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ON LARGE DEVIATIONS IN LOAD SHARING NETWORKS1

By Murat Alanyali2 and Bruce Hajek

Bell Laboratories and University of Illinois, Urbana–Champaign

Three policies, namely optimal repacking, least load routing, and
Bernoulli splitting, are considered for dynamic resource allocation in load
sharing networks with standard Erlang type statistics. Large deviations
principles are established for the three policies in a simple network of
three consumer types and two resource locations and are used to identify
the network overflow exponents. The overflow exponents for networks with
arbitrary topologies are identified for optimal repacking and Bernoulli
splitting policies and conjectured for the least load routing policy.

1. Introduction. The generic dynamic resource allocation problem in-
volves a number of locations containing resources. The dynamic aspect of the
problem is the arrival of consumers, each of which requires a certain amount of
service from the resources, and the control variable of the problem is the allo-
cation policy, which specifies at which location each consumer is to be served.
Oftentimes in applications, locations contain finitely many resources, hence
the network can get congested and may eventually overflow in the sense that
consumers may be lost. The purpose of this work is to provide estimates on the
network overflow time under certain resource allocation policies. In particular
we concentrate on three allocation policies, namely optimal repacking (OR),
least load routing (LLR), and Bernoulli splitting (BS). The OR policy continu-
ously repacks the consumers in the network so as to minimize the maximum
load over the locations. LLR and BS are nonrepacking policies, under which
the assignment decisions are irrevocable. The LLR policy assigns each arriv-
ing consumer to an admissible location with the least load, whereas the BS
policy assigns each arriving consumer to one of the admissible locations ran-
domly and independently, so as to minimize the maximum mean load over the
locations.

The policies investigated in this paper have been considered by several au-
thors and in various contexts. In particular, Gibbens, Kelly and Turner (1993)
considered the LLR policy for dynamic routing in circuit switched networks.
Azar, Broder, and Karlin (1992) compared the LLR and the optimal nonrepack-
ing policies based on a worst case analysis, whereas Alanyali and Hajek (1997)
compared the three policies based on certain properties implied by fluid limit
approximations.

Received January 1996; revised May 1997.
1Research supported in part by NSF Contract NCR 93-14253.
2Completed while a student at the University of Illinois, with partial support by a TUBITAK

NATO Fellowship.
AMS 1991 subject classifications. Primary 60K30; secondary 60F10, 68M20, 90B15, 93E, 60J.
Key words and phrases. Large deviations, load balancing, loss networks, allocation, Erlang

systems.

67



68 M. ALANYALI AND B. HAJEK

Our mathematical abstraction of a load sharing network is a triple
�U;V;N�, where U is a finite set of consumer types, V is a finite set of
locations, and �N�u� ⊂ Vx u ∈ U� is a set of neighborhoods (see Figure 1 for
examples). A demand for this network is a vector �λ�u�x u ∈ U� of positive
numbers, where λ�u� denotes the arrival rate of type u consumers. Each con-
sumer is served, starting immediately upon its arrival, for the duration of its
holding time. The neighborhood N�u� denotes the locations that are available
to type u consumers, in the sense that each such consumer can be served
only at a location within N�u�. An allocation policy is an algorithm which
assigns consumers to locations within their respective neighborhoods. The
load at location v ∈ V at a given time t, Xt�v�, is the number of consumers
at v at time t. The allocation policy, together with the consumer arrival and
departure times and an initial condition, determine the load process X.

Provided a demand vector λ, we consider the following stochastic description
of the network dynamics, indexed by a scalar γ > 0: for each u ∈ U; consumers
of type u arrive according to a Poisson process of rate γλ�u�, the processes
for different types of arrivals being independent. The holding time of each
consumer is exponentially distributed with unit mean, independent of the
past history. Given κ ≥ 0, the overflow time of a location v ∈ V is the first time
that its load, Xt�v�, exceeds the designated capacity �γκ�, and the network
overflow time is the minimum over all v of the overflow times of location v.

Under allocation policy π, the overflow exponent of the network, Fπ�κ�, and
the overflow exponent of a location v, Fπ�v; κ�, are defined as

Fπ�κ� = − lim
T→∞

lim
γ→∞

γ−1 logP�network overflow time ≤ T�X0 = 0�;

Fπ�v; κ� = − lim
T→∞

lim
γ→∞

γ−1 logP�overflow time of location v ≤ T�X0 = 0�:

It is easy to see that Fπ�κ� = minv∈VFπ�v; κ� whenever the above quantities
exist. A crude interpretation of the overflow exponent of the network is that
for fixed but large T, P (network overflow time ≤ T�X0 = 0� ≈ exp�−γFπ�κ��.
Note that larger values of the overflow exponent indicate larger overflow times.
The approach taken in this paper is to compare allocation policies based on

Fig. 1. Two load sharing networks of interest: (a) The single-location network, and (b) the W
network.
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the corresponding overflow exponents. The rest of this section states the main
results. We start with the two basic networks of Figure 1.

The single-location network. The single-location network of Figure 1a has
been studied extensively in the context of Erlang’s model for circuit switched
traffic. In particular, the following theorem can be obtained by applying the
results in Section 12 of Shwartz and Weiss (1995). Details of the proof are given
in Section 3, since the basic notation and concepts carry over to analysis of
more general network topologies.

Theorem 1.1 (Single Location). The overflow exponent of the single-
location network exists and is given by Hλ�1��0; κ�; where

Hλ�1��x;y� =
∫ y
x

max
(

0; log
(

z

λ�1�

))
dz; y ≥ x ≥ 0:

Intuitively, for x < y, Hλ�1��x;y� is a measure of how unlikely it is for the
normalized load, starting at level x, to reach level y within a fixed, long time
interval. Note that Hλ�1��x;y� = 0 for 0 ≤ x < y ≤ λ�1�, since such transition
is not a rare event in this case. The reader is referred to Shwartz and Weiss
(1995) for large deviations exponents for transitions within fixed time dura-
tion. Fairly explicit solutions for the extremization problem exist for the one-
dimensional systems. As described on page 267 of Shwartz and Weiss (1995),
the difference in overflow exponent forT finite is larger than for unconstrained
overflow time by a term asymptotically equivalent to �1 − λ�1�� exp�−T� [in
case λ�1� < κ = 1] as T → ∞. While the finite time calculations can proba-
bly be carried through for the W network considered here, for simplicity, we
concentrate on the unconstrained hitting time case.

The W network. In the W network of Figure 1b it is assumed without loss of
generality that λ�1� ≥ λ�3�. We first discuss two upper bounds on the network
overflow time which apply to any allocation policy and then provide three
theorems which identify the overflow exponents under the policies of interest.
The proofs of the theorems are the subjects of subsequent sections.

Stochastic ordering arguments provide the two upper bounds on the over-
flow time of the W network under any allocation policy.

1. The single-location bound: the load at location 1 is stochastically larger
than the load of a single-location network with demand γλ�1�. Hence the
overflow time of a single-location network with capacity �γκ� and demand
γλ�1� dominates the overflow time of location 1, which in turn dominates
the overflow time of the network.

2. Pooling bound: the network necessarily overflows if the total load exceeds
�2γκ�. Thus the overflow time of the network is dominated by the overflow
time of a single-location network with capacity �2γκ� and demand γ�λ�1�+
λ�2� + λ�3��.
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We now discuss the three policies, starting with some essential definitions:
for real x; a; b such that a ≤ b, let �x�ba denote the number in the interval �a; b�
that is closest to x. Let q�1� = λ�1� + pλ�2� and q�2� = λ�3� + �1 − p�λ�2�
where p ∈ �0;1� is chosen to minimize �q�1� − q�2��. More explicitly,

q�1� = ��λ�1� + λ�2� + λ�3��/2�λ�1�+λ�2�λ�1�

and

q�2� = ��λ�1� + λ�2� + λ�3��/2�λ�3�+λ�2�λ�3�

and p = ��λ�3� − λ�1� + λ�2��/2λ�2��10. The assumption λ�1� ≥ λ�3� implies
that q�1� ≥ q�2�.

Consider first the BS policy, under which each type 2 consumer is assigned
to location 1 with probability p, or to location 2 with probability �1−p�. The
load at each location v behaves as in a single-location network with demand
γq�v�, independent of the other location. In turn the overflow exponent of
each location can be obtained by appealing to the single-location result, and
the overflow exponent of the network is equal to that of the more heavily
loaded location 1.

Theorem 1.2 (BS). For v = 1;2, the overflow exponent of location v under
the BS policy exists and is given by FBS�v; κ� = Hq�v��0; κ�. In particular

FBS�κ� =Hq�1��0; κ�.

As for the BS policy, the network load under the OR policy can be repre-
sented in terms of single-location loads. Under the OR policy, network overflow
occurs at the first time that one of the following three happens: the number of
type 1 consumers exceeds �γκ�, the number of type 3 consumers exceeds �γκ�,
or the total number of consumers exceeds 2�γκ�. The following theorem holds.

Theorem 1.3 (OR). The network overflow exponent under the OR policy
is given by FOR�κ� = min�Hλ�1��0; κ�;Hλ�3��0; κ�;Hλ�1�+λ�2�+λ�3��0;2κ��, or
equivalently [using the assumption λ�1� ≥ λ�3�],

FOR�κ� = FOR�1; κ� =
{
Hλ�1�+λ�2�+λ�3��0;2κ�; if κ ≤ κo;
Hλ�1��0; κ�; if κ > κo,

where κo is the larger root of κo = κo log�κoλ�1�/q�1�q�2�� + λ�2� + λ�3�. Also,

FOR�2; κ� = min
{
Hλ�3��0; κ�;min�Hλ�1��0; a� +Hλ�2��0; b� +Hλ�3��0; c�x

a; b; c ≥ 0; b+ c ≥ κ; a+ b+ c ≥ 2κ�
}
:

The overflow exponents under the LLR policy are identified by the following
theorem, for which we provide somewhat detailed comments. For simplicity,
it is assumed that if the locations are equally loaded, an arriving type 2 con-
sumer is assigned to location 1.
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Theorem 1.4 (LLR). For v = 1;2, the overflow exponent of location v under
the LLR policy exists and is given by

FLLR�v; κ� =





Hq�1��0; κ� +Hq�2��0; κ�; if κ ≤ κ∗�v�;
Hq�1��0; κ∗�v�� +Hq�2��0; κ∗�v��
+Hλ�2v−1��κ∗�v�; κ�; if κ > κ∗�v�;

where κ∗�v� = q�1�q�2�/λ�2v− 1�. In particular FLLR�κ� = FLLR�1; κ�, which
can also be expressed as

FLLR�κ� =
{
Hλ�1�+λ�2�+λ�3��0;2κ�; if κ ≤ κ∗�1�;
Hλ�1�+λ�2�+λ�3��0;2κ∗�1�� +Hλ�1��κ∗�1�; κ�; if κ > κ∗�1�:

Remark 1.1. To see the equivalence of the two expressions for FLLR�κ�,
note that (i) if q�1� = q�2� then Hq�1��0; κ�+Hq�2��0; κ� =Hλ�1�+λ�2�+λ�3��0;2κ�
for all κ, and (ii) if q�1� > q�2� then λ�1� = q�1� > q�2� = κ∗�1�, hence
Hq�1��0; κ� +Hq�2��0; κ� = Hλ�1�+λ�2�+λ�3��0;2κ� = 0 whenever κ ≤ κ∗�1�, so
that FLLR�κ� = FLLR�1; κ� =Hλ�1��0; κ� for all κ.

Here we give an intuitive explanation for the formulas appearing in The-
orem 1.4. In the present and the next paragraphs, the “load” at a location
is understood to be the normalized load for some suitably large value of γ.
Focusing first on location v = 1, refer to Figure 2 which pictures the ex-
tremal trajectories of the limiting scaled load �φ�1�; φ�2�� associated with
Theorem 1.4 for v = 1. Consider first the case q�1� = q�2�. If κ ≤ q�1� = q�2�,
then FLLR�1; κ� = 0, which is expected since overflow of location 1 is not a
rare event for such κ. If q�1� = q�2� < κ ≤ κ∗�1�, then overflow in loca-
tion 1 typically occurs because the whole network becomes overloaded, and
both locations maintain roughly equal loads. For larger values of κ, the most
likely scenario is that first the loads at the two locations together build up
to level κ∗�1�, and then the load at location 1 continues to grow to level κ.
The given value of κ∗�1� minimizes the expression for FLLR�1; κ�. Finally, con-
sider the case that q�1� > q�2�. Then FLLR�1; κ� = Hλ�1��0; κ� as explained
in Remark 1.1, and the typical scenario for overflow of location 1 is that the
load at location 1 reaches κ, while the load at location 2 relaxes towards its
mean q�2�.

Now focusing on location 2, let us give an intuitive explanation for the ex-
pression for the overflow exponentFLLR�2; κ�. Consult Figure 3. If q�1� = q�2�,
the explanation is similar to that for FLLR�1; κ�, so assume that q�1� > q�2�.
If κ ≤ q�2� then FLLR�2; κ� = 0, since for such κ network overflow is not a rare
event. If q�2� < κ ≤ q�1�, then the load at location 2 can grow to level κ, while,
even without any large deviation occurring at location 1, all type 2 arrivals
are assigned to location 2. Thus, it makes sense that FLLR�2; κ� =Hq�2��0; κ�
for such values of κ. Finally, if κ > q�1� > q�2�, as the load at location 2 begins
to build beyond q�2�, the load at location 1 begins to build beyond q�1�, even
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Fig. 2. The most likely scenario for the overflow of location 1 of the W network under the LLR
policy, for the cases (a) q�1� = q�2�, (b) q�1� > q�2�.

though the two loads are not equal. In that way, all type 2 consumers are as-
signed to location 2, even after the load at location 2 exceeds q�1�. Eventually
the loads at the two locations simultaneously become approximately equal to
κ ∧ κ∗�2�. If κ > κ∗�2�, then the load at location 2 unilaterally continues to
increase to level κ. It is interesting to note that the initial segments of the
most likely trajectories depend on κ as κ ranges over κ > q�1� > q�2�, as
illustrated by the multiple trajectories in Figure 3b.

As a numerical example to compare the three policies, consider the W net-
work with demand λ = �1− α;2α;1− α� where 0 ≤ α ≤ 1. The network over-
flow exponents under the three policies are plotted in Figure 4, along with the
single-location and pooling upper bounds, for the case α = 0:5. The OR policy
employs the tightest possible control, hence the network overflow time under

Fig. 3. The most likely scenario for the overflow of location 2 of the W network under the LLR
policy, for the cases (a) q�1� = q�2�, (b) q�1� > q�2�.
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Fig. 4. The network overflow exponents of the three policies, along with the single-location and
pooling bounds, for α = 0:5.

OR dominates the network overflow time under any allocation policy. Further-
more, in the W network, FOR�κ� is equal to the smaller of the single-location
and pooling bounds. From a practical point of view the OR policy has draw-
backs such as high computational complexity and the required repacking of
consumers. For the values of κ ≤ κ∗�1�, the simple, nonrepacking LLR policy
performs as well as any other policy, in the sense that FLLR�κ� = FOR�κ�. For
larger values of κ, the nonrepacking nature of LLR reveals itself, and LLR
is outperformed by OR. The BS policy only exerts open-loop control, and its
performance is significantly worse than the LLR policy for the whole range of
capacities as illustrated in Figure 4.

Consider also the dependence of FLLR�κ� on α, illustrated in Figure 5.
Larger values of α correspond to increased load sharing capability of the net-
work for the same total demand, so it is not surprising that FLLR�κ� is in-
creasing in α. Note that when α = 0 and α = 1, FLLR�κ� achieves respectively
the single-location and pooling bounds.

Networks with arbitrary topologies. We next consider the overflow expo-
nents of networks with arbitrary topologies under the three policies. Some
definitions are in order: let a load sharing network �U;V;N� and a demand
vector λ be given. An assignment a, given by �au; vx u ∈ U;v ∈ V�, is said
to be admissible if a ≥ 0 and au; v = 0 whenever v 6∈ N�u�. An admissible
assignment a satisfies demand λ if

∑
v au; v = λ�u� for all u ∈ U. The load at

location v ∈ V corresponding to assignment a is given by q�v� =∑u au; v, and
q = �q�v�x v ∈ V� is called the load vector. By Lemma 2.1 of Alanyali and
Hajek (1997a), there exists an admissible assignment satisfying the demand
λ which minimizes

∑
v∈V�q�v��2, and all such assignments yield the same bal-

anced load vector. By Corollary 3 of Hajek (1990) the balanced load vector
minimizes maxv q�v� over admissible assignments satisfying λ. In what fol-
lows, let q denote the balanced load vector and a denote an assignment with
load q.
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Fig. 5. FLLR�κ� for several values of α.

The BS policy assigns each type u consumer to location v ∈N�u� with prob-
ability au; v/λ�u�, so that the load at each location v behaves as an independent
single-location network load with demand γq�v�. By changing notation to ac-
count for an arbitrary number of locations, the proof of Theorem 1.2 can be
generalized to yield the following theorem.

Theorem 1.5 (BS). For v ∈ V, the overflow exponent of location v under
the BS policy exists and is given by FBS�v; κ� = Hq�v��0; κ�. In particular

FBS�κ� = min�Hq�v��0; κ�x v ∈ V�.

To analyze the OR policy in general networks, let Lt�u� denote the number
of type u consumers in the network at time t, and define Lt = �Lt�u�x u ∈ U�.
The network overflow time is the first time t such that there is a subset A
of locations such that

∑
ux N�u�⊂ALt�u� > �γκ��A� [see Corollary 7 of Hajek

(1990)]. Therefore, just changing the notation in the proof of Theorem 1.2 to
account for an arbitrary number of locations yields the following theorem.

Theorem 1.6 (OR). The network overflow exponent under the OR policy is
given by

FOR�κ� = min
A⊂V

Hλ�A��0; κ�A��

where λ�A� =∑uxN�u�⊂A λ�u�.

Except for simple network topologies such as the W network, the load pro-
cess under the LLR policy has discontinuous statistics along complicated ge-
ometries. Due to this, establishing explicit large deviations principles for ar-
bitrary load sharing networks appears difficult. Nevertheless, the form of the
overflow exponents provided by Theorem 1.4, together with the extremal paths
of Figures 2 and 3 suggest the following conjecture.
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Conjecture 1.1. For each v ∈ V and κ ≥ 0, FLLR�v; κ� can be identified
as follows: let S range over the set of set-valued functions of the form S =
�S�x�x 0 ≤ x ≤ κ�, where v ⊂ S�x� ⊂ V for 0 ≤ x ≤ κ, and S�x� ⊂ S�x′� for
x ≥ x′. Associated with each such S and 0 ≤ x ≤ κ, let R�x� = �u ∈ UxN�u� ⊂
S�x� ∪ �v′x q�v′� > x��, and let �q�v′; x�x v′ ∈ S�x�� denote the balanced load
vector in the subnetwork �R�x�; S�x�;N�x�� with demand �λ�u�x u ∈ R�x��,
where N�x;u� =N�u� ∩S�x� for u ∈ R�x�. Then

FLLR�v; κ� = inf
S

∫ κ
0

∑

v′∈S�x�
max

(
0; log

(
x

q�v′; x�

))
dx:

An intuitive justification of the conjecture is as follows. The set S�x� de-
notes the set of locations with load that would increase to at least level x.
The set R�x� is the set of consumer types which would have exceptionally
large numbers of arrivals and small numbers of departures in order to cause
the load at locations in S�x� to grow beyond x. The quantity q�v′; x� is the
nominal arrival rate at location v′ at the time the load at v′ crosses level x.
The conjecture is consistent with Theorem 1.4.

The rest of the paper is organized as follows: Section 2 consists of the basic
definitions regarding the techniques employed in the analysis, namely the
theory of large deviations. Theorem 1.1 regarding the single-location network
is proved in Section 3, and Theorems 1.2–1.4 regarding the W network are
proved in Section 4. A large deviations principle for the W network under the
LLR policy is stated as a proposition in Section 4 and is proved in Section 5.

2. Definitions. Given a positive integer d; let Rd denote the d-
dimensional Euclidean space. A collection ν = �ν�x�x x ∈ Rd� is called a
rate-measure field if for each x, ν�x� = ν�x; ·� is a positive Borel measure on
Rd and supx ν�x;Rd� < ∞. For each positive scalar γ, a right continuous
Markov jump process Xγ is said to be generated by the pair �γ; ν� if given
its value at time t, the process Xγ jumps after a random time exponentially
distributed with parameter γν�Xγ

t ;R
d�, and the jump size is a random vari-

able 1 where γ1 has distribution ν�Xγ
t �/ν�Xγ

t ;R
d�, independent of the past

history. The polygonal interpolation of the process Xγ, X̃γ, is defined as

X̃
γ
t =

t− τk
τk+1 − τk

Xγ
τk+1
+ τk+1 − t
τk+1 − τk

Xγ
τk
; τk ≤ t ≤ τk+1;

where τk is the kth jump time of Xγ. Since Xγ has a finite number of jumps
in bounded time intervals, X̃γ has sample paths in C�0;∞��Rd�, the space of
continuous functions φx �0;∞� → Rd with the topology of uniform convergence
on compact sets.

The following are some standard definitions of large deviations theory. Let
X be a topological space and let Zγ denote a X -valued random variable for
each γ > 0. The sequence �Zγx γ > 0� is said to satisfy the large deviations
principle with rate function 0x X → R+ ∪ �∞� if 0 is lower semicontinuous,
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and for any Borel measurable S ⊂ X ,

lim sup
γ→∞

γ−1 logP�Zγ ∈ S� ≤ − inf
z∈S

0�z�;

lim inf
γ→∞

γ−1 logP�Zγ ∈ S� ≥ − inf
z∈So

0�z�;

where S and So denote respectively the closure and the interior of S. The rate
function 0 is called good if for each l ≥ 0 the level set �zx 0�z� ≤ l� is compact.

The large deviations principles stated in this paper are for X of the follow-
ing form. It is a space of continuous functions on �0;T� with values in some
subset D of a finite-dimensional Euclidean space, X = C�0;T��D�, with topol-
ogy given by the sup norm. The corresponding rate functions depend on T,
but for brevity the letter “T” is suppressed from the notation.

We use the notation a ∨ b (respectively, a ∧ b) to denote max�a; b� [respec-
tively, min�a; b�], and IA to denote the indicator function of a set A.

3. The single-location network. This section presents the proof of The-
orem 1.1. The essential ingredient of the proof is Lemma 3.1 which establishes
a large deviations principle for the load process. In view of Lemma 3.1 the proof
of Theorem 1.1 hinges on the solution of a variational optimization problem
which is provided by Lemma 3.4.

The normalized load process Xγ, defined as Xγ = γ−1X, is a Markov jump
process which takes values in R+ with initial value xγ, such that γxγ is a
nonnegative integer. It is generated by the pair �γ; ν�, where for each x ∈ R+,
ν�x; �1�� = λ�1�, ν�x; �−1�� = x and ν�x; �1;−1�c� = 0. Note that γν�x; �1��
and γν�x; �−1�� are, respectively, the consumer arrival and departure rates
when the normalized load is x. The polygonal interpolation of the normalized
load process, X̃γ, satisfies a large deviations principle as identified by the
following lemma. The lemma is a slight variation of the results in Section
12 of Shwartz and Weiss (1995) which assume a bounded state space, and it
follows by taking λ�2� = 0 in Lemma 4.2. Its proof is therefore omitted.

Lemma 3.1. Suppose limγ→∞ x
γ = xo for some xo ∈ R+. Then the sequence

�X̃γx γ > 0� satisfies the large deviations principle in C�0;T��R+� with the good
rate function 0λ�1��·; xo�, where for each φ ∈ C�0;T��R+� and x ∈ R+,

0λ�1��φ;x�=





∫ T
0
3λ�1��φt; φ̇t�dt; if φ0=x and φ is absolutely continuous,

+∞; otherwise,

and

3λ�1��φt; φ̇t� = φ̇t log

(
φ̇t +

√
φ̇2
t + 4λ�1�φt

2λ�1�

)
+φt + λ�1� −

√
φ̇2
t + 4λ�1�φt:



LARGE DEVIATIONS IN NETWORKS 77

The parameter T is fixed in the above lemma. In solving the variational
problem associated with Theorem 1.1, the parameter T is allowed to be ar-
bitrarily large. Intuitively, the solution functions φ are not time constrained
in the large T limit, and the slopes of the functions can be choosen to mini-
mize the total cost of traversing from one point to another, when time is not
constrained. The next two remarks discuss the optimal slopes when traveling
towards, respectively, away from the stable point λ�1�.

Remark 3.1. For fixed λ�1� and φt, the function 3λ�1��φt; φ̇t� is a strictly
convex, nonnegative function of φ̇t. Furthermore 3λ�1��φt; φ̇t� = 0 if and only
if φ̇t = λ�1� −φt, in which case we say that φ relaxes under λ�1�.

Remark 3.2. If �λ�1�−φt�φ̇t < 0 then 3λ�1��φt; φ̇t� ≥ inf α>0 3λ�1��φt; αφ̇t�/
α = φ̇t log�φt/λ�1��. The equality holds if and only if φ̇t = φt − λ�1�, in which
case we say that φ relaxes in reverse time under λ�1�. [Intuitively, this means
that if φt is moving away from the point of attraction λ�1� with no constraint
on time, then the optimal slope is φt − λ�1�. This is to be expected, as the
terminology suggests, due to Remark 3.1 and the time reversibility of X̃γ.]
Thus, for absolutely continuous φ with φ0 < φT,

∫ T
0
3λ�1��φt; φ̇t�dt ≥

∫ T
0
φ̇t log

(
φt
λ�1�

)
I�φ̇t>0; φt>λ�1�� dt

≥
∫ φT
φ0

max
(

0; log
(

x

λ�1�

))
dx;

and therefore 0λ�1��φ;φ0� ≥ Hλ�1��φ0; φT�. If also φ0 > λ�1�, then equality
holds if and only if φ relaxes in reverse time under λ�1�.

Lemma 3.2. For each x≥0, y∈R and ε>0, 3λ�1��x+ ε; y�≤3λ�1��x;y�+ ε.

Proof. The lemma follows by the fact that for all x ≥ 0 and y ∈ R,

∂3λ�1��x;y�
∂x

= 1− 2λ�1�
y+

√
y2 + 4λ�1�x

≤ 1: 2

Lemma 3.3. For each 0 ≤ x ≤ y and T ≥ 0,

inf
{
0λ�1��φ;x�x φ0 = x; sup

0≤t≤T
φt > y

}

= inf
{
0λ�1��φ;x�x φ0 = x; sup

0≤t≤T
φt ≥ y

}
:



78 M. ALANYALI AND B. HAJEK

Proof. To prove the lemma, it suffices to show that

inf
{
0λ�1��φ;x�x φ0 = x; sup

0≤t≤T
φt > y

}

≤ inf
{
0λ�1��φ;x�x φ0 = x; sup

0≤t≤T
φt ≥ y

}
:

(3.1)

Fix ε > 0. By the goodness of 0λ�1��·; x� there exists a solution φ to the
right-hand side of inequality (3.1), and clearly 0λ�1��φ;x� is finite. Set M =
sup0≤t≤T φt < ∞, and choose B large enough so that inf 0≤z≤M 3λ�1��z; φ̇t� >
0λ�1��φ;x�/T whenever φ̇t > B, and such that the set S = �t ∈ �0;T�x φ̇t ≤ B�
has positive measure. (For example, if φ̇ is bounded, B can be taken so that
φ̇t ≤ B for 0 ≤ t ≤ T.) Then ξ ∈ C�0;T��R+� defined by ξ0 = φ0 and
ξ̇t = φ̇t + εI�t∈S� satisfies sup0≤t≤T ξt > y. Lemma 3.2 and the fact that
∂3λ�1��φt; y�/∂y is bounded on S imply that 0λ�1��ξ; x� ≤ 0λ�1��φ;x� + f�ε�
for some f�ε� → 0 as ε→ 0. The arbitrariness of ε > 0 proves the lemma. 2

Each of the previous lemmas concerned a fixed value of T, whereas the next
lemma involves all values of T.

Lemma 3.4. For each 0 ≤ x ≤ y,

inf
{
0λ�1��φ;x�x T ≥ 0; φ ∈ C�0;T��R+�; φ0 = x; sup

0≤t≤T
φt ≥ y

}

=Hλ�1��x;y�:
(3.2)

Proof. By the nonnegativity of 3λ�1�, it suffices to show that

inf
{
0λ�1��φ;x�x T ≥ 0; φ ∈ C�0;T��R+�; φ0 = x;φT = y

}
=Hλ�1��x;y�:

Consider the following three cases:

Case 1. x ≤ y < λ�1�. There exists a T ≥ 0 and φ ∈ C�0;T��R+� such that
φ0 = x, φT = y, and φ relaxes under λ�1�. By Remark 3.1, 0λ�1��φ;x� =
Hλ�1��x;y� = 0. The nonnegativity of 0λ�1� implies equality (3.2).

Case 2. λ�1� < x ≤ y. There exists T ≥ 0 and a φ ∈ C�0;T��R+� such that
φ0 = x, φT = y, and φ relaxes in reverse time under λ�1�. Remark 3.2 implies
equality (3.2).

Case 3. x ≤ λ�1� ≤ y. Fix ε > 0. Note that the nonnegativity of 3λ�1�
and Remark 3.2 imply that the left-hand side of (3.2) is bounded below by
Hλ�1��λ�1�; y� = Hλ�1��x;y�. The lemma is established by constructing T ≥ 0
and φ ∈ C�0;T��R+� such that 0λ�1��φ;x� is arbitrarily close to Hλ�1��x;y�. Set
φ0 = x, and let φ relax under λ�1� until it reaches level x ∨ �λ�1� − ε�, then
satisfy φ̇t = �y∧�λ�1�+ε�−x∨�λ�1�−ε��/ε until it reaches level y∧�λ�1�+ε�;
from then on relax in reverse time under λ�1� until time T such that φT = y.
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By Remarks 3.1 and 3.2, 0λ�1��φ;x� =Hλ�1��y∧ �λ�1� + ε�; y� + f�ε� for some
f�ε� → 0 as ε → 0. The arbitrariness of ε > 0 and continuity of Hλ�1� imply
inequality (3.2). 2

Proof of Theorem 1.1. The fact
{

sup
0≤t≤T

X̃
γ
t − γ−1 > κ

}
⊂
{
overflow time ≤ T

}
⊂
{

sup
0≤t≤T

X̃
γ
t + γ−1 ≥ κ

}
;

together with Lemma 3.1 and the exponential equivalence of �X̃γ−γ−1x γ > 0�
and �X̃γ + γ−1x γ > 0�, implies that for fixed T,

lim sup
γ→∞

γ−1 log P�overflow time ≤ T�X0 = 0�

≤ − inf
{
0λ�1��φ;0�x sup

0≤t≤T
φt ≥ κ

}
;

lim inf
γ→∞

γ−1 logP�overflow time ≤ T�X0 = 0�

≥ − inf

{
0λ�1��φ;0�x sup

0≤t≤T
φt > κ

}
:

By Lemma 3.3, limγ→∞ γ
−1 logP (overflow time ≤ T�X0 = 0) exists; in turn

Lemma 3.4 implies that limT→∞ limγ→∞ γ
−1 logP (overflow time ≤ T�X0 =

0� = −Hλ�1��0; κ�. This establishes the theorem. 2

We close this section with another result about 3λ�x;y�, which is used in
Section 4.3.

Lemma 3.5. For any positive integer d, x ∈ Rd
+, y ∈ Rd, and positive α ∈

Rd
+,

d∑
u=1

3α�u��x�u�; y�u�� ≥ 3∑d
u=1 α�u�

( d∑
u=1

x�u�;
d∑
u=1

y�u�
)
:

Proof. Note that σ3α�x;y� = 3σα (σx, σy� for σ > 0, and that
3∑d

u=1 α�u��·; ·� is convex on R+ × R, as can be verified by checking that
the Hessian matrix is positive semidefinite. Therefore

d∑
u=1

3α�u��x�u�; y�u�� =
d∑
u=1

α�u�
∑d
w=1 α�w�

3∑d
w=1 α�w�

×
(∑d

w=1 α�w�
α�u� x�u�;

∑d
w=1 α�w�
α�u� y�u�

)

≥ 3∑d
u=1 α�u�

( d∑
u=1

x�u�;
d∑
u=1

y�u�
)
;

and the lemma follows. 2
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4. The W network. This section consists of the proofs of Theorems 1.2–
1.4. A large deviations principle is established for each of the policies, and in
the case of BS and LLR a variational optimization problem is solved to yield
the desired conclusions.

4.1. Bernoulli splitting. The Bernoulli Splitting (BS) policy is to assign
each type 2 consumer to location 1 with probability p = ��λ�3� − λ�1� +
λ�2��/2λ�2��10, or to location 2 with probability 1 − p, independently of the
past history. Thus under the BS policy, X�1� and X�2� are independent single-
location network loads with respective demands γq�1� and γq�2�.

Let X̃γ denote the polygonal interpolation of the normalized load process
Xγ with X̃γ

0 = xγ, where γxγ ∈ Z2
+ and limγ→0 x

γ = xo for some xo. Note that
the processes X̃γ�1� and X̃γ�2� are independent and each satisfies a large
deviations principle in the complete separable metric space C�0;T��R+� with a
good rate function, therefore X̃γ = �X̃γ�1�; X̃γ�2�� satisfies a large deviations
principle in the product space with the good rate function given by the sum of
individual rate functions [see Theorems 4.1.18 and 4.1.11, Lemma 1.2.18 and
Exercise 4.1.10 of Dembo and Zeitouni (1992)].

Lemma 4.1. The sequence �X̃γx γ > 0� satisfies a large deviations princi-
ple in C�0;T��R2

+� with the good rate function 0BS�·; xo�, where for each φ ∈
C�0;T��R2

+� and x ∈ R2
+, 0BS�φ;x� = 0q�1��φ�1�; x�1�� + 0q�2��φ�2�; x�2��.

The next lemma gives the solution of a variational optimization problem
associated with the overflow of each location. For κ ≥ 0 and v = 1;2; define
the set ��v; κ� by the disjoint union

��v; κ� =
⋃
T≥0

� φ ∈ C�0;T��R2
+�x φ0 = 0; sup

0≤t≤T
φt�v� ≥ κ �:

The overflow exponents for the BS policy are each given by an infimum over
a set of pairs �T;φ� such that T ≥ 0 and φ is a function on �0;T�. (A similar
situation arose in the proof of Theorem 1.1; in particular see Lemma 3.4).
For brevity of notation, we write this as an infimum over ��v; κ�, with the
following understanding: associated with each φ ∈ ��v; κ�, there is a value of
T, and the quantity 0BS�φ;0� is understood to mean the rate function for BS
with initial state 0 and time interval �0;T�, evaluated at φ.

Lemma 4.2. For each κ ≥ 0 and v = 1;2, inf�0BS�φ;0�x φ ∈ ��v; κ�� =
Hq�v��0; κ�.

Proof. The same proof applies for both locations; therefore only location
v = 1 is considered. If φ ∈ ��1; κ�, then φτ�1� = κ for some τ ≥ 0, so the
definition of 0BS and Lemma 3.4 imply that 0BS�φ;0� ≥ Hq�1��0; κ�. Thus
inf�0BS�φ;0�x φ ∈ ��1; κ�� ≥Hq�1��0; κ�. The proof is completed by construct-
ing a φ ∈ ��1; κ� such that 0BS�φ;0� is arbitrarily close to Hq�1��0; κ�: fix
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ε > 0 and appeal to Lemma 3.4 to choose T ≥ 0 and φ�1� ∈ C�0;T��R+�
such that φ0�1� = 0, φT�1� = κ and 0q�1��φ�1�;0� ≤ Hq�1��0; κ� + ε. Let
φ�2� ∈ C�0;T��R+� be such that φ0�2� = 0 and φ�2� relaxes under q�2�. Note
that φ = �φ�1�; φ�2�� ∈ ��1; κ� and 0BS�φ;0� ≤ Hq�1��0; κ� + ε. The lemma
follows by the arbitrariness of ε > 0. 2

Proof of Theorem 1.2. The proof of Theorem 1.1, with Lemmas 4.1 and
4.2 in place of Lemmas 3.1 and 3.4, respectively, and an adaptation of Lemma
3.3, applied separately on each location v, establishes the existence and the
desired form of FBS�v; κ�. The fact that Hq�1��0; κ� ≤ Hq�2��0; κ� implies
FBS�κ� = FBS�1; κ�. 2

4.2. Optimal repacking. The Optimal Repacking (OR) policy is to contin-
uously rearrange the consumers in the network so as to minimize the max-
imum load in the network subject to the neighborhood constraints. For each
type u ∈ U, let Lt�u� continue to denote the number of type u consumers in
the network at time t. Theorem 1.3 is proved in this section, and then a large
deviations principle for the network load under the OR policy is given.

Proof of Theorem 1.3. Note that L�1�, L�3� and L�1�+L�2�+L�3� rep-
resent the loads for three single-location networks, with respective demands
γλ�1�, γλ�3� and γ�λ�1� + λ�2� + λ�3��. If the designated capacities of these
three single-location networks are �γκ�, �γκ�, and 2�γκ�, respectively, then, by
Theorem 1.1, the network overflow exponents are Hλ�1��0; κ�, Hλ�3��0; κ� and
Hλ�1�+λ�2�+λ�3��0;2κ�, respectively. The overflow time for the original network
under the OR strategy is the minimum of the overflow times for these three
single location networks. Thus, for any T > 0, the probability the overflow
time of the original network is in �0;T� is sandwiched between the maximum
and the sum of the corresponding probabilities for the three single-location
networks. Thus, the overflow exponent FOR�κ� = FOR�1; κ� is given as in The-
orem 1.3.

Under the OR policy, the value of the load at time t is nearly determined
by Lt = �Lt�1�;Lt�2�;Lt�3��. In particular, �Xt�v� −m�Lt; v�� < 1 for each v,
where the mapping mx R3

+→ R2
+ is defined by the relations

m�Lt;1� = ��Lt�1� +Lt�2� +Lt�3��/2�
Lt�1�+Lt�2�
Lt�1� ;

m�Lt;2� = ��Lt�1� +Lt�2� +Lt�3��/2�
Lt�3�+Lt�2�
Lt�3� :

The vector m�Lt� = �m�Lt;1�;m�Lt;2�� is the load vector that would result
at time t under the OR policy if the integer constraint on load is dropped (i.e.,
if the load of a consumer could be split between the two locations). Note also
that m�Lt;2� > �κγ� if and only if Lt�3� > �κγ� or (Lt�2� + Lt�3� > �κγ�
and Lt�1� + Lt�2� + Lt�3� ≥ 2�κγ�). Assume that limγ→∞ L0/γ = lo for
some lo ∈ R3

+. Let L̃γ denote the polygonal interpolation of the scaled pro-
cess γ−1L. By Lemma 3.1, the independent load processes L̃γ�1�; L̃γ�2� and
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L̃γ�3� satisfy large deviation principles in C�0;T��R+� with good rate func-
tions 0λ�1��·; l�1��; 0λ�2��·; l�2�� and 0λ�3��·; l�3��, respectively. Therefore the
sequence �L̃γx γ > 0� satisfies the large deviations principle in C�0;T��R3

+�
with the good rate function 0̂�·; l�, where for each ξ ∈ C�0;T��R3

+� and l ∈ R3
+,

0̂�ξ; l� = 0λ�1��ξ�1�; l�1�� + 0λ�2��ξ�2�, l�2�� + 0λ�3��ξ�3�; l�3��. By the observa-
tion at the end of the previous paragraph, and an adaption of Lemma 3.3,
limγ→∞ γ

−1 logP (location 2 overflow time ≤ T�X0 = 0) exists and is given by

inf
{
0̂�ξ;0�x ξt�3� ≥ κ or �ξt�2� + ξt�3� ≥ κ and ξt�1� + ξt�2� + ξt�3� ≥ 2κ�

for some t ∈ �0;T�
}
:

The expression for FOR�2; κ� given in Theorem 1.3 follows, so that Theorem
1.3 is proved. 2

For completeness, we state a large deviations principle for the load process
for the original network under the OR policy.

Proposition 4.1. Define the mapping M x C�0;T��R3
+� → C�0;T��R2

+� by
M �ξ�t = m�ξt�; 0 ≤ t ≤ T, and assume that limγ→∞ L0 = lo for some lo. The

sequence �X̃γx γ > 0� satisfies a large deviations principle in C�0;T��R2
+� with

the good rate function 0OR�·; lo� where for each φ ∈ C�0;T��R2
+� and l ∈ R3

+,

0OR�φ; l� = inf
ξ∈C�0;T��R3

+�;
M �ξ�=φ; ξ0=l

�0λ�1��ξ�1�; l�1�� + 0λ�2��ξ�2�; l�2�� + 0λ�3��ξ�3�; l�3���

with the understanding that the infimum over an empty set equals +∞.

Proof. The sequences �X̃γx γ > 0� and �M �L̃γ�x γ > 0� are exponentially
equivalent, so it suffices to establish the desired large deviations principle for
�M �L̃γ�x γ > 0� [see Theorem 4.2.13 of Dembo and Zeitouni (1992)]. Continuity
of the mapping M , and the contraction principle [Theorem 4.2.1 of Dembo and
Zeitouni (1992)] imply the proposition. 2

4.3. Least load routing. The least load routing (LLR) policy is to assign
each new consumer to an admissible location that has the least load within
its associated neighborhood. In the W network of Figure 1b, we assume that
when both locations have the same load the assignment decision is made in
favor of location 1. The normalized load process, Xγ, is a Markov jump process
which takes values in R2

+. The process Xγ has jumps of magnitude γ−1 in the
four directions e+1 = �1;0�, e+2 = �0;1�, e−1 = �−1;0�, e−2 = �0;−1�, and is
generated by the pair �γ; ν� where for each x ∈ R2

+,

ν�x; �e−1 �� = x�1�;
ν�x; �e−2 �� = x�2�;
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ν�x; �e+1 �� =
{
λ�1� + λ�2�; if x�1� ≤ x�2�;
λ�1�; if x�1� > x�2�;

ν�x; �e+2 �� =
{
λ�3�; if x�1� ≤ x�2�;
λ�3� + λ�2�; if x�1� > x�2�:

Let X̃γ denote the polygonal interpolation of Xγ, with X̃
γ
0 = xγ, where

γxγ ∈ Z2
+. The following proposition establishes a large deviations principle

for the network load under the LLR policy. The proof of the proposition can
be found in Section 5.

Proposition 4.2. Suppose limγ→∞ x
γ = xo for some xo. The sequence

�X̃γx γ > 0� satisfies the large deviations principle in C�0;T��R2
+� with the good

rate function 0LLR�·; xo�, where for each φ ∈ C�0;T��R2
+� and x ∈ R2

+,

0LLR�φ;x� =





∫ T
0
3�φt; φ̇t�dt; if φ0 = x and φ is absolutely continuous;

+∞; otherwise;

and 3 satisfies

3�φt; φ̇t� =





3λ�1��φt�1�; φ̇t�1�� + 3λ�2�+λ�3��φt�2�; φ̇t�2��; if φt�1� > φt�2�;

3q�1��φt�1�; φ̇t�1�� + 3q�2��φt�2�; φ̇t�2��; if φt�1� = φt�2�;

3λ�1�+λ�2��φt�1�; φ̇t�1�� + 3λ�3��φt�2�; φ̇t�2��; if φt�1� < φt�2�:

The following three lemmas provide the solutions of the two variational
optimization problems regarding the overflow of each location. In particular,
Lemma 4.3 concerns location 1 and Lemma 4.5 concerns location 2. Lem-
mas 4.3 and 4.5 differ since we have assumed that λ�1� ≥ λ�3�. Lemma 4.4
provides an auxiliary result that is used in the proof of Lemma 4.5.

Lemma 4.3. For each κ ≥ 0,

inf�0LLR�φ;0�x φ ∈ ��1; κ�� =Hλ�1�+λ�2�+λ�3��0;2�κ∗�1� ∧ κ��

+Hλ�1��κ∗�1� ∧ κ; κ�:

Proof. Given absolutely continuous φ ∈ ��1; κ�, let τ = inf�t ≥ 0x φt�1� =
κ� and τ′ = sup�t ≤ τx φt�1� = φt�2��. By the nonnegativity of 3,

0LLR�φ;0� ≥
∫ τ′

0
3�φt; φ̇t�dt+

∫ τ
τ′
3�φt; φ̇t�dt:
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Lemmas 3.4 and 3.5 can be used to bound the terms on the right-hand side as

∫ τ′

0
3�φt; φ̇t�dt ≥

∫ τ′

0
3λ�1�+λ�2�+λ�3��φt�1� +φt�2�; φ̇t�1� + φ̇t�2��dt

≥Hλ�1�+λ�2�+λ�3��0; φτ′�1� +φτ′�2��;
∫ τ
τ′
3�φt; φ̇t�dt ≥

∫ τ
τ′
3λ�1��φt�1�; φ̇t�1��dt

≥Hλ�1��φτ′�1�; κ�:

This, along with the observation φτ′�1� = φτ′�2�, implies

inf�0LLR�φ;0�x φ ∈ ��1; κ��
≥ inf

0≤s≤κ
� Hλ�1�+λ�2�+λ�3��0;2s� +Hλ�1��s; κ��

=Hλ�1�+λ�2�+λ�3��0;2�κ∗�1� ∧ κ�� +Hλ�1��κ∗�1� ∧ κ; κ�:
(4.1)

The proof is completed by constructing a function φ ∈ ��1; κ� such that
0LLR�φ;0� is arbitrarily close to the right-hand side of inequality (4.1). Fix
ε > 0 and consider the following two cases.

Case 1. q�1� = q�2�. Appeal to Lemma 3.4 to choose T ≥ 0 and φ�1� ∈
C�0;T��R+� such that φ0�1� = 0; φT�1� = κ∗�1� ∧ κ and 0q�1��φ�1�;0� ≤
Hq�1��0; κ∗�1� ∧ κ� + ε. Set φ = �φ�1�; φ�1��. If κ ≤ κ∗�1�, the construction
is complete and 0LLR�φ;0� ≤Hλ�1�+λ�2�+λ�3��0;2κ�+ 2ε. Else if κ > κ∗�1�, then
for some small δ < κ − κ∗�1�, extend φ further by setting φ̇t = �1;1� for
T ≤ t ≤ T+ δ [this insures that φT+δ > q�1�] and by letting φ�1� relax in re-
verse time under λ�1� and φ�2� relax under λ�2�+λ�3� forT+δ ≤ t ≤ T′, where
T′ is such that φT′�1� = κ. Note that φt�1� > φt�2� for T+ δ < t ≤ T′, hence
δ can be chosen small enough so that 0LLR�φ;0� ≤Hλ�1�+λ�2�+λ�3��0;2κ∗�1�� +
Hλ�1��κ∗�1�; κ� + 3ε.

Case 2. q�1� > q�2�. Note that in this case Remark 1.1 implies FLLR

�1; κ� = Hλ�1��0; κ�. Appeal to Lemma 3.4 to choose T ≥ 0 and φ�1� ∈
C�0;T��R+� so that φ0�1� = 0, φT�1� = κ, and 0λ�1��φ�1�;0� ≤ Hλ�1��0; κ� +
ε. Let φ�2� ∈ C�0;T��R+� be such that φ0�2� = 0 and φ�2� relaxes under
λ�2� + λ�3�. Set φ = �φ�1�; φ�2��. Note that φ�1� can be constructed as in
the proof of Lemma 3.4, so that φt�1� ≥ φt�2� for 0 ≤ t ≤ T, and therefore
0LLR�φ;0� ≤Hλ�1��0; κ� + ε.

Figure 2 sketches the function φ constructed above. The lemma follows by
the arbitrariness of ε > 0. 2

Lemma 4.4. For each s ≥ 0 and absolutely continuous φ ∈ C�0;T��R2
+� such

that φ0 = 0 and φT = �s; s�,
∫ T

0
3�φt; φ̇t�dt ≥Hq�1��0; s� +Hq�2��0; s�:
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Proof. It is convenient to use the representation

∫ T
0
3�φt; φ̇t�dt =

∫ T
0

(
3ρ�1;t��φt�1�; φ̇t�1�� + 3ρ�2;t��φt�2�; φ̇t�2��

)
dt;(4.2)

where

�ρ�1; t�; ρ�2; t�� =





�λ�1�; λ�2� + λ�3��; if φt�1� > φt�2�;
�q�1�; q�2��; if φt�1� = φt�2�;
�λ�1� + λ�2�; λ�3��; if φt�1� < φt�2�:

For each v = 1;2, define τ�v; x� = inf�t ≥ 0x φt�v� = x� for 0 ≤ x ≤ s
and define σt�v� = I�φ̇t�v�>0; φt�v�≥φz�v�;0≤z≤t� and φ∗t �v� = sup0≤z≤t φz�v� for
0 ≤ t ≤ T. Note that the function φ∗�v� is absolutely continuous, and

φ∗t �v� = φt�v�; φ̇∗t �v� = φ̇t�v� and τ�v;φ∗t �v�� = t
(4.3)

for almost all t such that σt�v� > 0.

Therefore if s ≥ q�v� then

∫ T
0
3ρ�v; t��φt�v�; φ̇t�v��dt ≥

∫ τ�v; s�
τ�v; q�v��

3ρ�v; t��φt�v�; φ̇t�v��dt

≥
∫ τ�v; s�
τ�v; q�v��

3ρ�v; t��φt�v�; φ̇t�v��σt�v�dt

=
∫ τ�v; s�
τ�v; q�v��

3ρ�v; τ�v;φ∗t �v����φ
∗
t �v�; φ̇∗t �v��σt�v�dt(4.4)

≥
∫ τ�v; s�
τ�v; q�v��

φ̇∗t �v� log
(

φ∗t �v�
ρ�v; τ�v;φ∗t �v���

)
σt�v�dt(4.5)

=
∫ τ�v; s�
τ�v; q�v��

φ̇∗t �v� log
(

φ∗t �v�
ρ�v; τ�v;φ∗t �v���

)
dt(4.6)

=
∫ s
q�v�

log
(

x

ρ�v; τ�v; x��

)
dx:(4.7)

Here equality (4.4) follows by the observation (4.4), inequality (4.5) is a conse-
quence of Remark 3.2, equality (4.6) is implied by the fact that φ̇∗t �v�σt�v� =
φ̇∗t �v� for almost all t, and equality (4.7) follows by a change of variables.
Inequality (4.7), together with representation (4.2) and the nonnegativity of
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3ρ�1; t� and 3ρ�2; t� imply

∫ T
0
3�φt; φ̇t�dt ≥

∫ s
q�1�∧s

log
(

x

ρ�1; τ�1; x��

)
dx

+
∫ s
q�2�∧s

log
(

x

ρ�2; τ�2; x��

)
dx

=
∫ q�1�∧s
q�2�∧s

log
(

x

ρ�2; τ�2; x��

)
dx

+
∫ s
q�1�∧s

log
(

x

ρ�1; τ�1; x��

)
+ log

(
x

ρ�2; τ�2; x��

)
dx:

(4.8)

We complete the proof by obtaining appropriate lower bounds for each of the
terms on the right-hand side of inequality (4.8). Note that if τ�1; x� = τ�2; x�,
then �ρ�1; τ�1; x��; ρ�2; τ�2; x��� = �q�1�; q�2��, else if τ�1; x� < τ�2; x�, then
ρ�1; τ�1; x�� = λ�1� and if τ�1; x� > τ�2; x� then ρ�2; τ�2; x�� = λ�3�. Therefore
�ρ�1; τ�1; x��; ρ�2; τ�2; x��� takes values in the set
{
�q�1�; q�2��; �λ�1�; q�2��; �λ�1�; λ�2� + λ�3��; �λ�1�; λ�3��; �q�1�; λ�3��;

�λ�1� + λ�2�; λ�3��
}
;

and a simple calculation yields

log
(

x

ρ�1; τ�1; x��

)
+ log

(
x

ρ�2; τ�2; x��

)
≥ log

(
x

q�1�

)
+ log

(
x

q�2�

)
;(4.9)

log
(

x

ρ�2; τ�2; x��

)
≥ log

(
x

λ�2� + λ�3�

)
:(4.10)

Since q�1� > q�2� implies λ�2� + λ�3� = q�2�, inequalities (4.9) and (4.10),
together with inequality (4.8) imply that

∫ T
0 3�φt; φ̇t�dt ≥ Hq�1��0; s� +

Hq�2��0; s�. This establishes the lemma. 2

Lemma 4.5. For each κ ≥ 0,

inf�0LLR�φ;0�x φ ∈ ��2; κ�� =Hq�1��0; κ∗�2� ∧ κ� +Hq�2��0; κ∗�2� ∧ κ�
+Hλ�3��κ∗�2� ∧ κ; κ�:

Proof. Given absolutely continuous φ ∈ ��2; κ�, let τ = inf�t ≥ 0x φt�2� =
κ� and τ′ = sup�t ≤ τx φt�1� = φt�2��. By the nonnegativity of 3,

0LLR�φ;0� ≥
∫ τ′

0
3�φt; φ̇t�dt+

∫ τ
τ′
3�φt; φ̇t�dt:

Lemmas 4.4 and 3.4 can be used to bound the terms on the right-hand side as
∫ τ′

0
3�φt; φ̇t�dt ≥Hq�1��0; φτ′�1�� +Hq�2��0; φτ′�2��;

∫ τ
τ′
3�φt; φ̇t�dt ≥Hλ�3��φτ′�2�; κ� ∧

(
Hλ�1��φτ′�1�; κ� +Hλ�2�+λ�3��φτ′�2�; κ�

)
:
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This, along with the observation φτ′�1� = φτ′�2�, implies

inf�0LLR�φ;0�x φ ∈ ��2; κ��

≥ inf
0≤s≤κ

{
Hq�1��0; s� +Hq�2��0; s�

+Hλ�3��s; κ� ∧
(
Hλ�1��s; κ� +Hλ�2�+λ�3��s; κ�

)}

=Hq�1��0; κ∗�2� ∧ κ� +Hq�2��0; κ∗�2� ∧ κ� +Hλ�3��κ∗�2� ∧ κ; κ�:

The proof is completed by constructing a function φ ∈ ��2; κ� such that
0LLR�φ;0� is arbitrarily close to the right-hand side of the above inequality.
Fix 0 < ε < 1 and consider the following three cases.

Case 1. κ < q�2�. Choose T ≥ 0 and φ ∈ C�0;T��R2
+� such that φ0 = 0, φ�1�

and φ�2� relax respectively under q�1� and q�2� so that φT = κ�q�1�/q�2�;1�.
Note that φt�1� = �q�1�/q�2��φt�2� for 0 ≤ t ≤ T, therefore 0LLR�φ;0� = 0.

Case 2. q�2� ≤ κ ≤ κ∗�2�. Let T > 0 and �φtx 0 ≤ t ≤ T� be constructed
as in Case 1 with κ = �1 − ε�q�2�. Extend φ by setting φ̇ = �κ ∨ q�1�; κ�
for T ≤ t ≤ T + ε. Note that φT+ε is on the line segment with end points
�q�1�; q�2�� and �κ ∨ q�1�; κ�. If κ = q�2� this completes the construction.
Else if κ > q�2�, extend φ further by letting φ�1� and φ�2� relax in reverse
time respectively under q�1� and q�2� so that φT′ = �κ ∨ q�1�; κ� for some
time T′ > T + ε. Note that in this case �φt�1� − q�1��/�φt�2� − q�2�� = �κ ∨
q�1� − q�1��/�κ − q�2�� for T + ε ≤ t ≤ T′, so that φ traces out the line
segment from φT+ε to φT′ and thus φt�1� > φt�2� for 0 < t < T′. Therefore
0LLR�φ;0� =Hq�1��0; κ� +Hq�2��0; κ� + f�ε� for some f�ε� → 0 as ε→ 0.

Case 3. κ > κ∗�2�. Let T > 0 and �φtx 0 ≤ t ≤ T� be constructed as in Case
2 with κ = κ∗�2�. Note that κ∗�2� > q�1� thus φT�1� = φT�2� = κ∗�2�. Extend
φ by letting φ�1� relax under λ�1�+λ�2� and φ�2� relax in reverse time under
λ�3� so that φT′�2� = κ at some time T′ > T. Note that �φt�1� −q�1���φt�2� −
q�2�� = �κ∗�2�−q�1���κ∗�2�−q�2�� and φt�2� > φt�1� for T < t ≤ T′, therefore
0LLR�φ;0� =Hq�1��0; κ∗�2�� +Hq�2��0; κ∗�2�� +Hλ�3��κ∗�2�; κ� +f�ε� for some
f�ε� → 0 as ε→ 0.

Figure 3 sketches the function φ constructed above. The arbitrariness of
ε > 0 establishes the lemma. 2

Proof of Theorem 1.4. The proof of Theorem 1.1, with Lemmas 4.2 and
4.3 (4.5) in place of Lemmas 3.1 and 3.4, respectively, and an adaptation of
Lemma 3.3, applied on location 1 (location 2) establishes the existence and
the desired form of FLLR�1; κ� [FLLR�2; κ�]. Since Hλ�1��0; κ� ≤Hλ�3��0; κ� and
κ∗�v� is minimizesHq�1��0; κ∗�v�∧κ�+Hq�2��0; κ∗�v�∧κ�+Hλ�2v−1��κ∗�v�∧κ; κ�
for each v = 1;2, it follows that FLLR�κ� = FLLR�1; κ� ≤ FLLR�2; κ�. 2

5. Large deviations principle for the W network under the LLR pol-
icy. This section proves Proposition 4.2, the large deviations principle satis-
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fied by the normalized load process Xγ under the LLR policy. The proof entails
an application of the theory of large deviations of Markov processes with dis-
continuous transition mechanisms [see Alanyali and Hajek (1998), Blinovskii
and Dobrushin (1994), Dupuis and Ellis (1995), Shwartz and Weiss (1995)].
The transition mechanism of Xγ changes smoothly in the two open halves of
R2
+ separated by the hyperplane �x ∈ R2x x�1� = x�2��, so that the process

Xγ nearly conforms to the conditions of Theorem 2.1 of Alanyali and Hajek
(1998). The theorem does not apply directly, however, because for v = 1;2
the log rates log�ν�x; e−v �� are neither bounded above (since ν�x; e−v � → ∞ as
x�v� → ∞), nor continuous and finite overR2

+ (since ν�x; e−v � → 0 as x�v� → 0).
We therefore establish Proposition 4.2 by approximating Xγ by a sequence of
auxiliary processes each of which conforms to the conditions of Theorem 2.1 of
Alanyali and Hajek (1998), and adapting the techniques used in Section 12.6
of Shwartz and Weiss (1995) for the one-dimensional Erlang model.

The outline the proof is as follows: Lemma 5.2 identifies the large devia-
tions principle satisfied by each auxiliary process. Lemma 5.6 establishes the
goodness of the rate function 0LLR�·; xo�. Based on a coupling of the auxiliary
processes with the load process, Lemmas 5.8 and 5.9 prove the large deviations
upper and lower bounds. We start with the following lemma.

Lemma 5.1. For x1; x2 ≥ 0, σ1; σ2 > 0, y ∈ R, and β ∈ �0;1�,

inf
y1∈R; y2∈R

βy1+�1−β�y2=y

� β3σ1
�x1; y1� + �1− β�3σ2

�x2; y2� �

= 3βσ1+�1−β�σ2
�βx1 + �1− β�x2; y�:

(5.1)

There exists a unique solution to the left-hand side of (5.1) which satisfies

y1 +
√
�y1�2 + 4σ1x1

2σ1
= y2 +

√
�y2�2 + 4σ2x2

2σ2
:(5.2)

Proof. The function β3σ1
�x1; y1�+�1−β�3σ2

�x2; �y−βy1�/�1−β�� → ∞
as �y1� → ∞, and is strictly convex in y1; it therefore achieves its minimum
at a unique stationary point, which satisfies equality (5.2) with y2 defined by
βy1 + �1 − β�y2 = y. The quantity on both sides of (5.2) is the nonnegative
root of the equation σvz

2 − yvz − xv = 0 for each v = 1;2. This quantity is
therefore equal to the nonnegative root of the equation �βσ1 + �1− β�σ2�z2 −
�βy1 + �1− β�y2�z− �βx1 + �1− β�x2� = 0, so that

y1 +
√
�y1�2 + 4σ1x1

2σ1
= y2 +

√
�y2�2 + 4σ2x2

2σ2

= y+
√
y2 + 4�βσ1 + �1− β�σ2��βx1 + �1− β�x2�

2�βσ1 + �1− β�σ2�
:

Equality (5.1) follows by direct substitution. 2
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Given 0 < ε ≤ 1, let Yγ; ε denote the Markov process generated by the pair
�γ; νε� where for each x ∈ R2,

νε�x; �e−1 �� = �x�1��1/εε ;

νε�x; �e+1 �� =
{
λ�1� + λ�2�; if x�1� ≤ x�2�;
λ�1�; if x�1� > x�2�;

νε�x; �e−2 �� = �x�2��1/εε ;

νε�x; �e+2 �� =
{
λ�3�; if x�1� ≤ x�2�;
λ�3� + λ�2�; if x�1� > x�2�;

and let Ỹγ; ε denote the polygonal interpolation of Yγ; ε. Suppose Ỹγ; ε
0 = xγ,

where �xγx γ > 0� is the sequence with limγ→∞ x
γ = xo associated with Propo-

sition 4.2.

Lemma 5.2. For each 0 < ε ≤ 1, the sequence �Ỹγ;εx γ > 0� satisfies the
large deviations principle in C�0;T��R2� with the good rate function 0ε�·; xo�,
where for each φ ∈ C�0;T��R2� and x ∈ R2,

0ε�φ;x� =





∫ T
0
3ε�φt; φ̇t�dt; if φ0 = x and φ is absolutely continuous;

+∞; otherwise,

and 3ε�φt; φ̇t� = 3��φt�1/εε ; φ̇t�.

Proof. Let Ao = �x ∈ R2x x�1� = x�2��; A+ = �x ∈ R2x x�1� < x�2��,
A− = �x ∈ R2x x�1� > x�2��, and let the rate-measure fields ν+; ε and ν−; ε be
defined as

ν+; ε�x� =
{
νε�x�; if x ∈ A+;
νε�x�1�; x�1��; if x ∈ A−;

ν−; ε�x� =
{
νε�x�; if x ∈ A−;
limδ↘0 ν

ε�x�2� + δ; x�2� − δ�; if x ∈ A+:
Note that ν+; ε, ν−; ε, Yγ; ε satisfy the conditions of Theorem 2.1 of Alanyali and
Hajek (1998), therefore the sequence �Ỹγ; εx γ > 0� satisfies a large deviations
principle with the good rate function 0ε�·; xo�, where for x;y ∈ R2,

3ε�x;y� = I�φt∈A+�3
+; ε�x;y� + I�φt∈Ao�3

o; ε�x;y�I�φt∈A−�3
−; ε�x;y�;

3±; ε�x;y� =
2∑
v=1

sup
ζ∈R

{
ζy�v� −

(
�eζ − 1�ν±; ε�x; e+v �

+ �e−ζ − 1�ν±; ε�x; e−v �
)}
;

3o;ε�x;y� = inf
0≤β≤1; y+∈A−; y−∈A+
βy++�1−β�y−=y

�β3+; ε�x;y+� + �1− β�3−;ε�x;y−� �:

(5.3)
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Applying Exercise 7.24 of Shwartz and Weiss (1995) on each term on the
right-hand side of equation (5.3) yields that

3+; ε�x;y� = 3λ�1�+λ�2���x�1��1/εε ; y�1�� + 3λ�3���x�2��1/εε ; y�2�� for x ∈ A+;

3−; ε�x;y� = 3λ�1���x�1��1/εε ; y�1�� + 3λ�2�+λ�3���x�2��1/εε ; y�2�� for x ∈ A−:
To complete the proof of the lemma, it remains to evaluate 3o; ε�x;y� for

x ∈ Ao. Note that for absolutely continuous φ, φ̇t ∈ Ao for almost all t such
that φt ∈ Ao; therefore it suffices to consider the case when y ∈ Ao. Fix
x;y ∈ Ao. For any y+; y− ∈ R2 and β ∈ �0;1� such that βy+ + �1− β�y− = y,

β3+;ε�x;y+� + �1− β�3−;ε�x;y−�
= β3λ�1�+λ�2���x�1��1/εε ; y+�1�� + β3λ�3���x�2��1/εε ; y+�2��(5.4)

+ �1− β�3λ�1���x�1��1/εε ; y−�1�� + �1− β�3λ�2�+λ�3���x�2��1/εε ; y−�2��

≥ 3λ�1�+βλ�2���x�1��1/εε ; y�1�� + 3�1−β�λ�2�+λ�3���x�2��1/εε ; y�2��(5.5)

≥ inf
0≤β′≤1

�3λ�1�+β′λ�2���x�1��1/εε ; y�1�� + 3�1−β′�λ�2�+λ�3���x�2��1/εε ; y�2���(5.6)

= 3q�1���x�1��1/εε ; y�1�� + 3q�2���x�2��1/εε ; y�2��:(5.7)

In the above argument, inequality (5.5) follows by applying Lemma 5.1 sepa-
rately on the first and third and the second and fourth terms on the right-hand
side of equality (5.4). Since x�1� = x�2� and y�1� = y�2�, each of the terms of
the right-hand side of inequality (5.5) is the same convex function evaluated
at λ�1� + βλ�2� and �1− β�λ�2� + λ�3�, respectively. Equality (5.7) follows by
straightforward minimization.

We next identify 3o; ε�x;y� with the right-hand side of inequality (5.7) by
establishing the existence of β ∈ �0;1�, y+ ∈ A− and y− ∈ A+ such that βy++
�1−β�y− = y and both inequalities (5.5) and (5.6) are satisfied with equality.
Inequality (5.6) is satisfied with equality if β = ��λ�3� − λ�1� + λ�2��/2λ�2��10.
If β = 0 (β = 1) then take y− = y (y+ = y). Otherwise by Lemma 5.1 there
exist y+; y− ∈ R2 such that βy+ + �1− β�y− = y, inequality (5.5) is satisfied
with equality and the following two conditions hold:

y−�1� +
√
�y−�1��2 + 4λ�1��x�1��1/εε

2λ�1�

=
y+�1� +

√
�y+�1��2 + 4�λ�1� + λ�2���x�1��1/εε

2�λ�1� + λ�2�� ;

(5.8)

y+�2� +
√
�y+�2��2 + 4λ�3��x�2��1/εε

2λ�3�

=
y−�2� +

√
�y−�2��2 + 4�λ�2� + λ�3���x�2��1/εε

2�λ�2� + λ�3�� :

(5.9)
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The left-hand side of equality (5.8) is increasing in y−�1� and decreasing in
λ�1�; therefore (5.8) and (5.9), respectively, imply that y+�1� ≥ y−�1� and
y−�2� ≥ y+�2�. This, together with the assumption that βy++�1−β�y− ∈ Ao

imply that y− ∈ A+ and y+ ∈ A−. The proof of the lemma is complete. 2

For x ∈ R+ and ε = 0, set �x�1/εε = x, so that 0 = 0ε�ε=0.

Lemma 5.3. Let S be a finite set of positive numbers. For each l ≥ 0 there
exists an M > 0 such that for any absolutely continuous φ ∈ C�0;T��R+� and
0 ≤ ε ≤ 1,

∫ T
0

inf
σ∈S

3σ��φt�1/εε ; φ̇t�dt ≤ l H⇒ sup
0≤t≤T

�φt −φ0� ≤M:

Proof. Examination of ∂3σ�x;y�/∂x yields that 3σ�x;y� is increasing
in x whenever y > σ , thus limy→∞ 3σ�x;y�/y = ∞ uniformly in x ∈ R+
and σ ∈ S. Given l ≥ 0, choose a constant B�l� large enough so that
inf σ∈S;x∈R+ 3σ�x;y�/y ≥ l whenever y ≥ B�l�. For absolutely continuous
φ ∈ C�0;T��R+� and 0 ≤ τ ≤ T,

∫ T
0

inf
σ∈S

3σ��φt�1/εε ; φ̇t�dt ≥
∫
�t∈�0; τ�x φ̇t≥B�l��

inf
σ∈S

3σ��φt�1/εε ; φ̇t�
φ̇t

φ̇t dt

≥
∫
�t∈�0; τ�x φ̇t≥B�l��

lφ̇t dt

≥
∫ τ

0
l�φ̇t −B�l��dt

≥ l�φτ −φ0 −B�l�T�:
Choosing M = B�l�T+ 1 establishes the lemma. 2

Lemma 5.4 (Relative compactness). For each l ≥ 0, the collection C�l� =
∪0≤ε≤1�φx 0ε�φ;x0� ≤ l� is relatively compact in C�0;T��R2

+�.

Proof. If φ ∈ C�l� then φ is absolutely continuous, φ0 = x0, and for some
0 ≤ ε ≤ 1,

l ≥
∫ T

0
3ε�φt; φ̇t�dt

≥
∫ T

0
inf
σ∈S

3σ��φt�1��1/εε ; φ̇t�1��dt+
∫ T

0
inf
σ∈S

3σ��φt�2��1/εε ; φ̇t�2��dt;
(5.10)

where S = �λ�1�; q�1�; λ�1�+λ�2�; λ�3�; q�2�; λ�2�+λ�3��. Lemma 5.3, applied
separately on the terms of the right-hand side of (5.10), implies the existence
of a finite M> 1 such that sup0≤t≤T �φt� ≤M for all φ ∈ C�l�.

Fix δ > 0. Choose a constant B�δ� large enough so that

inf
0≤x≤M;σ∈S

3σ�x;y�/�y� > 2l/δ
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whenever �y� > B�δ�. Let ��sj; tj�x j = 1; · · · ;J� be a finite collection of
nonoverlapping intervals in �0;T�, and set D = ∪j�sj; tj�. Given φ ∈ C�l�,
let 0 ≤ ε ≤ 1 be such that 0ε�φ;x0� ≤ l. Then

J∑
j=1

�φtj −φsj � ≤
∫
D
�φ̇t�dt

=
∫
D∩�tx�φ̇t�>B�δ��

�φ̇t�
3ε�φt; φ̇t�

3ε�φt; φ̇t�dt+
∫
D∩�tx�φ̇t�≤B�δ��

�φ̇t�dt

≤ δ

2l

∫
D∩�tx�φ̇t�>B�δ��

3ε�φt; φ̇t�dt+B�δ�
J∑
j=1

�tj − sj�

≤ δ
2
+B�δ�

J∑
j=1

�tj − sj�:

Thus
∑J
j=1 �φtj − φsj � ≤ δ whenever

∑J
j=1 �tj − sj� ≤ δ/2B�δ�, uniformly for

all φ ∈ C�l�. The Arzela–Ascoli theorem implies the relative compactness of
C�l�. 2

Lemma 5.5 (Lower semicontinuity). The function 0LLR�·; x0� is lower semi-
continuous.

Proof. Let �φmx m ≥ 1� be a sequence such that φm → φ in C�0;T��R2
+�.

To prove the lemma, it suffices to show that

0LLR�φ;x0� ≤ lim inf
m→∞

0LLR�φm; x0�:

Assume, without loss of generality, the existence of l; k ≥ 0 such that
0LLR�φm; x0� ≤ l for all m ≥ k. The proof of Lemma 5.4 shows that the
sequence �φmx m ≥ k� is uniformly absolutely continuous, therefore φ is abso-
lutely continuous, φ0 = x0 and by the explanations indicated in parentheses,

0LLR�φ;x0� =
∫ T

0
3�φt; φ̇t�dt �definition of 0LLR�

≤ lim inf
ε↘0

∫ T
0
3ε�φt; φ̇t�dt �Fatou’s lemma�

≤ lim inf
ε↘0

lim inf
m→∞

∫ T
0
3ε�φmt ; φ̇mt �dt �l.s.c. property of 0ε�

≤ lim inf
ε↘0

lim inf
m→∞

(∫ T
0
3

(
φmt ∧

1
ε
; φ̇mt

)
dt+ 2εT

)
�Lemma 3.2�

= lim inf
m→∞

0LLR�φm; x0� �sup0≤t≤T �φmt � is bounded�:

This establishes the lemma. 2

Lemma 5.6 (Goodness). 0LLR�·; xo� is a good rate function.
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Proof. Note that for each l ≥ 0 the level set �φx 0LLR�φ;x0� ≤ l� is
contained in C�l�. Lemmas 5.4 and 5.5 imply, respectively, the relative com-
pactness and closedness, and therefore the compactness, of the level set. 2

Lemma 5.7. For closed F ⊂ C�0;T��R2
+�,

inf
φ∈F

0LLR�φ;x0� ≤ lim sup
ε↘0

inf
φ∈F

0ε�φ;x0�:

Proof. Without loss of generality, we may assume the existence of an l ≥ 0
such that infφ∈F 0ε�φ;x0� ≤ l for each 0 < ε ≤ 1. For each such ε, appeal
to the goodness of the rate function 0ε�·; x0� to choose a φε ∈ F such that
0ε�φε; x0� = infφ∈F 0ε�φ;x0�. By Lemma 5.4 the collection �φεx 0 < ε ≤ 1� is
relatively compact, hence there exists a sequence εn→ 0 and φ̃ ∈ F such that
φεn → φ̃. Define

ξ
εn
t =

{
x0 + �t; t�; 0 ≤ t ≤ εn;
�εn; εn� +φ

εn
t−εn; εn ≤ t ≤ T:

Note that ξεn → φ̃, and
∫ T

0
3�ξεnt ; ξ̇εnt �dt =

∫ εn
0
3�ξεnt ; �1;1��dt

+
∫ T
εn

3εn��εn; εn� +φ
εn
t−εn; φ̇

εn
t−εn�dt

≤
∫ εn

0
�3�x0; �1;1�� + 2εn�dt

+
∫ T

0
�3εn�φεnt ; φ̇εnt � + 2εn�dt;

(5.11)

where the first step follows by the definition of 3εn and the construction of
ξεn , and the second step follows by Lemma 3.2 and the nonnegativity of 3εn .
Therefore by the explanations indicated in parentheses,

inf
φ∈F

0LLR�φ;x0� ≤ 0LLR�φ̃; x0� �φ̃ ∈ F�

≤ lim inf
n→∞

0LLR�ξεn; x0� �Lemma 5.5�
≤ lim inf

n→∞
0εn�φεn; x0� �inequality (5.11)�

≤ lim sup
ε↘0

inf
φ∈F

0ε�φ;x0� �definition of φε�;

and the lemma is established. 2

For each γ > 0, construct Xγ on an appropriately extended probability
space, and for each 0 < ε ≤ 1 construct the process Yγ; ε on the same space as
follows: let Z�1� and Z�2� be mutually independent Poisson processes which
are also independent of Xγ, and each having rate γε. Set Yγ; ε

0 ≡ X
γ
0 . Let

τ = inf�t ≥ 0x Xγ
t 6∈ �0;1/ε�2 or Zt 6= 0�. By the independence of Z and Xγ,
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with probability 1, either Xγ or Z jumps at time τ, but not both. At every
time t ≤ τ such that Xγ jumps, Yγ; ε takes the same jump. In addition, for
v = 1;2; if Z�v� jumps at time τ and Xγ

τ �v� ≤ ε, then Yγ; ε�v� jumps down
at time τ by γ−1 with probability �ε−Xγ

t �v��/ε. After time τ the construction
is done so that Yγ; ε is generated by the specified pair �γ; νε�. (Note that Z is
not used in the construction after it first jumps.)

Let X̃γ and Ỹγ; ε denote the polygonal interpolations of Xγ and Yγ; ε, re-
spectively.

Lemma 5.8 (Upper bound). For any closed F ⊂ C�0;T��R2
+�,

lim sup
γ→∞

γ−1 logP
(
�X̃γ

t x 0 ≤ t ≤ T� ∈ F
)
≤ − inf

φ∈F
0LLR�φ;x0�:

Proof. Note that for each γ > 0 and 0 < ε ≤ 1,

P
(
�Ỹγ;ε

t x 0 ≤ t ≤ T� ∈ F
)

≥ P
(
�Ỹγ;ε

t x 0 ≤ t ≤ T� ∈ F; sup
0≤t≤T

�Ỹγ;ε
t � <

1
ε
; ZT = 0

)

= P
(
�X̃γ

t x 0 ≤ t ≤ T� ∈ F; sup
0≤t≤T

�X̃γ
t � <

1
ε
; ZT = 0

)

= P
(
�X̃γ

t x 0 ≤ t ≤ T� ∈ F; sup
0≤t≤T

�X̃γ
t � <

1
ε

)
P�ZT = 0�

≥
(
P
(
�X̃γ

t x 0 ≤ t ≤ T� ∈ F
)
−P

(
sup

0≤t≤T
�X̃γ

t � ≥
1
ε

))
e−2γεT;

where the second step follows by the construction of the processes Xγ and
Yγ; ε, and the third step follows by the independence of Xγ and Z. In view of
the above inequality,

lim sup
γ→∞

γ−1 logP
(
�X̃γ

t x 0 ≤ t ≤ T� ∈ F
)

≤
(

lim sup
γ→∞

γ−1 logP
(
�Ỹγ;ε

t x 0 ≤ t ≤ T� ∈ F
)
+ 2εT

)

∨
lim sup
γ→∞

γ−1 logP
(

sup
0≤t≤T

�X̃γ
t � ≥

1
ε

)
(5.12)

for each 0 < ε ≤ 1. Note that sup0≤t≤T �Xt� is stochastically dominated by X0
plus a Poisson random variable of mean γ�λ�1� + λ�2� + λ�3��T, hence the
second term in the right-hand side of inequality (5.12) is less than any given
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negative number for small enough ε. Therefore

lim sup
γ→∞

γ−1 logP
(
�X̃γ

t x 0 ≤ t ≤ T� ∈ F
)

≤ lim inf
ε↘0

lim sup
γ→∞

γ−1 logP
(
�Ỹγ;ε

t x 0 ≤ t ≤ T� ∈ F
)

≤ − lim sup
ε↘0

inf
φ∈F

0ε�φ;x0�

≤ − inf
φ∈F

0LLR�φ;x0�;

where the second step is a consequence of Lemma 5.2 and the third step
follows by Lemma 5.7. This establishes the lemma. 2

Lemma 5.9 (Lower bound). For any open G ⊂ C�0;T��R2
+�,

lim inf
γ→∞

γ−1 logP
(
�X̃γ

t x 0 ≤ t ≤ T� ∈ G
)
≥ − inf

φ∈G
0LLR�φ;x0�:

Proof. Fix ε > 0 and φ ∈ G. Without loss of generality, we may assume
that φ is absolutely continuous and φ0 = x0. Let δ > 0 be small enough such
that the open ball of radius 6δ around φ, B�φ;6δ�, is contained in G. By
Lemma 5.3 of Alanyali and Hajek (1997), as γ → ∞, the process �Xγ

t x 0 ≤
t ≤ T� converges weakly (relative to the Skorohod topology) to a Lipschitz
continuous function �xtx 0 ≤ t ≤ T� that satisfies xt�1� ∧ xt�2� > 0 for t > 0.
Since the limit is continuous and deterministic, it follows that sup��X̃γ�t� −
xt�x 0 ≤ t ≤ T� converges to zero in probability [see Theorem 10.2 of Ethier
and Kurtz (1986)].

Let d = sup0≤t≤T �ẋt�, and choose a positive σ < δ/d such that

�φt −φs� < δ and �xt − xs� < δ whenever �t− s� ≤ σ .

Construct ξ as

ξ0 = x0; ξ̇t =





ẋt; 0 ≤ t ≤ σ;
�2d;2d�; σ ≤ t ≤ 2σ;

φ̇t−2σ ; 2σ ≤ t ≤ T:

It can be verified easily that �ξt − φt� < 5δ for 0 ≤ t ≤ T and ξt�1� ∧ ξt�2� ≥
xσ�1� ∧ xσ�2� > 0 for σ ≤ t ≤ T. Choose positive η < �xσ�1� ∧ xσ�2� ∧ δ�/2
small enough, and choose δ and σ smaller if necessary, so that

∫ T
σ
3η�ξt; ξ̇t�dt ≤

∫ 2σ

σ
�3�xσ ; �2s;2s�� + 4δ+ 2η�dt

+
∫ T

2σ
�3�φt−2σ ; φ̇t−2σ� + 6δ+ 2η�dt

≤
∫ T

0
3�φt; φ̇t�dt+

ε

2
;
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where the first inequality follows by Lemma 3.2 and the fact that for v = 1, 2,
xσ�v� ≤ ξt�v� ≤ xσ�v�+2δ for σ ≤ t ≤ 2σ and φt−2σ�v� ≤ ξt�v� ≤ φt−2σ�v�+3δ
for 2σ ≤ t ≤ T. Finally, appeal to the time-homogeneous Markov property of
Yγ;η and Lemma 5.2 together with Remark 2.1 of Alanyali and Hajek (1998)
to choose ρ < η small enough so that for large enough γ,

inf
�x−ξσ �<ρ

P

(
sup
σ≤t≤T

�Ỹγ;η
t −ξt� < η � Ỹγ;η

σ = x
)
≥ exp

(
−γ

(∫ T
σ
3η�ξt; ξ̇t�dt+

ε

2

))
:

For large enough γ,

P
(
�X̃γ

t x 0 ≤ t ≤ T� ∈ G
)
≥ P

(
�X̃γ

t x 0 ≤ t ≤ T� ∈ B�φ;6δ�
)

≥ P
(
�X̃γ

t x 0 ≤ t ≤ T� ∈ B�ξ;η�
)

≥ P
(

sup
0≤t≤σ

�X̃γ
t − ξt� < ρ

)
;

(5.13)

inf
�x−ξσ �<ρ

P

(
sup
σ≤t≤T

�X̃γ
t − ξt� < η � X̃γ

σ = x
)

= P
(

sup
0≤t≤σ

�X̃γ
t − xt� < ρ

)
;

(5.14)

inf
�x−ξσ �<ρ

P

(
sup
σ≤t≤T

�Ỹγ;η
t − ξt� < η � Ỹγ;η

σ = x
)

≥ 1
2

exp
(
−γ

(∫ T
σ
3η�ξt; ξ̇t�dt+

ε

2

))

≥ 1
2

exp
(
−γ

(∫ T
0
3�φt; φ̇t�dt+ ε

))
:

(5.15)

In the above argument, inequality (5.13) follows by the fact that B�ξ;η� ⊂
B�ξ; δ� ⊂ B�φ;6δ�, inequality (5.14) is a consequence of the choice of ρ and
the Markov property of Xγ and equality (5.15) is implied by the choice of η
and the construction of Yγ;η. The arbitrariness of ε > 0 implies that

lim inf
γ→∞

γ−1 logP
(
�X̃γ

t x 0 ≤ t ≤ T� ∈ G
)
≥ −0LLR�φ;x0�;

and the arbitrariness of φ ∈ G establishes the lemma. 2
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