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EXTREMES OF STOCHASTIC VOLATILITY MODELS

By F. Jay Breidt1 and Richard A. Davis2

Iowa State University and Colorado State University

Extreme value theory for a class of stochastic volatility models, in
which the logarithm of the conditional variance follows a Gaussian lin-
ear process, is developed. A result for the asymptotic tail behavior of the
transformed stochastic volatility process is established and used to prove
that the suitably normalized extremes converge in distribution to the dou-
ble exponential (Gumbel) distribution. Explicit normalizing constants are
obtained, and point process convergence is discussed.

1. Introduction. Financial variables such as stock returns are often
modeled using martingale difference (MD) sequences, since such models
are theoretically justified by efficient economic markets and are empirically
useful. If a sequence of random variables is MD with constant unconditional
variance, then it is also serially uncorrelated, and so it is white noise in the
sense of uncorrelated �0; σ2� random variables.

An independent and identically distributed (iid) sequence with finite vari-
ance is both a MD sequence and a white noise, but series arising in finance
and econometrics often cannot be assumed iid even when the MD property
appears plausible [e.g., Clark (1973); Tauchen and Pitts (1983); Melino and
Turnbull (1990)]. Instead, the variance in a given realization seems to change
smoothly over time, in the sense that large observations tend to be followed
by large observations and small observations by small observations, as Man-
delbrot (1963) noted.

Two approaches have been proposed to model time-dependent variances,
while maintaining the MD property. The first approach, proposed by Engle
(1982) and later generalized by Bollerslev (1986) and by others, uses an au-
toregressive conditionally heteroscedastic (ARCH, or its generalized version,
GARCH) process to model the serial autocorrelation in the variances. In this
approach, the variance of the series at time t is assumed to be a deterministic
function of lagged values of the squared observations and of past variances.
For a review of this approach, see Bollerslev, Chou and Kroner (1992).

The second approach, pioneered in its earliest version in the work of Clark
(1973), uses models known as stochastic volatility (SV) models. In this con-
text, it is assumed that smooth functions of the time-dependent variances are
random variables generated by an underlying stochastic process, for example
an autoregressive process. Stochastic volatility models also result from dis-
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cretizing continuous-time diffusion processes such as those proposed for asset
pricing [Hull and White (1987)].

Given the potential impact on investors, maxima and minima of such
processes are naturally of interest. Extremal behavior for a first-order ARCH
process is described in de Haan, Resnick, Rootzén and de Vries (1989).
Geweke (1994) has compared the observed maximum absolute returns for five
stocks and two stock portfolios to maxima of simulated SV processes as an
informal goodness-of-fit diagnostic. The purpose of this paper is to show that,
for a broad class of Gaussian SV models, the suitably normalized extremes
converge in distribution to the double exponential distribution.

2. Model and transformation. Consider the simple stochastic volatility
model

Y∗t = ζ exp�αt/2�ξt; αt =
∞∑
j=0

θjZt−j;(2.1)

where �ξt� is iid N�0;1�, �Zt� is iid N�0; σ2
Z� independent of �ξt�, ζ is a positive

constant, and
∑∞
j=0 θ

2
j <∞. The mean of αt is taken to be zero and the variance

of ξt is taken to be 1 without loss of generality, since any other values could
be absorbed in the parameter ζ. Define

σ2
α = Var�αt� = σ2

Z

∞∑
j=0

θ2
j

and let

Yt = Y∗t/ζ:

In what follows, we work with the rescaled process �Yt� for simplicity.
The SV model in which �αt� is a first-order autoregressive process, sug-

gested by Taylor (1986), has been considered by many authors. See, for exam-
ple, Jacquier, Polson and Rossi (1994) and the references therein. Other linear
processes are also of interest, such as the long memory stochastic volatility
models in Breidt, Crato and de Lima (1995).

Note that �Yt� is an identically distributed martingale difference sequence
with finite variance, hence a white noise sequence in the sense of uncorre-
lated �0; σ2� random variables. The dynamics of the series (2.1) are in the
conditional second moments, which can be seen after transformation to the
stationary process

Xt = lnY2
t = αt + ln ξ2

t :(2.2)

The process �Xt� is thus a Gaussian linear process plus an iid log-χ2
1 noise

[Wishart (1947)], with

E �Xt� = E
[
ln ξ2

t

]
= −�Euler’s constant� − ln 2
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and

Cov�Xt;Xt+h� = σ2
αρ�h� +

π2

2
I�h=0�;

where ρ�·� denotes the autocorrelation function of �αt� and I�h=0� is 1 if h = 0
and zero otherwise.

Since ln ξ2
t is distributed as the log of a χ2

1 random variable, the log of its
moment-generating function is

ln E
[
exp

{
λ lnχ2

1

}]
= λ ln 2+ ln0�1/2+ λ� − ln0�1/2�
= λ lnλ+ λ�ln 2− 1� + ln 2/2+O�1/λ�:

The log of the moment-generating function of Xt is

lnC�λ� = λ2σ2
α/2+ λ ln 2+ ln0�1/2+ λ� − ln0�1/2�

= λ2σ2
α/2+ λ lnλ+ λ�ln 2− 1� + ln 2/2+O�1/λ�;

(2.3)

from which we can obtain the first two derivatives,

m�λ� = d

dλ
lnC�λ� = λσ2

α + ln 2+ ψ�1/2+ λ�

= λσ2
α + lnλ+ ln 2+O�1/λ2�

(2.4)

and

S2�λ� = d2

dλ2
lnC�λ� = σ2

α + ψ′�1/2+ λ�

= σ2
α +O�1/λ�;

(2.5)

where ψ�·� and ψ′�·� are the digamma and trigamma functions, respectively
[e.g., Abramowitz and Stegun (1965)].

Let

m−1�x� = x

σ2
α

− lnx
σ2
α

− k

σ2
α

+ lnx
σ2
αx
+ k

σ2
αx
;(2.6)

where

k = ln�2/σ2
α�;

and note that

ln�m−1�x�� = ln
(
x

σ2
α

)
− lnx

x
− k
x
+O

(
lnx
x2

)
:(2.7)

Substituting (2.6) into (2.4) and using (2.7), we obtain m�m−1�x�� = x +
O�lnx/x2�, justifying the inverse notation.
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From (2.4), (2.5) and (2.6), we also have the following expansions:

σ2
α

2
�m−1�x��2 = x2

2σ2
α

− x lnx
σ2
α

− kx
σ2
α

+ k+ 1
σ2
α

lnx+ ln2 x

2σ2
α

+ 2k+ k2

2σ2
α

+O
(

ln2 x

x

)
;

(2.8)

m−1�x� ln�m−1�x�� = x lnx
σ2
α

− x lnσ2
α

σ2
α

+ lnσ2
α − 1− k
σ2
α

lnx− ln2 x

σ2
α

+ k lnσ2
α − k
σ2
α

+O
(

ln2 x

x

)
;

(2.9)

1
2

lnS2�m−1�x�� = 1
2

lnσ2
α +O

(
1
x

)
:(2.10)

3. Extreme value results.

Tail behavior. Using a Tauberian argument as in Feigin and Yashchin
(1983) [see also Davis and Resnick (1991)], the asymptotic approximation to
the tail distribution of Xt can be expressed in terms of m�λ� and S�λ�. This
relationship is described in the following proposition.

Proposition. If F is the distribution of the random variable Xt defined in
(2.2), then

F̄�x� = P�Xt > x�

∼ exp�−xm−1�x��C�m−1�x��
m−1�x�S�m−1�x���2π�1/2

= σα√
π

exp

{
− x2

2σ2
α

+ x lnx
σ2
α

+ �k− 1�x
σ2
α

− �k+ σ
2
α� lnx
σ2
α

− ln2 x

2σ2
α

− k2

2σ2
α

+O
(

ln2 x

x

)}
;

as x→∞, whereC,S andm−1 are defined in (2.3), (2.5), and (2.6), respectively,
and k = ln�2/σ2

α�.
While the proof of this proposition is similar to the argument given on

pages 38–39 of Feigin and Yashchin (1983), we supply the details of the ar-
gument in the present situation. The proof relies on the establishment of
asymptotic normality for the normalized Esscher transform of F.
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Proof. Consider the family of probability density functions defined by

fλ�x� = λeλxF̄�x�/C�λ�; λ > 0:

It is a simple matter to check that the mean and variance associated with fλ
are m�λ� − λ−1 and S2�λ� + λ−2, respectively. Now let gλ be equal to fλ after
renormalizing the density to have approximate mean zero and variance 1; that
is, define

gλ�x� = Sfλ�Sx+m�
= λSeλ�Sx+m�F̄�Sx+m�/C�λ�;

(3.11)

where, for notational simplicity, the dependence of S and m on λ has been
suppressed. The moment-generating function of gλ is given by

ϕλ�t� =
∫ ∞
−∞

etxgλ�x�dx

=
∫ ∞
−∞

λSe�t+λS�x+λmF̄�Sx+m�dx/C�λ�

= λ/�λ+ t/S�e−tm/SC�λ+ t/S�/C�λ�:

Using properties (2.3)–(2.5), we have

ϕλ�t� = exp
{

lnλ− ln
(
λ+ t

S

)
− tm/S+ lnC

(
λ+ t

S

)
− lnC�λ�

}

∼ exp
{
− t
S
�λσ2

α + lnλ+ ln 2� + �λ+ t/S�2σ
2
α

2

+ �λ+ t/S�
(

lnλ+ t

Sλ

)
+ �λ+ t/S��ln 2− 1� + ln 2/2

− λ2σ2
α/2− λ lnλ− λ�ln 2− 1� − ln 2/2+O�1/λ�

}

∼ exp
{
t2

2
+O�1/λ�

}

→ exp
{
t2

2

}

as λ→∞. It follows that

Gλ�x� →w 8�x�;

where Gλ�x� =
∫ x
−∞ gλ�y�dy and 8 is the standard normal cdf. It is a routine

matter to check that ϕλ�it� can be dominated by an integrable function (dom-
inated by K exp�−t2/2� for some sufficiently large constant K) and hence by
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the dominated convergence theorem and the inversion formula for character-
istic functions,

gλ�x� = �2π�−1
∫ ∞
−∞

e−itxϕλ�it�dt

→ �2π�−1
∫ ∞
−∞

e−itx exp�−t2/2�dt = �2π�−1/2 exp�−x2/2�:

Choosing x = 0 through this limit, we have from (3.11) that

F̄�m�λ�� ∼ exp�−λm�λ��C�λ�
�2π�1/2λS�λ� ;

which, upon making the substitution λ 7→ m−1�λ� and invoking (2.6)–(2.10),
establishes the proposition. 2

Convergence in distribution. We now have the following result.

Theorem. Let �Xt� be given by (2.2), where �Yt� is a (standardized) sta-
tionary stochastic volatility process, with ρ�h� lnh→ 0 as h→∞. Then

Mn = max�X1; : : : ;Xn�

has the Type I limiting distribution,

P�an�Mn − bn� ≤ x� → exp�−e−x�

as n→∞, where

an = σ−1
α �2 lnn�1/2 = �2/σ2

α�1/2 dn(3.12)

[where dn = �lnn�1/2] and bn, a solution of

lnn+ ln F̄�bn� = o�1�;

is given by

bn = c1dn + c2 lndn + c3 + c4
lndn
dn
+ c5

1
dn
;(3.13)

where

c1 = �2σ2
α�1/2; c2 = 1; c3 = 3

2 ln 2− 1
2 lnσ2

α − 1; c4 =
−σα√

2
;

and

c5 =
−1

2�2σ2
α�1/2

�1+ σ2
α ln�2π��:
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Proof. For x fixed, let un = x/an + bn, so that from the proposition it can
be shown that

F̄�un� = n−1e−x + o�n−1�;(3.14)

and hence Fn�un� → exp�−e−x�. So it suffices to show that �P�Mn ≤ un� −
Fn�un�� → 0:

Conditioning on h = �η1; : : : ; ηn�′, where ηi = ln ξ2
i , and using the Normal

Comparison Lemma [see Leadbetter, Lindgren and Rootzén (1983), page 81],
we have

�P�Mn ≤ un� −Fn�un��

=
∣∣∣∣E
[
P

[ n⋂
i=1

�αi ≤ un − ηi� �h
]]
−

n∏
i=1

EP�αi ≤ un − ηi �ηi�
∣∣∣∣

≤KE
∑

1≤i<j≤n
�ρ�i− j�� exp

{
−�un − ηi�

2 + �un − ηj�2
2σ2

α�1+ �ρ�i− j���

}

≤ nK
n∑
i=1

�ρ�i��
(

E exp
{
− �un − η1�2

2σ2
α�1+ �ρ�i���

})2

:

(3.15)

(Throughout this argument, K will be used to represent a generic constant
whose value may change from line to line.) Now let wn = 8 ln lnn and note
that un −wn→∞ and

P�η1 > wn� = P�ξ2
1 > �lnn�8� = P��ξ1� > �lnn�4� = o�n−1�:

The last equality follows from the asymptotic relation for the tail probability
of the standard normal, 8̄�x� ∼ exp�−x2/2�/�x

√
2π� as x → ∞, where 8 is

the standard normal cdf. Using this relation, we have, for η1 ≤ wn and n large,

exp
{
− �un − η1�2

2σ2
α�1+ �ρ�i���

}

= �un − η1�1/�1+�ρ�i����un − η1��−1�/�1+�ρ�i��� exp
{
− �un − η1�2

2σ2
α�1+ �ρ�i���

}

≤Ku1/�1+�ρ�i���
n 8̄1/�1+�ρ�i����σ−1

α �un − η1��:

It follows that

E
[
exp

{
− �un − η1�2

2σ2
α�1+ �ρ�i���

}]

≤Ku1/�1+�ρ�i���
n E

[
8̄1/�1+�ρ�i����σ−1

α �un − η1��I�η1≤wn�
]
+P�η1 > wn�

≤K�lnn�1/�2�1+�ρ�i����E
[
8̄1/�1+�ρ�i����σ−1

α �un − η1��
]
+ o�n−1�;
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which, by Jensen’s inequality, is less than or equal to

K�lnn�1/�2�1+�ρ�i����
[
E8̄�σ−1

α �un − η1��
]1/�1+�ρ�i��� + o�n−1�

=K�lnn�1/�2�1+�ρ�i����P1/�1+�ρ�i����α1 + η1 > un� + o�n−1�
=K�lnn�1/�2�1+�ρ�i����n�−1�/�1+�ρ�i��� + o�n−1�;

where the last equality is from (3.14). We conclude that
[
E exp

{
− �un − η1�2

2σ2
α�1+ �ρ�i���

}]2

≤K�lnn�1/�1+�ρ�i���n�−2�/�1+�ρ�i���:(3.16)

The remainder of the proof follows the argument given on pages 86–87 of
Leadbetter, Lindgren and Rootzén (1983). Set δ = suph≥1 �ρ�h�� and let β be
a constant satisfying 0 < β < �1 − δ�/�1 + δ�. Split the sum of the bound in
(3.15) into the two parts, i ≤ m and i > m, where m = mn = �nβ�. Using
(3.16), the sum over i ≤m is bounded by

Knnβ�lnn�n�−2�/�1+δ� =K�lnn�n1+β−2/�1+δ�→ 0;(3.17)

since 1+β−2/�1+δ� < 0 by the choice of β. Turning to the case i > m, let δn =
suph≥n �ρ�h�� and note that δm�lnn� ∼ β−1δm lnm ≤ β−1 suph≥m �ρ�h�� lnh→
0. We then have, using (3.16) once again,

nK
n∑

i=m+1

�ρ�i��
(

E exp
{
− �un − η1�2

2σ2
α�1+ �ρ�i���

})2

≤ Kδmn
2−2/�1+δm� lnn

= K exp
{

2δm
1+ δm

lnn
}
δm lnn

≤ K exp �2δm lnn� δm lnn

→ 0:

This, combined with (3.17), completes the proof of the theorem. 2

Remarks.

1. The scale-normalizing sequence �an� is the same as in the iid Gaussian
case [see Leadbetter, Lindgren and Rootzén (1983), page 14]. The location
normalizing sequence �bn� differs from the location-normalizing sequence
for the iid Gaussian case, say �b∗n�, by

bn − b∗n = c2 lndn + c3 +
(
σα ln 2

2
√

2
− 1

2
√

2σα

)
1
dn
;

so that �bn� is “slightly larger” than �b∗n�.
2. The condition ρ�h� lnh → 0 as h → ∞ is satisfied by both the short-

memory ARMA stochastic volatility models considered by many authors
and the long memory stochastic volatility models in Breidt, Crato and
de Lima (1995).
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3. The theorem shows that, for a wide class of stochastic volatility models,
the extremes can be normalized independently of the covariance structure
in �αt�, and the same limiting distribution is obtained in all cases. In fi-
nite samples, however, the degree of dependence in �αt� does affect the
goodness-of-fit of the limiting distribution, as can be seen by looking across
the columns of Figure 1. The three columns correspond to the iid stochastic
volatility model with

αt = Zt; �Zt� iid N�0; σ2
α�;

the autoregressive stochastic volatility model with

αt = φαt−1 +Zt; �Zt� iid N�0; �1−φ2�σ2
α�;

Fig. 1. Empirical distribution functions (solid lines) for 1000 normalized extremes [an�Mn− bn�
with n = 1000], and limiting double exponential distribution function (dotted lines). In each row,
σ2
α is constant. First column is the iid case. Second column is for the autoregressive stochastic

volatility model, with parameter values taken from column two, Table 4; of Jacquier, Polson and
Rossi (1994). Third column is for the long-memory stochastic volatility model in which �αt� is
fractionally integrated Gaussian noise.
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and the long-memory stochastic volatility model with

�1−B�dαt = Zt; �Zt� iid N
(

0;
σ2
α0

2�1− d�
0�1− 2d�

)

[see Brockwell and Davis (1991), Section 13.2]. The parameters in the sec-
ond column of Figure 1 are taken from column two, Table 4 of Jacquier,
Polson and Rossi (1994) and have been chosen to represent a wide range
of cases of practical interest in modeling returns on financial assets. The
sample size n = 1000 is reasonable in this context, as many years of daily
or weekly data are available in a typical application.

4. For very large n, the extremes of the process are effectively drawn from
the upper tail of the Gaussian component of Xt, since the Gaussian tail
dominates the lnχ2

1 tail. In finite samples, however, the extent to which
the Gaussian tail dominates the lnχ2

1 tail is indexed by the parameter σ2
α :

as σ2
α decreases, the extremes increasingly come from the lnχ2

1, the mass
of the distribution shifts to the left, and the limiting distribution is an
increasingly poor approximation to the finite sample distribution. This can
be seen by looking down the rows of Figure 1.

Point process convergence. The proof of the theorem above can also be
easily adapted to show that Leadbetter’s conditions D and D′, as modified by
Adler (1978), hold for the stochastic volatility process �Xt� defined in (2.2).
These conditions are sufficient for weak convergence of the associated point
processes

Nn�B� = #�jx �j/n; an�Xj − bn�� ∈ B;j = 1;2; : : :�;

where B is any Borel subset of �0;∞�×�−∞;∞�, to a Poisson limit as n→∞.
The intensity measure in the limit, ν, is defined on rectangles of the form
B = �a; b� × �x;y� as ν�B� = �b − a��e−x − e−y�. In other words, the limiting
behavior of �Nn� is the same for �Xt� and for the independent sequence
associated with �Xt� (i.e., the sequence �X̂t� which is defined to be iid with
X̂1 =d X1).

A host of ancillary results ensue from the point process convergence. For ex-
ample, the joint limiting distribution of any collection of extreme order statis-
tics can be determined and the convergence of the sample extremal process
can be established [see Adler (1978) and Resnick (1975)]. These results have a
number of standard applications in extreme value theory which are described
in detail in Resnick [(1987), Chapter 4].

One other application is for the limiting distribution of the normalized ex-
tremes of the untransformed stochastic volatility process, �Y∗t�. The argument
follows that of de Haan et al. (1989).

For x ∈ R fixed, let un = a−1
n x + bn, v∗n = exp�un/2�ζ and vn = v∗n/ζ.

Note that Y∗t = �Y∗t �Bt, where �Bt� = �sign�Y∗t �� is an iid sequence uniformly
distributed on �−1;1� and independent of ��Y∗t ��. LetNn =Nn��0;1�×�x;∞��
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and let 1 ≤ τ1 < τ2 < · · · be the times at which �Y2
t � exceeds v2

n. Then

�Nn = k� = �lnY2
τ1
> un; : : : ; lnY

2
τk
> un; τk ≤ n; τk+1 > n�

= �Y2
τ1
> v2

n; : : : ;Y
2
τk
> v2

n; τk ≤ n; τk+1 > n�

⊂ �Y2
τ1
> v2

n; : : : ;Y
2
τk
> v2

n�;
so

�Nn = k� = �Nn = k;Y2
τ1
> v2

n; : : : ;Y
2
τk
> v2

n�:(3.18)

Define Mn = max�Y1; : : : ;Yn�. Then

P�max�Y∗1; : : : ;Y∗n� ≤ v∗n�
= P�Mn ≤ vn�

=
∞∑
k=0

P
[
Nn = k;Y2

τ1
> v2

n; : : : ;Y
2
τk
> v2

n;Mn ≤ vn
]

=
∞∑
k=0

P
[
Nn = k;Yτ1

≤ 0; : : : ;Yτk
≤ 0;

Y2
τ1
> v2

n; : : : ;Y
2
τk
> v2

n;Mn ≤ vn
]
;

(3.19)

because Y2
τi
> v2

n implies Yτi
> vn if Yτi

> 0.
Using (3.18), (3.19) becomes

∞∑
k=0

P
[
Nn = k;Yτ1

≤ 0; : : : ;Yτk
≤ 0

]

=
∞∑
k=0

P
[
Nn = k;Bτ1

= −1; : : : ;Bτk = −1
]

=
∞∑
k=0

P �Nn = k�2−k;

(3.20)

since Nn is independent of the signs of the Yt. Also, the random times τi
depend only on �Yτi

� and are independent of �Bτi�. Hence, by dominated con-
vergence as n→∞, (3.20) becomes

∞∑
k=0

P �N��0;1� × �x;∞�� = k�2−k =
∞∑
k=0

�e−x/2�k exp�−e−x�
k!

= exp�−e−x/2�:
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