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We derive a general asymptotic formula for the variance of the num-
ber of maxima in a set of independent and identically distributed random
vectors in Rd, where the components of each vector are independently and
continuously distributed. Applications of the results to algorithmic analysis
are also indicated.

1. Introduction. Let X = �x1;x2; : : : ;xn� be a set of independent and
identically distributed (iid) random vectors in Rd. A point xi = �xi1; : : : ; xid�
is said to be dominated by xj if xik < xjk for all k = 1; : : : ; d; and a point xi
is called a maximum of X if none of the other points dominates it. This paper
is concerned with the number of maxima, denoted by Kn;d, of X.

The study of the number of maxima of a set of points was initiated by
Barndorff-Nielsen and Sobel (1966) as an attempt to describe the boundary
of a set of random points in Rd. Due to its close relationships to convex hull,
this problem has been developed to be one of the core problems in computa-
tional geometry, with many applications in diverse disciplines such as pattern
classification, graphics, economics, data analysis, etc. The reader is referred
to Preparata and Shamos (1985), Bentley, Kung, Schkolnick and Thompson
(1978), Becker, Denby, McGill and Wilks (1987) and Bentley, Clarkson and
Levine (1993), Golin (1993) for more information. This problem also arose in
the multicriterial choice problem in operations research. Let xij represent a
utility of variant (alternative, plan) i according to criterion j, i = 1; : : : ; n,
j = 1; : : : ; d. If there is no relation of criteria according to importance, the
choice is often made by relying on the partial order relation xi � xj if xik ≥ xjk
for all k and xil > xjl for some l. Then the optimal variants constitute the
so-called Pareto set of X, that is, the set of all xi which are not “≺” by oth-
ers. The Pareto set has been actively investigated since the seventies, no-
tably in Russia; see the survey paper by Sholomov (1983). Under the as-
sumptions that x1; : : : ;xn are iid and that the components of each vector
are identically and continuously distributed, the Pareto set is identical to the
set of maxima. In the sequel, all (with only one exception) results concern-
ing the random variables Kn;d mentioned in this paper are under the above
assumptions.
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Dominance is clearly one of the natural order relations in multivariate ob-
servations. Thus, the random variables Kn;d play a fundamental role in di-
verse fields, and some of their probabilistic properties have been rediscovered
in the literature. Barndorff-Nielsen and Sobel (1966) first showed, as a special
case of their general results, that

µn;d x= E�Kn;d� =
∑

1≤k≤n

(
n

k

)
�−1�k−1k1−d

= �log n�d−1

�d− 1�!
(
1+O

(
�log n�−1)); n→∞;

(1.1)

for d ≥ 2. This problem is the object of many papers (some simplifying the
proofs of the others) by Berezovskii and Travkin (1975), Ivanin (1975b), Bent-
ley, Kung, Schkolnick and Thompson (1978), Devroye (1980), O’Neill (1980),
Buchta (1989). The only exception mentioned above is that Ivanin (1975a)
dropped the assumption of independence of components and derived an asymp-
totic formula for E�Kn;d� for multivariate normal random variables xi.

Finding the distribution ofKn;d for general d ≥ 3 is definitely more difficult
(see discussions in the Bulletin Board of the newly established WEB site:
http://www-rocq.inria.fr/algo/AofA/index.html). However, for d = 2, if we
arrange xi1, i = 1; : : : ; n, in decreasing order, then it is easily seen that Kn;2
is essentially identical to the number of record values in a set of n iid random
variables with a common continuous distribution. Thus, the exact distribution
is nothing but the Stirling numbers of the first kind given by [see Barndorff-
Nielsen and Sobel (1966)],

E
(
zKn;2

)
= z�z+ 1� · · · �z+ n− 1�

n!
; n ≥ 1;

and its asymptotic normality is also implied. In addition, Barndorff-Nielsen
and Sobel put forth methods for calculating the distribution of Kn;d for
(1) small d and general n, and (2) small n and general d, and carried out the
computations for n = 2, 3, 4, 5.

For the variance, it is known that

Var�Kn;2� =Hn −H
�2�
n = log n+ γ − π

2

6
+O�n−1�; n→∞;

where H�j�n = ∑
1≤k≤n k

−j denotes the harmonic numbers and γ is Euler’s
constant. Barndorff-Nielsen and Sobel (1966) also showed that

Var�Kn;3� = 6
∑

1≤i≤j<k≤l≤n

1
ijkl
+

∑
1≤i≤j≤n

1
ij
−
(
E�Kn;3�

)2

=
(

1
2
+ π

2

6

)
�log n�2

(
1+O

(
�log n�−1)); n→∞:

For general d, Devroye (1997) derived the general estimate

Var�Kn;d� = O
(
E�Kn;d�

)
:
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This implies, by Chebyshev’s inequality, that

Kn;d

�log n�d−1/�d− 1�! → 1 in probability, n→∞:

On the other hand, Ivanin [(1976), page 99] derived an exact formula for
the second moment of Kn;d:

E
(
K2
n;d

)
= µn;d +

∑
1≤t<d

(
d

t

) n−1∑
l=1

1
l

∑�1� 1
i1 · · · id−2j1 · · ·jd−1

;(1.2)

where the summation
∑�1� runs over all indices satisfying the inequalities

1 ≤ i1 ≤ · · · ≤ it−1 ≤ l; 1 ≤ it ≤ · · · ≤ id−2 ≤ l
and

l < j1 ≤ · · · ≤ jd−1 ≤ n:

From this expression, the asymptotics of the variances for d = 2, 3, 4 were
further simplified:

Var�Kn;4� ∼
( ∑

1≤j≤n
j−3 +

∑
2≤j≤n

j−2 ∑
1≤i<j

j−1 + 1
6

)
�log n�3; n→∞:(1.3)

As the main result of this paper, we establish the following theorem.

Theorem. For d ≥ 2,

Var�Kn;d� =
(

1
�d− 1�! + cd

)
�log n�d−1(1+O

(
�log n�−1)); n→∞;(1.4)

where

cd =
1

�d− 1�!
∑
l≥1

1
l2

∑
1≤p;q≤l

(
l

p

)(
l

q

)
�−1�p+qpq

×
((
p−1 + q−1)d−1 − p1−d − q1−d):

(1.5)

Thus asymptotically Var�Kn;d� ≥ E�Kn;d� as n becomes large.
The proof will be presented in Section 2. We first give an alternative deriva-

tion of (1.2) and then consider E�K2
n;d� − µ2

n;d. Comparing (1.1) and (1.4), we
see that the major task in proving (1.4) is to cancel the first d − 1 terms in
the asymptotic expansion of µ2

n;d and to identify the dth term.
For constants cd, we have, in particular,

c2 = 0 and c3 = ζ�2� =
∑
l≥1

l−2 = π
2

6
;
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where ζ�s� denotes Riemann’s zeta function ζ�s� =∑k≥1 k
−s for <s > 1. While

a general reduction of cd to Riemann’s zeta function at integer arguments may
seem impossible in view of current knowledge on multiple harmonic sums [cf.
Bailey, Borwein and Girgensohn (1994), Flajolet and Salvy (1996), Hoffman
(1992) and Zagier (1992)], we have, by a well-known formula due to Euler,

c4 =
∑
l≥1

Hl

l2
= 2ζ�3�

[simplifying (1.3)], and, by reductions to suitable Euler sums,

c5 =
5
12

∑
l≥1

H2
l

l2
+ 1

6

∑
l≥1

H
�2�
l

l2
= 33

16
ζ�4�;

c6 =
7

72

∑
l≥1

H3
l

l2
+ 1

8

∑
l≥1

HlH
�2�
l

l2
+ 1

36

∑
l≥1

H
�3�
l

l2
= 5

4
ζ�5� + 1

6
ζ�2�ζ�3�:

These identities can be derived by the results in Flajolet and Salvy (1996);
details are omitted here. (They are numerically easy to check by using symbolic
computation packages like MAPLE or MATHEMATICA.) Note that

cd =
∑
l≥1

1
l2

d−2∑
j=1

µl; jµl; d−1−j
j!�d− 1− j�! :

Applications of our theorem to algorithmic analysis will be briefly discussed
in Section 3. Based on numerical simulations, we predict that the asymptotic
distribution ofKn;d would be Gaussian. However, we have not found any proof
for d ≥ 3.

2. Proof of the theorem. Without loss of generality, we assume that n
iid random vectors x1; : : : ;xn are uniformly distributed over �0;1�d. Denote
by Gk the event (as well as the indicator of the event) that xk is a maximum
in x1; : : : ;xn. Then

Kn;d =
n∑
k=1

Gk:

If there are exactly r− 1 points dominating xk, then xk is called an rth layer
maximum. Denote this event by Gk�r�. Thus, the total number of rth layer
maxima can be expressed by

Kn;d�r� =
n∑
k=1

Gk�r�:

To prove the theorem, we first derive a lemma and the mean of Kn;d�r�.
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Lemma 1. Let 0 ≤ t < d. Then,

∫
�0;1�d

(
1−

d∏
i=1

xi

)n( d∏
i=t+1

xi

)l
dx

=
∑

1≤i1≤···≤id−1≤n+1

n!�it + l− 1�!
�n+ l+ 1�!�i1 · · · it−1�it!�it+1 + l� · · · �id−1 + l�

:

(2.1)

Proof. Rewrite

1−
d∏
i=1

xi = �1− x1�x2 · · ·xd + �1− x2�x3 · · ·xd + · · · + �1− xd�:

Then
(

1−
d∏
i=1

xi

)n( d∏
i=t+1

xi

)l
=

∑
i1+···+id=n
i1;:::;id≥0

n!
i1! · · · id!

�1− x1�i1xi12 �1− x2�i2 · · ·

× xi1+···+it−1
t �1− xt�itx

i1+···+it+l
t+1 �1− xt+1�it+1 · · ·

× xi1+···+id−1+l
d �1− xd�id;

and (2.1) follows. 2

In particular, for t = 0, we have
∫
�0;1�d

(
1−

d∏
i=1

xi

)n( d∏
i=1

xi

)l
dx

= n!l!
�n+ l+ 1�!

∑
l+1≤i1≤···≤id−1≤n+l+1

1
i1 · · · id−1

:

(2.2)

Corollary 1 [Barndorff-Nielsen and Sobel (1966)]. The mean number of
rth layer maxima is given by

µn;d�r� x= E
(
Kn;d�r�

)
=

∑
r≤i1≤···≤id−1≤n

1
i1 · · · id−1

:(2.3)

Proof. The result follows from

µn;d�r� = nE�G1�r�� = n
(
n− 1
r− 1

) ∫
�0;1�d

(
1−

d∏
i=1

xi

)n−r( d∏
i=1

xi

)r−1

dx

and (2.2). 2

Remark. It is interesting to note that the probability that a point, say xi,
is a maximal point satisfies

µn;d
n
= P�Y2 + · · · +Yn < d�;
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where each Yj is geometrically distributed:

E�zYj� = 1− 1/j
1− z/j; 2 ≤ j ≤ n:

This follows from the fact that µn;d/n equals the coefficient of zd−1 in

1
n

∏
1≤j≤n

1
1− z/j =

1
1− z

∏
2≤j≤n

1− 1/j
1− z/j:

Also from a computational point of view, it is useful to use the recurrence
µn;1 = 1 for n ≥ 1 and for d ≥ 2,

µn;d =
1

d− 1

∑
1≤j≤d−1

H
�d−j�
n µn;j;

by taking derivatives on both sides of
∑∞
d=1 µn;dz

d−1 = ∏n
j=1 1/�1− z/j� and

by equating coefficients of the same powers.

Next, we derive the second moment of Kn;d. Let �t� = ��x;y�; x1 > y1; : : : ;
xt > yt, xt+1 < yt+1; : : : ; xd < yd�. We have

E�K2
n;d� = µn;d + n�n− 1�P�G1G2�

= µn;d + n�n− 1�
d−1∑
t=1

(
d

t

) ∫
�t�

(
1−

d∏
i=1

�1− xi�−
d∏
i=1

�1−yi�

+
t∏
i=1

�1− xi�
d∏

i=t+1

�1− yi�
)n−2

dxdy

= µn;d + n�n− 1�
d−1∑
t=1

(
d

t

)

×
∫
�0;1�d

∫
�0;1�d

(
1−

d∏
i=1

xi

t∏
i=1

yi −
d∏

i=t+1

xi

d∏
i=1

yi +
d∏
i=1

xi

d∏
i=1

yi

)n−2

×
d∏

i=t+1

xi

t∏
i=1

yi dxdy

= µn;d + n�n− 1�
d−1∑
t=1

(
d

t

)

×
∫
�0;1�d

∫
�0;1�d

(
1−

t∏
i=1

xi

d∏
i=1

yi −
d∏

i=t+1

xi

d∏
i=1

yi +
d∏
i=1

xi

d∏
i=1

yi

)n−2

×
d∏
i=1

yi dxdy

x= µn;d +
d−1∑
t=1

(
d

t

)
Jt:
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Noting that

1−
t∏
i=1

xi

d∏
i=1

yi −
d∏

i=t+1

xi

d∏
i=1

yi +
d∏
i=1

xi

d∏
i=1

yi

=
(

1−
d∏
i=1

yi

)
+

d∏
i=1

yi

(
1−

t∏
i=1

xi

)(
1−

d∏
i=t+1

xi

)
;

we have, by Lemma 1,

Jt =
n−2∑
l=0

n!
l!�n− 2− l�!

∫
�0;1�d

∫
�0;1�d

(
1−

d∏
i=1

yi

)n−2−l( d∏
i=1

yi

)l+1

×
(

1−
t∏
i=1

xi

)l(
1−

d∏
i=t+1

xi

)l
dxdy

=
n−2∑
l=0

n!
l!�n− 2− l�!

�l+ 1�!�n− 2− l�!µn;d�l+ 2�
n!

µl+1; t

l+ 1
µl+1; d−t
l+ 1

=
n−1∑
l=1

1
l
µn;d�l+ 1�µl; tµl; d−t:

Therefore,

E�K2
n;d� = µn;d +

d−1∑
t=1

(
d

t

) n−1∑
l=1

1
l
µn;d�l+ 1�µl; tµl; d−t;

and we finally obtain (1.2).
Noting that in (1.2) the sum of those terms with at least two identical j

indices in
∑�1� is at most O��log n�d−3�, we further have

E�K2
n;d� = µn;d +

d−1∑
t=1

(
d

t

) n−1∑
l=1

1
l

∑�∗� 1
i1 · · · id−2j1 · · ·jd−1

+O
(
�log n�d−3);

(2.4)

where the last summation
∑�∗� is extended over all indices satisfying the

inequalities

1 ≤ i1 ≤ · · · ≤ it−1 ≤ l; 1 ≤ it ≤ · · · ≤ id−2 ≤ l
and

l < j1 < · · · < jd−1 ≤ n:
Now, let us compare the second term in the above expression (2.4) with

µ2
n;d. By (2.3),

µ2
n;d =

∑�2� 1
i1 · · · id−1j1 · · ·jd−1

;
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where the summation
∑�2� runs over all combinations

1 ≤ i1 ≤ · · · ≤ id−1 ≤ n and 1 ≤ j1 ≤ · · · ≤ jd−1 ≤ n:
Write the �d−1�st largest index among �i1; : : : ; id−1; j1; : : : ; jd−1� as l and

the d − 1 indices greater than or equal to l as k1; : : : ; kd−1. If the kj’s are
not all distinct or if there is one kh = l (1 ≤ h ≤ d − 1), then the sum of all
those terms is O��log n�d−2�. Now, consider the sum of those terms for which
the d − 1 k-indices are distinct and not equal to l. Rearrange the k-indices
as l < k1 < · · · < kd−1. Suppose that there are t (1 ≤ t ≤ d − 1) indices
(among l; k1; : : : ; kd−1) from the j-indices. There are �dt � such possibilities.
Write the other t − 1 i-indices as 1 ≤ i1 ≤ · · · ≤ it−1 ≤ l and the remaining
d − 1 − t j-indices as 1 ≤ j1 ≤ · · · ≤ jd−1−t ≤ l. Note that the reindexing is
unique if it−1 < l and jd−1−t < l. However, ambiguity arises when it−1 = l or
jd−1−t = l. For, if there is a term with it−1 = l and jd−t−1 = l, then this term
is counted once in the case when l is an i-index and the number of j-indices
in �l; k1; : : : ; kd−1� is t as well as once in the case when l is a j-index and the
number of j-indices in �l; k1; : : : ; kd−1� is t+ 1. Thus,

µ2
n;d =

d−1∑
t=1

(
d

t

) n−1∑
l=1

1
l

∑�∗� 1
i1 · · · id−2j1 · · ·jd−1

−
d−2∑
t=1

(
d− 1
t

) n−1∑
l=1

1
l2
∑�∗∗� 1

i1 · · · it−1j1 · · ·jd−2−tk1 · · ·kd−1

+O
(
�log n�d−2);

where the summation
∑�∗∗� is extended over all indices satisfying

1 ≤ i1 ≤ · · · ≤ it−1 ≤ l; 1 ≤ j1 ≤ · · · ≤ jd−2−t ≤ l
and

l < k1 < · · · < kd−1 ≤ n:
Therefore, we finally obtain

Var�Kn;d� = µn;d +
d−2∑
t=1

(
d− 1
t

) n−1∑
l=1

1
l2
∑�∗∗� 1

i1 · · · it−1j1 · · ·jd−2−tk1 · · ·kd−1

+O
(
�log n�d−2)

=
(

1
�d− 1�! + cd

)
�log n�d−1(1+O

(
�log n�−1));

where

cd =
d−2∑
t=1

1
t!�d− 1− t�!

∑
l≥1

1
l2

∑
1≤i1≤···≤it−1≤l

1≤j1≤···≤jd−2−t≤l

1
i1 · · · it−1j1 · · ·jd−2−t

:
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Using the finite difference formula

µn;h =
∑

1≤i1≤i2≤···≤ih≤n

1
i1i2 · · · ih

=
∑

1≤j≤n

(
n

j

)�−1�j−1

jh
; h = 1;2; : : : ;

we obtain (1.5) and complete the proof of the theorem. 2

3. Algorithmic applications. In this section we briefly discuss an im-
plication of our main result: the asymptotic linearity of the variance of the
cost of maxima-finding algorithms using divide-and-conquer paradigm.

There exists a large number of algorithms for finding the maxima in a
given set of points [cf. Preparata and Shamos (1985), Bentley, Clarkson and
Levine (1993), Devroye (1997)]. A naive divide-and-conquer algorithm runs
as follows [cf. Devroye (1983)]. Divide the points �x1; : : : ;xn� into two groups
�x1; : : : ;x�n/2�� and �x�n/2�+1; : : : ;xn�, where �y� denotes the largest integer
less than or equal to y. Find (recursively) the (set of) maxima of each group,
denoted by M1 and M2, respectively. Then find, by pairwise comparisons, the
maxima of M1 and M2. Note that the randomness is preserved in the process.
The worst case behavior of this algorithm is obviously quadratic in n. But
the expected number of comparisons as well as the variance are both linear
under our uniform distribution assumption. This is seen by noting that both
quantities satisfy recurrences of the form

fn = f�n/2� + f��n+1�/2� + gn;
for n ≥ n0 ≥ 1 with suitable initial conditions and that gn = O��log n�2d−2�
for mean and gn = O��log n�3d−3� for variance. It follows that fn = Od�n�,
where the implied constant depends on d. The linear terms are oscillating in
nature; see Flajolet and Golin (1993).

Other divide-and-conquer algorithms, such as that in Bentley and Shamos
(1978), can also be shown to have linear variance for its cost.

Acknowledgments. The authors thank Luc Devroye for making his
preprint available to them. They also thank the referee for pointing out an
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