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ASYMPTOTIC BEHAVIOR OF SELF-ORGANIZING MAPS
WITH NONUNIFORM STIMULI DISTRIBUTION

By Ali A. Sadeghi

Universität Kaiserslautern

Here the almost sure convergence of one-dimensional Kohonen’s algo-
rithm in its general form, namely, the 2k-neighbor setting with a nonuni-
form stimuli distribution, is proved. We show that the asymptotic behavior
of the algorithm is governed by a cooperative system of differential equa-
tions which is irreducible. The system of differential equations possesses
an asymptotically stable equilibrium, a compact subset of whose domain
of attraction will be visited by the state variable Xn infinitely often. The
assumptions on the stimuli distribution and the neighborhood functions
are weakened, too.

1. Introduction. The Kohonen self-organizing map (SOM) was originally
devised to model a process of self-organization between different sensory in-
puts, such as visual and acoustic inputs, and different areas of the cortex. The
algorithm has the ability to construct a structured representation of data from
an input space, possibly with a reduction of the dimensionality. Meanwhile, it
has found widespread use in many artificial intelligence applications. The ar-
eas of application include, for example, speech recognition [13], robotics [19],
computer vision [16], and so forth.

The maps generated by SOM algorithm are characterized by the fact that
similar inputs are mapped onto the neighboring neurons. Due to this charac-
teristic, the map is said to be topology preserving. However, an exact preser-
vation of the neighborhood relations is possible only if the input space and the
network have the same dimensionalities.

The adaptation of the weights in this algorithm can be decomposed into
two phases. In the first phase, it self-organizes a topology-preserving map and
then it converges to the final weights, which are supposed to make a better
quantization of the input space. Depending on the nature of the application,
each of these phases may become more or less important. For instance, in
numerical integration, [17], the asymptotic behavior of the algorithm plays a
more important role than its other features.

Let I be a finite set of neurons labelled from 1 to N. The Kohonen net
defined on I is a triple τ = �V;Q;F� where V = �Vix i ∈ I� is a graph on I
in which Vi ⊂ I is the set of all neurons connected to neuron i (its neighbors)
such that we have the following:

1. i ∈ Vi for all i ∈ I;
2. j ∈ Vi ⇒ i ∈ Vj for all i; j ∈ I.
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Then Q is the set of states of neurons, which usually is a subset of Rm.
Every neuron i takes a weight vector Xi ∈ Q.
F = �fijx i; j ∈ I� is the set of neighborhood functions; fijx I× I→ �0;1�:
This network is used for building up a projection from Rm to the set of

neurons, which is usually arranged as a d-dimensional net. Every v ∈ Q
corresponds with the winner neuron i∗�v�, which satisfy

�Xi∗�v� − v �≤�Xi − v � ∀ i ∈ I;(1)

where � · � denotes the Euclidean norm on Rm. In the case where there is
more than one possible choice of winner, a predefined rule is used to choose
it. Here we choose the neuron with the smallest index as the winner.

The weights Xn
i are adapted in a learning phase according to

Xn+1
i =Xn

i + εnfi∗i�v−Xn
i � ∀ i ∈ I; n = 0;1; : : : ;(2)

where v ∈ Q is chosen at random (according to some probability distribution
P), εn ∈ �0;1� is the learning parameter and fi∗i are the neighborhood func-
tions for i and i∗. The initial weight vector X0 = �X0

1; : : : ;X
0
N�T can be chosen

at random from QN.
In this paper we consider the one-dimensional Kohonen net. In this case

Vi = �i−1; i; i+1�∩I and every neuron i takes a valueXi ∈ Q ⊂ R. Moreover

fi∗i =





γ0; if i = i∗;
γ1; if i = i∗ − 1 or i = i∗ + 1;
:::

:::

γk; if i = i∗ − k or i = i∗ + k;
0; otherwise,

(3)

where γ0 = 1; 0 < γk ≤ · · · ≤ γ1 ≤ 1 and k ≥ 0. Throughout the paper we use
the convention γi = 0 for i > k: The neighborhood function fi∗i; as defined
by (3), includes all the neighborhood functions used in applications (see, e.g.,
[14, 19]).

Although an exact definition of topology preservation for a d-dimensional
network involves a lot of technicalities (cf. [8, 20]), it can be easily defined in
the one-dimensional case. A one-dimensional map is topology preserving iff it
is ordered, that is, either Xi < Xj ⇔ i < j (ascending) or Xi < Xj ⇔ i > j

(descending), for all i; j. Let F+ x= �x ∈ �0;1�N�0 < x1 < · · · < xN < 1� and
F− x= �x ∈ �0;1�N�0 < xN < · · · < x1 < 1�; then F x= F+ ∪F− is the set of all
ordered states. It is well known that once the one-dimensional Kohonen map
becomes ordered, it retains its ordering forever [14].

The adaptation process (2), in the one-dimensional case, may be considered
as a stochastic dynamical system in RN. Such time-discrete systems have
been treated by many authors in the stochastic approximation context [1, 15].
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A common method used to study the long-time behavior of these systems is
to compare them with the so-called mean differential equation, (m.d.e), which
under certain conditions behaves asymptotically the same as the original dis-
crete system. This method will be applied in this paper to establish almost
sure (a.s.) convergence of the algorithm.

The behavior of the one-dimensional Kohonen’s algorithm after self orga-
nization has been investigated by Cottrell and Fort [4], Bouton and Pagès
[2, 3] and Fort and Pagès [7]. Their results confirm a.s. convergence of the
algorithm to an equilibrium point of the corresponding m.d.e., if the stimuli
is distributed uniformly and εn converges to zero slowly enough.

In the nonuniform case it is shown that, under suitable assumptions, the
m.d.e. owns an asymptotically stable equilibrium point (cf. [7]). However,
this result is not enough to ensure a.s. convergence of the algorithm and
no conclusion has been drawn for the case where stimuli is distributed non-
uniformly.

The major difficulty, which prevents a generalization of this result to the
nonuniform case, is that no Liapunov function is known for the m.d.e., in this
case. This strongly suggests a study of the m.d.e. using new stability results
published during the last decade; see [11, 12] and references therein. These
results take advantage of the general properties, which a system possibly
enjoys, to determine the attracting area of asymptotically stable solutions.

In this paper we use the cooperative and irreducible character of the m.d.e.
to prove thatXn converges almost surely (or with probability one), if the m.d.e.
owns a unique equilibrium in F̄+. While retaining the restrictions on εn; we
weaken the conditions imposed on fij:

For the case that m.d.e. owns a countable number of equilibria, we show,
under certain conditions, almost all x ∈ F̄+ belong to the attracting area of
the asymptotically stable equilibria. This is an extension of the convergence
results formerly established [2, 3, 7].

The outline of the paper is as follows. Section 2 begins with the formulation
of the problem as a Robbins–Monro algorithm, and then we introduce condi-
tions under which the m.d.e. governs long-time behavior of the algorithm.
Section 3 is devoted to the properties of the m.d.e, where it is shown that the
m.d.e. is irreducibly cooperative in F+ and F̄+ is positively invariant. This en-
ables us to establish the main result of the paper, namely, the a.s. convergence
of the algorithm. In Section 4 we use the m.d.e. to investigate effects of the
neighborhood function fij on final distribution of neurons. Some concluding
remarks are also contained in Section 4.

2. Robbins–Monro formulation of the algorithm. In the rest of this
paper, we always assume that the initial value X0 of the algorithm lies in F+:
Two possible orderings, ascending �X0 ∈ F+� or descending �X0 ∈ F−�, are
mathematically equivalent, and all results which we present here are valid
for the descending case, as well. Moreover, we set Q = �0;1�: The probability
distribution P is always assumed to be diffuse, that is, for A ⊂ �0;1� if A has
Lebesgue measure zero, then P�A� = 0 and suppP = �0;1�:
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The adaptation rule (2) may be rewritten in a more general form:

Xn+1 =Xn − εnηnXn + εnηnIN×1vn;(4)

where IN×1 = �1; : : : ;1�T, vn ∈ �0;1� is an identically independent dis-
tributed (i.i.d.) random variable with the distribution function P and
ηn = η�Xn; v�x F̄+ × �0;1� 7→ �0;1�N×N is a piecewise continuous func-
tion which associates with any pair �X;v� ∈ F̄+×�0;1� the matrix ηn = �ηijn �,
where

ηijn =





1; if i = j = i∗;
γ1; if i = j = i∗ − 1 or i = j = i∗ + 1;
:::

:::

γk; if i = j = i∗ − k or i = j = i∗ + k;
0; otherwise.

Here i∗ denotes the so-called winner unit which was defined by (1).

Remark 1. Although ηn is not an i.i.d. random variable, it satisfies the
relation

P�ηn�ηn−1; ηn−2; : : : ; η0yXn;Xn−1 · · ·X0� = P�ηn�Xn�;

where P�·�·� is the conditional probability function.
Let us adopt the following notations:

X̄n
i x= 0:5�Xn

i +Xn
i−1� for 1 < i ≤N and

X̄n
1 x= 0; X̄n

N+1 x= 1 ∀ n ≥ 1;

Pi�Xn� x= P��X̄n
i ; X̄

n
i+1��;

Qi�Xn� x=
∫ X̄n

i+1

X̄n
i

vP�dv� ∀ 1 ≤ i ≤N;

Ri�Xn� x= Pi�Xn� + �Pi−1�Xn� +Pi+1�Xn��γ1

+ · · · + �Pi−k�Xn� +Pi+k�Xn��γk;

Si�Xn� x= Qi�Xn� + �Qi−1�Xn� +Qi+1�Xn��γ1

+ · · · + �Qi−k�Xn� +Qi+k�Xn��γk;

Pi�Xn� x= Qi�Xn� x= 0 if i ≤ 0 or i > N:

(5)

Introduce hn�Xn� for the expectation value of �−ηnXn + ηnIN×1vn�,

hn�Xn� x= E�−ηnXn + ηnIN×1vn� =
∫ 1

0
�−ηnXn + ηnIn×1v�P�dv�y(6)
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then a straightforward computation yields

hn�Xn� =




−R1�Xn�Xn
1 +S1�Xn�
:::

−Ri�Xn�Xn
i +Si�Xn�
:::

−RN�Xn�Xn
N +SN�Xn�




:(7)

Since for any finite N the function hn�·� is independent of n, we remove
the index n and set h�·� x= hn�·�: The diffuseness of P implies that h�·� is
continuous on F+ and has a continuous extension on F̄+ (the closure of F+).

For x ∈ RN \F+, we define h�x� by the right-hand side of (7). So h�·�x RN 7→
RN is well defined and continuous. We emphasize that the function h�·� as
defined here coincides with the mean value of the algorithm only on F̄+: In
fact the mean value function is not continuous on �0;1�N:

Now define

ξn x= −ηnXn + ηnIN×1vn − h�Xn�y(8)

ξn is a random variable with Eξn = 0:
The recursive algorithm (4) can now be rewritten as

Xn+1 =Xn + εnh�Xn� + εnξn:(9)

This is a Robbins–Monro-like algorithm, which was originally proposed for
finding the roots of a continuous function h�x�. It is remarkable that the
strongest kind of convergence which can be expected for algorithms like (9) is,
in fact, a.s. convergence.

The asymptotic behavior of such algorithms has been studied by Kushner
and Clark [15]. Their well-known result provides conditions for a.s. conver-
gence of the algorithm. For reference let us quote the following conditions:

A.1. h�·� is a continuous RN-valued function on RN;
A.2. �εn� is a sequence of positive real numbers such that εn → 0 and∑
εn = ∞;
A.3. ξn is a sequence of RN-valued random variables such that for some

T > 0 and each ε > 0,

lim
n→∞

P
(

sup
j≥n

max
t≤T

∣∣∣∣
m�jT+t�−1∑

i=m�jT�
εiξi

∣∣∣∣ ≥ ε
)
= 0:

Here P�·� is probability function and m�·� is defined by

tn x=
n−1∑
i=0

εi;

m�t� x=
{

max�nx tn ≤ t�; t ≥ 0;
0; t < 0:
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Define the function Xn�·� by

X0�tn� x=Xn;

X0�t� x=
tn+1 − t
εn

Xn + t− tn
εn

Xn+1 for tn ≤ t < tn+1;

Xn�t� x=
{
X0�t+ tn�; t ≥ −tn;
X0; t ≤ −tn:

(10)

Now we are in a position to state Theorem 1, which is a special case of The-
orem (2.3.1) in [15] and later on will be used to establish a.s. convergence
of Xn.

Theorem 1 (Kushner and Clark [15]). Let Xn be given by (9). Assume A.1
to A.3, and let Xn be bounded with probability 1. Then there is a null set �0
such that v 6∈ �0 implies that �Xn�·�� is equicontinuous and also that the limit
X�·� of any convergent subsequence of �Xn�·�� is bounded and satisfies the
system of differential equations

ẋ = h�x�(11)

on the time interval �−∞;∞�. Let x0 be a locally asymptotically stable (in the
sense of Liapunov) solution to (11), with domain of attraction DA�x0�. Then
if v 6∈ �0 and there is a compact set A ⊂ DA�x0� such that Xn ∈ A infinitely
often, we have Xn→ x0 as n→∞.

Scheme of proof. Define the functions X̄0�·� and Mn�·� by

X̄0�t� x=Xn for tn ≤ t < tn+1;

M0�tn� x=
n−1∑
i=0

εiξn;

M0�t� x=
tn+1 − t
εn

M0�tn� +
t− tn
εn

M0�tn+1� for tn−1 ≤ t < tn;

Mn�t� x=
{
M0�t+ tn� −M0�tn�; t ≥ −tn;
−M0�tn�; t ≤ −tn:

We may now write

Xn�t� =Xn�0� +
∫ t

0
h�X̄0�tn + s��ds+Mn�t�:

Set
∫ t

0
h�X̄0�tn + s��ds =

∫ t
0
h�Xn�s��ds+ δn�t�y

then we have

Xn�t� =Xn�0� +
∫ t

0
h�Xn�s��ds+ δn�t� +Mn�t�:
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If n→∞; then conditions A.1 to A.3 imply δn�t� → 0 and Mn�t� → 0 ·�Xn�t��
is equicontinuous and bounded; hence, using the Arzelà–Ascoli theorem it con-
tains converging subsequences. Now let Xni

�t� be a converging subsequence
of Xn�t�. Then as n→∞, Xni

�t� converges to a solution of ẋ = h�x�. 2

In the rest of this section we show that the Kohonen algorithm, as formu-
lated by (9), satisfies conditions A.1 and A.3.

Lemma 1. Suppose suppP = �0;1�, P is diffuse, εn > 0 for all n,
∑
n εn =

∞ and
∑
n ε

2
n < ∞: If X0 ∈ F+; then, with probability 1, any convergent

subsequence of �Xn�; as defined by (1), (2) and (10), converges to a solution of
the system of differential equations

ẋ =




−R1�x�x1 +S1�x�
:::

−Ri�x�xi +Si�x�
:::

−RN�x�xN +SN�x�




:(12)

Let x0 be a locally asymptotically stable (in the sense of Liapunov) solution
to (12), with domain of attraction DA�x0�. Then if there is a compact set A ⊂
DA�x0� such that Xn ∈ A infinitely often, with probability 1 we have Xn→ x0
as n→∞.

Proof. For X0 ∈ F+, the algorithm (1) and (2) coincides with (8) and (9),
so it suffices to prove the lemma for (8) and (9).

The continuity of h�·� on RN is clear by its definition.
For A.3, it suffices to note that the variance of ξn is uniformly bounded and

moreover its conditional expectation value satisfies

E�ξn�X0;X1; : : : ;Xn� = E�ξn�Xn� = 0:

Thus �∑n
i=0 εiξi� is a martingale sequence and if

∑∞
i=0 ε

2
i < ∞, then A.3. is

fulfilled; see [15], pages 26 and 27 for more details.
The boundedness condition is fulfilled automatically by the algorithm (1)

and (2). 2

With regard to Lemma 1, the key point for the investigation of the asymp-
totic behavior of one-dimensional Kohonen’s algorithm is to find out about the
asymptotically stable solutions of (12) in F̄+ and their domains of attraction.
This is the point which we are going to address in the rest of the paper.

3. Stability analysis of the mean differential equation. In this sec-
tion, our ultimate goal is to show that under certain conditions, the m.d.e.
(12) owns an asymptotically stable equilibrium, whose domain of attraction
includes F̄+: But before going into technicalities, let us say that the approach



288 A. A. SADEGHI

basically consists of showing that the m.d.e. (12) is cooperative and irreducible
and F̄+ is positively invariant for the flow of (12). An extended treatment
of these ideas can be found in [11, 12] and references therein. However, in
order to use the results of the theory of irreducible cooperative differential
equations, we have to present the following short introduction to the most
important ideas of this theory.

Consider a system of differential equations

ẋ = f�x�; x ∈ � ⊂ Rm; fx � 7→ Rm:(13)

The system (13) is cooperative if f is continuously differentiable and

∂fi
∂xj
≥ 0 for all j 6= i and x ∈ �:

An m×m matrix A = �aij� is said to be irreducible if it does not map any
nonzero proper linear subspace of Rm into itself.

There are two different criteria in the literature for actually showing that
the matrix A = �aij� is irreducible: A = �aij� is irreducible if and only if the
directed graph with vertices �1; : : : ;m� and directed edges �i; j� for aij 6= 0 is
connected by directed paths (it is the criterion used in [11, 12], the results of
which will be used here), or A = �aij� is irreducible if and only if there does
not exist a permutation matrix P such that

PAPT =
[
B C

0 D

]
;(14)

with Br×r and DN−r×N−r for 1 ≤ r ≤N−1. A permutation matrix is a matrix
with exactly one nonzero entry, namely 1, in each row and each column.

It is a classical problem to show that the two criteria are equivalent (see,
e.g., [9, 10]).

The system (13) is irreducible if the Jacobian matrix J�x� =
�∂fi/∂xj�x��1≤i; j≤m is irreducible for all x ∈ �.

For vectors x;y ∈ Rm we write x ≤ y �x < y� if xi ≤ yi �xi < yi� for all i. A
set � ⊂ Rm is p-convex whenever x;y ∈ � and x ≤ y implies � contains the
entire line segment joining x and y.

Let 8x�t� and D8x�t� denote the solution to (13) with 8x�0� = x and its
Jacobian at time t; respectively. We say the flow 8 has positive derivatives
if D8x�t� has only positive entries for all t > 0 and x ∈ �. 8 is strongly
monotone in � provided x ≤ y implies 8x�t� < 8y�t� for all t > 0 and x;y ∈ �
when x 6= y. For x ∈ � we also write x�t� x= �x1�t�; : : : ; xN�t�� for 8x�t�:

A set F ⊂ Rm is called positively invariant if for all x ∈ F and all t ≥ 0;
for which 8x�t� is defined, 8x�t� ∈ F. By F̄ and ∂F we denote the closure and
the boundary of F (F̄ \F if F is open), respectively.

If any neighborhood of a point x0 contains a point xε ∈ �8x�t��; then x0 is
said to be a limit point of 8x�t�:
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An equilibrium is a point x∗ for which f�x∗� = 0; E is the set of equilibria
in �. The equilibrium x∗ is simple if the Jacobian J�x∗� is invertible. It is a
sink if all eigenvalues of the Jacobian have negative real parts.

The asymptotic behavior of cooperative irreducible systems of differential
equations has been investigated by Hirsch [11, 12]. The advantage of Hirsch’s
method is that in order to find the attracting area of an equilibrium, no Lia-
punov function is needed. Moreover, the existence of an asymptotically stable
equilibrium is guaranteed if E includes a unique point or if E is countable
and all equilibria are simple. For the convenience of the reader, we recall the
following important results. In the sequel � is an open p-convex subset of Rm.

Lemma 2 (Hirsch [11]). Let f be a cooperative irreducible vector field on
the open p-convex set � ⊂ Rm. Then we have the following:

(i) 8 has positive derivatives;
(ii) 8 is strongly monotone.

Theorem 2 establishes conditions under which 8x�t� converges to a sink
for almost all x ∈ �c: The term �c ⊂ � is a set of points x ∈ � whose
corresponding solution 8x�t� �t ≥ 0� has a compact closure in �.

Theorem 2 (Hirsch [11]). Assume 8 has positive derivatives, E is count-
able and all the equilibria are simple. Then 8x�t� converges to a sink as t→∞,
for almost all x ∈ �c.

In Theorem 3, which extends this result to the whole domain �c; it is
assumed that �c is open.

Theorem 3 (Hirsch [12]). Assume that 8 is strongly monotone and f�x�
has a unique equilibrium p ∈ �c: Then 8x�t� → p for all x ∈ �c:

For the proofs see [11], Theorem 4.4, and [12], Theorem 10.3.
Next we apply the above-mentioned results to the m.d.e. (12).
As a first step let us consider the existence of an equilibrium. A result

similar to Lemma 3 was first established by Bouton and Pagès [2] for k = 0 and
k = 1; γ1 = 1. Here we modify the argument to generalize it to 0 ≤ k ≤N and
γk ≤ · · · ≤ γ1 ≤ 1: In the rest of this paper, γi = 0 for i > k; x0 x= 0; xN+1 x= 1.

Lemma 3. Consider the set F+ x= �x ∈ �0;1�N�0 < x1 < x2 < · · · < xN < 1�.
(i) If P is diffuse, then there exists a x∗ ∈ F̄+ such that h�x∗� = 0.

(ii) If P is diffuse, suppP = �0;1�; γj+1 < γj and N ≥ 2j + 1 for some j,
0 ≤ j ≤ k; then x∗ ∈ F+:

Proof. (i) F̄+ is a compact subset of RN. So using the Brower theorem (see,
e.g., [18]), it is sufficient to show that x+h�x�maps F̄+ into itself continuously.
For all v ∈ �0;1�; x− ηnx+ ηnIN×1v maps F̄+ into F̄+. This ensures that its
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mean value, that is x+h�x�, maps F̄+ into F̄+; as well. The continuity of h�x�
was shown in Section 2.

(ii) For notational convenience let us define

Zi; j x= Qi�x∗� − x∗jPi�x∗� x=
∫ x̄∗i+1

x̄∗i
xP�dx� − x∗j

∫ x̄∗i+1

x̄∗i
P�dx�:

It is clear that Zi; j ≥ 0 for i > j and Zi; j ≤ 0 for i < j:
If x∗1 = 0; then h1�x∗� = S1�x∗� = 0. Now (5) yields Q1�x∗� = · · · =

Qk+1�x∗� = 0 and thus x∗2 = · · · = x∗k+2 = 0. With the same argument x∗i = 0,

for all 1 ≤ i ≤N; which implies hN�x∗� =
∫ 1

0 xP�dx� = 0 and this contradicts
the assumptions.

Suppose x∗p = x∗p−1, x∗p < x
∗
p+1 < · · · < x∗N < 1 for some p, 1 < p ≤N. Now

consider

hp�x∗� = Zp;p + γ1�Zp−1; p +Zp+1; p� + · · · + γk�Zp−k;p +Zp+k;p� = 0;

hp−1�x∗� = Zp−1; p−1 + γ1�Zp−2; p−1 +Zp;p−1� + · · ·

+ γk�Zp+k−1; p−1 +Zp−k−1; p−1� = 0;

the equality x∗p = x∗p−1 implies Zi;p = Zi;p−1 and

hp�x∗� − hp−1�x∗� =
k∑
i=0

�γi − γi+1�Zp+i;p +
k+1∑
i=1

�γi − γi−1�Zp−i;p = 0:(15)

Under the assumptions, each of the contributions is nonnegative, so all of
them vanish.

For p ≤ N − j, we have p + j ∈ �1; : : : ;N� and �γj − γj+1�Zp+j;p = 0;
which contradicts the assumption x∗p < x

∗
p+1 < · · · < x∗N < 1.

Now let p > N−j. Then p−j−1 ∈ �1; : : : ;N�y this implies Zp−j−1; p = 0;
which yields x∗p−j−1 = x∗p−j. This means (15) with p− j instead of p is valid
and thusZp;p−j = 0. For p < N this assures x∗p = x∗p+1 and for p =Nwe have
x∗N = 1y both of which contradict the assumption x∗p < x

∗
p+1 < · · · < x∗N < 1.

The only remaining case is x∗p−1 < x∗p = x∗p+1 = · · · = x∗N = 1, 1 ≤ p ≤ N.
In this case we have Zp;p < 0: Now hp�x∗� = 0 implies

Zp;p + γ1Zp−1; p + · · · + γkZp−k;p = 0:

None of the contributions is positive, so this case is also impossible. 2

It is a known result that F+ is an absorbing set for the Kohonen algorithm
(cf. [14]). Lemma 4 shows that this property is preserved by the m.d.e. (12).
Later on we will use this result to establish the a.s. convergence of Xn: First,
let us recall that h�·� is a continuous function defined by the right-hand side
of (12) on RN and coincides with the mean function (6) on F̄+:
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Lemma 4. Suppose P is diffuse, suppP = �0;1� and γk ≤ γk−1 ≤ · · · ≤
γ1 ≤ 1: The following statements are valid:

(i) If γj+1 < γj and N ≥ 2j + 1 for some 0 ≤ j ≤ k, then F+ is positively
invariant.

(ii) For all x ∈ F+ if γj+1 < γj and N ≥ 2j + 1 for some 0 ≤ j ≤ k, then
8x�t� has a compact closure in F+.

(iii) For all x ∈ ∂F+ if γj+1 < γj and N ≥ 2j + 1 for some 0 ≤ j ≤ k, then
8x�t� ∈ F+ for t > 0.

Proof. The diffuseness and boundedness of P implies that h�·� is Lips-
chitz continuous on RN: This, in turn, implies the existence of a unique solu-
tion 8x�t� starting from any point x ∈ RN at time t = 0: Moreover 8x�t� is a
continuous function of t. Consequently, for x ∈ F+ and t > 0 if 8x�t� leaves
F̄+; then it has a limit point on ∂F+. So for both (i) and (ii) it suffices to show
that if x ∈ F+, 8x�t� has no limit point on ∂F+; that is, for any arbitrary
sequence tn, 8x�tn� 6→ ∂F+ as n→∞, provided that 8x�tn� is defined.

For x ∈ F̄+ and ε > 0, we introduce

S�x; ε� =
{
y ∈ F+�xi − ε < yi < xi + ε ∀ i

}
:

Suppose x∗ = �0; : : : ;0; x∗p+1; : : : ; x
∗
N� is a limit point of 8x�t�, 0 < x∗p+1 ≤

· · · ≤ x∗N ≤ 1 and 1 ≤ p ≤N:
For any sufficiently small ε if 8x�t� x= x�t� enters S�x∗; ε�; then we have

dxp�t�
dt

= −Rp�x�t��xp�t� +Sp�x�t�� > 0:(16)

Now let 8x�tk� 6∈ S�x∗; ε/2�: The continuity of 8x�t� together with the in-
equality (16) imply that 8x�t� 6∈ S�x∗; ε/2� for all t > tk [as soon as 8x�t� ∈
S�x∗; ε�\S�x∗; ε/2�, xp�t� increases and hence8x�t� never reaches S�x∗; ε/2��:
On the other hand, if 8x�tk� ∈ S�x∗; ε/2�; then there exists a time interval
�tk; tk + δt� in which xp�t� is increasing and 8x�tk + δt� 6∈ S�x∗; ε/2�: This
assures that there does not exist any sequence tn such that 8x�tn� → x∗ (this
includes also the case tn − tn−1 →∞�; that is, 8x�t� has no limit point on the
hyperplane x1 = x2 = · · · = xp = 0 for any 1 ≤ p ≤N.

Next let x∗ = �x∗1; : : : ; x∗p−1; x
∗
p; : : : ; x

∗
N� be a limit point of 8x�t� for some

1 < p ≤N, x∗p−1 = x∗p and x∗p < · · · < x∗N < 1. We have

d�xp�t� − xp−1�t��
dt

= �xp−1�t� − x∗p−1�Rp−1�x�t�� − �xp�t� − x∗p�Rp�x�t��

+
k+1∑
i=1

�γi−1 − γi��x∗pPp−i�x�t�� −Qp−i�x�t���

+
k∑
i=0

�γi+1 − γi��x∗pPp+i�x�t�� −Qp+i�x�t���:

(17)
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For sufficiently small ε; if 8x�t� enters S�x∗; ε�, then apart from �xp−1�t�−
x∗p−1�Rp−1�x�t�� and �xp�t� − x∗p�Rp�x�t��, all the terms are nonnegatives.
Since ε can be chosen arbitrarily small, either for some ε > 0 we have
�d/dt��xp�t� − xp−1�t�� > 0 for x�t� ∈ S�x∗; ε� or all these terms vanish as
ε→ 0:

If 1 ≤ p ≤N−j, then p+j ∈ �1; : : : ;N�; hence x∗p < · · · < x∗N < 1 implies
that there exists a ε > 0 and a η ∈ R+ such that �γj+1 − γj��x∗pPp+j�x�t�� −
Qp+j�x�t��� > η > 0 for x�t� ∈ S�x∗; ε�:

For p > N− j we have p− j− 1 ∈ �1; : : : ;N�. If

�γj − γj+1��x∗pPp−j−1�x�t�� −Qp−j−1�x�t��� → 0;

then x∗p−j−1 = x∗p−j. Now equation (17) with p−j instead of p is valid and the
assumption x∗p < · · · < x∗N < 1 implies �γj+1−γj��x∗p−jPp�x�t��−Qp�x�t��� >
η > 0 for some ε > 0 and η ∈ R+; which in turn assures �d/dt��xp−j�t� −
xp−j−1�t�� > 0: So for the case p > N − j we have either �d/dt��xp�t� −
xp−1�t�� > 0 or x∗p−j−1 = x∗p−j and �d/dt��xp−j�t� − xp−j−1�t�� > 0 on
S�ε; x∗�:

It remains to show that if x∗i = x∗i−1 for some i ∈ �2; : : : ;N�; then the
inequality �d/dt��xi − xi−1� > 0 in S�ε; x∗� implies 8x�tn� 6→ x∗ for any ar-
bitrary sequence tn. This can be done in exactly the same way as the case
x∗ = �0; : : : ;0; xp+1; : : : ; xN�y if 8x�tn� 6∈ S�x∗; ε/2� then 8x�t� 6∈ S�x∗; ε/2�
for any t > tn and if 8x�tn� ∈ S�x∗; ε/2� then, in a time interval �tn; tn + δt�;
�xp − xp−1� increases and 8x�tn + δt� 6∈ S�x∗; ε/2�:

Finally let x∗ = �x∗1; : : : ; x∗p−1; x
∗
p; : : : ; x

∗
N� be a limit point of 8x�t�; x∗p =

· · · = x∗N = 1; x∗p > x∗p−1 and 1 ≤ p ≤ N: If 8x�t� ∈ S�x∗; ε� for some t > 0
and ε is sufficiently small, then we have

dxp

dt
=

k∑
i=0

γi�Qp−i�x�t�� − xpPp−i�x�t��� < 0;

with the same argument as in the last cases; this implies that xp does not
reach 1 and thus x∗ can not be a limit point of 8x�t�:

For assertion (iii) let x ∈ ∂F+: Then by an argument analogous to (i) and
(ii), it follows that, for some δ > 0 and 0 < t < δ, 8x�t� ∈ F+. 2

Lemma 5 shows that there is a strong relation between the m.d.e (12) and
the theory of cooperative irreducible differential equations.

Lemma 5. Suppose suppP = �0;1�; P has a densityP�dv� = p�v�dvwhich
is continuous on �0;1�; p > 0 on �0;1� and γk ≤ γk−1 ≤ · · · ≤ γ1 ≤ 1, then we
have the following:

(i) The m.d.e. (12) is cooperative on F+.
(ii) If γj+1 < γj for some 0 ≤ j ≤ k and N > 2j+ 1; then the m.d.e. (12) is

irreducible on F+.
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Proof. For x ∈ F+, the Jacobian of h�x� reads as follows:

J�x�=




a1;1 · · · a1; k+2 0 · · · · · · · · · · · · 0
:::

: : :
: : :

: : :
: : :

: : : · · · · · ·
:::

ak+2;1 · · · ak+2; k+2 · · · ak+2;2k+3
: : :

:::

0
: : :

: : :
: : :

: : :
: : : 0

:::

:::
: : : ai; i−k−1 · · · ai; i · · · ai; i+k+1

: : :
:::

::: 0
: : :

: : :
: : :

: : :
: : : 0

:::
: : : aN−k−1;N−2k−2 · · · aN−k−1;N−k−1 · · · aN−k−1;N

::: · · · 0
: : :

: : :
: : :

: : :
:::

0 · · · · · · · · · · · · 0 aN;N−k−1 · · · aN;N




;

where

ai; i = −
(
Pi�x� + γ1�Pi−1�x� +Pi+1�x��

+ · · · + γk�Pi−k�x� +Pi+k�x��
)

+ 0:25�1− γ1��xi+1 − xi�p�x̄i+1�1�i+1≤N�

+ 0:25�1− γ1��xi − xi−1�p�x̄i�;

ai; i+q = 0:5�γ�q� − γ�q−1���xi − x̄i+q�p�x̄i+q�1�1<i+q≤N�
+ 0:5�γ�q+1� − γ�q���xi − x̄i+q+1�p�x̄i+q+1�1�i+q+1≤N�:

(18)

Here 1 ≤ i + q ≤ N; q 6= 0. Clearly all the off-diagonal elements are
nonnegative for x ∈ F+.

To prove that J�x� is irreducible for all x ∈ F+, let us first consider the
case j > 0�γ1 = 1�: In this case ai;i < 0 for all i:

Now consider any set τs ⊂ �1; : : : ;N�; where s denotes the number of
indices in τs and let νi be the ith row of J�x�:

Since γj+1 < γj; we have

if 1 ≤ i ≤N− j− 1; then ai; i+j > 0 and ai; i+j+1 > 0;

if j+ 1 < i ≤N; then ai; i−j > 0 and ai; i−j−1 > 0:

The condition N > 2j + 1 implies that in every row there exists at least
two nonzero off-diagonal entries and for any τs the s ×N matrix �νi�i∈τs has
at most N− s− 1 columns with all entries equal zero.
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Now assume there exists a permutation matrixP = �Pkl�, which transforms
J�x� into the form (14) for some 1 ≤ r ≤ N and let PJPT = �bkl�1≤k; l≤N:
Consider the function s�·�x �1; : : : ;N� → �1; : : : ;N�; which satisfies Pks�k� = 1
[for any given P the function s�·� is uniquely defined]. Then we have bkl =
as�k�s�l� and consequently as�k�s�l� = 0 for r < k ≤ N and 1 ≤ l ≤ r: This
means that there must be a set τN−r such that �νi�i∈τN−r has r columns with
all entries equal zero, which is impossible.

For the case j = 0; we have ai; i+1 > 0 and ai; i−1 > 0 provided they are
defined. Thus for any k; l ∈ �1; : : : ;N� if l > k; then ak; k+1 > 0; ak+1; k+2 >
0; : : : ; al−1; l > 0 and al; l−1 > 0; al−1; l−2 > 0; : : : ; ak+1; k > 0: Furthermore for
any l ∈ �1; : : : ;N�we have either al; l−1 > 0; al−1; l > 0 or al; l+1 > 0; al+1; l > 0;
which completes the proof. 2

Now we are in a position to state the main result of the paper. As before,
here it is supposed that the order has been already established as ascending.

Theorem 4. Assume the following conditions hold:

(i) εn > 0 ∀ n,
∑
n ε

2
n <∞ and

∑
n εn = ∞;

(ii) suppP = �0;1�, P has a density P�dv� = p�v�dv which is continuous
on �0;1� and p > 0 on �0;1�;

(iii) γj+1 < γj for some 0 ≤ j ≤ k and N > 2j+ 1;
(iv) the m.d.e. (12) owns a unique equilibrium in F+.

Then, with probability one, �Xn� converges to the equilibrium of the m.d.e.
(12) in F+.

Remark 2. If Xn is ordered in a descending manner, then Theorem 4 will
be valid while the m.d.e. (12) changes its form as follows:

Pi�Xn� =
∫ X̄n

i

X̄n
i+1

P�dv�; Qi�Xn� =
∫ X̄n

i

X̄n
i+1

vP�dv� ∀ 1 ≤ i ≤N:(19)

Proof of Theorem 4. Lemmas 4(ii) and 5 show that Theorem 3 is appli-
cable. Here � = �c = F+. We come to the conclusion that the equilibrium
is asymptotically stable and F+ is a subset of its domain of attraction. Now
Lemma 4(iii) implies that the same is true for F̄+ and finally Lemma 1 implies
a.s. convergence of Xn to the equilibrium. 2

While the uniqueness of the equilibrium in F̄+ is sufficient for a.s. conver-
gence of Xn; the case of nonunique equilibrium cannot be excluded from an
applications point of view. Corollary 1 establishes a weaker version of Theorem
4, which does not require uniqueness of equilibrium.

Corollary 1. Assume conditions (i) and (iii) of Theorem 4 and (ii) and (iv)
following.

(ii) suppP = �0;1�, P has a density P�dv� = p�v�dv, which is continuous
on �0;1�; p > 0 on �0;1� and one of the following conditions hold.
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(ii)(a) logp is concave on �0;1� and p�0� + p�1� > 0y
(ii)(b) logp is strictly concave on �0;1�;

(iv) The m.d.e. (12) owns a countable number of equilibria in F+.

Then 8x�t� approaches an asymptotically stable equilibrium for almost all
x ∈ F̄+:

Proof. It suffices to show that all the equilibria in F+ are simple; then
the claim of Corollary 1 follows from Lemmas 4 and 5 and Theorem 2.

According to Lemma 3 there exists x∗ ∈ F+ such that h�x∗� = 0: Us-
ing the Gershgorin theorem for irreducible matrices, it is enough to show
that ∂hi�x∗�/∂xi < 0;

∑N
k=1 ∂hi�x∗�/∂xk ≤ 0 for all i ∈ �1; : : : ;N� and∑N

k=1 ∂hi�x∗�/∂xk < 0 for at least one i; see [9].
Equation (12) yields

x∗i =
Si�x∗�
Ri�x∗�

y

combining this expression with (18) we find

N∑
k=1

∂hi�x∗�
∂xk

= −Di�x∗�
Ri�x∗�

;

where

Di�x∗� x= R2
i �x∗� −

N−1∑
k=1

�γk+1−i − γk−1�p�x̄∗k+1��Si�x∗� − x∗k+1Ri�x∗��:

Following Fort and Pagés [7] for u ∈ �0;1�N+1, we introduce

ϕNi �u; γ� x=
( N∑
k=1

γ�k−i�
∫ uk+1

uk

p�v�dv
)2

−
N+1∑
k=1

τ�k; i�p�uk�
N∑
r=1

γ�r−i�
∫ ur+1

ur

�v− uk�p�v�dv;

where γ = �γ0; : : : ; γN� and

τ�k; i� x= γ�k−i�1�k≤N� − γ�k−i−1�1�k≥2�:

Then it is easy to see that

Di�x∗� = ϕNi �x̄∗; γ� + p�0�γ�i−1�Si�x∗� + p�1�γ�N−i��Ri�x∗� −Si�x∗��:

In [7] it is shown that under condition (ii)(a) ϕNi �x̄; γ� ≥ 0 for all x ∈ F̄+
and i ∈ �1; : : : ;N�: Moreover, if γ1 < 1 and x̄i < x̄i+1; then (ii)(b) implies
ϕNi �x̄; γ� > 0 for any N and i ∈ �1; : : : ;N�: For the sake of brevity we do not
repeat the proofs of these results.

Now suppose (ii)(a) is fulfilled. Then Di�x∗� ≥ 0 for all i; moreover, either
D1�x∗� > 0 or DN�x∗� > 0:
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For the case that condition (ii)(b) is fulfilled, assume γj+1 < γj = 1 and set
γ̄i x= γi+j: Then γ̄1 < 1 and

ϕNl �x̄; γ� = ϕ
N−j−l+1
1 �x̄1; x̄j+l+1; : : : ; x̄N+1; γ̄� > 0 for 1 ≤ l ≤ j;

ϕNl �x̄; γ� = ϕ
N−2j
l−j �x̄1; : : : ; x̄l−j; x̄l+j+1; · · · ; x̄N+1; γ̄� > 0 for j ≤ l ≤N− j;

ϕNl �x̄; γ� = ϕ
l−j
l−j�x̄1; : : : ; x̄l−j; x̄N+1; γ̄� > 0 for N− j ≤ l ≤N;

which imply that Di�x∗� > 0 for all i.
Ri�x� is positive on F+; so

∑N
k=1 ∂hi�x∗�/∂xk < 0 if Di�x∗� > 0 and∑N

k=1 ∂hi�x∗�/∂xk ≤ 0 if Di�x∗� ≥ 0: Moreover for any i there exists k 6= i
such that ∂hi�x∗�/∂xk > 0y this together with ∂hi�x∗�/∂xk ≥ 0 for i 6= k and∑N
k=1 ∂hi�x∗�/∂xk ≤ 0 imply that ∂hi�x∗�/∂xi < 0 for all i ∈ �1; : : : ;N�: 2

Remark 3. The proof of Corollary 1 implies actually more than simplicity
of equilibria. We have shown that all the equilibria have eigenvalues with
negative real parts.

4. Conclusion. Here we have established a.s. convergence of the one-
dimensional Kohonen algorithm for a reasonably large class of stimuli distri-
butions and neighborhood functions. The term a.s. convergence is used here
in the same sense as the unconditionally a.s. convergence in [2, 7]. Corol-
lary 1 establishes a convergence result in a weaker sense, which is, how-
ever, stronger than the“conditionally a.s convergence ” or the “convergence
in the Kushner–Clark sense”; while the conditional convergence amounts to
the existence of some neighborhood, in which the fixed point is asymptoti-
cally stable, Corollary 1 assures that the neighborhood includes almost all
x ∈ F̄+:

The existence and uniqueness of equilibrium in F+ is an important issue
which possibly plays a key role in the asymptotic behavior of Kohonen’s al-
gorithm. Lemma 3 establishes an existence result under weaker restrictions
than the known criteria, [7]. These restrictions are used in Theorem 4 and
Corollary 1 to establish the convergence results and include all the assump-
tions which are known to be sufficient for establishment of ordering [5, 6].

The restrictions imposed on the learning parameters are necessary to en-
sure a.s. convergence of the algorithm. In fact, many numerical experiments
show that if εn decreases faster than what condition (i) of Theorem 4 allows,
then Xn may get stuck in a nonoptimum equilibrium. It can be shown that a
better rate of convergence will be reached if

∑
n ε

2
n converges as fast as possible

without a violation of condition (i).
Although the neighborhood functions used in most applications are sym-

metric, nonincreasing asymmetric functions may be utilized, too. To establish
Theorem 4 we did not make any use of the symmetry of neighborhood functions
and hence the results are also valid for asymmetric nonincreasing functions.
Of course, in such a case, equations (5) and (12) change their forms. Moreover,
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Fig. 1. The final values of neurons for P�x� = 1 in �0;1�.

the index j in Theorem 4 and Lemmas 3–5 will be the smallest index for
which γj+1 < γj and γ−j−1 < γ−j:

Effects of the stimuli density distribution p and the neighborhood param-
eters γ1; · · · ; γk on the final position of neurons in Q are interesting issues,
which can be studied by stochastic approximation methods. Using the m.d.e.
(12) and the results of Section 3, we are able to find out the possible final
values of neurons. For N = 20, k = 1, p�v� = 1, 2v;6v�v − 1� on [0,1] and
γ1 = 0:00, 0:25, 0:50, 0:75, 1:00; the final values are depicted in Figures 1–
3. The results show that there exist two kinds of final maps made up of the
equilibrium of the m.d.e., corresponding to γ1 = 0 or γ1 > 0.

For γ1 > 0, the final map is not sensitive to the different values of γ1.
This suggests that the rate of convergence can be improved by choosing a
suitable positive γ1. Another aspect of these simulations is the investigation
of the number of zeros which h�x� owns. Computations show that for these
cases there is always a unique zero in F̄+: Hence Figures 1–3 present the
final values, to which, according to Theorem 4, the algorithm converges with
probability 1.

Acknowledgment. The author thanks Professor D. Prätzel-Wolters for
his support, which made this work possible.
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Fig. 2. The final values of neurons for P�x� = 2x in �0;1�.

Fig. 3. The final values of neurons for P�x� = 6x�x− 1� in �0;1�.
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