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THE TWO-STAGE CONTACT PROCESS1

BY STEPHEN M. KRONE

University of Idaho

We introduce a multitype interacting particle system, which is a
natural generalization of the contact process. Here, individuals in the
population have two life stages, young and adult. Only adults can give
birth and each new offspring is young. Transition from young to adult
occurs at constant rate, and individuals die at rates that depend on their
life stage. Important to the analysis of this process is the construction of a
multitype dual process.

Ž .1. Introduction. The contact process was introduced by Harris 1974 .
� 4Z d

It is a continuous-time Markov process whose state at time t is j g 0, 1 ;t
d Ž . � 4that is, for each x g Z , j x g 0, 1 represents the state of site x at time t.t

Ž . � d 5 5 4The dynamics are as follows. Let NN x s y g Z : 0 - y y x F r be thep
w pset of neighbors of site x. In general, one can use any L norm with
Ž . x1 F p F ` in the definition of NN x . If the current configuration is j , then the

contact process has the following transition rates at x:

0 ª 1: rate ln x ,Ž .11.1Ž .
1 ª 0: rate 1,

Ž . Ž . � Ž . Ž . 4where n x s n x, j s a y g NN x : j y s 1 . A site in state 0 is thought1 1
of as being ‘‘vacant,’’ while a site in state 1 is ‘‘occupied.’’ Perhaps the most
important result about the contact process is the existence of a critical birth

Ž .rate l g 0, ` , such thatc

P j 0 k 0 ; t s 0 if l F l ,Ž .t c

P j 0 k 0 ; t ) 0 if l ) l ,Ž .t c

where j 0 is the contact process starting with the origin in state 1 and allt
Ž . Ž .other sites in state 0. We refer the reader to Liggett 1985 and Durrett 1988

for information on the contact process.
We define the two-stage contact process to be a continuous-time Markov

� 4Z d
process whose state at time t is j g 0, 1, 2 and whose dynamics are ast
follows. If the current configuration is j , then the transition rates at site x
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are given by

0 ª 1: rate ln x ,Ž .2

1 ª 2: rate g ,
1.2Ž .

1 ª 0: rate 1 q d ,
2 ª 0: rate 1,

Ž . Ž . � Ž . Ž . 4 Ž .where n x s n x, j s a y g NN x : j y s 2 and NN x is as above. Here,2 2
we interpret a site in state 0 as being ‘‘vacant,’’ state 1 as being occupied by a

Ž‘‘young’’ individual and state 2 as being occupied by an ‘‘adult.’’ A site will be
.called ‘‘occupied’’ if it is in state 1 or 2. Only adults can give birth, and they

Ždo so onto a given neighboring site at rate l. Births onto occupied sites are
.suppressed, as in the contact process. Each new offspring is young and the

transition from young to adult occurs at rate g . Adults die at rate 1, whereas
young individuals die at rate 1 q d , the added rate d G 0 being thought of as
some type of ‘‘infant mortality.’’ If g s `, we recover the contact process with

� 4Z d
state space 0, 2 .

For disjoint sets A, B : Zd, we will let j AŽ1., BŽ2. denote the two-staget
contact process whose initial state is given by

1, if x g A ,
AŽ1. , BŽ2.1.3 j x sŽ . Ž . 2, if x g B ,0 ½

0, if x f A j B.

Ž . Ž .We will sometimes write A 1 j B 2 for this initial configuration. Similarly,
AŽ1. Ž AŽ2..write j resp., j when the process starts with all sites in A occupiedt t

Ž .by 1’s resp., 2’s and all other sites vacant.
ŽAnother interpretation of this model in fact, what originally led us to

.consider the two-stage contact process is as follows. Consider a stochastic
spatial model of metapopulation dynamics which takes into account demo-
graphic as well as environmental extinctions. Here, each site represents an
island or habitat patch and can be in one of three states: 0 s‘‘vacant,’’
1 s‘‘partially occupied,’’ and 2 s‘‘fully occupied.’’ The dynamics are given by
the following:

Ž .1. 1’s and 2’s are killed at rate d environmental extinctions ;e
Ž .1’s have an additional death rate d demographic effects ;

2. 1’s become 2’s at rate g ;
Ž .3. A 0 at x becomes a 1 at rate ln x .2

A site in state 1 represents a small colony at risk of going extinct due to
Ž . Ž .demographic rate d as well as environmental rate d factors. If it survivese

Ž .this vulnerable period, it can grow to a full colony rate g . Only full colonies
can send migrants to another site. A more realistic model would have the
colony size fluctuating according to some Markov chain. A routine calculation
would then give the probability that the colony reaches full size before going

w Ž .xextinct. In some populations cf. Hanski and Zhang 1993 , the within-colony
dynamics operate on a much faster time scale than the metapopulation

Ž .dynamics migration . This assumption of a faster time scale for the local
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dynamics simplifies the model. At the metapopulation time scale, we do not
see the fluctuations in colony size, only the transitions between ‘‘partially
full,’’ ‘‘full’’ and ‘‘vacant.’’ A site in state 2 represents a full colony. Such a
colony is assumed to be large enough to be in no danger of demographic
extinction; it can only experience extinction due to environmental effects. A
full colony sends a small number of migrants to a neighboring vacant site at
rate l. The small number of emigrants does not diminish the size of the

Žcolony enough to increase its risk of extinction. When d s 1 which can bee
.assumed without any harm by simply changing the time scale , the above

model is just the two-stage contact process.
The above model considers the noncompetitive population dynamics for a

single species. One can also imagine a host of other spatial ecological models,
perhaps involving competition between several species, in which the birth

Žrate for one type depends on the local density of another type where types
.might model life stages, various stages of infection, etc. . Embedded in such a

model would be the birth dynamics of the two-stage contact process or
something similar. One of our hopes is that an understanding of the rela-
tively simple two-stage contact process will help us deal with some of these
more complex models in spatial ecology.

2. Graphical representation and dual process.

2.1. Graphical representation. As for the contact process, the two-stage
contact process can be constructed graphically via families of independent
Poisson processes. To get this graphical representation, we begin with the
space]time diagram Zd = R. This is augmented to give a percolation dia-
gram PP as follows. For each x g Zd, consider the arrival times of indepen-

� x 4 � x 4dent families of Poisson processes U : n G 1 with rate 1, V : n G 1 withn n
� x 4 Ž . � x, y 4rate d , W : n G 1 with rate g , and, for y g NN x , T : n G 1 with rate l.n n

Ž x .At the space]time points x, U in PP, put an = to indicate that a death willn
Ž x .occur if x is occupied by a 1 or a 2; at x, V put a d to indicate that a deathn

x
vŽ . Ž .will occur if x is occupied by a 1; at x, W put a 2-dot to indicate that ifn

Ž x, y. Ž x, y.there is a 1 at x it will turn into a 2; finally, from y, T to x, T drawn n
an arrow to indicate that, if y is occupied by a 2, there will be a birth of a 1 at
Ž .x if it is not already occupied .

Ž . Ž .For s - t, we say there is a path from x, s to y, t in PP if there is a
sequence of times s s s - s - s - ??? - s - s s t and a corresponding0 1 2 n nq1
sequence of spatial locations x s x , x , x , . . . , x s y such that:0 1 2 n

1. For i s 1, 2, . . . , n, there is an arrow from x to x at time s .iy1 i i
� 4 Ž .2. The vertical segments x = s , s , i s 0, 1, . . . , n, do not contain anyi i iq1

=’s.

wThat is, a path is a chain of upward vertical and directed horizontal edges
Ž . Ž . Ž .in PP which leads from x, s to y, t without passing vertically through an

x Ž . Ž .=. For such a path, we will call x, s the initial point and y, t the
terminal point. We say the above path is active if it also satisfies the
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following:

� 4 Ž .3. Each of the vertical segments x = s , s , i s 1, . . . , n y 1, contains ati i iq1
least one 2-dot which is below any d ’s that happen to be in the segment.

� 4 Ž .4. If the top vertical segment x = s , s contains any d ’s, then itn n nq1
contains a 2-dot which lies below them all.

ŽThus a path is active if it contains enough 2-dots to allow passage through
any d ’s in the path and to allow all the arrows above the lowest arrow in the
path to be used. Whether or not the lowest arrow can be used will depend on
whether the path is ‘‘compatible with the initial configuration,’’ in a sense to

.be described next.
Ž . Ž .In the case where s s 0, we will say the above path from x, 0 to y, t has

Ž .a strong initial point resp., a strong terminal point if there is a 2-dot in the
� 4 Ž . Žlowest vertical segment x = 0, s resp., in the highest vertical segment1

� 4 Ž ..y = s , t which is below any d ’s that happen to be in the segment. Ann
Ž .initial point resp., a terminal point which is not strong is called weak. We

Ž . Ž .say that a path from x, 0 to y, t is compatible with the initial configura-
AŽ1., BŽ2. Ž . Ž .tion j s A 1 j B 2 if it has a strong initial point in A j B or a weak0

initial point in B. In other words, such a path is ‘‘strong enough’’ to allow the
Ž .type coming in at x, 0 to start up the path and use the first arrow in the

Ž . Ž .path. Note that, if there is an active path from x, 0 to y, t which is
compatible with the initial configuration, then site y will be occupied at time
t, although it might not use this particular path to get its type.

Ž .An example of a realization of the percolation diagram when d s 1 ,
together with some paths, is given in Figure 1. Since we have finite-range

Ž .births, an idea due to Harris 1972 allows one to get around the fact that

FIG. 1. Realization of process starting with sites y4, y2, 1, 3 in state 1 and sites 0, 2, 4 in state
Ž . Ž .2. The solid gray rule denotes type 1 ‘‘blue’’ ; the solid black rule denotes type 2 ‘‘red’’ .
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there are an infinite number of sites, and hence no first birth, to construct the
process for all times starting from any initial configuration. To get the

Ž . Ž .configuration at time t when the initial configuration is A 1 j B 2 , imagine
that there is blue fluid entering the bottom of the percolation diagram at all
sites in A and red fluid entering at all sites in B. The fluids flow up the

Ždiagram in the direction of increasing time. All existing fluid will be at
.height t at time t. In addition to flowing upward, red fluid can flow across

arrows in the indicated directions, but when it comes out at the tip of the
Žarrow it turns blue unless the arrow lands on a line that is already carrying

.fluid, in which case the flow across the arrow is stopped . Blue fluid cannot
cross an arrow. If blue fluid encounters a d , it is blocked; d ’s have no effect on
red fluid. If fluid of either color encounters an =, it is blocked. Finally, if blue
fluid passes through a 2-dot, it turns red; red fluid is not affected by 2-dots.

Ž . Ž . AŽ1., BŽ2.Ž .The color of the fluid if any at y, t determines the type j y ; 1 ift
blue, 2 if red and 0 if there is no fluid. Clearly the resulting process is the

� 4two-stage contact process. In Figure 1, A s y4, y2, 1, 3 is the initial set of
� 41’s and B s 0, 2, 4 is the initial set of 2’s; all other sites start in state 0. At

AŽ1., BŽ2.Ž .the top of the graph we can read off the types at time t: j y s 1 fort
AŽ1., BŽ2.Ž . � 4y s y3, j y s 2 for y g y4, y1, 0, 1, 3 and all other sites are int

state 0 at time t.

ˆ2.2. Dual process. To construct the dual process j for the two-staget
contact process, we will begin by defining dual paths in the time-honored
fashion by running time backwards in PP and traversing the arrows in the
direction which is opposite to their orientation. The collection of dual paths
out of a given site will determine a set of ‘‘ancestors’’ at any time. These
ancestors will then be arranged according to the order in which they deter-
mine the type of that site. Since we are dealing with a multitype process in
which individuals can change their type while moving along a path, it turns
out that we will also need to have a way of assigning types to the ancestors at
any time. This can be thought of as coloring the dual paths in a way that is
related to the coloring of the forward paths. The next step is to show how to
combine the duals from several sites to compute probabilities of interest. In
Section 2.3 we will see how to alter this dual to get a slightly simpler dual
process.

Ž . Ž .For s - t, we say there is a dual path from y, t down to x, s if there is a
sequence of times 0 s s - s - s - ??? - s - s s t y s and a corre-0 1 2 n nq1
sponding sequence of spatial locations y s x , x , x , . . . , x s x such that:0 1 2 n

Ž . Ž .19. For i s 1, 2, . . . , n, there is an arrow in PP from x , t y s to x , t y s .i i iy1 i
� 4 Ž .29. The vertical segments x = t y s , t y s , i s 0, 1, . . . , n, do not con-i iq1 i

tain any =’s.

The above dual path is said to be active if it also satisfies:

� 4 Ž .39. Each of the vertical segments x = t y s , t y s , i s 1, . . . , n y 1,i iq1 i
contains a 2-dot which is below any d ’s that happen to be in the segment.

� 4 Ž .49. If the top vertical segment x = t y s , t contains any d ’s, then it must0 1
contain a 2-dot which lies below them all.
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Ž .FIG. 2. Dual process out of site 0, starting in state 2. The solid black rule denotes type 1 ‘‘red’’ ;
Ž .the solid gray rule denotes type 2 ‘‘blue’’ .

Some examples of dual paths can be seen in Figure 2. This graph will be
explained in more detail as we proceed.

Ž . Ž .Note that there is an active path from x, s to y, t in PP if and only if
Ž . Ž . Ž .there is an active dual path from y, t to x, s . In a dual path from y, t

Ž . Ž . Ž . Ž .down to x, s , we refer to y, t as the initial dual point and x, s as the
Ž .terminal dual point. A dual point has a strong terminal point if there is a

� 4 Ž .2-dot in the lowest vertical segment x = s, t y s which is below any d ’sn
that happen to be in the segment. A terminal point which is not strong is

Ž .called weak. In Figure 2, the space]time point y1, 0 is a strong terminal
Ž .point for a dual path and 1, 0 is a weak terminal point. We say that a dual

Ž . Ž .path is compatible with the configuration A 1 j B 2 if it has a strong
terminal point in A j B or a weak terminal point in B.

Ž .Clearly, there can be more than one dual path coming down out of y, t .
ˆŽ y, t .� 4 Ž .The dual process j : 0 F s F t starting at y, t will consist of an ordereds

Ž .arrangement of all such dual paths out of y, t , together with a way to
Žcharacterize the type of each dual path at any given time. Time s in the dual

.process corresponds to t y s in PP. For 0 F s F t, let

ˆŽ y , t .AA j ' x : there is an active dual path from y , t down to x , t y s� 4Ž . Ž .Ž .s

Ž . Ž .be the set of ancestors of y, t at dual time s. These are the locations s
Ž .units of time in the past from which y, t might have gotten its type. Note

ˆŽ y, t .Ž .that a site x g AA j might be the terminal point for several dual paths ins
ˆŽ y, t . ˆŽ0, t .w Ž . � 4 xj . In Figure 2, AA j s y2, y1, 0, 1, 2 . Next, we arrange the set ofs t

Ž .ancestors according to the order in which they determine the state at y, t .
Ž .For this we follow Neuhauser 1992 , where a different kind of multitype

contact process was considered.
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Ž . Ž .To order the ancestors at time 0 dual time t , start at y, t and go down
the percolation diagram until the first time an = is encountered. If no =’s

Ž .are encountered, then y is the first ancestor at time 0 . If we encounter an
=, go back up the diagram until the first time the tip of an arrow is
encountered. Follow this arrow backward to the vertical line the arrow is
attached to. Then go down this line until another = is encountered and
repeat the above procedure. Stop when time 0 is reached. The corresponding
site is the first ancestor and there is a unique path from this first ancestor up

Ž .to y, t that only uses parts of the percolation diagram traversed during the
above procedure. A moment’s thought shows that, if this path is compatible

Žwith the initial configuration equivalently, if the corresponding dual path is
.compatible with the initial configuration , then it determines the state at

Ž .y, t . The state will be 2 if the upward path has a strong terminal point and
is 1 if the terminal point is weak. If the resulting path from the first ancestor
is not compatible with the initial configuration, then we need the second
ancestor. To find this, go up, starting at the first ancestor along its path until
the tip of an arrow is encountered. Follow this arrow backward and then go
down the vertical line from which it originated, repeating the algorithm used
to find the first ancestor. When you reach time 0, you will be at the site of the

Žsecond ancestor. Continue in this way until you have all the ancestors i.e.,
.there are no more arrow tips to reach .

There are only a finite number of ancestors for any finite t. It can happen
that a given ancestral site will appear several times in the ordering, but each

Ž .has a unique forward path and a unique dual path associated with it. To
Ž .determine the type at y, t , go through the ordered set of ancestors until you

find the first one which is compatible with the initial configuration. Call this
ancestor the determining ancestor and the corresponding path the determin-

Ž .ing path for y, t . If none of the ancestors is compatible with the initial
Ž .configuration, then the state at y, t will be 0. If there is a determining

Ž .ancestor, give it the type color assigned by the initial configuration and
Ž .follow the determining path up to y, t , changing the type along the path

according to the rules of the process. The color at the top of the determining
Ž .path gives the type at y, t . An example of the ancestral hierarchy can be

obtained from the realization of the dual process in Figure 2. In this example,
the ordered set of ancestors is 1, 0, 2, y1, y2, 0, 1, 0, 2.

Ž .Now that we have described the ancestors of a given point y, t , we show
how to assign types to the ancestors to get a dual process with values in
� � 44Z d
0, 1, 2, 1, 2 . This can be thought of as a collection of colored paths growing

Ž .down out of y, t , where the dual coloring is related to, but not the same as,
Ž .that of the forward process. The type color assigned to a point on a dual

path will be determined by the ‘‘minimum type’’ needed at that point to go
Žsuccessfully ‘‘up’’ the path. For example, after a dual birth i.e., when the dual

.path goes backward across an arrow we color the vertical segment coming
down out of the base of the arrow with red. This is because we need the

Ž .forward path to be red type 2 at that point in order to use the birth arrow.
We will change the color along a dual path from red to blue if the path crosses

Ža 2-dot. This is because the minimum color needed below a 2-dot is blue type
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.1 ; if we have a 1 or 2 at this point, it will turn into a 2 after going up through
the 2-dot, and can then give birth across any arrow it encounters. A red dual
path cannot branch; that is, we cannot follow an arrow backward out of a red
segment. For, if we did, the corresponding forward path would have a birth
that does not become strong enough to use the next arrow. A blue dual path
can branch; for example, if it became blue by going down through a 2-dot,
then the corresponding forward path can accept a birth and change to a 2 at
the 2-dot before reaching the next birth arrow. If a dual path crosses a d , it
turns red. For, if the type going forward were not at least a 2, it would be

Ž .killed by the d . As before, dual paths of any color are killed by =’s.
A quick review of the above dual coloring shows that, in the dual, red is the

Ž .‘‘weak’’ color cannot branch, etc. and blue is the ‘‘strong’’ color. For this
reason, red in the dual will be called type 1 and blue will be called type 2. So
the coloring for weak and strong is different in the forward process and the
dual. The types are the same in both processes in the sense that 1 designates
weak and 2 designates strong.

Ž . Ž .Thus, to get the dual process out of y, t , we start y, t with some color
Žcorresponding to its type which will be determined by what we are looking

.for}more on this later . Proceed with this color down the percolation dia-
gram in the direction of increasing dual time. The path stops if it hits an =,
no matter what color the path is at that time. If the path encounters a 2-dot,

Ž . Ž .the color becomes blue type 2 . A blue path turns red type 1 when it crosses
a d and a red path is unchanged by a d . If a blue path encounters the tip of
an arrow, it produces a red path starting at the space]time point from which
the arrow originated and proceeding down, and the original blue path contin-
ues down as well. If a red path encounters the tip of an arrow, it just
continues down and does not give birth across the arrow. If two of these paths

Ž .come together as the result of a birth , the newly formed path will be red and
the path it runs into can be either color. If they are both red, they coalesce
into a single red path; a 2 coming up at that point would be able to use both
red paths. If the other path is blue, they remain two separate paths at the

Ž � 4 .same site this gives rise to type 1, 2 at the site . If such a pair of paths
encounters the tip of an arrow, only the blue path branches. If the pair of

Ž � 4paths encounters a 2-dot, they coalesce into one blue path i.e., 1, 2 becomes
. � 4 Ž .2 . Also, if 1, 2 encounters a d it turns into a single red 1 path. Finally, if a

Ž . � 4red dual birth lands on a site in state 1, 2 , the red paths coalesce as before,
� 4resulting in state 1, 2 again.

Ž . �Once we specify the initial state at y, t , this determines a 0, 1, 2,
Z d ˆŽ y, t .� 44 w1, 2 -valued process j , where 0 means vacant. As usual cf. Durretts

ˆyŽ .x1988 , it is possible to define a dual process j for all s G 0 in terms of itss
own percolation diagram and which has the same distribution as our original

w xdual on the interval 0, t :

ˆy ˆŽ y , t .j : 0 F s F t s j : 0 F s F t .� 4 � 4s law s

We will employ this version of the dual freely and without further comment.
ˆ0Ž2 .Figure 2 gives a realization of the dual process j out of site 0, startingt
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ˆ0Ž1 .with state 2. The dual process j , starting with state 1 at site 0, would nott
have the dual path that starts with the top arrow. The rest would be the

Ž .same except for the initial color difference .
When combining duals out of different sites, the rule is to coalesce two

Žlines when they meet if they have the same color just as for different dual
.paths out of the same point ; if a red line encounters a blue line, they stay

Ž .separate only the blue line can branch until they are both killed by an =, or
cross a d and coalesce into a single red line, or cross a 2-dot and coalesce into

ˆCŽ1., DŽ2.a single blue line. We write j for the dual process coming down out oft
Ž .C j D, where all dual paths starting in C begin with type 1 red , and all

Ž .dual paths starting in D begin with type 2 blue . This process again takes
� � 44Z d

values in 0, 1, 2, 1, 2 since each site can accommodate a red and a blue
line. Of course, each point of C j D will have its own distinct ancestral

ˆCŽ1., DŽ2.hierarchy embedded in the overall dual j .t
We are now ready to describe the role played by the initial configuration

for the dual process. We want to be able to write all probabilities of interest,
such as

P j AŽ1. , BŽ2. x s 0 for all x g E,Ž .Ž t
2.1Ž .

j AŽ1. , BŽ2. y s 1 for all y g F , j AŽ1. , BŽ2. z s 2 for all z g G ,Ž . Ž . .t t

for any finite disjoint E, F, G, in terms of the dual process. Using an inclu-
sion]exclusion argument, it is not hard to see that such probabilities can be
written in terms of probabilities of the form

P j AŽ1. , BŽ2. x s 2 for some x g CŽ .Ž t
2.2Ž .

or j AŽ1. , BŽ2. y / 0 for some y g D ,Ž . .t

where C and D are finite and disjoint. Thus it is enough to be able to write
Ž .2.2 in terms of the dual.

AŽ1., BŽ2.Ž .To get j x / 0, we need at least one active path in PP fromt
Ž . Ž . Ž .A j B, 0 to x, t , which is compatible with the initial configuration A 1 j

ˆx Ž2.Ž .B 2 . This is equivalent to having at least one active path in j which ist
Ž . Ž . Ž .compatible with A 1 j B 2 . We start the dual in state x 2 , that is, with a 2

at site x and 0’s elsewhere, because any forward path which brings a 1 or 2 to
site x will be enough to cause x to be occupied at time t. In other words, all
dual paths which branch out of the top vertical segment can be used. If site x
is occupied at time t, the actual type of the particle there can be found by

Žusing the determining path. This last statement will not be true for the
.‘‘suppressed dual’’ in Section 2.3.

AŽ1., BŽ2.Ž .To get j x s 2, we need to be more restrictive. Here, we need tot
have x occupied, but the determining path must carry type 2 to x; that is, it

Ž .must cross a 2-dot in the segment leading up to x, t . This can be achieved by
ˆx Ž1.Ž .starting the dual in state x 1 ; j only uses branches out of the topt

Ž .segment which are below the top 2-dot if there is one . Certainly x will be
ˆx Ž1.occupied at time t if there is at least one active dual path in j which ist

Ž . Ž .compatible with A 1 j B 2 . To see that the type at x will actually be 2, the
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ancestral ordering plays a key role. Note that a dual path which follows a
lower branch out of the top vertical segment has higher priority than a path
which follows a higher branch. Thus, if the path going through the lower
branch is occupied, the path going through the higher branch will not be

ˆx Ž1.used. In particular, any path in j will have priority over a path thatt
Žwould branch from a spot above the highest 2-dot in the top segment and

. AŽ1., BŽ2.Ž .hence could possibly give x type 1 . Thus j x s 2 if and only if theret
ˆx Ž1. Ž . Ž .is at least one active path in j which is compatible with A 1 j B 2 .t

Finally, a slight extension of this argument shows that the event

j AŽ1. , BŽ2. x s 2 for some x g C or j AŽ1. , BŽ2. y / 0 for some y g DŽ . Ž .� 4t t

ˆCŽ1., DŽ2.will occur if and only if there is at least one active path in j which ist
Ž . Ž .compatible with A 1 j B 2 .

ˆCŽ1., DŽ2. Ž . Ž .DEFINITION 2.1. We write j ; A 1 j B 2 if there is at least onet
ˆCŽ1., DŽ2. Ž . Ž .active dual path in j which is compatible with A 1 j B 2 . This ist

equivalent to

ˆCŽ1. , DŽ2. � 4j x s 2 or 1, 2 for some x g A orŽ .t
2.3Ž .

ˆCŽ1. , DŽ2.j y / 0 for some y g B.Ž .t

We can now summarize the above discussion with the following duality
equations.

THEOREM 2.2. If A, B, C, D : Zd with A l B s B and C l D s B, then

P j AŽ1. , BŽ2. x s2 for some x g C or j AŽ1. , BŽ2. y /0 for some ygDŽ . Ž .Ž .t t

CŽ1. , DŽ2.ˆs P j ; A 1 j B 2Ž . Ž .Ž .t
2.4Ž .

CŽ1. , DŽ2.ˆs P j x s 2Ž .Ž t

CŽ1. , DŽ2.ˆ� 4or 1, 2 for some xgA or j y /0 for some ygB .Ž . .t

In particular,

AŽ1. , BŽ2. ˆCŽ2.2.5 P j x / 0 for some x g C s P j ; A 1 j B 2 ;Ž . Ž . Ž . Ž .Ž . Ž .t t

AŽ1. , BŽ2. ˆCŽ1.2.6 P j x s 2 for some x g C s P j ; A 1 j B 2 .Ž . Ž . Ž . Ž .Ž . Ž .t t

2.3. The suppressed dual. We now show that, when computing probabili-
Ž .ties of the form 2.2 , we can use a slightly simpler dual obtained by

Ž .suppressing any branchings dual births that land on an occupied site.
Although this will remove some of the dual paths, it will not remove any that

Ž .matter. This is because the only thing needed to get an event of the form 2.2
is for at least one dual path to make it down to time 0 and be compatible with
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the initial configuration. The ancestral ordering is obtained in the same way
as before, and the relative order of the ancestors which are not removed will

˜be the same as before. This new dual will be denoted by j . It is constructedt
from the same percolation diagram as before, but the rules change slightly. In

Ž .this case, whenever a red dual path lands on a site which is already
occupied by another dual path, this new dual birth is suppressed. For this

˜reason, we will refer to j as the suppressed dual. All other transitions occurt
ˆ � 4just as for j . Thus there is no need for the state 1, 2 in this dual process. Int

˜ Z d� 4other words, j takes values in 0, 1, 2 , just as for the two-stage contactt
˜AŽ1., BŽ2.Ž .process. Note that the set of ancestors AA j in the suppressed dual ist

ˆAŽ1., BŽ2.Ž .the same as the set of ancestors AA j in the original dual; we do nott
lose any ancestors by suppressing dual births onto occupied sites. The sup-
pressed dual process corresponding to the dual in Figure 2 would be obtained
by suppressing the third dual birth out of site 0. Otherwise, it looks the same.

It is important to realize that starting the suppressed dual in state 2 at
some site x is used only to determine whether or not x will be occupied at
time t. This, by itself, will not tell us the type of the particle. In the original
dual, we could determine whether the occupied site was in state 1 or 2 by
simply following the determining path. In the suppressed dual, this is not the
case, since we are removing certain paths. For example, in Figure 2, if the
initial configuration at the bottom of the graph has a 2 at site 1 and 0’s at all

ˆ0Ž2 .other sites, then the determining path in the original dual, j , shows thatt
site 0 will have state 2 at time t. If we tried the same thing with the
suppressed dual, it would appear that the state at site 0 should be 1. The
problem is that, in simplifying our original dual to get the suppressed dual,

˜0Ž2 .we had to throw out certain information. The suppressed dual, j , cannott
Ž .by itself distinguish between the two types of particles at the top. This,
however, is where the inclusion]exclusion argument comes to the rescue. It

Ž .tells us we need only consider probabilities of the form 2.2 ; all others can be
obtained from these. For example,

P j x s 1 s P j x / 0 y P j x s 2 .Ž . Ž . Ž .Ž . Ž . Ž .t t t

Ž .From the above discussion, it follows that the duality equation 2.4 holds
˜ ˆ � 4with j in place of j and state 1, 2 removed:t t

P j AŽ1. , BŽ2. x s 2 for some x g C or j AŽ1. , BŽ2. y / 0 for some y g DŽ . Ž .Ž .t t

CŽ1. , DŽ2.˜s P j ; A 1 j B 2Ž . Ž .Ž .t
2.7Ž .

CŽ1. , DŽ2.˜s P j x s 2 for some x g AŽ .Ž t

CŽ1. , DŽ2.˜or j y / 0 for some y g BŽ . .t

holds for A, B, C, D : Zd with A l B s B and C l D s B. In fact, we have

ˆCŽ1. , DŽ2. ˜CŽ1. , DŽ2.j ; A 1 j B 2 s j ; A 1 j B 2 .Ž . Ž . Ž . Ž .� 4 � 4t t
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˜Ž .It is easy to see cf. discussion in Section 2.2 that the suppressed dual j t
has dynamics given in terms of the following transition rates at x:

0 ª 1: rate ln x ,Ž .2

1 ª 2: rate g ,

2.8Ž . 2 ª 1: rate d ,

1 ª 0: rate 1,

2 ª 0: rate 1.
In particular, when d s 0, the suppressed dual has the same distribution

as the two-stage contact process, so we get the following result.

THEOREM 2.3. When d s 0, the two-stage contact process is self-dual in the
˜CŽ1., DŽ2. CŽ1., DŽ2. Ž .sense that j has the same distribution as j . In particular, 2.7t t

can be written as

P j AŽ1. , BŽ2. x s 2 for some x g CŽ .Ž t

or j AŽ1. , BŽ2. y / 0 for some y g DŽ . .t
2.9Ž .

s P j CŽ1. , DŽ2. x s 2 for some x g AŽ .Ž t

or j CŽ1. , DŽ2. y / 0 for some y g B .Ž . .t

˜ Ž .The process j given by 2.8 is rather interesting in its own right. It can bet
thought of as a contact process with the birth mechanism having On]Off
periods. A new offspring starts with its birth mechanism in the Off state.

Ž .After an Exp g time, its birth mechanism switches to On, provided it is still
alive. While On, births occur as for a rate l contact process. This On period

Ž .lasts for an Exp d period of time, after which it switches to Off again. This
On]Off toggling keeps occurring until the individual at that site is killed.
Note that deaths occur at rate 1 for each type. One could also interpret this
process in terms of metapopulations.

3. General properties.

3.1. Monotonicity. Define the natural partial order on the space of con-
figurations by

3.1 j F h if and only if j x F h x for all x g Zd .Ž . Ž . Ž .

THEOREM 3.1. The two-stage contact process is monotone in the sense that,
if l F l , g F g , and d G d , then we can construct on the same probabil-1 2 1 2 1 2

Ž1. Ž2. Ž .ity space two such processes j and j with parameters l , g , d andt t 1 1 1
Ž .l , g , d , respectively, such that2 2 2

3.2 j Ž1. F j Ž2. « j Ž1. F j Ž2. ; t G 0.Ž . 0 0 t t

In particular, if we consider one parameter at a time, this implies that the
two-stage contact process is monotone increasing in l, g and the initial
configuration and monotone decreasing in d ; that is, it satisfies the following:
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1. Attractive. If j Ž1. and j Ž2. are two versions of the process with the samet t
rates, then j Ž1. F j Ž2. « j Ž1. F j Ž2., ; t G 0.0 0 t t

2. Increasing in l. If j Ž1. and j Ž2. have birth rates l and l , respectively,t t 1 2
Ž . Ž1. Ž2. Ž1. Ž2.with l F l other rates being the same , then j F j « j F j , ;1 2 0 0 t t

t G 0.
3. Increasing in g . If j Ž1. and j Ž2. have maturation rates g and g ,t t 1 2

Ž . Ž1. Ž2.respectively, with g F g other rates being the same , then j F j «1 2 0 0
j Ž1. F j Ž2., ; t G 0.t t

4. Decreasing in d . If j Ž1. and j Ž2. have death rates d and d , respectively,t t 1 2
Ž . Ž1. Ž2. Ž1. Ž2.with d F d other rates being the same , then j G j « j G j , ;1 2 0 0 t t

t G 0.

PROOF OF THEOREM 3.1. Let l F l , g F g , and d G d be given.1 2 1 2 1 2
Construct a percolation diagram with ordinary arrows, 2-dots, d ’s and =’s at
rates l , g , d and 1, respectively. To this we add, independently, green1 1 2
arrows, 2-dots and d ’s at rates l y l , g y g and d y d , respectively.2 1 2 1 1 2
Define j Ž1. to be the process which uses all the ordinary objects and the greent

Ž . Ž2.d ’s and refer to this, for the moment, as the ‘‘basic system’’ ; j is thet
process which uses all the ordinary objects in addition to the green arrows

Ž .and 2-dots refer to this as the ‘‘enhanced system’’ . It is easy to see that these
Ž1. Ž . Ž . Ž2. Ž . Ž .processes have the desired rates. If j s A 1 j B 2 and j s C 1 j D 2 ,0 0

then j Ž1. F j Ž2. implies A : C j D and B : D. Thus any path which is0 0
Ž . Ž . Ž . Ž .compatible with A 1 j B 2 will also be compatible with C 1 j D 2 .

Next note that any path in the basic system will also be a path in the
Ženhanced system. The enhanced system contains all the arrows of the basic

.system and the same set of =’s. A path which is active in the basic system
Ž .will also be active in the enhanced system, and strong terminal resp., initial

points in the basic system will also be strong in the enhanced system.
Ž1.Ž .Now, for all t, j x / 0 if and only if there is an active path in the basict

Ž . Ž . Ž . Ž .system from A j B, 0 to x, t which is compatible with A 1 j B 2 , and
Ž .this implies that there is an active path to x, t in the enhanced system

Ž . Ž . Ž2.Ž .which is compatible with C 1 j D 2 , and hence j x / 0. A similart
Ž1.Ž . Ž2.Ž .argument shows that j x s 2 implies j x s 2. Here the desired condi-t t

tion is that there is at least one active path in the appropriate system which
is compatible with the initial configuration and has a strong terminal point. If

Ž .there is such a path, then the type at x, t will be 2 since the determining
path, if not this one, would have to come into the top vertical segment below
this one, and hence would also have a strong terminal point. The theorem is
now proved. I

THEOREM 3.2. The two-stage contact process is additive in the sense that,
for any disjoint sets A, B, C, D : Zd,

3.3 j Ž Aj C .Ž1. , ŽB j D .Ž2. x s j AŽ1. , BŽ2. x k j CŽ1. , DŽ2. x .Ž . Ž . Ž . Ž .t t t

˜x Ž1. Ž . Ž .PROOF. The right-hand side will equal 2 if and only if j ; A 1 j B 2t
˜x Ž1. ˜x Ž1.Ž . Ž . Ž .Ž .or j ; C 1 j D 2 , and this happens if and only if j ; A j C 1 jt t

Ž .Ž . Ž .B j D 2 , which happens if and only if the left-hand side of 3.3 equals 2.
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˜x Ž2.Ž . Ž .Similarly, both sides of 3.3 will be nonzero if and only if j ; A 1 jt
˜x Ž2.Ž . Ž . Ž .B 2 or j ; C 1 j D 2 . To get the values 0 and 1, just use the above twot

cases. I

3.2. Critical parameters. For the rest of the paper, we will write P forl, g , d

the law of the process with parameters l, g , d whenever we want to empha-
size the parameters. When d s 0, we will abbreviate this by P . For fixed gl, g

and d , let

3.4 l g , d ' inf l: P j 0Ž2 . k 0 ; t ) 0Ž . Ž . � 4Ž .c l , g , d t

be the unique value such that

3.5 P j 0Ž2 . k 0 ; t s 0 if l - l g , d ;Ž . Ž .Ž .l, g , d t c

3.6 P j 0Ž2 . k 0 ; t ) 0 if l ) l g , d .Ž . Ž .Ž .l, g , d t c

Here, j 0Ž2 . is the two-stage contact process starting with one adult at thet
origin and all other sites empty. This critical value is well defined due to

Ž . Ž .monotonicity in l. We will write l g s l g , 0 for the critical birth ratec c
when d s 0. The following lemma shows, among other things, that the

Ž .definition of l g , d does not depend on the state of the single initial particle.c
Both parts of the lemma are obtained by simply conditioning on the outcome
of the first jump.

LEMMA 3.3. For any l, g , d ,
g

x Ž1. x Ž2.3.7 P j k 0 ; t s P j k 0 ; tŽ . Ž . Ž .l, g , d t l , g , d tg q 1 q d

and
g

x Ž1. x Ž2.˜ ˜3.8 P j k 0 ; t s P j k 0 ; t .Ž . Ž . Ž .l, g , d t l , g , d tg q 1

Ž .The next result shows that the critical birth rate, l g , d , is finite for anyc
fixed d , as long as g is sufficiently large.

THEOREM 3.4. For fixed d G 0, if g and l are sufficiently large, then
Ž x Ž2. .P j k 0 ; t ) 0.l, g , d t

Ž .PROOF. We use a simple comparison with 1-dependent oriented site
Ž .percolation, similar to Harris’s 1974 original proof that the critical birth

rate for the contact process is finite. For a given « ) 0, begin by choosing
Ž w x.T ) 0 so small that P there is a death at x in 0, 2T - «r2. Here,l, g , d

‘‘death’’ refers to an = or d in the percolation diagram. We say x is good at
Ž . w Ž . x Ž .time nT if 1 there are no deaths at x during nT, n q 2 T , and 2 during

wŽ . Ž . xn q 1 T, n q 2 T , there is a 2-dot at x followed by birth arrows from x to
Ž .each site in NN x . By choosing l and g sufficiently large, we can guarantee

Ž . Žthat 2 will occur with probability at least 1 y «r2, and hence P x isl, g , d
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.good at time nT G 1 y « . Finally, let LL denote the renormalized lattice
�Ž . 4 Ž .LL s m, n g Z = Z : m q n is odd and say that m, n g LL is open if siteq

Ž . dm, 0, . . . , 0 g Z is good at time nT. For sufficiently small « , the above
procedure guarantees percolation of the open sites in LL , and this implies
survival of j x Ž2. with positive probability. It

We remark that the above proof can be used to get an upper bound on the
critical birth rate, but, as for the contact process, this bound is not good.

The following definition helps to delimit the survival region in parameter
space.

DEFINITION 3.5. For each d G 0, define

3.9 g# d s inf g ) 0: P j x Ž2. k 0 ; t ) 0 for some l - ` ,Ž . Ž . � 4Ž .l, g , d t

3.10 l# d s inf l ) 0: P j x Ž2. k 0 ; t ) 0 for some g - ` .Ž . Ž . � 4Ž .l, g , d t

These values are well defined because of monotonicity in g and l, respec-
Ž .tively. So, for a given d , survival cannot occur if g - g# d , no matter how

Ž .large l is, and survival cannot occur if l - l# d , no matter how large g is.
Ž . � Ž . 4Note that g# d s inf g ) 0: l g , d - ` .c

The next result shows that these thresholds are not trivial.

PROPOSITION 3.6. For any d G 0,

3.11 l# d s l ` - `,Ž . Ž . Ž .c

3.12 g# 0 F g# d - `.Ž . Ž . Ž .
Moreover, in the case of one-dimensional nearest-neighbor births,

1 2'3.13 g# d G 17 q 14d q d y 3 y d ; d G 0.Ž . Ž . Ž .4

w Ž .Note that the right-hand side of 3.13 is increasing in d and strictly
xpositive.

Ž . Ž .PROOF. Finiteness of l# d and g# d follows immediately from Theo-
Ž .rem 3.4, and monotonicity in d gives the first inequality in 3.12 .

Ž .To get the equality in 3.11 , first use monotonicity in g to get

3.14 l g , d G l ` for each g ,Ž . Ž . Ž .c c

and hence
3.15 l# d G l ` ,Ž . Ž . Ž .c

Ž .where we recall that l ` denotes the critical birth rate for the contactc
Ž . w Ž . Ž . xprocess given in 1.1 ; that is, g s `. Note that l `, d s l ` for all d G 0.c c

Ž . Ž .The inequality l# d F l ` follows from a rescaling argument which isc
Ž .similar to the proof of Theorem 3.4. The idea is that, if l ) l ` , then byc

Ž .taking g sufficiently large the process behaves like a supercritical contact
process in finite space]time boxes with high probability. Thus the process
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will survive with positive probability for sufficiently large g , giving the
Ž .desired inequality. We omit the details and refer the reader to Durrett 1991

for a number of examples of similar ‘‘perturbation arguments.’’
Ž .To show that g# d is bounded away from 0 in the one-dimensional
Ž Ž . � 4nearest-neighbor case i.e., NN x s x y 1, x q 1 is the neighborhood set for

.site x g Z , we have to work a bit harder. We do this by studying the
rightmost occupied site r for the two-stage contact process h with l s `. Int t
h , as soon as a site makes a transition from state 1 to state 2, it gives birth tot
1’s at the two neighboring sites if they are not already occupied. Note that no
site neighboring a 2 can be vacant; if such a site experienced a death, the 2
would immediately replace the killed individual with a 1. In particular, the
rightmost particle must be in state 1.

Clearly, if this process does not survive for a given value of g , then neither
will the two-stage contact process with the same g and any l - `. To get
bounds on the transition rates for the rightmost 1 in h , we must consider thet
three sites at the right edge, that is, the right edge and the two sites to its
left. There are seven possible three-site boundaries at the right edge:

221 121 211 111 011 101 001 .^ ` _ ^ ` _
stable vulnerable

The first two states are ‘‘stable’’ in the sense that, if a death occurs at the
rightmost 1, the neighboring 2 will immediately replace it; the right edge
cannot move left when in this configuration. The other five states are ‘‘vulner-

Ž .able’’ in the sense that a death at the right edge rate 1 q d causes the right
edge to move to the left by at least one position. Each of the stable states will

Žturn into a vulnerable state if the 2 adjacent to the rightmost 1 is killed rate
.1 . The vulnerable states 211, 111 and 011 turn into stable states if the

Ž .middle site makes a transition from 1 to 2 rate g , with no change in r . Thet
right edge will move one unit to the right whenever the rightmost 1 turns

Ž .into a 2 rate g . In fact, if a vulnerable state has a 1 ª 2 transition at r , thet
right edge moves right by 1 and the boundary becomes the stable state 121; if
a stable state has a 1 ª 2 transition at r , the right edge moves right by 1t
and the boundary becomes the stable state 221.

Thus there are three types of transitions:

Ž . Ž . Ž . Ža Stable to vulnerable rate 1 , or vulnerable to stable rate g with no
.change in r for either of these ;t

Ž . Ž .b r to r q 1 rate g q d ;t t
Ž . Ž .c r to site less than or equal to r y 1 rate 1 q d if vulnerable.t t

We can ensure that the next jump in r is to the left if we get an = at thet
Žmiddle position of the three-site boundary ensuring that the right edge is

.vulnerable before the right edge receives a 2-dot, and then get an = or d at
the right edge, before getting a 2-dot at either the middle position or the
position of the rightmost 1. Thus, the probability that the next jump in r ist
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to the left is bounded below by

1 1 q d
.

1 q g 1 q d q 2g

Ž .To get the right edge to drift to the left and hence get h to die , it is enought
that the above probability be greater than 1r2. This is achieved when

1 2'Ž . Ž .0 - g - 17 q 14d q d y 3 y d , and hence 3.13 is proved. I4

An ‘‘artist’s conception’’ of the survival region in parameter space, illustrat-
Ž . Ž .ing the roles of g# d and l# d , appears in Figure 3.

By attractiveness, we can infer the existence of an upper invariant mea-
sure n Ž2. ,l, g , d

P j Z dŽ2. g ? « n Ž2. ?Ž .Ž .l, g , d t l , g , d

Žweak convergence of probability measures on the space of configurations,
.which is equivalent to convergence of finite-dimensional distributions as

Ž Z dŽ2.t ª `. To see why this is so, first note that it is enough to show P jl, g , d t
. Ž2. Ž . � 4Z dg G ª n G for sets G g 0, 1, 2 of the forml, g , d

G s j : j x s 2 for some x g C or j y / 0 for some y g D .� 4Ž . Ž .
w Ž .The indicator function 1 is increasing ‘‘ f increasing’’ means j F h « f j FG

Ž .x Ž Z dŽ2. .f h , and so attractiveness implies that t ¬ P j g G is a decreasingl, g , d t
w Ž .function, hence converges to a limit as t ª `. Cf. Liggett 1985 for a

xdiscussion of these ideas in the setting of attractive spin systems.
As usual, when d s 0, we will write n Ž2. instead of n Ž2. . Since thel, g l, g , 0

two-stage contact process is a Feller process, standard arguments show that

FIG. 3. Survival region for fixed d G 0.
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n Ž2. is an invariant measure. It is obviously translation invariant. Let dl, g , d 0
denote the point mass on the all 0 configuration; this is trivially an invariant
measure. By attractiveness, all invariant measures m must lie between d0
and n Ž2. in the sense thatl, g , d

d f F m f F n Ž2. f for all increasing f ,Ž . Ž . Ž .0 l , g , d

Ž . d Ž . Ž .Zwhere m f ' H f j m dj .�0, 1, 24
Ž .Duality and 3.8 can be used to relate the density of 2’s and the density of

occupied sites in the upper invariant measure,
g

Ž2. Ž2.3.16 n j : j x s 2 s n j : j x / 0 .� 4 � 4Ž . Ž . Ž .l, g , d l , g , dg q 1

One can distinguish between two types of survival. We say the two-stage
Ž . Ž 0Ž2 . .contact process has finite survival at l, g , d if P j k 0 ; t ) 0 andl, g , d t

Ž . Ž2.we say it has infinite survival at l, g , d if n / d . In the case wherel, g , d 0
d s 0, it follows easily from self-duality that these two notions of survival are

Ž .equivalent for the two-stage contact process. In particular, when g ) g# 0
Ž . Ž2. Ž .and l ) l g , n / d ; if l - l g , then the upper invariant measurec l, g 0 c

equals d .0
What about other initial configurations? If we start the two-stage contact

dŽ .process with configuration Z 1 , then we claim that the stationary measure
is still n Ž2. . We will only sketch the proof. For example, to get the stationaryl, g , d

density of 2’s, use duality to write

Z dŽ1. ˜x Ž1. dP j x s 2 s P j ; Z 1Ž . Ž .Ž .Ž .l, g , d t l , g , d t

˜x Ž1. d ˜x Ž1. ˜x Ž1.<s P j ; Z 1 j k 0 P j k 0 .Ž .Ž . Ž .l, g , d t t l , g , d t

˜x Ž1.Since the all-0 configuration is absorbing for j , the last probability de-t
Ž2. � Ž . 4creases to n j : j x s 2 as t ª `. A simple Markov argument showsl, g , d

˜x Ž1.that, if the process j survives, then its size goes to infinity as t ª `. Tot
˜x Ž1. dŽ .get j ; Z 1 , we need for at least one of the terminal points to be strong.t

The states of the various terminal points are not independent, but they are
essentially so for points which are far enough apart. Clearly, as the number
of terminal points increases to infinity, the probability of having at least one
strong goes to 1, and this yields the desired result. A similar argument shows
that the limit starting from any translation-invariant initial distribution with
an infinite number of occupied sites is n Ž2. .l, g , d

REMARK. The arguments in this section can be used to show that the
˜On]Off contact process j has many of the same properties as the two-staget

Žcontact process. For example, it has the same monotonicity properties cf.
˜ ˜. Ž . Ž . Ž .Theorem 3.1 and there are obvious analogues, l g , d , l# d and g# d , of˜c

the critical parameters. We do not pursue this further here.

4. Some open problems. We conclude by mentioning several open prob-
lems for the two-stage contact process.
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1. Are finite survival and infinite survival equivalent for the two-stage
contact process with d ) 0 or are there two distinct critical values?

Ž2. ˜x Ž2.Ž . � Ž . 4 Ž .From 2.7 , it follows that n j : j x / 0 s P j k 0 ; t , sol, g , d l, g , d t
infinite survival of the two-stage contact process is equivalent to finite

Ž .survival of the On]Off contact process given by 2.8 . Thus the question
becomes one of whether or not the critical birth rate for finite survival is the
same for the two-stage contact process and the On]Off contact process when
d ) 0.

2. In the one-dimensional nearest-neighbor case, can we characterize the
critical birth rate in terms of edge speed?

Define the leftmost and rightmost occupied sites for j AŽ2. byt

4.1 l A ' inf x : j AŽ2. x / 0 and r A ' sup x : j AŽ2. x / 0Ž . Ž . Ž .� 4 � 4t t t t

and let
t AŽ1. , BŽ2. ' inf t : j AŽ1. , BŽ2. ' 0� 4t

AŽ1., BŽ2. Ž . Ž Žy`, 0x.denote the lifetime of j . Let a l, g , d ' E r . Thent t l, g , d t

a l, g , d a l, g , dŽ . Ž .t t
4.2 a l, g , d ' lim s inf g y`, ` ,Ž . Ž . .

t ttª` t)0

and
1 xŽy` ,04.3 lim r s a l, g , d , P -a.s.Ž . Ž . l, g , dtttª`

w Ž .xThis follows from the subadditive ergodic theorem cf. Liggett 1985 in the
usual way. Just let

r s max x g Z: there is an active path½s , t
4.4Ž .

x xŽ Žy` ,0 y` ,0from y , s to x , t for some y F r y r ,Ž . Ž . 5s s

for 0 F s F t. In other words, r is obtained by restarting the process at times, t
s, with all sites F r Žy`, 0x in state 2 and all other sites in state 0, and thens
seeing how far the right edge moved by time t. It is clear that r s r Žy`, 0x

0, t t
Ž . Ž .and that r F r q r . The rest of the proof of 4.2 and 4.3 is as in0, t 0, s s, t

Ž .Liggett 1985 .
We would like to show that

l g , d s inf l: a l, g , d ) 0 s sup l: a l, g , d - 0 .� 4 � 4Ž . Ž . Ž .c

wŽ . xThis would follow as in Durrett 1988 , pages 53]58 were it not for the lack
of a complete coupling theorem. It is easy to see from the percolation diagram

0Ž2 .Ž . ZŽ2.Ž . w 0 0 x � 0Ž2 . 4that it is not true that j x s j x , ; x g l , r , on t ) t . If wet t t t
soften the requirement by just asking for occupied sites, we might hope that,

� 0Ž2 . 4on t ) t ,
0Ž2 . ZŽ2. 0 0x : j x / 0 s x : j x / 0 l l , r .Ž . Ž .� 4 � 4t t t t
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Unfortunately, this is also not true. The problem is that when two active
paths intersect, the resulting composite paths need not be active. Presum-
ably, the way around this is with a renormalized bond construction similar to

Ž .the one in Durrett and Schonmann 1987 . This would give an asymptotic
version of the above formula. The problem here is in ‘‘tying paths together’’
with other paths so that one obtains active composite paths. As in Durrett

Ž .and Schonmann 1987 , there are ‘‘conditioning problems,’’ and these do not
seem to be as easy to overcome as for their discrete-time growth models or for
the contact process.

3. Does the complete convergence theorem hold?

Is it true that

P j AŽ1. , BŽ2. g ? « P t AŽ1. , BŽ2. s ` n Ž2. q P t AŽ1. , BŽ2. - ` d ,Ž . Ž .Ž .l, g , d t l , g , d l , g , d l , g , d 0

for all disjoint A, B? The comments for problem 2 apply here.

4. Describe the critical birth rate for the two-stage contact process in terms of
the critical birth rate for the contact process.

Ž .It is certainly unreasonable to ask for the exact value of l g , d , since thec
exact critical value is not even known for the contact process. However, it

Ž . Ž .might be possible to express l g , d in terms of l ` , g and d .c c

5. Describe the structure of the survival region.

Is Figure 3 accurate? The answer to this problem would follow if we knew
the answer to problem 4.

Ž .6. Find better bounds on g# d .

In particular, a lower bound is needed for the case d G 2. The argument
we gave in the previous section works only for one-dimensional, nearest-
neighbor births.
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