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ELLIPTIC AND OTHER FUNCTIONS IN
THE LARGE DEVIATIONS BEHAVIOR
OF THE WRIGHT–FISHER PROCESS

By F. Papangelou

University of Manchester

The present paper continues the work of two previous papers on the
variational behavior, over a large number of generations, of a Wright–
Fisher process modelling an even larger reproducing population. It was
shown that a Wright–Fisher process subject to random drift and one-way
mutation which undergoes a large deviation follows with near certainty
a path which can be a trigonometric, exponential, hyperbolic or parabolic
function. Here it is shown that a process subject to random drift and ga-
mete selection follows in similar circumstances a path which is, apart from
critical cases, a Jacobian elliptic function.

1. Introduction. This is the third in a series of papers dealing with the
variational problem associated with the large deviations behavior of a Wright–
Fisher process modelling the genetic evolution of a finite population. The prob-
lem in question, familiar from the Freidlin–Wentzell large deviations theory, is
that of determining the “preferred paths” of the process, that is, paths followed
with near certainty by the suitably scaled process when its state undergoes
a large deviation. The first paper [5] dealt with this problem in the case of a
process subject only to random drift (arising from random sampling), where
the preferred paths were shown to be trigonometric cosines. The second paper
[6] treated the case where one-way mutation is added to the random drift and
revealed a richness and diversity of preferred paths out of all proportion to
the simplicity of the process involved; a preferred path can be a trigonometric,
exponential, hyperbolic or parabolic function, depending on the value of the
mutation parameter and the boundary conditions. With the present paper the
picture becomes even more intricate; as we will show, a fascinating pattern
of mostly elliptic (Jacobian) functions appears when the process is subject to
random drift and gamete selection.

In the context of the classical Freidlin–Wentzell theory, a randomly per-
turbed dynamical system undergoing a large deviation follows with near cer-
tainty a path minimizing the action functional. For the Wright–Fisher process
it is not the large deviations theory for diffusions which is relevant but rather
its variant for discrete time Markov processes developed by Wentzell (see [7]).
It was shown in [5] and [6] that the variational aspects of this theory can be
adapted to apply to the Wright–Fisher process if the latter is scaled in such
a manner that the number of generations per “unit of time,” though large, is
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very much smaller than the size of the population and any forces of mutation
or selection act on the generational time scale and are thus stronger than ge-
netic drift (sampling noise). This feature of stronger-than-drift mutation and
selection is shared with [4] (cf. [5]), where, however, the authors used large
deviations arguments to tackle a different problem: the asymptotics of the exit
time of a generalization of the Wright–Fisher process from a neighborhood of
a stable equilibrium point. (An extension of this to an infinite-alleles analogue
can be found in [3]).

It is worth mentioning that the Wright–Fisher process with selection was
used (but not in a large deviations context) by Kaplan and Darden in [2] to
illustrate a general result of theirs on the manner in which a small-noise
Markov chain follows its deterministic approximation in the neighborhood of
an equilibrium.

More details of the variational problem treated in the present paper are
given in the next section where we state the basic definitions and technical
facts needed and review briefly the preferred paths uncovered in [5] and [6]
for the cases referred to above. This will provide the right backdrop for a good
understanding of the pattern of paths that will emerge later in the case of
selection. It transpires that, unlike the case of mutation, there can be more
than one extremal path (i.e., solution of the relevant Euler equation) joining
two points and staying clear of the boundary at 0 and 1. It is then necessary
to determine which of these extremals actually minimize the pseudo-action-
functional, a task taken up in Section 4. The paper concludes with the main
result on the concentration of probability, stated as Theorem 4.1.

2. Preliminaries. The main result of [6], stated as Theorem 2.1 below, is
a limit theorem for a sequence Y�n�t , t ≥ 0; n = 1;2; : : : of increasingly severe
scalings of the Wright–Fisher process, which are introduced as continuous
time processes as follows. For each n ≥ 1, the processY�n�t ; t≥0 jumps at times
1/n;2/n;3/n; : : : and is constant on any of the intervals �k/n; �k+ 1�/n�; k =
0;1;2; : : : : The skeleton process Y�n�0 ;Y

�n�
1/n;Y

�n�
2/n; : : : is a Wright–Fisher pro-

cess, with Y�n�k/n representing the proportion of A-alleles, say, in the �k + 1�th
generation of a population of 2N genes, where N = N�n� depends on n. It
will be assumed throughout that N/n→∞ as n→∞. The one-step transition
probability P�y; ỹ� of the skeleton process is, with ỹ = j/2N, given by

P�y; ỹ� =
(

2N

j

)
pjy;n�1− py;n�2N−j

where py;n is in general of the form

py;n = y+
g�y�
n
+ o

(
1
n

)
(2.1)

with 0 ≤ py;n ≤ 1, g�y� a continuous function on �0;1� and o�1/n�/�1/n� → 0
uniformly in y ∈ �0;1�. The case of pure random drift discussed in [5] cor-
responds to py;n = y, while that of one-way mutation treated in [6] corre-
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sponds to py;n = y�1 − γ/n� where γ > 0. Two-way mutation has py;n =
y + n−1��1 − y�γ2 − yγ1� �γ1 > 0; γ2 > 0�. If there is no mutation but there
are selective forces working against the A-allele, then py;n can be taken to be

py;n = y
[
y+

(
1+ β

n

)
�1− y�

]−1

= y− β
n
y�1− y� + o

(
1
n

)
;(2.2)

where β > 0. This is the case we will investigate below. The more general case
of zygotic selection in a diploid population involves a cubic g�y� and will not
be dealt with here.

For given y ∈ �0;1�, let G�y; z� be the cumulant generating function of the
Gaussian distribution with mean g�y� and variance y�1−y�, that is,G�y; z� =
g�y�z+ 1

2y�1−y�z2 and consider also the cumulant ofY�n�• , that is, the function

Gn�y; z� x= n logEy exp�z�Y�n�1/n−y��, which can easily be calculated explicitly.
It is shown in [6] that the function n�2N�−1Gn�y;2Nn−1z� does not depend on
N, that this function and its derivative with respect to z converge, as n→∞,
to G�y; z� and its derivative, respectively, and that certain uniformity and
boundedness conditions required in Wentzell’s theory [7] are satisfied. A large
deviations principle cannot however be deduced for Y�n�• because the Legendre
transform of G�y; z�

H�y;u� = sup
z
�zu−G�y; z�� = 1

2
�u− g�y��2
y�1− y�(2.3)

has singularities at y = 0 and y = 1. Such a principle can be deduced for a
modified sequence Ỹ�n�• of processes, where Ỹ�n�t behaves as Y�n�t as long as it is
in the range �ε;1−ε� for suitably small ε > 0, but its jumps from a state y < ε
or y > 1 − ε have a Gaussian distribution with mean g�ε�/n or g�1− ε�/n,
respectively, and variance ε�1− ε�/2N. The modified sequence satisfies on
any bounded interval �0;T� a uniform large deviations principle with action
functional �2N/n�S̃0;T�φ�, where S̃0;T�·� is one of two functionals to be defined
presently.

If φ is an absolutely continuous function on �0;T�, we set

S0;T�φ� =
∫ T

0
H�φ�t�; φ′�t��dt =

∫ T
0

1
2
�φ′�t� − g�φ�t���2
φ�t��1−φ�t�� dt(2.4)

(provided 0 ≤ φ ≤ 1� and

S̃0;T�φ� =
∫ T

0
H̃�φ�t�; φ′�t��dt;(2.5)

where H̃�y;u� agrees with H�y;u� in (2.3) if ε ≤ y ≤ 1 − ε but is equal to
H�ε;u� or H�1−ε;u� if y < ε or y > 1−ε, respectively. If φ is not absolutely
continuous on �0;T�, then S0;T�φ� = S̃0;T�φ� = ∞.

For more details and a precise statement of some of the implications of the
above, the reader is referred to [6]. Here it is sufficient to repeat the informal
statement that if φ�t�; 0 ≤ t ≤ T is an absolutely continuous function which
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satisfies φ�0� = y0 = Y
�n�
0 and stays clear of 0 and 1, then the logarithm of

the probability that Y�n�t ; 0 ≤ t ≤ T follows closely the path φ�t�; 0 ≤ t ≤ T
is of order

−Nn−1
∫ T

0

�φ′�t� − g�φ�t��2
φ�t��1−φ�t�� dt:

See Proposition 2.1 of [6] for the exact statement.
The variational problem, that is, the problem of determining the functions

φ which minimize S0;T�φ�, was solved for g�y� ≡ 0 and g�y� = −γy �γ > 0�
in [5] and [6], respectively, where it was also proved that the minimizing func-
tions are indeed the “preferred paths” in the probabilistic sense. We summarize
here the types of preferred paths φ leading from a point �0; y0� to other points
�T;y1� �0 < y1 < 1�. The description is given in terms of φ�0� = y0 and φ′�0�
rather than φ�0� and φ�T� and the paths should be understood as terminated
where they exit from 1 = ��t; y�x t ≥ 0; 0 < y < 1�. A fuller description can
be found in [5] and [6].

If g�y� ≡ 0, then the preferred path φ is a monotone arc of the form φ�t� =
1
2 − 1

2 cos�ct − c̃�. If g�y� = −γy, there are six different classes of preferred
paths, depending on the values of γ and φ′�0�. (i) If φ′�0� = 0 then φ�t� =
1
2y0�cosh γt/

√
1− y0 + 1�; (ii) if 0 < �φ′�0�� < γy0 then φ�t� is of the form

−c
2�γ2 − c�

[
cosh

((√
γ2 − c

)
�t− c̃�

)
+ 1

]
y

(iii) if �φ′�0�� = γy0 then φ�t� = y0 exp�±γt�; (iv) if γy0 < �φ′�0�� < γ
√
y0 then

φ�t� is of the form
c

2�γ2 − c�
[
cosh

((√
γ2 − c

)
�t− c̃�

)
− 1

]
y

(v) if �φ′�0�� = γ√y0 then φ�t� = 1
4�γt± 2

√
y0�2; (vi) if �φ′�0�� > γ√y0 then φ

is a monotone arc of
c

2�c− γ2�
[
1− cos

((√
c− γ2

)
�t− c̃�

)]
:

Theorem 2.1 [6]. If 0 < y0 < 1, T > 0 and y0e
−γT ≤ y1 < 1, then there

is a unique φ0 from among the functions described in (i)–(vi) above, such that

φ0�0� = y0 and φ0�T� = y1. Assume Y
�n�
0 = y0 for all n and denote by P the

probability measure arising from these initial conditions and the transition

structure of Y
�n�
t ; t ≥ 0 corresponding to the case of one-way mutation g�y� =

−γy �γ > 0�. Then, for every δ > 0,

lim
n→∞

P
(

sup
0≤t≤T

�Y�n�t −φ0�t�� < δ �Y
�n�
T ≥ y1

)
= 1:

The purpose of the present paper is to prove an analogous theorem for the
case of selection. Before concluding this section, we formulate a lemma that
will be needed below.
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Lemma 2.2. Suppose that g�y� = −βy�1−y� �β > 0� and that 0 < y0 < 1,
0 < y1 < 1, T > 0. If the functional S0;T�φ�, restricted to the set of functions
φ on �0;T� such that φ�0� = y0, φ�T� = y1 and 0 ≤ φ ≤ 1, has a minimum at
φ0, then 0 < φ0�t� < 1 for all t ∈ �0;T� and φ0 is continuously differentiable on
�0;T� and therefore satisfies Euler’s equation Hy−�d/dt�Hy′ = 0 for H�y;y′�
at every t ∈ �0;T�.

To see why φ0 stays clear of 0 and 1, note that functions of the form
φ�t� = c̃�c̃ + exp�βt��−1 are zero-action functions in the sense of satisfying
H�φ�t�; φ′�t�� = 0 at every point. If φ1; φ2 are two such functions satisfying
φ1�0� < y0, φ1�T� < y1 and φ2�0� > y0, φ2�T� > y1, then φ1�t� ≤ φ0�t� ≤
φ2�t� for all t ∈ �0;T�, since otherwise we would be able to reduce the value of
S0;T�φ0� by replacing a segment of φ0 by a segment of φ1 or φ2. The continu-
ous differentiability of φ0 can be proved by arguments similar to those given
in [6] for the case g�y� = −γy. See Lemma 3.4 there and the entire paragraph
that follows it.

Note that if ε > 0 is chosen so that ε ≤ φ1�t� ≤ φ2�t� ≤ 1−ε for all t ∈ �0;T�
then, subject to φ�0� = y0, φ�T� = y1, S̃0;T�·� too has a minimum at φ0.

3. The extremals. From now on we deal exclusively with a Wright–
Fisher process involving selection unfavorable to the A-allele, but no mutation.
In this case g�y� = −βy�1− y� and hence

H�y;u� = 1
2
�u+ βy�1− y��2

y�1− y�
and

S0;T�φ� =
1
2

∫ T
0

�φ′�t� + βφ�t��1−φ�t���2
φ�t��1−φ�t�� dt:(3.1)

The extremals, that is, the solutions of the corresponding Euler equation, can
be obtained from the differential equation

y′2

y�1− y� − β
2y�1− y� = c;(3.2)

which expresses the constancy of the “energy” y′Hy′ −H along each extremal.
Although every nonsingular solution of such an equation is an extremal, this
is not in general true of singular solutions. Of all constant functions, only
the function y�t� ≡ 1

2 , corresponding to c = −β2/4, is an extremal, as can be
checked directly. (The Euler equation is too long to write here explicitly.)

Let us first describe the solutions of (3.2) without reference to initial values
at t = 0. Clearly the smallest possible value of c is −β2/4 and for this value
y�t� ≡ 1

2 is the only solution since −β2y�1−y� ≤ −β2/4 implies y�1−y� = 1
4 .

Values of c greater than −β2/4 will be split into three cases: (I) c > 0, (II) c = 0
and (III) −�β2/4� < c < 0 and be discussed separately. However, first note that
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(3.2) can be written in the form

y′2 = β2y�y− 1�
(
y− 1

2
+ λ

2

)(
y− 1

2
− λ

2

)
;

where λ = �1 + 4cβ−2�1/2. Setting k = λ−1 and using the transformation
z = 2�y− 1

2�, we arrive at

z′2 = β2

4k2
�1− z2��1− k2z2�:(3.3)

(I) If c > 0, then 0 < k < 1 and if a function z�t� satisfies (3.3) then
w�t� = z�2kβ−1t� satisfies the differential equation

w′2 = �1−w2��1− k2w2�:
This shows that

w�t� = sn�t− c̃; k�
where c̃ is a constant and x = sn�u;k� denotes the periodic Jacobian elliptic
function of u which inverts the function

u =
∫ x

0
��1− s2��1− k2s2��−1/2 ds

of x ∈ �0;1� and is extended to the whole real line so as to be an odd periodic
function in the manner of sinu; see [1]. Indeed, the reader who is not famil-
iar with sn�·� may simply visualize it as a function akin to a sine function,
oscillating between −1 and 1. The period of sn�·; k� is 4K∗, where

K∗ =
∫ 1

0
��1− s2��1− k2s2��−1/2 ds:

Returning to (3.2), we see that its solutions are of the form

y�t� = 1
2
+ 1

2
sn
(
β

2k
�t− c̃�; k

)
(3.4)

with period

8kβ−1
∫ 1

0
��1− s2��1− k2s2��−1/2 ds:(3.5)

As k increases from 0 to 1 this period increases from 0 to ∞.
(II) If c = 0, then (3.2) becomes

y′2 = β2y2�1− y�2:
The solutions of y′ = βy�1 − y� are of the form y�t� = c̃ �c̃ + e−βt�−1 �c̃ > 0�,
while the solutions of y′ = −βy�1−y� are of the form y�t� = c̃�c̃+eβt�−1 �c̃ > 0�.
The latter satisfy H�y;y′� = 0 and are thus the zero-action extremals.

(III) If −�β2/4� < c < 0, then 1 < k <∞ and if a function z�t� satisfies (3.3)
then w�t� = kz�2β−1t� satisfies the differential equation

w′2 = �1−w2��1− k−2w2�(3.6)
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so that w�t� = sn�t− c̃; k−1�. It follows that

y�t� = 1
2
+ 1

2k
sn
(
β

2
�t− c̃�; 1

k

)
(3.7)

with period

4K = 8β−1
∫ 1

0
��1− s2��1− k−2s2��−1/2 ds(3.8)

and “amplitude” 1/2k. As k increases from 1 to∞, this period decreases from
∞ to 4πβ−1.

(IV) Returning now to the case c = −β2/4 [k = ∞ in (3.7)] dealt with above,
we see that it is natural to think of the solution y�t� ≡ 1

2 as 1
2 + 0 sin�βt/2�

and this will be helpful in our considerations below.
This concludes the summary of extremals but, as is well known, not every

extremal minimizes the functional (3.1) and it is easy to see that, unlike the
case of mutation studied in [6], there are pairs of points which are joined
by more than one extremal lying wholly inside the strip 1 = ��t; y�x t ≥
0; 0 < y < 1�. The following lemma will enable us to identify and reject
nonminimizing functions. Note that in what follows we use the term “path”
interchangeably with “function” or “graph of function.”

Lemma 3.1. Suppose that the points �0; y0� and �T;y1�, where T > 0, 0 <
y0 < 1, 0 < y1 < 1, are both on the path (3.7) for given k and c̃. If T is greater
than half the period (3.8), then this path does not minimize S0;T�φ� subject to
φ�0� = y0, φ�T� = y1.

Proof. Let us write ψ�t� instead of y�t� for the function given by (3.7)
and let K be defined as in (3.8). Assume first that ψ�0� 6= 1

2 ± 1/2k. Using the
periodicity of ψ�t� and the property sn��β/2��2K+x�;1/k� = sn�−�β/2�x;1/k�
one can easily check that the extremal

φ�t� = 1
2
+ 1

2k
sn
(
β

2
�t+ 2K+ c̃�; 1

k

)

satisfies φ�0� = ψ�0� and φ�2K� = ψ�2K�. This φ is a phase-shifted version of
ψ, also passing through the points �0; ψ�0�� and �2K;ψ�2K��, where clearly
ψ�0� + ψ�2K� = 1. One of ψ, φ is ascending and the other descending at
�0; ψ�0��. The alternative representation

φ�t� = 1
2
− 1

2k
sn
(
β

2
�2K− c̃− t�; 1

k

)

of φ�t� and the change of variable t = 2K−u in the integral (3.1) easily imply
that S0;2K�φ� = S0;2K�ψ�. It follows that if T > 2K and we define

χ�t� =
{
φ�t�; if 0 ≤ t ≤ 2K;

ψ�t�; if 2K ≤ t ≤ T;
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then S0;T�χ� = S0;T�ψ�. If ψ�t�; 0 ≤ t ≤ T were a minimizing function for
S0;T�·� subject to the given boundary conditions, then so would χ be. However
χ would then be continuously differentiable by Lemma 2.2 and this is not the
case since χ is not differentiable at t = 2K. This establishes the lemma in the
case ψ�0� 6= 1

2 ±1/2k. If ψ�0� is either 1
2 +1/2k or 1

2 −1/2k then φ ≡ ψ and the
above argument has to be modified. Instead of joining the points �0; ψ�0�� and
�2K;ψ�2K�� by an alternative extremal φ, we can join the points �ε;ψ�ε��
and �ε + 2K;ψ�ε + 2K�� by an alternative extremal, choosing ε > 0 so that
ε+ 2K < T. We may then argue as above.

4. The preferred paths. We are now in a position to describe the min-
imizing functions of the functional (3.1) emanating from the point �0; y0�,
where 0 < y0 < 1. Our description will be much clearer if we do the case
y0 = 1

2 first. We therefore fix φ�0� = 1
2 and present the minimizing paths φ

corresponding to different values of φ′�0�.
Case (i). If φ′�0� = 0, then the corresponding minimizing path is φ�t� ≡ 1

2
but t must be restricted to the domain 0 ≤ t ≤ 2πβ−1.

Case (ii). If 0 < �φ′�0�� < β/4, then the corresponding paths are

φ�t� = 1
2
± 1

2k
sn
(
β

2
t;

1
k

)
;(4.1)

where k = �β/4��φ′�0��−1 and the sign of the last term is plus or minus ac-
cording as φ′�0� > 0 or φ′�0� < 0. However, each path of this form must be
restricted to a corresponding domain 0 ≤ t ≤ 2K, where K is as in (3.8). Note
that 2K is the smallest positive value of t at which φ�t� is equal to 1

2 and that
the two extremals with the same �φ′�0�� meet at �2K; 1

2�. Both the period and
the amplitude of φ decrease with increasing k.

Case (iii). If φ′�0� = β/4 or −β/4 then φ�t� is �1 + e−βt�−1 or �1 + eβt�−1,
respectively, and here 0 ≤ t < ∞. Note that the last extremal corresponds to
“mean behavior” of our Wright–Fisher process.

Case (iv). If �φ′�0�� > β/4 then the corresponding paths are

φ�t� = 1
2
± 1

2
sn
(
β

2k
t; k

)
;

where k = �β/4��φ′�0��−1 and the sign is + or − for φ′�0� > 0 or φ′�0� < 0,
respectively. These paths must be drawn from the point �0; 1

2� to their points
of first exit from the strip 1, that is, the points �K̃;1� or �K̃;0� of first contact
with y = 1 or y = 0, respectively, where K̃ is a quarter of the period (3.5).

It can be checked that every point �T;y1� with either y1 6= 1
2 or 0 < T ≤

2πβ−1 lies on exactly one of the paths just described. If y1 = 1
2 and T >

2πβ−1, then there exist two paths joining �0; 1
2� with �T; 1

2� [Case (ii)]. Note
the “symmetry” of the minimizing paths, despite the “asymmetry” of genetic
selection.

The manner in which Case (ii) extremals were curtailed is justified by
Lemma 3.1. To see why Case (iv) extremals must be terminated as indicated,
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simply note that by Lemma 2.2 a minimizing path joining �0; 1
2� with �T;y1�

stays clear of the boundary lines y = 1 and y = 0. Next, observe that the
integrals of H�φ�t�; φ′�t�� along the two paths (4.1) from �0; 1

2� to �2K; 1
2� are

equal, as explained in the proof of Lemma 3.1. There remains to show that
if T > 2πβ−1, then the constant function φ�t� ≡ 1

2 is not a minimizing path
joining �0; 1

2� with �T; 1
2�. In fact, there is a unique k such that T = 2K, with

K given by (3.8). Let φ1�t� be the function (4.1) corresponding to this k, taken
with the plus sign. This function satisfies φ1�T� = 1

2 . Now choose another k,
k = k1 say, so large that the corresponding paths (3.7) drawn beyond their
half-period are very close to the line y = 1

2 , with half-period smaller than
T. One or the other of these two paths, ψ say, intersects the path φ1 at a
point close to �T; 1

2� with coordinates �T − δ; 1
2 + δ′� �δ > 0; δ′ > 0�. It is

easy to see that T − δ is greater than half the period of ψ, if ψ 6= φ1. By
Lemma 3.1, ψ cannot minimize the functional S over paths joining �0; 1

2� with
�T − δ; 1

2 + δ′�. It follows that S is minimized by the extremal joining these
points and not crossing the line y = 1

2 for 0 < t < T − δ, that is, by the
arc of φ1. Letting k1 → ∞, we easily deduce S0;T�φ1� ≤ S0;T�φ1/2�, where
φ1/2�t� = 1

2 ; 0 ≤ t ≤ T. To show that S0;T�φ1� < S0;T�φ1/2� suppose by way
of contradiction that S0;T�φ1� = S0;T�φ1/2� and consider a point �T2;

1
2� with

2πβ−1 < T2 < T. Let φ2 be a Case (ii) path such that φ2�T2� = 1
2 . By what

has just been proved S0;T2
�φ2� ≤ S0;T2

�φ̃1/2� where φ̃1/2 is the restriction of
φ1/2 to �0;T2�. The function

φ3�t� =
{
φ2�t�; 0 ≤ t ≤ T2;

1
2 ; T2 ≤ t ≤ T

would then satisfy S0;T�φ3� ≤ S0;T�φ1/2� ≤ S0;T�φ1�, contradicting the non-
minimality of φ3 which follows from the fact that φ3 is not differentiable at
T2 (see Lemma 2.2).

The probabilistic theorem that can now be proved is similar to Theorem 2.1,
with one difference: if T > 2πβ−1 and y1 = 1

2 , then there are two minimizing
paths from �0; 1

2� to �T; 1
2�. Since the theorem is a special case of Theorem 4.1

below, we do not state it here separately but proceed directly to the analysis
of minimizing paths starting from �0; y0� with y0 6= 1

2 . Since all the essen-
tial arguments were given for y0 = 1

2 , we merely outline the picture that
emerges.

If y0 6= 1
2 then the constant extremal φ�t� ≡ 1

2 plays no role. If the solution
φ�t� of (3.2) is to satisfy φ�0� = y0, the constant c in (3.2) must be in the
range −β2y0�1 − y0� ≤ c < ∞. Of the extremals represented by (3.7) only
functions with “amplitude” 1/2k ≥ �y0 − 1

2 � can possibly pass through �0; y0�.
The minimizing paths are then as follows. Assume for convenience that y0 >

1
2 .

Case (i). If φ′�0� = 0 then the minimizing path φ�t� is (3.7) with 1/2k =
y0 − 1

2 and c̃ = −K, where K is given by (3.8) and with t restricted to 0 ≤ t ≤
2K. We will denote this value of K by K0.
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Case (ii). If 0 < �φ′�0�� < βy0�1− y0�, then the paths are of the form (3.7)
with 1/2k > y0 − 1

2 , but must be restricted to 0 ≤ t ≤ 2K with K given by
(3.8). All such φ terminate on the line y�t� ≡ 1− y0 and pairs of minimizing
paths with the same �φ′�0�� (and hence the same period) meet at their terminal
points.

Case (iii). If �φ′�0�� = βy0�1−y0� then φ�t� is either y0�y0+�1−y0�e−βt�−1

or y0�y0 + �1− y0�eβt�−1, the latter representing mean behavior.
Case (iv). If �φ′�0�� > βy0�1−y0�, then φ is of the form (3.4) and must be

terminated at its point of exit from 1.
It should be noted that the role played by the line y�t� ≡ 1

2 in the case
y0 = 1

2 is now (i.e., in the case y0 >
1
2 ) played by

y�t� =
{
φ�t� as in Case (i); if 0 ≤ t ≤ 2K0;

1− y0; if 2K0 < t <∞:
(4.2)

Every point �T;y1� with either 0 < T ≤ 2K0 or y1 6= 1−y0 lies on exactly one
of the paths just described. If T > 2K0 and y1 = 1 − y0, then there are two
Case (ii) paths joining �0; y0� with �T;y1� and the integrals of H�φ�t�; φ′�t��
along these two paths from �0; y0� to �T;y1� are equal.

The case y0 <
1
2 is entirely analogous.

We can now state the main theorem of this paper which is the counterpart,
for the case of genetic selection, of Theorem 2.1 already established for the
case of mutation.

Theorem 4.1. (I) Suppose that 0 < y0 < 1, T > 0 and y0�y0 + �1 −
y0�eβT�−1 ≤ y1 < 1 and that either y1 6= 1 − y0 or T ≤ 2K0, where K0 is
defined as in Case (i) above for the extremal φ with φ�0� = y0, φ′�0� = 0. Let
φ0�T�;0 ≤ t ≤ T be the unique minimizing path as described above, such that

φ0�0� = y0 and φ0�T� = y1. Assume that Y
�n�
0 = y0 for all n and denote by

P the probability measure arising from these initial conditions and the tran-

sition structure of Y
�n�
t ; t ≥ 0 corresponding to the case of selection (2.2). Then,

for every δ > 0,

lim
n→∞

P
(

sup
0≤t≤T

�Y�n�t −φ0�t�� < δ �Y
�n�
T ≥ y1

)
= 1:

(II) With K0 and P as in (I), suppose that y1 = 1 − y0 and T > 2K0 and
let φ1�t�; φ2�t�; 0 ≤ t ≤ T be the two Case (ii) minimizing paths such that
φ1�0� = φ2�0� = y0 and φ1�T� = φ2�T� = y1. Then, for every δ > 0,

lim
n→∞

P
(
either sup

0≤t≤T
�Y�n�t −φ1�t�� < δ or sup

0≤t≤T
�Y�n�t −φ2�t�� < δ�Y

�n�
T ≥ y1

)
= 1:

Note that in the special case y0 = 1
2 , we have K0 = 2πβ−1.

An analogue to part I of the theorem holds if 0 < y1 ≤ y0�y0+�1−y0�eβT�−1

and we condition on Y�n�T ≤ y1. Part II of the theorem is not relevant in this
case because the graph of y0�y0 + �1 − y0�eβt�−1 lies below the graph of y�t�
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in (4.2) [this follows from (3.2)], and hence for T > 2K0 we necessarily have
1− y0 > y0�y0 + �1− y0�eβT�−1.

As with Theorem 2.1, we can establish Theorem 4.1 by using the large
deviations principle. Since this principle is valid for the modified sequence
Ỹ�n�• rather than the sequence Y�n�• , we must choose an ε > 0 prior to defining
the modification. Such an ε > 0 can be chosen as suggested in the last sentence
of Section 2. The application of the large deviations principle then follows the
same route as in the proof of Theorem 5.1 in [6], to which the reader is referred.
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