1 k iž /
is1

ky1ˇn C , C m CŽ .Ž .
s k q k k y 1 .Ž . ky1ž /m CŽ . m AŽ .

It is the latter part of this theorem which will be useful in the rest of this
Ž .paper. Corollary 3.3 follows directly from Theorem 3.2 and 2.3 .

COROLLARY 3.3. Under the assumptions of Theorem 3.2,
ky1 ky1

m C m CŽ . Ž .
2 2k F P ' x g A: p , . . . , p g C q x F 2k y k ,Ž . Ž .1 kky1 ky1

m A m AŽ . Ž .
where there is equality on the left if and only if C is centrally symmetric and
on the right if and only if C is a triangle.

In this paper the discussions will be carried on in terms of covering
particles. But throughout the paper we shall bear in mind that when read-
ing, for instance, ‘‘k uniformly distributed particles are covered by C,’’ we

ˇequally well can read, ‘‘k uniformly translated copies of C have a nonempty
intersection.’’

4. Poisson approximation. In this section we will consider Poisson
approximation of the number of k-subsets of particles which are covered by
translates of C, and Poisson process approximation of some point processes
which arise in this connection. Results concerning one value of k in the
variable and process cases are presented in Section 4.1.1 and 4.1.2, respec-
tively, while Section 4.1.3 handles joint distributions. The proofs are deferred

Ž .to Section 4.2. Without loss of generality, we will henceforth let m A s 1.

4.1. Main results.
4.1.1. The univariate case. As noted in the introduction, the number of

k-subsets which are covered by some translate of C can be written as
nŽ .k

4.1 W s I ,Ž . Ý i
is1



˚M. MANSSON476

where

1, if there exists x g A such that the ith k-subset¡~ is covered by C q x ,I si ¢
0, otherwise.

From Theorem 3.2 we know that

w xE I s P ' x g A: p , . . . , p g C q xŽ .i 1 k

ˇn C , CŽ . ky1 ns k q k k y 1 m C , i s 1, . . . , ,Ž . Ž . ž /kž /m CŽ .
4.2Ž .

and hence that

ˇn C , CŽ . ky1nw x4.3 l s E W s k q k k y 1 m C .Ž . Ž . Ž .ž /k ž /m CŽ .

W is a sum of indicators, where those pairs of indicators which concern
k-subsets with common particles are dependent, while those with no particles
in common are independent. In a situation such as this, the local version of
the Stein]Chen method is a suitable mean to get a bound on the total
variation distance between the distribution of W and a Poisson variable with
parameter l, and it leads to the following theorem.

Ž . Ž .THEOREM 4.1. Let W and l be defined by 4.1 and 4.3 , respectively.
Then

2 ky1lk ky lk n y k yld LL W , Po l F q a m C 1 y e ,Ž . Ž . Ž . Ž .Ž . ÝTV kylq1ž / ž /½ 5l k y ln ls1

where a s 2 i2 y i.i

REMARK 4.2. In case of k s 2 the bound can be somewhat improved by
Ž .means of Theorem 2.O in BHJ 1992 , which concerns families of strongly

dissociated indicator variables. The idea is to reduce the number of indices
in G s.a

4.1.2. The process case. The purpose of this section is to introduce three
point processes determined by position and sizes of the k-subsets which are
covered by some C q x and consider approximation of these processes by
Poisson processes. The point processes are defined as follows.

Ž .Let the leftmost particles the lowest of these in case of ambiguity in the
k-subsets which actually are covered by some translate of C constitute the
points of the point process J on A. The size of a k-subset we define to beA
the smallest s such that for some x g A, sC q x covers the k-subset. If sizes
are attached to the points of J , we get a point process on the space A =A
w x0, 1 , which we denote by J. These sizes are identically, but not independ-
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ently, distributed with distribution function

<F y s P ' x g A: p , . . . , p g yC q x ' x g A: p , . . . , p g C q xŽ . Ž .1 k 1 k

ky1ˇk q k k y 1 n yC, yC rm yC m yCŽ . Ž . Ž .Ž .Ž .
s ky1ˇk q k k y 1 n C , C rm C m CŽ . Ž . Ž .Ž .Ž .

4.4Ž .

s y2Ž ky1. ,
ˇ 2 ˇ 2Ž . Ž . Ž . Ž . Ž .0 F y F 1, by 4.2 and since n yC, yC s y n C, C and m yC s y m C . If

we drop the positions and just consider the sizes, the result is a point process
w xon 0, 1 , which we denote by J .w0, 1x
All these three processes can be written as

nŽ .k

I d ,Ý i Y i
is1

� 4 w x w xwhere the state space for Y , denoted by YY , is A, A = 0, 1 or 0, 1 . We willi
w xfirst consider J, for which YY s A = 0, 1 , and we need to derive the measure

Ž .on YY introduced in 2.4 ,

L A s P I s 1, Y g A .Ž . Ž .i i i

The position of a k-subset which is covered by some translate of C, that is, its
leftmost particle, is uniformly distributed on A, since the k particles them-
selves are uniformly and independently distributed on A, and the torus
convention is used. The size of a k-subset which is covered takes its value in
w x0, 1 and has density function

2 k y 1 y2 ky3Ž .
Ž .by 4.4 . Furthermore, the size is independent of the position of the k-subset.

w x Ž . Ž .With p s E I and l defined as in 4.2 and 4.3 , respectively, the measurei
L is thus given byi

1
2 ky3dL x , y s p 2 k y 1 y dx dyŽ . Ž .i m AŽ .

4.5Ž .
n2 ky3s 2p k y 1 y dx dy, i s 1, . . . , ,Ž . ž /k

and we get
nŽ .k

n 2 ky3dL x , y s dL x , y s 2p k y 1 y dx dyŽ . Ž . Ž .Ý i ž /4.6Ž . k
is1

s 2l k y 1 y2 ky3 dx dy.Ž .
Ž .The bound given below on the total variation distance between LL J and a

Poisson process with intensity L equals the bound on the distance between
Ž .LL W and a Poisson variable with parameter l given in Theorem 4.1 if l F 1.

If l ) 1, it is unfortunately not as good in the process case.
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Žnk . w xTHEOREM 4.3. Let J s Ý I d be the point process on A = 0, 1 definedis1 i Y i

Ž .above and let L be given by 4.6 . Then
2 2 ky1l k ky lk n y kd LL J , Po L F q l a m C ,Ž . Ž . Ž .Ž . ÝTV kylq1ž / ž /l k y ln ls1

where a s 2 i2 y i.i

REMARK 4.4. Since J and J and the corresponding Poisson processesA w0, 1x
Ž .are obtained as measurable mappings from J and Po L , respectively, it

follows that

d LL J , Po L F d LL J , Po L ,Ž . Ž . Ž . Ž .Ž .Ž .TV YY YY TV

w x Ž .where YY s A or 0, 1 , and L is the measure corresponding to 4.6 . HenceYY

the bound in Theorem 4.3 holds also when these processes are concerned. I

4.1.3. The multivariate case. For C Žk j. g KK, where j s 1, 2, . . . , m, k gj
� 42, 3, . . . and k / k if i / j, leti j

n
kž /j

Žk .j4.7 W s IŽ . Ý k , ij
is1

and
n
kž /j

Žk .j4.8 J s I d ,Ž . Ý k , i Y , ij k j
is1

where I s 1 if the ith k -subset is covered by some translate of C Žk j. and 0k , i jj
Ž .otherwise. From 4.3 we know that

nŽk . Žk .j jw x4.9 l s E W s p ,Ž . kk jž /j
where

Ž̌k j. Žk j.n C , CŽ . k y1jŽk .j4.10 p s E I s k q k k y 1 m C ,Ž . Ž .Ž .k k , 1 j j j Žk .j j jž /m CŽ .
Ž .and furthermore, by 4.6 ,

n
kž /j

Žk . Žk . Žk . 2 k y3j j j j4.11 dL x , y s dL x , y s 2l k y 1 y dx dy,Ž . Ž . Ž . Ž .Ý i j
is1

w x Žk j.is the measure on A = 0, 1 , which is connected to J .
We will start to approximate Ým W Žk j. by a Poisson variable with expecta-js1

tion
m m

Žk . Žk .j jE W s l .Ý Ý
js1 js1
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Žk j. Žk j. Ž . Ž . Ž .THEOREM 4.5. Let W , l and p be defined by 4.7 , 4.9 and 4.10 ,k j

respectively. Then
m m

Žk . Žk .j jd LL W , Po lÝ ÝTV ž / ž /ž /js1 js1

m m Žk .j1 y exp yÝ l� 4n js12F p q p b q b ,Ý ž /k k 1 j 2 j m Žk .k j j jž /ž /j Ý ljs1js1

4.12Ž .

where
� 4k y1 min k , kj j smn y k n y kk kj jj j4.13 b s p q p ,Ž . Ý Ý Ý1 j k kj sž / ž /k y l ž /ž / k y ll lj sls1 ss1 ls1

s/j

k y1j n y kk j k yljj Žk .jb s p m C aŽ .Ý2 j k k ylq1j jž / k y lž /l jls1

� 4min k , kj sm n y kk k ylj sj Žk .sq min p m C a ,Ž .Ý Ý ½ k k ylq1j sž / ž /k y ll sss1 ls1
s/j

4.14Ž .

k yljŽk .jp m C a ,Ž . 5k k ylq1s j

and a s 2 i2 y i.i

We will now consider approximation of the distribution of the vectors
Ž Žk1. Žk m .. Ž Žk1. Žk m ..W , . . . , W and J , . . . , J by the vectors of corresponding inde-
pendent Poisson variables and Poisson processes, respectively.

Žk j. Žk j. Žk j. Žk j. Ž . Ž . Ž .THEOREM 4.6. Let W , J , l and L be defined by 4.7 , 4.8 , 4.9
Ž .and 4.11 , respectively. Then

m m
m mŽk . Žk . Žk . Žk .j j j j� 4 � 4d LL W , Po l F d LL J , Po LŽ . Ž .js1 js1Ł Łž / ž /TV TVž / ž /js1 js1

m n 2F p q p b q b ,Ý ž /k k 1 j 2 jk j jž /jjs1

Ž . Ž . Ž .where p , b and b are given by 4.10 , 4.13 and 4.14 , respectively.k 1 j 2 jj

REMARK 4.7. Note that for m s 1 the bound in Theorem 4.6 coincides
Ž .after some rewriting with the bound in Theorem 4.3, which concerns ap-
proximation of only one process. However, it is not as good as the bound in

Ž Ž yl . .the univariate approximation in Theorem 4.1 it lacks the factor 1 y e rl .

4.2. Proofs. Proofs of the results in the previous subsection are given
below. We start with Theorem 4.5, since that theorem is used in the rest of
the proofs.
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PROOF OF THEOREM 4.5. First we must introduce some new, local notation.
Let

njG s l : l s 1, . . . , , l / i , ith k -subset l lth k -subset / B ,Ž .j , i j jk½ 5ž /j
j s 1, . . . , m ,

njG s l : l s 1, . . . , , ith k -subset l lth k -subset / B ,Ž .s , i j s½ 5kž /s

j s 1, . . . , m, s s 1, . . . , m , s / j,
m

Z s I , j s 1, . . . , m ,Ý Ýk , i k , lj s
jss1 lgGs, i

so that Z equals the sum of the number of k -subsets which are coveredk , i sj

by some C Žk s. q x, s s 1, . . . , m, and have at least one particle in common
with the ith k -subset.j

� 4Note that if we let G consist of the indices of all k -subsets of 1, 2, . . . , n ,j
s � 4j s 1, . . . , m, and G s b g G: b / a , b l a / B , then we can writea

n
kž /jm m

Žk .jW s I s I ,Ý Ý Ý Ýk , i aj
js1 js1 is1 agG

where I s 1 if all p , i g a , are covered by some C Ž < a <. q x, x g A. Further-a i
more, if a is the index of the ith k -subset, thenj

m

Z s I s I .Ý Ý Ýk , i k , l bj s
sjss1 bgGlgG as , i

Ž .Hence it is clear that the assumptions of Theorem 2.3 i are satisfied. By
noting that Z as well as I are equally distributed for all i, it followsk , i k , ij j

that

m m
Žk . Žk .j jd LL W , Po lÝ ÝTV ž / ž /ž /js1 js1

m m Žk .j1 y exp yÝ l� 4n js12F p q p E Z q E I Z .Ý ž /k k k , 1 k , 1 k , 1 m Žk .k j j j j j jž /ž /j Ý ljs1js1

w x w xWe need now to derive bounds for E Z and E I Z . Sincek , 1 k , 1 k , 1j j jw x Ž .E I s p for all i by 4.10 ,k , i ks s

m m

4.15 E Z s E I s p .Ž . Ý Ý Ý Ýk , 1 k , i kj s s
j jss1 ss1igG igGs, 1 s , 1
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n y kk jjThere are different k -subsets with exactly l particles in commonjž / k y lž /l j

n y kk jjwith the first k -subset, l s 1, . . . , k y 1, and there are differentj j ž / ž /k y ll s

k -subsets with exactly l particles in common with the first k -subset,s j
� 4 Ž . Ž .l s 1, . . . , min k , k . Hence 4.15 equals b in 4.13 .j s 1 j

Now, for each l s 1, . . . , k y 1, choose any of the indicators pertaining to aj
k -subset which has l particles in common with the first k -subset, andj j
denote it by I l . Denote by I l a corresponding variable, but concerning ak kj s

k -subset which has l particles in common with the first k -subset, wheres j
� 4 w xl s 1, . . . , min k , k . Then E Z I can be rewritten asj s k , 1 k , 1j j

k y1j n y kk jj lE Z I s E I IÝk , 1 k , 1 k , 1 kj j j jž / k y lž /l jls1

� 4min k , kj sm n y kk jj lq E I I .Ý Ý k , 1 kj sž / ž /k y ll sss1 ls1
s/j

4.16Ž .

If I s 1 is given, we know that l of the particles which determine I l arek , 1 kj j

close enough to be covered by some translate of C Žk j.. The closer these l
particles are, the larger is the probability that these l and the remaining
k y l particles which determine I l are all covered by some translate of C Žk j.,j k jl Ž l < .that is, that I s 1. To get an upper bound on P I s 1 I s 1 , we cank k k , 1j j j

therefore think of the l common particles as having the same position, say
y g A. By the discussion in Section 3, we then get

l < Žk j.P I s 1 I s 1 F P ' x g A: p , . . . , p , y g C q xž / ž /k k , 1 1 k ylj j j

s P ' x g A: p , . . . , p g C Žk j. q xž /1 k ylq1j

k y1jŽk .jF m C a ,Ž . k ylq1j

where a s 2 i2 y i, by Corollary 3.3. Hencei

l l <E I I s p P I s 1 I s 1ž /k , 1 k k k k , 1j j j j j

4.17Ž .
k yljŽk .jF p m C a .Ž .k k ylq1j j

As above,

k ylsl Žk .s4.18 E I I F p m C a ,Ž . Ž .k , 1 k k k ylq1j s j s

w l xand by symmetry, another bound for E I I isk , 1 kj s

k yljl Žk .j4.19 E I I F p m C a .Ž . Ž .k , 1 k k k ylq1j s s j
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Ž . Ž . Ž . w xInsert 4.17 ] 4.19 in 4.16 to obtain E Z I F b , where b is givenk , 1 k , 1 2 j 2 jj j
Ž .in 4.14 .

PROOF OF THEOREM 4.1. Letting m s 1 and k s k in Theorem 4.5 and1
nnoting that p s lr givesk ž /k

d LL W , Po lŽ . Ž .Ž .TV

¡ ky1l l k n y k~s q Ý ž / ž /l k y ln n¢ ls1ž / ž /k k4.20Ž .

¦ky1
ky lk n y k yl¥q a m C 1 y e .Ž . Ž .Ý ky lq1ž / ž /l k y l §ls1

Let X be a hypergeometric random variable such that

k n y k
2kž / ž /l k y l w xP X s l s , l s 0, 1, . . . , k and E X s .Ž .

nnž /k

Then

ky1 21 1 k 1k n y k s P X G 1 y F yŽ .Ý ž / ž /l k y l nn n nls1ž / ž / ž /k k k

Ž .by Markov’s inequality, and the first two terms in the major brackets of 4.20
can be bounded by lk 2rn, by which the theorem is proved. I

Ž .REMARK 4.8. Theorem 4.1 could be derived more directly by using 3.2
Ž .p. 35 in BHJ 1992 .

PROOF OF THEOREM 4.3. Position pertaining to k-subsets with common
particles are dependent, otherwise they are independent. The same holds
for the sizes. Furthermore, this dependence structure is the same as that of

n nI : i s 1, . . . , . Hence the family I d : i s 1, . . . , satisfies the as -½ 5 ½ 5i i Yž / ž /k ki

Ž .sumptions of Theorem 2.3 ii . As noted in Remark 2.5, in such a case the
Ž Ž . Ž .. Ž .bound of d LL J , Po L given in Theorem 2.3 ii coincides with the boundTV

Ž Ž . Ž .. Ž . Žof d LL W , Po l given in Theorem 2.3 i , except for the factor 1 yTV
Ž ..exp l rl. We used Theorem 4.5 in the special case where j s 1 to bound
Ž Ž . Ž .. Ž .d LL W , Po l . However, in that case Theorem 4.5 and Theorem 2.3 iTV

coincide, and the result follows without further calculations. I
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PROOF OF THEOREM 4.6. To prove this theorem, we use another point
˜ Žk j. � 4process J which is the sum of the processes J , j s 1, . . . , m, k g 2, 3, . . . ,j

but with the additional information of which process JŽk j. each point origi-
nates from. Hence, if GŽk j. contains the indices of the k -subsets, and G sj
Dm GŽk j., letjs1

J̃ s I d ,˜Ý a Ya

agG

˜where the Y ’s take their values ina

˜ w x � 4YY s A = 0, 1 = k , k , . . . , k .1 2 m

˜ ˜ ˜Ž . Ž .The first step is to derive L A s P I s 1, Y g A , where A ; YY. Notea a a

that if a g GŽk j., then

˜ 2 k jy3dL x , y , k s 2p k y 1 y dx dy,Ž . Ž .a j k jj

˜ ˜Ž . Ž . Ž .by 4.5 , and dL x, y, z s 0 for z / k . Hence, for x, y, z g YY , leta j

˜ 2 zy3 Ž z .� 4dL x , y , z s 2p z y 1 y 1 a g G dx dy,Ž . Ž .a z

so that

˜ ˜dL x , y , z s dL x , y , zŽ . Ž .Ý a
agG

˜ Ž z . 2 zy3s dL x , y , z s 2l z y 1 y dx dy.Ž . Ž .Ý a
Ž z .agG

Since

Žk j. Žk j.� 4W s J dx , dyH H
w xA 0, 1

is a functional of JŽk j., and
Žk j. ˜� 4J dx , dy s J dx , dy, k� 4j

˜in turn is a measurable mapping of J, it follows that
m m

m mŽk . Žk . Žk . Žk .j j j j� 4 � 4d LL W , Po l F d LL J , Po LŽ . Ž .js1 js1Ł Łž / ž /TV TVž / ž /js1 js1

˜ ˜F d LL J , Po L .Ž . Ž .Ž .TV

Ž Ž . Ž ..For a fixed k we could use the bound on d LL W , Po l to get aTV
Ž Ž . Ž ..bound on d LL J , Po L , because of the dependence structure ofTV

n ˜ ˜Ž Ž . Ž ..I d , i s 1, . . . , . Similarly we get a bound on d LL J , Po L by½ 5i Y TVž /ki

Ž Ž m Žk j.. Ž m Žk j...means of the bound on d LL Ý W , Po Ý l given in Theorem 4.5.TV js1 js1
I

5. Asymptotic results. For a fixed C and k, the errors made by Poisson
approximating of course get large when n does. We will now consider
asymptotic aspects of the previous results as k is kept fixed, but the areas of
the sets decrease as n grows. Since n is no longer fixed, the quantities which
change with n are here indexed by n.
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� 4̀Particular attention will be paid to the case where C , C g KK, is an ns1 n
Ž . Ž yt .sequence of sets such that m C s O n , t g R. Ifn

m C s cnyt ,Ž .n

where c ) 0 and t g R are constants, then the expectation of the number of
k-subsets which are covered by some translate of C isn

ˇn C , CŽ .n nn ky1 ytŽky1.w xl s E W s k q k k y 1 c nŽ .n n ž /k ž /m CŽ .5.1Ž . n

s O nky tŽky1. .Ž .
The limit of this expectation depends on the value of t,

0, if t ) kr k y 1 ,Ž .
5.2 l ª as n ª `,Ž . n ½ `, if t - kr k y 1Ž .

Ž .and if t s kr k y 1 ,

k 2cky1 2k 2 y k cky1Ž .
F lim inf l F lim sup l F ,n nk! k!nª` nª`

where the bounds follow by Corollary 3.3. If the sets C are such thatn
ˇŽ . Ž .n C , C rm C is constant for all n, for instance if they are of equal shape,n n n

Ž .and t s kr k y 1 , then

l ª a cky1rk!,n C , k

ˇ 2 2Ž . Ž . Ž . w xwhere a s k q k k y 1 n C , C rm C g k , 2k y k .C, k n n n
In Section 5.1 and 5.2 we will see that:

Ž Ž ..1. If l ª 0, t ) kr k y 1 , then the total variation distance tends to zeron
at the same rate both in the univariate and in the process case.

Ž Ž ..2. If l stays bounded away from 0 and `, t s kr k y 1 , then the totaln
variation distance tends to zero at the same rate in both cases.

Ž Ž ..3. If l ª `, t - kr k y 1 , but not too fast, the distance also tends to zeron
in both cases. However, here the univariate case is doing better: the rate of
convergence is faster, and the range of values of t for which the distance
really tends to zero is larger.

In Section 5.3 is shown that to achieve convergence in total variation in the
Ž .multivariate case where there are more than one sequence of sets , the

conditions on each sequence are somewhat stronger than in the process case.
Finally, in Section 5.4 an example, which further illustrates the role of

Ž .t s kr k y 1 as threshold values, is given.

� 4̀5.1. The univariate case. Let C , C g KK, be a sequence of sets. Ton ns1 n
Ž Ž . Ž ..get a bound on the variation distance d LL W , Po l , which is given inTV n n

Theorem 4.1, valid for all shapes of the set C we use that the expectationn
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Ž .of W , given in 4.3 , can be bounded byn

ky1k 2n 2k y k m CŽ . Ž .n
l F ,n k!

Ž yl n. Ž .by Corollary 3.3. This bound, together with 1 y e F min 1, l , insertedn
in the bound in Theorem 4.1 yields

d LL W , Po lŽ . Ž .Ž .TV n n

ky1 kylky1a k nm C a nm CŽ . Ž .Ž . Ž .k n kylq1 nkF q Ý ž /½ 5lk y 1 ! k y l !Ž . Ž .ls15.3Ž .
ky1kn a m CŽ .k n

= min 1, ,½ 5k!

where a s 2 i2 y i, valid for all C g KK.i n

Ž . Ž .THEOREM 5.1. Let W and l be defined as in 4.1 and 4.3 , respectively.n n

Ž . � 4̀i For any sequence of sets, C , C g KK,n ns1 n

ky1
ky lky1k5.4 d LL W , Po l s O min 1, n m C nm C .Ž . Ž . Ž . Ž . Ž .Ž . Ž .� 4 ÝTV n n n nž /

ls1

Ž . � 4̀ Ž . Ž yt .ii For a sequence of sets C , C g KK, with m C s O n , wheren ns1 n n
t ) 1 is constant, the bound tends to zero and is of the order

d LL W , Po lŽ . Ž .Ž .TV n n

¡ 1y tO n , if 1 - t - kr k y 1 , l ª ` ,Ž . Ž . Ž .n

y1rŽky1.~O n , if t s kr k y 1 , l stays away from 0, ` ,s Ž . Ž . Ž .n

k Ž1yt .q1¢O n , if t ) kr k y 1 , l ª 0 .Ž . Ž . Ž .n

Ž . Ž .PROOF. i Follows directly from 5.3 .
Ž . Ž .ii Since t ) 1, it follows that nm C - 1 asymptotically. Hence it is then

Ž . Ž . Ž .k y 1 st term i.e., l s k y 1 in the sum in 5.4 which is dominating, and it
Ž 1y t .is O n . Furthermore

O 1 , if 1 - t F kr k y 1 ,Ž . Ž .ky1kmin 1, n m C sŽ .� 4n k Ž1yt .qt½ O n , if t ) kr k y 1 .Ž . Ž .

Combining these facts yields the result. I

Ž .REMARK 5.2. Note that it is the k y 1 st term of the sum which deter-
mines the rates in the second part of the theorem. This term concerns the
dependence between two indicators connected to k-subsets with k y 1 com-
mon particles.
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Ž . � 4̀COROLLARY 5.3. i Let C be a sequence of sets such that C g KK andn ns1 n
l ª l as n ª `, where 0 - l - `. Thenn

LL W ª Po l as n ª `.Ž . Ž .n DD

Ž . Ž . yk rŽky1.ii For instance, if m C s cn , c ) 0 and C is of equal shape forn n
all n, then

l s a cky1rk!,C , k

ˇ 2 2Ž . Ž . Ž . w xwhere a s k q k k y 1 n C , C rm C g k , 2k y k does not dependC, k n n n
on n, and

LL W ª Po l as n ª `,Ž . Ž .n DD

Ž y1rŽky1..at the rate O n .

Ž .PROOF. i Since

ky1n ˇl s k q k k y 1 n C , C rm C m C ª l as n ª `,Ž . Ž . Ž .Ž .ž /n n n n nž /k

ˇŽ . Ž . Ž .and 1 F n C , C rm C F 2, for all n, by 2.3 , there exists 0 F c - ` suchn n n
that

m C F cnyk rŽky1. .Ž .n

Ž . Ž . Ž .By Theorem 5.1 ii , the total variation distance between LL W and Po ln n
Ž y1rŽky1..tends to zero at the rate O n in this case. This combined with the

fact that
< <d Po l , Po l F l y l ª 0Ž . Ž .Ž .TV n n

if l ª l, implies convergence in total variation distance, and hence inn
distribution, by the triangle inequality.

Ž .ii In this case,

ky1n n ykl s a m C s l n k!.Ž .n C , k nž / ž /k k
Hence

kn n y 1 ??? n y k q 1 y nŽ . Ž . y1< <l y l s l s O n ,Ž .n kn

Ž Ž . Ž ..and the total variation distance is determined by d LL W , Po l . ITV n n

� 4̀ � 4̀5.2. The process case. Let J and L be the sequences of pro-n ns1 n ns1
cesses and measures, respectively, introduced in Section 4.1.2, which corre-

� 4̀ Ž Ž . Ž ..spond to the sequence of sets C . The bound on d LL J , Po L inn ns1 TV n n
Ž Ž . Ž ..Theorem 4.3 equals the bound on d LL W , Po l in Theorem 4.1, exceptTV n n

Ž .that it lacks the factor min 1, 1rl , and is hence not as good when l ) 1.n n
Ž Ž . Ž ..To obtain convergence of d LL J , Po L to zero, we can therefore notTV n n

allow the areas of the sets to decrease as slowly as in the previous case of
sequences of variables. The order terms in Theorem 5.1 valid for l F 1, thatn
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� k Ž .ky14 k Ž .ky1 Ž . Ž .is, when min 1, n m C s n m C in i , and when t G kr k y 1n n
Ž .in ii , will be valid for all l here, and the counterpart of Theorem 5.1n

then reads as follows.

THEOREM 5.4. Let J and L be defined as in Theorem 4.3. Then, for anyn n
� 4̀sequence of sets C , C g KK,n ns1 n

ky1
2 kyly12 kyl5.5 d LL J , Po L s O n m C .Ž . Ž . Ž . Ž .Ž . ÝTV n n nž /

ls1

� 4̀ Ž . Ž yt .For a sequence of sets C , C g KK, with m C s O n , where t )n ns1 n n
Ž .k q 1 rk is constant, this bound tends to zero and is of the order

d LL J , Po L s O nk Ž1yt .q1 .Ž . Ž . Ž .Ž .TV n n

Ž .Note that the condition for convergence in the univariate case, m C sn
Ž yt . Ž .O n , t ) 1 does not depend on k. Here the condition is t ) k q 1 rk; the

smaller k, the faster must the areas decrease.

5.3. The multivariate case. By studying the bound on the total variation
distance in the multivariate case, given in Theorem 4.6, we find that it is

n
b which has to be examined to achieve conditions for convergence. Notek 2 jž /j

that it is obvious that we need at least that

5.6 nm C Žk j. ª 0,Ž . Ž .n

wwhich was the condition for convergence in the univariate case Theorem
Ž .x5.1 ii . Hence it is enough to consider the terms corresponding to l s k y 1j

� 4 Ž . Ž .and l s min k , k in b , given in 4.14 , since they are dominating if 5.6 isj s 2 j
fulfilled. Collect the n-dependent parts of these terms, to get the following

Ž Žk j.. Ž � Žk j.4m . m Ž Žk j...conditions on m C for convergence of d LL J , P Po L ton TV n js1 js1 n
zero:

k jk q1 Žk .j j5.7 n m C ª 0Ž . Ž .n

and

� 4k y1 k ymin k , ks j j sk qk ymin�k , k 4 Žk . Žk .s j j s s jn min m C m C ,Ž . Ž .½ n n

� 4k y1 k ymin k , kj s j sŽk . Žk .j sm C m C ª 0Ž . Ž . 5n n

5.8Ž .

as n ª `, for all j, s s 1, . . . , m, j / s.
Ž .In the previous case, concerning one point process, it was the k y 1 stj

Ž .term in the sum in 5.5 which decided at which rate the areas of the sets in
� Žk j.4the sequence C must decrease for the distance to tend to zero. Then

important part of this term originates from the expectation of the product of
wtwo indicators connected to k -subsets with k y 1 common particles i.e.,j j

w k jy1 x Ž . xE I I in 4.16 , using the notation in the proof of Theorem 4.5 . Thisk , 1 kj j
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expectation is of importance also in this multivariate case and turns up as
Ž . Ž .condition 5.7 . The other condition, 5.8 , comes from the expectation of

� 4products of indicators pertaining to k -subsets and k -subsets with min k , kj s j s
Ž w min�k j, k s4x.particles in common E I I .k , 1 ks j

Ž .If k - k , condition 5.8 readsj s

k y1 k y1 k yks j s jk Žk . k Žk . Žk .s s s j smin n m C , n m C m C ª 0 as n ª `,Ž . Ž . Ž .½ 5n n n

and we can state the following theorem.

� Žk j.4̀ � 4THEOREM 5.5. If C , j s 1, . . . , m, k g 2, 3, . . . , are sequences ofn ns1 j
sets such that

k jk q1 Žk .j j5.9 n m C ª 0 as n ª `,Ž . Ž .n

for all j s 1, . . . , m, and
k y1 k y1 k yks j s jk Žk . k Žk . Žk .s s s j s5.10 min n m C , n m C m C ª 0 as n ª `,Ž . Ž . Ž . Ž .½ 5n n n

for all j, s s 1, . . . , m, such that k - k , thenj s

m m
m mŽk . Žk . Žk . Žk .j j j jd LL W , Po l F d LL J , Po L ª 0� 4 � 4Ž . Ž .Ł Łž / ž /js1 js1TV n n TV n nž / ž /js1 js1

as n ª `.

� Žk j.4 Ž Žk j.. Ž yt .As expected, for sequences C with m C s O n , it is now notn n
Ž .enough that t ) k q 1 rk , j s 1, . . . , m, which was the critical rate forj j

Ž .convergence in total variation norm in case of one process; 5.9 is fulfilled,
Ž .but 5.10 is not. An example which satisfies both conditions is

m C Žk j. s O nyŽ k jq1 .r k jy1 rŽk 3
j y1 . ,Ž .Ž .n

j s 1, . . . , m, while

m C Žk j. s O nyŽ k jq1 .r k jy1 r k 3
j ,Ž .Ž .n

j s 1, . . . , m, do not decrease fast enough.
If the expected numbers of covered k -subsets, W Žk j., j s 1, . . . , m, con-j n

verge to finite values, then joint convergence in distribution follows immedi-
ately.

w Žk j.x Žk j. Žk j.COROLLARY 5.6. If E W ª l , 0 F l - `, j s 1, . . . , m, andn
Ž Žk j.. Ž Žk j..LL Z s Po l are independent, then

W Žk1. , . . . , W Žk m . ª Z Žk1. , . . . , Z Žk m . as n ª `.Ž .Ž .n n DD

Furthermore, let PŽk j., j s 1, . . . , m, be independent Poisson processes on
w x Žk j.Ž . Žk j.Ž . 2 k jy3A = 0, 1 with intensity measure dL x, y s 2l k y 1 y dx dy.j

Then

JŽk1. , . . . , JŽk m . ª PŽk1. , . . . , PŽk m . .Ž .Ž .n n DD
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Ž Žk j.. Ž yk j rŽ k jy1 ..For the proof, note that m C s O n and hence the conditionsn
of Theorem 5.5 are fulfilled. The result is then proved in the same manner as

Ž .Corollary 5.3 i .

5.4. The maximal number of covered particles. This section is con-
cluded by an application of Theorem 5.1. Let M be the maximal number ofCn

n independent and uniformly distributed particles on A which are covered by
C q x for some x g A, that is, M is the so-called scan statistic, which wasn Cn

mentioned in the introduction. We will study the distribution of M forCn

different sequences of sets and how its asymptotic distribution depends on
� 4̀ Ž . ytthe chosen sequence. The sequences C are such that m C s cn ,n ns1 n

where c ) 0 and t g R. Recall from the beginning of this section how the
expected number of covered k-subsets asymptotically depends on t. The
theorem below further displays the threshold behaviour at the values t s

Ž . � 4kr k y 1 , k g 2, 3, . . . , : it implies for instance that:

Ž .1. If t ) 2, then P M s 1 ª 1.Cn
Ž .2. If t s 2, then P M s 1 or 2 ª 1.Cn

Ž .3. If 3r2 - t - 2, then P M s 2 ª 1.Cn
Ž .4. If t s 3r2, then P M s 2 or 3 ª 1,Cn

and so on.

� 4̀THEOREM 5.7. Suppose that C , C g KK, is a sequence of sets withn 1 n
Ž . ytm C s cn , c ) 0.n

Ž . Ž . � 4i If t s kr k y 1 , k g 2, 3, . . . , and l ª l as n ª `, thenn

¡ yle , i s k y 1,~ ylP M s i ª as n ª `.Ž . 1 y e , i s k ,Cn ¢
0, i / k y 1, k

Ž . Ž .ii If 1 - t - 2, t / kr k y 1 for all k G 2, then
P M s k ª 1 as n ª `,Ž .Cn

Ž . Ž .where k satisfies k q 1 rk - t - kr k y 1 .
Ž . Ž .iii If t ) 2, then P M s 1 ª 1 as n ª `.Cn
Ž . Ž .iv If t F 1 then P M - k ª 0 as n ª `, for all k.Cn

Ž .REMARK 5.8. If all C are of the same shape and t s kr k y 1 , thenn
ˇŽ . Ž .l ª l, since for some 1 F a F 2, n C , C rm C s a for all n.n n n n

Ž . Ž .PROOF. i First we let t s kr k y 1 . It then follows from Corollary 5.3
that

� 45.11 P M - k s P W s 0 ª exp ylŽ . Ž .Ž .C nn

as n ª `.
Ž . Ž .Let W and W denote the number of covered k y 1 - and k q 1 -n, ky1 n, kq1

subsets, respectively, and let l and l be their expectations. Ifn, ky1 n, kq1
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k s 2, then l ª ` since every single particle is of course coveredn, ky1
Ž . Ž .by some C q x. Furthermore, since t - k y 1 r k y 2 , k ) 2, and t )n

Ž . Ž .k q 1 rk we get by 5.2 that
5.12 l ª ` and l ª 0 as n ª `.Ž . n , ky1 n , kq1

Hence the probability that M is strictly less than k y 1 approaches 0 sinceCn
Ž . yk rŽky1. Ž .m C s cn , so by Theorem 5.1 ii ,n

P M - k y 1 s P W s 0Ž .Ž .C N , ky1n

� 4 y1rŽky1.s exp yl q O n ª 0 as n ª `,Ž .n , ky1

Ž .which together with 5.11 yields

� 4P M s k y 1 ª exp yl .Ž .Cn

Next we consider the probability that M is greater than k:Cn

P M G k q 1 s P W G 1Ž .Ž .C n , ks1n

w xF E W ª 0 as n ª `,n , kq1

Ž .by Markov’s inequality and 5.12 . The only possibility that remains for MCn

in the limit is to be equal to k,

� 4P M s k s 1 y P M - k y P M ) k ª 1 y exp ylŽ . Ž . Ž .C C Cn n n

Ž .as n ª `. Hence the theorem is proved for t s kr k y 1 .
Ž . Ž . Ž .ii , iii The cases where 1 - t - 2, t / kr k y 1 , and t ) 2 follow by

arguments similar to those above.
Ž .iv In the case where t F 1 we cannot use the Poisson approximation

directly, since the sets are decreasing too slowly for the total variation
distance to tend to zero. Instead we use sequences of slightly smaller sets. For

� X 4 X Ž X . yŽ kq1.r kfixed k, let C consist of sets such that C ; C and m C s cn .n n n n
Then W X s the number of k-subsets covered by some translate of CX isn, k n
approximately Poisson distributed with an expectation which tends to `, and

Ž Ž X . Ž w X x.. Ž .d LL W , Po E W ª 0 by Theorem 5.1 ii , so thatTV n, k n, k

P M - k F P M X - k s P W X s 0 ª 0 as n ª `. IŽ .Ž . Ž .C C n , kn n

6. Possible extensions, improvements and applications.

6.1. Extensions. A natural extension of this paper is to generalize the
results to higher dimensions. All the approximations make use of the proba-
bility of covering a number of independently and uniformly distributed
particles with some translate of a convex set. In three dimensions this

Ž .probability can be found in Mansson 1996 and, as shown in Section 3, the˚
probability in an arbitrary dimension can be obtained directly from results in

Ž .Weil 1990 . It should be straightforward, but tedious, to extend the approxi-
mation results to an arbitrary dimension.

The starting point can be changed in various directions. An obvious
variation is to let the particles on A constitute a Poisson process rather than
being a fixed number. To derive results, corresponding to those of the present
paper, in that case should be easy, and it would be surprising if there would
be any difference asymptotically. Variations, more difficult to handle, are for
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instance to let the particles follow some distribution other than the uniform
or to let the sets be non-convex.

6.2. Compound Poisson approximation. The indicators pertaining to k-
subsets with common particles are not independent, but have a positive
dependence, and the k-subsets which are covered tend to occur in clumps.
The more common particles and the larger sets, the stronger is the depen-
dence. Then it seems natural to approximate the process of the positions of
the k-aggregates by some process in which clumps are more likely to occur
than in the usual Poisson process and to approximate the number of k-ag-
gregates by some distribution other than Poisson. Natural candidates are the
compound Poisson process and the compound Poisson distribution. It seems
possible that such approximation can handle larger sets and improve the
error bounds, especially in the case of large k.

6.3. Statistical applications. As mentioned in the introduction, a common
test statistic when testing whether a point pattern originates from a Poisson
process is the number of pairs of points closer than some distance r. This
number equals W in our terminology, in the case where k s 2 and C is a disc
with diameter r. An idea is to study if the number of k-subsets, k s 2, 3, . . . ,
which are covered by a set C, which is not necessarily a disc, would be
reasonable as a statistic when testing the randomness of a sample. The
crucial element in this matter is the rate of convergence.
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