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This paper concerns the asymptotic distributions of “tail array” sums
of the form

∑
ψn�Xi − un� where �Xi� is a strongly mixing stationary

sequence, ψn are real functions which are constant for negative arguments,
ψn�x� = ψn�X+� and �un� are levels with un → ∞. Compound Poisson
limits for rapid convergence of un → ∞ �nP�X1 > un� → τ < ∞� are
considered briefly and a more detailed account given for normal limits
applicable to slower rates �nP�X1 > un� → ∞�. The work is motivated
by (1) the modeling of “damage” due to very high and moderately high
extremes and (2) the provision of probabilistic theory for application to
problems of “tail inference” for stationary sequences.

1. Introduction. “Tail array sums”
∑
ψn�Xi − un� for a stationary se-

quence �Xj�; un→∞, and appropriate functions �ψn� with ψn�x� = ψn�X+�,
find application in a variety of contexts including probabilistic modeling of
“damage” from high values, and statistical “tail inference.” As a very simple
example, the random variable

ζn =
n∑
j=1

�Xj − un�+

represents damage due to high Xj values as measured by the sum of the
excess values above the “threshold” un. On the other hand, ζn also plays a
central role in formation of statistics for the estimation of parameters in the
distribution F of Xj with exponentially decreasing or regularly varying tails.

Damage modeling, quantile estimation and tail inference have been of long-
standing interest in engineering science and insurance and have more recently
attracted substantial interest in the statistical literature; see, for example,
[1], [3], [4], [8], [9], [10], [16], [18]. Many of these papers, and procedures used
in practice, assume independence. However, typical situations, such as me-
terological, hydrological and environmental measurement concern dependent
variables, and some of the cited references also consider dependence, using
special methods tailored to the problem at hand.

In the present paper we establish a simple general theory for such tail array
sum problems. The limiting distributions are obtained from the results of [14]
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for (dependent) array sums under an appropriate form of strong mixing. This
condition (defined precisely below) is natural and the weakest of dependence
restrictions typically used in dependent central limit theory.

A basic (and often difficult) problem in dependent central limit theory is to
verify Lindeberg conditions for appropriate “block sums.” A final main result
of this paper provides a simple approach to this verification, for the important
special cases of (approximately) exponential or (by a logarithmic transforma-
tion), regularly varying tails.

Two cases are considered in which (1) un → ∞ at a rapid rate defined by
n�1−F�un�� → τ <∞ and (2) un→∞ more slowly, with n�1−F�un�� → ∞.
These will be referred to as “high” and “moderate” levels un, respectively. The
not unexpected compound Poisson limiting results for the former case are
discussed briefly in Section 3 following the general theory and framework of
Section 2.

The parameter τ can be interpreted as the asymptotic mean number of ob-
servations which exceed the level un. Hence in case (1) we are dealing with a
finite number of exceedances. The resulting Poisson type convergence in par-
ticular provides the weak limits of the extreme upper order statistics (cf. [13],
Chapter 5). However, to estimate parameters of these limiting distributions
consistently, we need to rely on the weak law of large numbers and, eventually,
on the central limit theorem. This can only be done if the number of “useful”
observations, that is, the number of exceedances of un, tends to infinity. This
may be achieved by (normal limit) results from case (2) for moderate levels,
where the number of exceedances does tend to infinity, in important cases for
which the parameters for “extreme” and “moderate” tail behavior may be re-
lated. More stringent dependence conditions are needed for case (2), as will
be seen below. An early result in this direction is [20] and more recent ones
are contained in [8], [9], [10], [16].

The remainder of the paper gives a more detailed discussion of normal
limit behavior for the case (2) involving moderate levels un. Section 4 gives
conditions for normal convergence including primarily a Lindeberg condition
for sums of small groups of the successive terms in ζn. As noted above, Linde-
berg conditions can be difficult to verify in dependent contexts, especially for
tail arrays. However, we show in Section 6 that this may be quite simply
achieved by assuming an appropriate (exponential) rate of tail decay of the
distribution F.

Section 5 concerns specific cases of special interest derived from the simple
functions 1�x>0�, and x+. The normal limits obtained are also modified to pro-
vide convergence which is minimally dependent on unknown parameters by
using suitable “block variance” estimates. These latter results are especially
useful for statistical applications to tail estimation to be considered in [17].

Finally in this introduction, we note the precise form of the strong mixing
assumption to be used throughout this paper. For a recent survey of related
mixing concepts, see [5]. LetX1;X2; : : : be a (strictly) stationary sequence, and
let Bij denote the σ-field σ�Xkx i ≤ k ≤ j� generated by Xi;Xi+1; : : : ;Xj

and for fixed n, l < n, let

αn; l = sup
{∣∣P�A ∩B� −P�A�P�B�

∣∣x A ∈ B1; k;B ∈ Bk+l; n;1 ≤ k ≤ n− l
}
:
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Then �Xj� will be termed “strongly mixing �αn; l; ln�” if αn; ln → 0 for some
ln = o�n�. It may be shown that the existence of such a sequence �ln� follows
if αn; �εn�→ 0 as n→∞ for each ε > 0.

For application in the paper, the following equivalent form of the condition
will be convenient. For a complex valued random variable X, write X ∈ Bij

to denote Bij-measurability of X, and

βn; l = sup
{∣∣EXY− EXEY

∣∣x X ∈ B1; k;Y ∈ Bk+l; n;

�X� ≤ 1; �Y� ≤ 1;1 ≤ k ≤ n− l
}
:

This “array form” of strong mixing involves values of k+l only up to n. It is
of course implied by the standard definition (in which k+l is not so restricted).
For particular purposes, weaker forms of the condition may be used—replacing
Bij by the σ-field generated by the functions of Xi;Xi+1; : : : ;Xj relevant to
the problem [such as 1�Xj>un� or �Xj−un�+ for given un], and when convenient
we do so. As an example, in [20] restriction to σ-fields generated by 1�Xj>un�
leads to a substantial gain of generality.

2. Framework and general theory. The following notation and basic
assumptions will apply throughout. The sequence �Xj; j = 1;2; : : :� is sta-
tionary with marginal d.f. F, and strongly mixing �αn; l; ln�, �un� is a sequence
of constants (“levels”) and �ψn�x�� are functions which are constant for neg-
ative arguments, ψn�x� = ψn�X+� which satisfy Eψ2

n�X1 − un� <∞. Further
integers ln < rn → ∞ with rn ≤ n, rn = o�n� are chosen so that, setting
kn = �n/rn�,

kn�αn; ln + ln/n� → 0:(2.1)

Such �kn� will be called a standard sequence and the corresponding division
of �0; n� into intervals Ji = ��i− 1�rn; irn�, 1 ≤ i ≤ kn, of length rn and a last
interval Jkn+1 = �knrn; n� termed a standard partition. Write also

Yj = Ynj = �Xj − un�+; 1 ≤ j ≤ n;
Zi = Zni =

∑
j∈Ji

ψn�Yj�; 1 ≤ i ≤ kn + 1;

so that Zi is the “block sum” over the ith interval.
Throughout the paper an undesignated sum

∑
will mean

∑n
1 . Our interest

will focus on the (tail) array sum

ζn =
kn+1∑

1

Zi =
∑
ψn�Xi − un�

(
=
∑
ψn�Yi� =

kn+1∑
1

Zi

)
;(2.2)

where un→∞ at either a fast (“high level”), or at the somewhat slower (“mod-
erate level”) rate. The following result shows that for ψn ≥ 0, ζn has the same
asymptotic distribution as it would if the “block” sums Zi over the partition
intervals Ji were independent, and the same is true for ψn of unrestricted
signs under a very mild asymptotic neglibility condition. This theorem, which
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is a variant of results of [12] and [14] facilitates the use of classical i.i.d. limit
criteria in this dependent setting. For this purpose �Ẑi� will denote the “in-
dependent sequence” associated with �Zi�; that is, Ẑi are independent with
Ẑi =d Zi.

Theorem 2.1. Under the basic assumptions and with the above notation,
suppose that

Zkn+1 →p 0;
kn∑
i=1

Z∗i →p 0;(2.3)

where Z∗i are i.i.d. with Z∗i =d
∑ln

1 ψn�Yj�. Then

ζn =
∑
ψn�Xi − un�

has the same limiting distribution (if any) as
∑kn
i=1 Ẑi, where Ẑi is the “indepen-

dent sequence associated with Zi =
∑
j∈Ji ψn�Yj�”; that is, Ẑi are independent

with Ẑi =d Zi.
If ψn�x� ≥ 0 for all x ≥ 0, the conditions (2.3) may be omitted.

Proof. The first statement follows from the proof (and surrounding com-
ments) of Lemma 2.1 of [14] adapted to the discrete parameter context, defin-
ing the interval function ζn�I� =

∑
j/n∈I ψn�Yj�. The elimination of (2.3) from

the condition when ψn ≥ 0 may be simply shown as in Lemma 2.2 of [12]. 2

Note that, when needed, the conditions in (2.3) are readily verified from
mean and variance assumptions for Zkn+1, Z∗i (the latter being i.i.d.) as in the
following corollary.

Corollary 2.2. Under the basic assumptions suppose that Eψn�X1−un� =
0 and

kn var
{ ln∑

1

ψn�Yj�
}
→ 0; var�Zkn+1� → 0:(2.4)

Then
∑
ψn�Xi − un� has the same limit in distribution (if any) as the i.i.d.

array sum
∑kn

1 Ẑi.

3. Very high levels—compound Poisson convergence. For purposes
such as damage modeling from infrequent excesses of very high levels, it is
useful to consider un → ∞ at a fast rate, which, in this section, we take
somewhat more generally to mean that

lim sup
n

n
(
1−F�un�

)
= τ <∞:(3.1)

A great deal of literature is devoted to Poisson and Poisson-related proper-
ties of specific functions of excess values (in both rigorous and heuristic works).
For example, the asymptotic Poisson character of exceedances of un (cf. [2] and
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references therein) has been known and widely used for a very long time. As
noted, this fits the above framework with ψn�x� = ψ�x� = 1�x>0�. Similarly
ψn�x� = x+ = x1�x>0� leads to the sum of exceedance values above un.

While our main interest is in the lower (moderate) level situation it
seems worthwhile to briefly set a general class of high level cases within
the framework of Theorem 2.1. For nonnegative functions ψn the “total
damage” ζn =

∑n
1 ψn�Xi − un� is a special case of the random measure

ζn�B� =
∑
i/n∈B ψn�Xi − un� defined for Borel sets B ⊂ �0;1� and its limiting

distribution is perhaps best considered in that framework (cf. [12]), using
Laplace transform methods which are most natural for nonnegative cases.
This gives a compound Poisson limiting distribution in essentially all cases of
practical interest and, indeed, convergence in distribution of ζn as a random
measure to a compound Poisson point process.

On the other hand, when ψn may have general sign, ζn�I� still has a limit-
ing compound Poisson distribution for each interval I ⊂ �0;1� under natural
conditions as shown in the following theorem. In this CP�λ;π� will denote a
compound Poisson distribution being the sum of a Poisson (mean λ� number
of independent r.v.’s with d.f. π, with π�0� − π�0−� = 0. We further assume
that Xi does not cause any damage if Xi ≤ un, that is, that ψn�0� = 0.

Theorem 3.1. Suppose the basic assumptions and (3.1) hold, ψn�0� = 0
and ψn is either nonnegative or satisfies (2.3) [or the sufficient condition (2.4)].
Then

n∑
i=1

ψn�Xi − un� →d W(3.2)

for some r.v. W iff the d.f.’s Fn of
∑rn

1 ψn�Xj − un� satisfy

knFn�x� → λπ�x�; x < 0;

kn�1−Fn�x�� → λ�1− π�x��; x > 0;
(3.3)

for some λ > 0 and d.f. π, at continuity points of π�x�. Furthermore, W then
has aCP�λ;π�-distribution. Also, (3.2) may be rephrased to read ζn�I� →d ζ�I�
where ζn�I� =

∑
j/n∈I ψn�Xi − un�, I = �0;1� and ζ�I� is CP�λ;π�. The same

arguments show that this holds for any interval I = �a; b� ⊂ �0;1� where the
limit ζ�I� is CP�λ�b − a�; π�. Further for disjoint I1; : : : ; Ip, ζn�I1� · · · ζn�Ip�
are readily shown to converge jointly to the independent limits ζ�I1� · · · ζ�Ip�.
This holds whether or not ψn is restricted in sign.

Proof. According to Theorem 2.1 (or Corollary 2.2) it is sufficient to show
that the result holds with (3.2) replaced by

kn∑
i=1

Ẑi→d W;(3.4)
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for Ẑi i.i.d. with d.f. Fn. We use [7], Theorem 4, Section 25 to prove the
equivalence of (3.3) and (3.4) under the stated conditions. Now, since ψn�0� = 0
it follows from (3.1), since rn/n ∼ 1/kn→ 0, that

P�Ẑ1 6= 0� = P�Z1 6= 0�
≤ rn�1−F�un��

= rn
n
n�1−F�un��

→ 0; n→∞;
so that the Ẑi’s are uniformly asymptotically negligible. Similarly, for ε > 0,
using (3.1) and the fact that knrn ≤ n,

lim sup
n

kn

∫
�x�<ε

x2 dFn ≤ lim sup
n

ε2knP�Ẑ1 6= 0�

≤ ε2 lim sup
n

knrn
(
1−F�un�

)

≤ ε2τ→ 0 as ε→ 0;

and by the same reasoning

lim sup
n

kn

∫
�x�<ε

xdFn→ 0 as ε→ 0:(3.5)

Hence (2) of the cited theorem is satisfied, with σ2 = 0. Thus if (3.4) holds, then
there must exist a nondecreasing function M and a nonincreasing function N
with M�−∞� =N�∞� = 0 such that

knFn�x� →M�x�; x < 0;

kn�1−Fn�x�� →N�x�; x > 0;
(3.6)

at continuity points x of the right-hand sides. Since M�0−� + N�0+� ≤
lim supn knP�Ẑ1 6= 0� ≤ τ, it is possible to write M�x� = λπ�x�, N�x� =
λ�1− π�x�� for some constant λ with 0 ≤ λ ≤ τ and a probability measure π,
so that (3.6) may be written in the form (3.3).

Conversely, if (3.3) holds, it follows from (3.6) that kn
∫
�x�<τ xdFn�x� →∫

�x�<τ xλdπ�x� for any τ such that ±τ are continuity points of π. By the remark
after Theorem 4, Section 25 and (6), (8) of Section 18 of [7], it follows by
easy computation that (3.4) holds and that W has the characteristic function
exp�λ

∫
�eiut − 1�dπ�x�� and hence is a CP�λ;π�-distribution. 2

If the restriction ψn�0� = 0 is removed, then the result still holds if the
requirement that nψn�0� → α for some constant α, is added to (3.3), and W−α
then has a CP�λ;π�-distribution, as can be seen by similar considerations to
those in the theorem.

For ψn ≥ 0, these results show that the random measures ζn�B� defined
on the Borel subsets of �0;1�� converge in distribution to a compound Poisson
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point process. This has the natural interpretation that for large n the dam-
age ψn may be modeled by occurrence times forming a Poisson process with
intensity λ, and associated independent damage magnitudes (not necessarily
integer valued) with distribution π.

For a given “damage function” ψn, it is of clear interest for modeling to know
what forms are possible for the limiting “damage distribution” π. The only
(nontrivial) case of which we are aware for which this is known explicitly is the
so-called “peaks over thresholds” (POT) model commonly used, for example,
in hydrology, for which the damage due to a cluster of values exceeding a
threshold u is the peak excess height of the cluster above u (e.g., maximum
flood height). This is not precisely of the form considered here but the same
arguments apply.

This POT model is discussed completely in [11], where it is shown under
general conditons that π must have a “generalized Pareto” form. This confirms
and makes explicit earlier more heuristic use of generalized Pareto damage
distributions at Poisson times under iid assumptions.

Less explicit results are known for other damage mechanisms, where it
may be necessary to resort to estimation of the distribution π, or even ad hoc
fitting. The complicating feature for this high level case is the generality of the
limit—involving an entire distribution π as well as the Poisson intensity λ.
For the lower (moderate) levels, it will be seen (cf. next section) that more
explicit results are possible since the normal limit involved is parametrically
determined. Finally if ψn is not necessarily positive, the random measure
interpretation does not apply but there is still joint convergence [e.g., under
(2.3) of ζn�Ij�] for disjoint Ij to independent compound Poisson limits, and the
interpretation of independent damage magnitudes occurring at time points
determined by a Poisson process with intensity λ still applies.

4. Moderate levels—normal convergence. As noted, for both modeling
and tail inference it is important to consider levels un →∞ at a slower rate
and specifically such that (3.1) is replaced by

cn = n�1−F�un�� → ∞;(4.1)

to be assumed in this and subsequent sections. Further to the basic assump-
tions it will be assumed that ψn�X1 − un� has been standardized so that

Eψn�Xj − un� = 0; var
{ rn∑
j=1

ψn�Xj − un�
}
= 1/kn(4.2)

so that EZi = 0; varZi = 1/kn with Zi as in Section 2 and hence
var�∑kn

1 Ẑi� = kn var�Ẑ1� = 1, where �Ẑi� is the i.i.d. sequence associ-
ated with �Zi�. In particular, these normalizations will be automatic for the
class of applications defined by (4.5) and (4.6) below. The following criterion
for normal convergence then holds.
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Theorem 4.1. Suppose that the basic assumptions and (2.3) hold and that
ψn satisfies (4.2). Then

ζn =
∑
ψn�Xj − un� →d N�0;1�(4.3)

if and only if the Lindeberg condition

knE �Z2
11��Z1�>ε�� → 0 as n→∞; each ε > 0;(4.4)

is satisfied, where Z1 =
∑rn

1 ψn�Xj − un�, as before.

Proof. This is immediate from the classical normal convergence criterion
(cf. [15]) since by Theorem 2.1, ζn has the same limiting distribution as

∑kn
1 Ẑi

where Ẑi are independent, Ẑi =d Z1 and kn varZ1 = 1: 2

Commonly the (normalized) ψn are obtained from unnormalized functions
φnx with φn�x� = 0 for x < 0 and with Eφ2

n�X1 − un� <∞ by writing

ψn�x� = σ−1
n

[
φn�x� − Eφn�X1 − un�

]
;(4.5)

where

σ2
n = kn var

{ rn∑
j=1

φn�Xj − un�
}
;(4.6)

the negligibility conditions (2.4) becoming

knσ
−2
n var

{ ln∑
j=1

φn�Yj�
}
→ 0; σ−2

n var
{n−rnkn∑

j=1

φn�Yj�
}
→ 0:(4.7)

With the established notation, the tail sum considered in (4.3) is

ζn =
∑
ψn�Xi − un� = σ−1

n

∑[
φn�Xj − un� − Eφn�X1 − un�

]
:(4.8)

Note that (4.2) holds for ψn defined by (4.5) by virtue of (4.6).
Theorem 4.1 then applies to the function ψn defined by (4.5), specifically

stated as follows.

Corollary 4.2. Let φn be a function on �0;∞� with Eφ2
n�X1 − un� < ∞,

and σn defined by (4.6) and suppose that the basic assumptions and (2.1) and
(4.7) hold. Then

ζn = σ−1
n

[ n∑
1

φn�Xj − un� − nEφn�X1 − un�
]
→d N�0;1�(4.9)

if and only if the Lindeberg condition (4.4), knE �Z2
11�Z1�>ε�� → 0, holds where

Z1 = σ−1
n

rn∑
1

[
φn�Xj − un� − Eφn�X1 − un�

]
:(4.10)
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Particular cases (cf. Section 5) are given by specializing φn to functions
φn = φ, independent of n [such as 1�x>0�, x+; for which the ζn are, respectively,
the numberNn of exceedances of un, and the sum of exceedance values

∑�Xi−
un�+]. It is also of interest to consider linear combinations of such ζn, as in
Example 5.5.

As noted earlier, verification of Lindeberg conditions for array sums may
require very strong local dependence restrictions. For tail sums as here con-
sidered, the technical details of verification may be even more complicated.
However, simple distributional tail conditions may sometimes be used to avoid
the restrictive dependence assumptions. This is shown in Section 6 (Theorem
6.2) for exponential decay rates, which are of particular importance in tail
estimation problems (cf. [17]).

The further conditions (2.3) and (4.7) in Theorem 4.1 and Corollary 4.2 will
also be verified in Section 6 for exponential decay rates. However, the following
result shows that (4.7) may be simply verified when φ�x� ≥ 0 without even
assuming tail conditions, for levels un which do not increase too slowly, that
is, such that cn = n�1−F�un�� = o�kn�.

Lemma 4.3. If ψn�x� is defined by (4.5), with φn�x� ≥ 0 all x, φn�0� = 0
and cn = o�kn� and the basic assumptions hold, then

σ2
n ∼ knE

( rn∑
j=1

φn�Yj�
)2

(4.11)

and (4.7) holds.

Proof. For K denoting a generic constant,

(
E

{ rn∑
1

φn�Yj�
})2

= r2
n

(
Eφn�Y1�

)2 = r2
n

(
E �φn�Y1�1�Y1>0��

)2

≤ r2
nEφ2

n�Y1�P�Y1 > 0� = r2
n

(
1−F�un�

)
Eφ2

n�Y1�

≤Krn
cn
n

E

( rn∑
1

φn�Y1�
)2

since 1−F�un� = cn/n and φn�Yi� ≥ 0, each i. Since knrn ∼ n and cn = o�kn�,
it thus follows that

(
E

rn∑
1

φn�Yj�
)2

= o
{

E

( rn∑
1

φn�Yj�
)2}

;

which yields (4.11).
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Since clearly
∑rn

1 φn�Yj� ≥
∑�rn/ln�
i=1 Vni where Vni =d Vn =

∑ln
j=1 φn�Yj�,

it follows that E �∑rn
1 φn�Yj��2 ≥ �rn/ln�EV2

n and hence

σ−2
n kn var

{ ln∑
1

φn�Yj�
}
= σ−2

n kn varVn

≤ σ−2
n knEV2

n ≤K
ln
rn
σ−2
n knE

( rn∑
1

φn�Yj�
)2

∼Kln
rn

(4.12)

by (4.6) and (4.11). But ln/rn → 0 so that kn var�∑ln
1 ψn�Yj�� → 0. Thus the

first limit in (4.7) holds and the second follows similarly. 2

5. Practical issues and special cases. The asymptotic normality in
(4.9) involves the (usually) unknown normalizing constants σn, and it is clearly
important for some applications to replace them by functions of the sequence
values Xi (e.g., an appropriately consistent estimator) for inference purposes
such as the construction of confidence intervals. Lemma 5.1 gives mild condi-
tions under which σ2

n may in fact be replaced in (4.9) by an estimate based on
“independent” blocks:

s2
n =

kn∑
i=1

(
Bn; i −Bn

)2 =
kn∑
i=1

B2
n; i − knB

2
n(5.1)

(see Theorem 5.2) where Bn; i is the ith block sum
∑
j∈Ji φn�Xj − un� and

Bn = k−1
n

∑kn
1 Bn; i.

Now write J′i for the first rn − ln integers of Ji, Ui =
∑
j∈J′i ψn�Yj�, Vi =

Zi −Ui =
∑
j∈Ji−J′i ψn�Yj� for ψn given by (4.5).

Lemma 5.1. With the notation above suppose that the basic assumptions,
(2.3), and (4.2) hold and in addition suppose that kn varZ2

1 → 0. Then

�i�
kn∑
i=1

Z2
i →p 1;

�ii� k−1/2
n

kn∑
i=1

Zi→p 0:

(5.2)

Proof. This follows a similar pattern to that of Lemma 2.1 of [14] and
hence will be sketched only. First note that

∑kn
1 V2

i →p 0 since E
∑
V2
i =

knEV2
1 = kn var�∑ln

1 φn�Yj�� → 0 by (4.7) and that

∣∣∑ViZi

∣∣ ≤
(∑

V2
i

)1/2(∑
Z2
i

)1/2

→p 0

since knEZ2
1 = kn varZ1 = 1, so that

∑kn
1 Z2

i is tight.
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Hence
∑kn

1 Z2
i −

∑kn
1 U2

i = 2
∑kn

1 ViZi +
∑kn

1 V2
i →p 0 and thus

∣∣∣E exp
(
it
∑
U2
j

)
− E exp

(
it
∑
Z2
j

)∣∣∣ ≤ E
∣∣∣1− exp

(
it
∑
�Z2

j −U2
j�
)∣∣∣→ 0(5.3)

by dominated convergence. Further, by an obvious induction on the strong
mixing (see Section 1 and [14, 19]),

∣∣∣E exp
(
it
∑
U2
j

)
−
∏

E exp
(
itU2

j

)∣∣∣ ≤ 16knαn; ln → 0:(5.4)

Now let �Ẑj; Ûj� be independent in j but �Ẑj; Ûj� =d �Zj;Uj�. Then
∣∣∣∣
∏

E exp
(
itU2

j

)
−
∏

E exp
(
itZ2

j

)∣∣∣∣ =
∣∣∣E exp

(
it
∑
Û2
j

)
−E exp

(
it
∑
Ẑ2
j

)∣∣∣

≤ E
∣∣∣1− exp

(
it
∑(

Ẑ2
j− Û2

j

))∣∣∣→0

(5.5)

by repeating the argument giving (5.3), for Ẑj, Ûj, V̂j = Ẑj − Ûj.
Combining (5.3)–(5.5) gives

E exp
(
it
∑
Z2
j

)
−
∏

E exp�itZ2
j� → 0(5.6)

so that it is sufficient to show
∑
Z2
j →p 1 assuming independence of the Zj.

But with this assumption, as above

E

( kn∑
1

Z2
i

)
= knEZ2

1 = 1;

whereas, by assumption,

var
( kn∑

1

Z2
i

)
= kn varZ2

1 → 0

giving (i) of (5.2). The proof of (ii) is even simpler, noting that it holds under
assumed independence of Zi, (since then k

−1/2
n

∑kn
1 Zi has zero mean and

variance k−1
n → 0� and hence holds in general. 2

As a result of this the following holds.

Theorem 5.2. Suppose the conditions of Lemma 5.1 with ψn given by (4.5)
and (4.6) hold; that is, ζn is asymptotically normal (e.g., by Corollary 4.2).
Then

ζ∗n = s−1
n

n∑
1

[
φn�Xj − un� − µn

]
→d N�0;1�(5.7)

[sn being defined by (5.1) and µn = Eφn�X1 − un�].
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Proof. This will follow from (4.9) by showing that sn/σn →p 1, or equiv-
alently that sn/s′n→p 1 where

s′2n =
kn∑
i=1

( ∑
j∈Ji

φn�Xj − un� − rnµn
)2

(5.8)

since it follows from (5.2)(i) that s′n/σn→p 1. But it is readily checked that

s′2n − s2
n = kn�B̄n − rnµn�2;

giving

1− s
2
n

s′2n
= σ

2
n

s′2n
knσ

−2
n �B̄n − rnµn�2

=
(
σn
s′n

)2

k−1
n

( kn∑
1

Zi

)2

→p 0

by (5.2)(ii) and the fact that σn/s′n→p 1. 2

We conclude this section with three examples. In these we assume that the
basic assumptions and (2.3) are satisfied.

Example 5.3. Let φn�x� = 1�x>0� and write Nn =
∑

1�xi>un�. In this case

E
{
φn�X1 − un�

}
= P�X1 > un� = 1−F�un� = cn/n:

Write Nn; i =
∑
j∈Ji 1�Xi>un�, the number of exceedances of un by Xj for

j ∈ Ji, that is, the ith block sum. Then Z1 = σ−1
n �Nn;1 − cn� where σ2

n =
kn varNn;1 and ifZ1 satisfies the Lindeberg condition (4.4), Theorem 4.1 gives

σ−1
n �Nn − cn� →d N�0;1�:(5.9)

The special case of a normal sequence is proved in [20] under suitable
(polynomial) bounds on the rate of decay of the covariance function.

If further, the conditions of Theorem 5.2 hold, then

s−1
n �Nn − cn� →d N�0;1�(5.10)

with s2
n =

∑kn
1 N2

n; i − knN
2
n, Nn =

∑kn
i=1 Nn; i/kn:

Example 5.4. Here φn�x� = x+. Write Sn =
∑�Xj−un�+, Sn; i for the ith

block sum
∑
j∈Ji�Xj − un�+, and

µn = E �X1 − un�+; σ2
n = kn varSn;1:(5.11)

Thus if Z1 = σ−1
n �Sn;1 − rnµn� satisfies (4.4), Theorem 4.1 gives

σ−1
n �Sn − nµn� →d N�0;1�(5.12)
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and if the conditions of Theorem 5.2 hold, then also

s−1
n �Sn − nµn� →d N�0;1�(5.13)

with

s2
n =

kn∑
i=1

S2
n; i − knS

2
n(5.14)

where Sn = k−1
n

∑kn
i=1 Sn; i. 2

In both “high level” probabilistic modeling and tail inference it is some-
times of interest to combine “damage measures.” This is illustrated by the
following useful combination of the above two cases, Nn; Sn being defined in
Examples 5.3 and 5.4.

Example 5.5. Here φ�1��x� = 1�x>0�, φ�2��x� = x+, φn�x� = φ�2��x� +
anφ

�1��x� for some constants an, so that

ζn = σ−1
n

{
Sn − nµ

�1�
n + an�Nn − cn�

}
(5.15)

in which µ�1�n = E�X1 − un�+ and

σ2
n = kn var

(
Sn;1 + anNn;1

)
:(5.16)

Under the conditions of Theorem 4.1, ζn→d N�0;1�. This is useful for high
level damage modeling, in which typically an > 0. For tail inference, a useful
special choice is an = −βn for βn = nµ

�1�
n /cn (e.g., if F is an exponential d.f.,

F�x� = 1− exp�−x/β�, then βn = β�, which gives

σ−1
n �Sn − βnNn� →d N�0;1�:(5.17)

As in the above cases a more “data based” form of (5.16) is available under
the conditions of Theorem 5.2 in replacing σn by s′n where here [as in (5.8)
with µn = 0],

�s′n�2 =
kn∑
i=1

{
Sn; i − βnNn; i

}2
:(5.18)

This expression for s′n still contains the unknown quantity βn. While our focus
here is not on inference applications, it seems useful for completeness (e.g., as
a basis for construction of confidence intervals) to give conditions under which
βn in (5.18) may be replaced by the random variables

β̂n =N−1
n

∑
�Xj − un�+;(5.19)
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which form a basis for tail parameter estimation. Let sn denote the modifica-
tion of s′n in (5.18) obtained by replacing βn by β̂n. The replacement of σn by
sn leaves (5.12) unaltered if sn/σn→p 1 which will occur if

�β̂n − βn�2
kn∑
1

N2
n; i/σ

2
n →p 0;(5.20)

since writing ξi =
∑
j∈Ji�Xj − un�+ gives

�sn/σn�2 =
kn∑
i=1

[(
ξi − βnNn; i

)
/σn + �βn − β̂n�Nn�Ji�/σn

]2

and
∑kn
i=1��ξi − βnNn�Ji��/σn�2 →p 1 by (5.2)(i).

To give convenient sufficient conditions for (5.20), write σ �1�n , σ �2�n for the
respective variances defined in Examples 5.3 and 5.4 and assume that the
conditions in Examples 5.3 and 5.4 hold, including (4.4). In addition, assume
that �βn� is bounded and

σ
�k�
n = O�σn�; k = 1;2;(5.21)

cn/σn →∞; cn/σn = O
(
k1/2
n

)
:(5.22)

It then follows from the asymptotic normality in Example 5.3 that Nn/
cn→p 1 and from Example 5.4 that β̂n − βn→p 0 as n→∞.

An easy computation [using (5.22)] shows that
∑kn

1 N2
n; i/σ

2
n have uniformly

bounded means and thus are tight so that (5.20) holds.
Hence σn may be replaced by sn in (5.17) under the above conditions which

while numerous are relatively simple aside from the Lindeberg condition. The
latter is in any case required for the validity of (5.17) itself and, as noted, an
example of its verification will be given in Section 6.

Note finally that β̂n itself is central to certain tail estimation problems and
has a limiting normal distribution

s−1
n Nn�β̂n − βn� →N�0;1�;(5.23)

which follows at once from (5.17).

6. The Lindeberg condition—exponentially decreasing tails. As
noted earlier, the verification of the Lindeberg condition for general array
sums has typically required stringent mixing assumptions. Our purpose in
this section is twofold: (1) to show that for tail array sums the use of the
standard strong mixing augmented by the tail conditions on the marginal
d.f. can suffice and (2) to provide basic results which are relevant to tail
estimation problems [17].

The calculations assume the important special case of an exponentially
decreasing tail for the marginal d.f., and should be regarded as a prototype
type analysis for other types of tail behavior. For tail estimation the analysis
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already applies more widely since, for example, a logarithmic transformation
leads to regularly varying tails.

Specifically, it will be assumed throughout this section that φn defined on
�0;∞� is left continuous, Eφ2

n�Y1� <∞ and that the d.f. F of the Xi’s has the
exponential type of decay rate in the sense that

[
1−F�t+ x�

]
/
(
1−F�t�

)
→ e−x/β; t→∞ all x > 0; some β > 0:(6.1)

To give simple sufficient conditions for the Lindeberg criterion, it is con-
venient to truncate φ�Yj� = φ�Xj − un� as follows. For constants wn to be
specified, define

Y′j = Yj1�Yj≤wn� +wn1�Yj>wn�; 1 ≤ j ≤ n;

Z′i = σ−1
n

∑
j∈Ji

(
φn�Y′j� − Eφn�Y′1�

)
;

with σn as in (4.6).

Lemma 6.1. Suppose the basic assumptions and (6.1) hold, and that φn�x�
is nonnegative and nondecreasing. (i) If wn for some 0 < ε < 1 satisfies

cnrn
σ2
n

∫ ∞
wn

exp
{
�ε− β−1�x

}
dφ2

n�x� → 0 as n→∞;(6.2)

then knE �Z1 −Z′1�2 → 0 as n→∞:
(ii) For integers hn, and with ε as in (i), setting αn =

∫∞
wn

exp��ε −
β−1�x�dφ2

n�x�,

var
{ hn∑
j=1

φn�Yj�
}
= O

(
h2
ncnn

−1�φ2
n�wn� + αn�

)
:

Proof. (i) Note, using Minkowski’s inequality for the second step below
and integration by parts for the fifth, that for n large

r−2
n σ

2
nE �Z1 −Z′1�2 = r−2

n E

{ rn∑
j=1

(
φn�Yj� −φn�wn�

)
1�Yj>wn�

}2

≤ E
{
�φn�Y1� −φn�wn��21�Y1>wn�

}

≤ E
{
�φ2

n�Y1� −φ2
n�wn��1�Y1>wn�

}

=
∫ ∞
un+wn

(
φ2
n�x− un� −φ2

n�wn�
)
dF�x�

=
∫ ∞
wn

(
1−F�y+ un�

)
dφ2

n�y�

≤
(
1+ ε��1−F�un�

) ∫ ∞
wn

exp
{
�ε− β−1�x

}
dφ2

n�x�
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by Proposition 1.7 of [6]. Hence the desired conclusion follows by (6.2) since
1−F�un� = cn/n:

(ii) Using Minkowski’s inequality for the second step and in the third step
that φn is nondecreasing, that F�un+wn�−F�un� ≤ 1−F�un� and 1−F�un+
wn� ≤ 1−F�un�, we have

var
{ hn∑
j=1

φn�Yj�
}
≤ E

{( hn∑
j=1

φn�Yj�
)2}
≤ h2

nE �φ2
n�Y1��

≤ h2
n

{
2
(
1−F�un�

)
φ2
n�wn�

+
∫ ∞
un+wn

(
φ2
n�x− un� −φ2

n�wn�
)
dF�x�

}
:

Part (ii) now follows by estimating the second term as in part (i) and using
1−F�un� = cn/n. 2

The following results are now simply obtained.

Theorem 6.2. Suppose the basic assumptions, (6.1) and (2.4) hold, wn sat-
isfies (6.2) and φn�x� is nonnegative and nondecreasing and

rnσ
−1
n φ�wn� → 0:(6.3)

Then the Lindeberg condition (4.4) holds so that by Theorem 4.1,

ζn = σ−1
n

n∑
j=1

[
φ�Xj − un� − Eφ�Xj − un�

]
→d N�0;1�:

Proof. It is readily checked that for any X, Y,

�X+Y�21��X+Y�≥ε� ≤ 4
(
X21��X�≥ε/2� +Y21��Y�≥ε/2�

)
(6.4)

from which it follows that

knE
{
�Z1 − EZ1�21��Z1−EZ1�>ε�

}
≤ 4knE

{
�Z′1 − EZ′1�21��Z′1−EZ′1�>ε/2�

}

+ 4knE �Z1 −Z′1�2:
The first term on the right tends to zero trivially since by (6.3),

�Z′1� ≤ σ−1
n rnφ�wn� → 0

(so that the indicator is zero for large n), and the last term tends to zero by
Lemma 6.1 so that the Lindeberg condition (4.4) holds, as desired. 2

According to Lemma 4.3, (4.7) and then (2.4) hold if φ is nonnegative and
cn = n�1 − F�un�� = o�kn�. This may also be obtained from a strengthened
version of (6.3).
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Corollary 6.3. Suppose the basic assumptions and (6.1) hold, wn satisfies
(6.2) and φn�x� is nonnegative and nondecreasing and

(
l2nr
−1
n cn + r2

n

)
σ−2
n φ2

n�wn� → 0:(6.5)

Then

ζn = σ−1
n

n∑
j=1

[
φ�Xj − un� − Eφ�Xj − un�

]
→d N�0;1�:

Proof. By assumption, all the conditions of Theorem 6.2 except (2.4) are
satisfied. To prove (2.4) it is sufficient to show that (4.7) holds. Now, since
kn = �n/rn�,

knσ
−2
n l2ncnn

−1�φ2
n�wn� + αn�� ∼ l2nr

−1
n cnσ

−2
n �φ2

n�wn� + αn��
→ 0;

by (6.2) together with ln/rn→ 0 and (6.5), which by Lemma 6.1(ii) proves the
first part of (4.7). Further, n− rnkn < rn, and

σ−2
n r2

ncnn
−1(φ2

n�wn� + αn
)
→ 0;

by (6.2), (6.5), and rn/n→ 0, cn/n→ 0, respectively. The second part of (4.7)
then again follows from Lemma 6.1(ii). 2

In the final result of this section we generalize Theorem 6.2 to include
functions φ�x� such as those in Example 5.5.

Theorem 6.4. Suppose the assumptions of Theorem 6.2 are satisfied for
each of the functions φ1�x�, φ2�x� and write φ�x� = α1φ1�x� + α2φ2�x�, α1, α2

(positive or negative) constants. Let σ
�1�
n , σ

�2�
n , σn be defined as in (4.6) relative

to φ1, φ2, φ, respectively, and suppose that σ
�k�
n ≤ Kσn, k = 1, 2, n = 1, 2,

3; : : : for some constant K ≥ 0. Then (4.9) holds; that is,

ζn = σ−1
n

n∑
j=1

[
φ�Xj − un� − Eφ�X1 − un�

]
→d N�0;1�:

Proof. If ζ�k�n is defined as ζn above with φk for φ and σ �k�n for σn, k =
1;2; Theorem 6.2 shows that ζ�k�n →d N�0;1� and hence by Theorem 4.1 the
Lindeberg conditions

knE
{
�Z�k�n;1�21��Z�k�n;1−EZ

�k�
n;1�≥ε�

}
→ 0 as n→∞; each ε > 0

hold, where Z�k�n;1 = �σ �k�n�−1 ∑
j∈J1

φk�Yj�, k = 1;2:

Since σ �k�n ≤ Kσn, this Lindeberg condition continues to hold for each k =
1;2 if σ �k�n is replaced by σn in the definition of Z�k�n;1 and hence it holds for
α1Z

�1�
n;1 + α2Z

�2�
n;1 by the inequality (6.4). The remaining conditions of Theorem

4.1 regarding φ are readily checked, giving the stated result. 2
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