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York University and Georgia Institute of Technology

In this paper we develop tools for analyzing the rate at which a reversible
Markov chain converges to stationarity. Our techniques are useful when the
Markov chain can be decomposed into pieces which are themselves easier to
analyze. The main theorems relate the spectral gap of the original Markov
chains to the spectral gaps of the pieces. In the first case the pieces are
restrictions of the Markov chain to subsets of the state space; the second
case treats a Metropolis–Hastings chain whose equilibrium distribution is a
weighted average of equilibrium distributions of other Metropolis–Hastings
chains on the same state space.

1. Introduction and main results. Suppose you are studying a reversible
Markov chain on a state space�, and you want to estimate its spectral gap (loosely,
the rate at which the chain converges to equilibrium). The overall chain may be
hard to analyze, but it may be made up of “pieces” that are easier to analyze. If the
chain moves from piece to piece efficiently, and if each piece equilibriates rapidly,
then one would expect the entire chain to equilibriate rapidly. This is the spirit of
our main results.

Let � be the state space of our Markov chain. We want to consider discrete and
general state spaces simultaneously. For the reader who is primarily interested in
the discrete case, we shall try to limit our measure-theoretic notation. In particular,
we shall say things like “B is a subset of �” when we really mean “B is a
measurable subset of �.”

To discuss probability densities on our state space, we need a reference measure
λ on �. (For example, if � is discrete, then λ can be counting measure, while if
� = Rn, then λ can be Lebesgue measure.) If ρ is a probability density function
(with respect to λ) on �, then the associated probability of a set B ⊂� is denoted

ρ[B] :=
∫
B
ρ(x)λ(dx).

[If λ is counting measure, then this says ρ[B] :=∑
x∈B ρ(x).]
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Let P (x, dy) be the transition probability kernel of a Markov chain on � that
is reversible with respect to a probability density π . (In many examples this kernel
can be written in the form p(x, y)λ(dy), where p is a transition density.)

To set up the framework for our first main theorem, we first describe the “pieces”
of the chain P . Let A1, . . . ,Am be subsets of � such that

⋃
Ai =�. (In general,

these subsets will not be pairwise disjoint.) For each i = 1, . . . ,m, we define a
new Markov chain on Ai by rejecting any transition of P that would leave Ai . The
transition kernel P[Ai ] of the new chain is given by

P[Ai](x,B)= P (x,B)+ 1{x∈B}P (x,Aci ) for x ∈Ai , B ⊂Ai.(1)

It is easy to see that P[Ai] is reversible (on the state space Ai ) with respect to the
measure whose density is proportional to the restriction of π to Ai .

Next define

Z :=
m∑
i=1

π [Ai],(2)

and define the “maximum overlap” � of the covering {A1, . . . ,Am} by

� := max
x∈� |{i :x ∈Ai}|(3)

(where | · | denotes cardinality). Then we see that

1 ≤ Z ≤�≤m.(4)

Next, we introduce a crude model of the movement of the original chain among
the “pieces.” We consider a state space {a1, . . . , am} of m points representing our
m pieces. We define the following transition probabilities for a discrete Markov
chain on this finite state space:

PH(ai, aj ) := π [Ai ∩Aj ]
�π [Ai] for i �= j(5)

and PH(ai, ai)= 1 −∑
j �=i PH (ai, aj ).

To describe the rate of convergence to equilibrium, we shall use the spectral
gap. Suppose R is a Markov chain that is reversible with respect to the probability
measure ρ. Let Eρ denote the expectation with respect to ρ:

Eρf =
∫
f (y)ρ(dy).(6)

The spectral gap of R, Gap(R), is defined by

Gap(R) := inf
f

∫∫ |f (x)− f (y)|2ρ(dx)R(x, dy)∫∫ |f (x)− f (y)|2ρ(dx)ρ(dy)(7)

where the inf is over all non-constant functions f (i.e., functions that are not
constant almost surely with respect to ρ) such that Eρ(f 2) < ∞. Notice the
denominator equals twice the variance of f (X), where X is a random variable
whose distribution is ρ.
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The spectral gap is important because it can be viewed as determining
the speed of convergence of the Markov chain to equilibrium. Very roughly,
a chain is close to equilibrium after a few multiples of 1/Gap(R) iterations.
Alternatively, once a chain is in equilibrium, k/Gap(R) consecutive observations
of the chain will be “statistically equivalent” to k independent samples from
the equilibrium distribution of the chain. [See, e.g., Sokal and Thomas (1989),
Diaconis and Stroock (1991), Welsh (1993), Section 8.4, or Madras and Slade
(1993), Section 9.2.3.]

To make the preceding intuitive descriptions more precise, we review the
following well-known properties, although they will not be required for the rest
of the paper. For measures µ1 and µ2 on the state space �, let ‖µ1 −µ2‖2 be the
norm defined by

‖µ1 −µ2‖2
2 =

∫
�

|f1(x)− f2(x)|2ρ(dx)
where fi is the density of µi with respect to ρ (i.e., fi is the Radon–Nikodym
derivative dµi/dρ). For a probability measure µ and nonnegative integer n, let
µRn be the distribution ofXn, whereX0,X1, . . . is a Markov chain with transition
kernel R and the distribution of the initial state X0 is µ:

(µRn)(A)=
∫
�
Rn(x,A)µ(dx) (A⊂�).

Let ! = 1 − Gap(R). Then for every nonnegative integer n,

‖µRn − ρ‖2 ≤ !n‖µ− ρ‖2.

This says that the sequence of measures µRn converges exponentially rapidly to
the equilibrium measure ρ. Moreover, !n ≤ exp(−nGap(R)), with approximate
equality in the usual case that Gap(R) is small. These assertions formalize the first
assertion in the preceding paragraph. We note that convergence in the ‖ · ‖2 metric
implies convergence at the same rate in the “total variation” norm

‖µ1 −µ2‖Total Variation = sup
A⊂�

|µ1(A)−µ2(A)|

[Roberts and Rosenthal (1997), Roberts and Tweedie (2000)]. The second
assertion of the preceding paragraph corresponds to the fact that for every function
f such that Eρ(f 2) <∞, we have∣∣Cov

(
f (X′

n), f (X
′
0)
)∣∣≤ !nVarf (X′

0),

where X′
0,X

′
1, . . . is the Markov chain given by R and started in equilibrium (i.e.,

X′
0 has distribution ρ). See Section 9.2.3 of Madras and Slade (1993) for further

discussion of this correspondence.
In this paper, we shall use the size of the spectral gap as our sole measure of

speed of convergence to equilibrium. Our concern is not so much with proving
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whether or not a spectral gap is nonzero (i.e., whether or not a chain converges
exponentially or not). Indeed, in many interesting discrete problems the Markov
chains are finite and then positivity of the spectral gap follows immediately from
irreducibility. In such situations one is more concerned with estimating the size
of the spectral gap. In a typical discrete problem, the size of the state space � is
exponentially large in the size of the problem description (e.g., the state space may
be a class of subsets of a given set), and the goal would be to choose an element
of the state space at random according to a given distribution ρ. A Markov chain
would be constructed whose equilibrium distribution is ρ, knowing that running
the chain for “long enough” would result in a state that was “almost” distributed
as ρ. The spectral gap determines how long “long enough” would be. If the spectral
gap is exponentially small in the size of the problem, then we would have to run the
chain for an exponentially long time; such a chain is said to be “slowly mixing.”
If the Markov chain approach is to be feasible, then we generally would like a
spectral gap whose size is polynomial in the size of the problem. Such a chain is
said to be “rapidly mixing.” Sinclair (1993) gives a more careful description of
these terms but we shall be content with less formality as our main results will be
stated without using this terminology.

Our first main theorem shows that if our crude model PH approaches
equilibrium rapidly, and if the restrictions of P to each piece Ai approach
equilibrium rapidly, then the original chain approaches equilibrium rapidly.

THEOREM 1.1 (State Decomposition Theorem). In the preceding framework,
as given by equations (1)–(5), we have

Gap(P )≥ 1

�2
Gap(PH)

(
min

i=1,...,m
Gap(P[Ai ])

)
.(8)

This theorem is useful when a Markov chain appears too difficult to analyze
directly, but there is a natural decomposition of the state space into pieces for
which the analysis is more tractable. Moreover, the decomposition allows a
hybrid approach to showing rapid convergence of a Markov chain, using different
techniques to bound the mixing rates of different pieces.

Theorem 1.1 decomposes the state space of the Markov chain, while our second
result decomposes its equilibrium distribution. It applies specifically to reversible
Metropolis–Hastings chains, which we now define. Let R(x, dy) be the transition
kernel of a Markov chain on � that is reversible with respect to a probability
density ρ. Let ζ be another probability density whose support is contained in the
support of ρ. Then the “Metropolis–Hastings chain for R with respect to ζ ” is the
new Markov chain whose transition kernel R[ζ ] is defined by

R[ζ ](x, dy) =R(x, dy)min
{

1,
ζ(y)ρ(x)

ζ(x)ρ(y)

}
if y �= x,

R[ζ ](x, {x})= 1 −
∫
�\{x}

R[ζ ](x, dy)
(9)
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[If the denominator ζ(x)ρ(y) is 0, then we take R[ζ ](x, dy) = 0.] It is easy to
check that R[ζ ] is reversible with respect to ζ . The kernel R is often called the
“proposal kernel.” The idea is that R[ζ ] works by proposing a move and then
computing a ratio that determines the probability with which the proposed move
is “accepted”. It is this acceptance scheme that ensures that ζ is the equilibrium
distribution. We remark that the Metropolis–Hastings chain is usually defined in
the more general case that does not even require R to be reversible (see Section 3),
but the reversible case reduces to equation (9).

For our second theorem, suppose that the chain of interest, P , is a Metropolis–
Hastings chain for a proposal chain R with respect to a desired equilibrium
density ζ (i.e., P = R[ζ ]). Also suppose that ζ can be expressed as a convex
combination of a small number of densities φ0, . . . , φD (i.e., ζ is a “mixture
density”). Think of running a Metropolis–Hastings chain for each φj , using the
same proposal kernel R as in the original P . (These chains R[φj ] are the “pieces”
of the original chain.) If the φj ’s have some “overlap” in a sense that we describe
below, then we can bound the gap of the original chain in terms of the gaps of the
Metropolis–Hastings chains for the φj ’s.

Roughly speaking, a large overlap in the following theorem corresponds to the
rapid mixing of PH in the preceding theorem. For example, suppose that φi has
substantial overlap with φi+1 and with φi−1. If each “piece” is rapidly mixing,
then a chain which starts in the ith piece will soon move into a region where φi
and φi+1 (or φi−1) overlap. In this way the process can move from one piece to
another reasonably efficiently.

THEOREM 1.2 (Density Decomposition Theorem). Let φ0, . . . , φD be prob-
ability densities on � (with respect to a common reference measure λ), and let
a0, . . . , aD be positive numbers that add up to 1. Define the mixture density

φmix :=
D∑
j=0

ajφj .(10)

Let R(x, dy) be a Markov chain that is reversible with respect to a probability
density ρ(x) on �. Let Gapj (respectively, Gapmix) be the spectral gap of
the Metropolis–Hastings chain R[φj ] (respectively, R[φmix]). Finally, assume that
neighboring φj ’s have some “overlap:” that is, assume∫

min{φj(x),φj+1(x)}λ(dx)≥ δ (j = 0, . . . ,D− 1)(11)

for some δ > 0. Then

Gapmix ≥ δ

2D
min

j=0,...,D
aj Gapj .(12)
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The paper is organized as follows. The rest of Section 1 describes applications
of our main results. Theorem 1.1 is closely related to an unpublished result due
to Caracciolo, Pelissetto and Sokal. In their framework, the decomposition of
the state space arises in the context of simulated tempering. We give a brief
introduction to this sampling method and state their result (Theorem 2.1) in
Section 2. In Section 3 we introduce the method of umbrella sampling and state a
result due to Madras and Piccioni (1999). In Section 4 we prove Theorem 1.1 (the
State Decomposition Theorem) using the results from the previous two sections.
Theorem 1.2 is proven in Section 5 and is independent of the rest of the paper.
Finally, Appendices A and B prove Theorem 2.1 and Proposition 3.2 respectively.

1.1. Sampling independent sets. As a simple application of Theorem 1.1, we
will consider a Markov chain for sampling independent sets. Let G be a graph
with vertex set V and edge set E. An independent set is a subset I of V with
the property that no two vertices of I are joined by an edge of G. Let � be the
collection of all independent sets, and let �i be the collection of all independent
sets of cardinality i (for i = 0,1, . . . , |V |). Finally, let γ be a positive real number.

The hard core model with parameter γ is the probability distribution hγ on the
collection of all independent sets defined by

hγ (I )= γ |I |

Zγ
(I ∈�)

where Zγ is the normalizing constant
∑
J∈� γ |J |. This is a model of identical

particles with short-range mutual repulsion: The particles can be located at the
vertices of G, but a particle at a given vertex forbids any other particle at any
adjacent vertex. The parameter γ controls the number of particles; for example, it
is not hard to see that the expected size of I is an increasing function of γ .

Consider the following Markov chain on �, which produces a sequence
I0, I1, . . . of independent sets by randomly inserting or deleting one vertex at a
time, or exchanging two vertices by inserting one and deleting the other in a single
step. To formalize the transitions P of this new chain, we let V ∗ = V ∪ {v∗} be
the original vertex set augmented with one auxiliary vertex; this vertex will enable
us to encode which type of move (i.e., insertion, deletion or exchange) we are
attempting. Let It ⊂ V be the independent set at time t . Pick two vertices (ut , vt )
uniformly at random from V ∗ × V ∗. If vt = v∗, we attempt to delete ut ; that is, if
ut ∈ It , then set It+1 equal to It \ {ut} with probability min{1, γ−1}. If ut = v∗, we
attempt to insert vt ; that is, if vt ∈ V \ It , and if vt is not adjacent to any vertex of
It , then set It+1 equal to It ∪{vt } with probability min{1, γ }. Finally, if ut , vt �= v∗,
we attempt to exchange ut and vt ; that is, if ut ∈ It and vt is not adjacent to any
vertex in I \ {ut}, then set It+1 equal to (I \ {ut}) ∪ {vt } with probability 1. With
all remaining probability, set It+1 equal to It . It is not hard to see that this Markov
chain is irreducible, aperiodic, and reversible with respect to hγ .
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The work of Luby and Vigoda (1997, 1999) implies that this chain is rapidly
mixing if γ ≤ 2/(0− 2), where 0 is the maximum number of neighbors of any
vertex in G. It has been shown by Borgs et al. (1999) that this chain is slowly
mixing on some graphs if γ is sufficiently large. The problem is that large values of
γ cause the particles to get too crowded, which makes it hard for the configurations
to change much. We shall see that if we limit the total number of particles to a
moderate value n∗ (defined below), then this crowding does not occur even if γ is
very large, and the modified chain mixes rapidly.

Let n∗ = �|V |/2(0+ 1)�, and let �∗ be the collection of all independent sets
with at most n∗ vertices:

�∗ =
n∗⋃
i=0

�i.

Let P ∗ be the restriction of the above Markov chain P to �∗ (i.e., if |It | = n∗
and ut = v∗, then It+1 = It with probability one). Then P ∗ is irreducible on �∗,
aperiodic, and reversible with respect to the restriction of hγ to �∗. We shall show
that P ∗ is rapidly mixing for every γ ≥ 1/(0+1). The results of Luby and Vigoda
(1999) can be extended to show that P ∗ is also rapidly mixing for γ ≤ 2/(0− 2),
so we can conclude that this Markov chain converges quickly for all values of
γ > 0.

Our strategy for bounding the convergence rate of the Markov chain P ∗ on
independent sets can be described as follows. Let Ai = �i ∪ �i+1, whereby
�∗ = ∪ Ai is a decomposition of the state space into overlapping pieces, as
required for Theorem 1.1. We consider in turn the restrictions P ∗[Ai] to Ai , for
all i, as well as the projection P ∗

H . A lower bound on the spectral gap for each
of these Markov chains will establish a bound for the original Markov chain P ∗,
appealing to Theorem 1.1.

We first establish a bound on the mixing time of each of the restricted Markov
chains P ∗[Ai ]. This Markov chain performs exchanges, additions, and deletions, but
always stays in the set of independent sets of size i or i + 1 on the input graph
G = (V,E). Consider a new graph G′ = (V ′,E) which augments the vertex set
with an isolated vertex x. The independent sets of size i + 1 in G′ correspond
bijectively to the set of independent sets of size i or i + 1 in G; if x is in the
independent set, then its removal defines an independent set of size i in G, and if
x is not in the independent set, removing x from the graph leaves an independent
set of size i + 1. Furthermore, taking this vertex x to be the auxiliary vertex in
the description of the Markov chain, the transitions of P ∗[Ai ] can all be described
as exchanges in G′ which keep the number of vertices in the independent set fixed
at i + 1. A variant of this new Markov chain based on exchanges was analyzed
by Bubley and Dyer (1997), who show that it is rapidly mixing when i + 1 ≤ n∗.
More precisely, letting n= |V |, we derive the following bound on the spectral gap.
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THEOREM 1.3. Let Ai =�i ∪�i+1, for 0 ≤ i ≤ n∗ − 1, and let P ∗[Ai] be the
restriction of the Markov chain P ∗ to this set. Then

1/Gap(P ∗[Ai ])≤ cn2�ln(n)�max(γ 2, γ−2),

for some constant c.

Next, we consider the chain P ∗
H on {a0, . . . , an∗−1}. Clearly � = 2. Observe

that P ∗
H(ai, aj )= 0 whenever |i − j |> 1. We also have

P ∗
H(ai, ai+1)= hγ (�i+1)

2(hγ (�i)+ hγ (�i+1))
(0 ≤ i < n∗ − 1),

P ∗
H(ai, ai−1)= hγ (�i)

2(hγ (�i)+ hγ (�i+1))
(0< i ≤ n∗ − 1).

Notice in particular that P ∗
H(ai, ai) = 1/2 for i = 1, . . . , n∗ − 2. We shall

show below that P ∗
H(ai, ai+1) ≥ P ∗

H(ai, ai−1) for each i = 1, . . . , n∗ − 2 and
P ∗
H(a0, a1) ≥ 1/4 (when γ ≥ 1/(0 + 1)). Thus P ∗

H is essentially a nearest-
neighbor random walk on {0,1, . . . , n∗ − 1} with nonnegative drift; hence using
the Optional Stopping Theorem for submartingales [see, e.g., Luby, Randall and
Sinclair (1995, 2001)], it is rapidly mixing.

THEOREM 1.4. Let γ ≥ 1/(0 + 1). Then the Markov chain P ∗
H is rapidly

mixing with

1/Gap(P ∗
H)≤ c′n2,

for some constant c′.

Theorems 1.3 and 1.4 together with Theorem 1.1 (the State Decomposition
Theorem) allow us to conclude that the original chain P ∗ on �∗ is rapidly mixing,
as claimed.

THEOREM 1.5. The Markov chain P ∗ on �∗, the set of independent sets of
size at most n/2(0+ 1), is rapidly mixing for all values of γ ≥ 1/(0+ 1), with

1/Gap(P ∗)≤ c′′n4�ln(n)�max(γ 2, γ−2),

for some constant c′′.

It only remains to show that P ∗
H(ai, ai+1) ≥ P ∗

H(ai, ai−1) for each i =
1, . . . , n∗ − 2 and that P ∗

H(a0, a1)≥ 1/4 when γ ≥ 1/(0+ 1). Fix such a γ . Since
hγ (�j ) = γ j |�j |, it suffices to show that γ |�i+1| ≥ |�i | for i = 0, . . . , n∗ − 1.
Fix such an i and let N (i) be the number of pairs of independent sets (I, J ) such
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that I ∈ �i , J ∈ �i+1, and I ⊂ J . For each J ∈ �i+1, there are exactly i + 1
vertices of J that can be deleted to give a suitable I ; therefore

N (i)= |�i+1|(i + 1).

Conversely, for each I ∈ �i , there are at least |V | − i(0 + 1) vertices that are
not adjacent to (or equal to) a vertex of I ; adding any such vertex to I gives a
suitable J . Therefore

N (i)≥ |�i |(|V | − i(0+ 1)
)
.

Combining the above two inequalities gives

|�i | ≤ |�i+1| (i + 1)

|V | − i(0+ 1)
≤ |�i+1| n∗

|V | − n∗(0+ 1)

≤ |�i+1| |V |/2(0+ 1)

|V | − |V |/2 = |�i+1| 1

0+ 1
≤ |�i+1|γ,

which is what we want to prove.
A simpler Markov chain which has also been studied in the context of

independent sets is based on just insertions and deletions (without allowing
exchanges). The analysis of P ∗ above can be used to infer that this simpler Markov
chain is also rapidly mixing on �∗ by using the comparison method of Diaconis
and Saloff-Coste (1993). We refer the reader to Randall and Tetali (1998) for
a description of how the comparison method can be applied in the context of
independent sets.

1.2. Other applications. For another example, imagine a Markov chain
defined on a state space�=⋃

�i , where the pieces�i form a partition. Moreover,
assume the sizes |�i | are unimodal as a function of i. [For example, let � be the
set of matchings of some underlying graph G, and �i is the set of matchings
of size i. A simple, ergodic Markov chain on the state space of matchings can be
defined by adding, removing or exchanging edges in a single transition; see Broder
(1986) and Jerrum and Sinclair (1989) for details. In this example |�i| is always a
logconcave, and therefore unimodal, function of i.] Defining Ai =�i ∪�i+1, the
Markov chain PH(ai, aj ) is a one dimensional random walk with bias towards the
mode. Therefore Theorem 1.1 provides a bound on the spectral gap of the Markov
chain in terms of the restricted Markov chains P[Ai ]. (In the case of matchings,
Jerrum and Sinclair’s method directly bounds the the spectral gap of the Markov
chain, and hence this decomposition is not necessary for that application.)

More complicated applications have been worked out, and we shall give only
brief descriptions of them here. Madras and Randall (1996) gave a different proof
of a bound similar to Theorem 1.1, but that paper worked with conductances
instead of spectral gaps, and the multiplicative factor in their inequality was not as
good as the �−2 that appears in the present Theorem 1.1. (That paper then applied
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the result to a Markov chain for three-colorings on the square lattice, but the
application contained an error; to our knowledge designing an efficient sampling
algorithm for three-colorings remains open.) Madras and Piccioni (1999) used
Theorem 1.2 to analyze an implementation of the method of “simulated tempering”
to a special “witch’s hat” distribution, as originally studied empirically in Geyer
and Thompson (1995). Zheng (1999) uses both of our main results to study the
Metropolis-coupled Markov chain method of Geyer (1991) [see Orlandini (1998)
for interesting recent applications of this method]. Cooper et al. (2000) have
applied our results to show that the Wolff chain for the Potts model is rapidly
mixing on an n× O(1)× · · · × O(1) grid.

2. Simulated tempering. The method of Simulated Tempering was proposed
independently by Marinari and Parisi (1992) in the physics literature and Geyer
and Thompson (1995) in the statistics literature [see Madras (1998) for a review].
To explain the idea, consider the following motivating example from statistical
physics. Let G be a graph, and let � be the set of all functions from the vertex
set of G into {−1,+1}. The Ising model on G is a certain family of probability
distributions on � parametrized by a real number β which determines the strength
of interactions between neighboring vertices. (There is often a second parameter,
the “external field”, but we shall fix it equal to 0.) When β = 0, the distribution
is simply the uniform distribution on �. When β is large, then the distribution is
“bimodal”: with high probability, we see either lots of +1’s and few −1’s, or vice
versa. How does one sample from this model by Markov chains? The simplest way
is by the single-spin Metropolis algorithm (Section 3): pick a vertex at random and
try to change the sign at that vertex. Accept the change with a certain probability
(which is easy to compute). When β equals 0, the change is always accepted,
and the Markov chain is rapidly mixing. When β is close to 0, the chain is also
rapidly mixing. However, when β is large, the chain takes exponentially long
to get from one “mode” to the other, and it mixes exponentially slowly [see for
example Madras and Piccioni (1999)]. To set the stage for simulated tempering,
let φ1 be the distribution with β = 0, φm the distribution for a given large β , and
φi (i = 2, . . . ,m− 1) be distributions at equally spaced intermediate values of β .
For each i, the Ti that we shall introduce below will be the Metropolis chain for
the corresponding φi . The description for this example will continue below after
the general framework is developed.

In the general Simulated Tempering framework, we have a state space � with
m different probability densities φ1(x), . . . , φm(x) [with respect to a common
reference measure λ(dx)]. For each i, let Ti (x, dy) be a transition kernel that is
reversible with respect to φi .

Next we define the “augmented” state space S by including the “labels” 1
through m:

S =�× {1, . . . ,m}.(13)
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For each i = 1, . . . ,m, define

Si =�× {i} = {
(x, i) :x ∈�}.(14)

Thus S1, . . . ,Sm forms a partition of S. Define the transition probability kernel P
on S as follows:

P
(
(x, i), (dy, j)

)= {
0, if j �= i,
Ti (x, dy), if j = i.

(15)

Notice that this kernel does not permit transitions from one Si to another.
Next, suppose that we associate a positive number ci with each φi , such that∑m
i=1 ci = 1. These “weights” permit us to define the transition kernel Q on S:

Q
(
(x, i), (dy, j)

)= δx(dy)
cjφj (x)∑m
l=1 clφl(x)

.(16)

Thus, Q keeps x the same, but chooses the label according to the weighted
probabilities of x under the different densities. Observe that Q2 = Q.

Define the probability measure ψ on S by

ψ(dx, i)= ciφi(x)λ(dx) ((x, i) ∈ S).(17)

One can check that both Q and P are reversible with respect to ψ . Notice that
the marginal probability of the “label” i is ci , and the marginal distribution of the
“configuration” x is

φ̄(x) :=
m∑
l=1

clφl(x).(18)

Therefore we can view Q as replacing the current label by sampling from the
conditional distribution of the label given the configuration x.

The simulated tempering method is the repeated alternation of Q with P . So
we could describe it as the Markov chain corresponding to QP or to PQ, or to
QPQ (recall that Q2 = Q). We shall use the version QPQ, since it is reversible
with respect to ψ (it inherits this property from Q and P ).

[To understand what is happening, we shall refer again to the Ising model.
Applying P causes us to update the configuration from � by the Metropolis chain
corresponding to the current value of the label i. Then we apply Q, which permits
the current value of the label to change. Then we apply P again, updating the
configuration according to the Metropolis chain corresponding to the new value of
the label. And so on. The intuition is the following: The label will do a “random
walk” on {1, . . . ,m}. When the label equalsm, we observe configurations that have
been sampled from φm, which is what we want. When the label is 1, or close to 1,
the chain is mixing rapidly, so that the next time the label gets back up to m we can
expect to see a configuration that is pretty different from the last time that the label
equaled m. We can make sure that the chain spends enough time with the label
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taking both extreme values; indeed, in the long run, the fraction of time spent with
the label equal to i is ci . If this intuition is correct, then the overall chain should
be rapidly mixing. This seems to work well in practice, although there are some
substantial issues of implementation that arise. The rapid mixing of this procedure
has been proven for the Ising model on the complete graph, but not on the more
interesting graphs corresponding to Euclidean lattices. See Madras and Piccioni
(1999) for more details.]

Finally, we define the “aggregated transition matrix” Q (an analogue of PH
defined in the Introduction):

Q(i, j)= 1

ci

∫
�

ciφi(x)cjφj (x)∑m
l=1 clφl(x)

λ(dx)

= cj

∫
�

φi(x)φj (x)

φ̄(x)
λ(dx) (i, j = 1, . . . ,m).

(19)

The next theorem says roughly that simulated tempering cannot be any slower
than the combination of the random walk on labels and the individual chains Ti
within each piece. (At first sight, this is not quite what we want to know: In the
Ising model example, Tm is very slow, but we hope that simulated tempering is
efficient. So in such cases, one would want to find different ways to decompose
the state space into pieces that are rapidly mixing. But this is not easy to do.)

THEOREM 2.1 (Caracciolo–Pelissetto–Sokal). In the framework of simulated
tempering described above, we have

Gap(QPQ)≥ Gap(Q) min
i=1,...,m

Gap(Ti ).(20)

This theorem is from a 1992 unpublished manuscript by S. Caracciolo,
A. Pelissetto and A. D. Sokal. Since these three authors do not intend to publish
their manuscript in the foreseeable future, they have given us permission to present
their proof here. It appears in Appendix A.

3. Metropolis algorithm and umbrella sampling. In this section we discuss
two more Markov chains that are useful in Monte Carlo simulations, and we
describe some needed results from Madras and Piccioni (1999).

First we mention the Metropolis–Hastings method. Let R(x, dy) be the
transition kernel of a Markov chain on �. Let ζ be a probability measure on �.
Then the “Metropolis–Hastings chain for R with respect to ζ ” is the new Markov
chain whose transition kernel R[ζ ] is formally defined by

R[ζ ](x, dy) =R(x, dy)min
{

1,
ζ(dy)R(y, dx)

ζ(dx)R(x, dy)

}
if y �= x,

R[ζ ](x, {x})= 1 −
∫
�\{x}

R[ζ ](x, dy).
(21)
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This is a formal definition, and we refer the reader to Tierney (1998) for a
discussion of the general situation. Fortunately, in many common situations it is
easy to interpret equation (21). For example suppose that the measure ζ has a
density, which we shall also call ζ , with respect to some reference measure λ (i.e.,
ζ(dx)= ζ(x)λ(dx)). Then:

• IfR has a transition density r with respect to λ, so thatR(x, dy)= r(x, y)λ(dy),
then we have

R[ζ ](x, dy)= R(x, dy)min
{

1,
ζ(y)r(y, x)

ζ(x)r(x, y)

}
if y �= x.

• If R is reversible with respect to the density ρ(x)λ(dx), then we obtain
equation (9).

In both of these cases it is easy to check that R[ζ ] is reversible with respect
to ζ . This paper only considers reversible chains, so we just need the second case,
equation (9). The terminology “Metropolis chain” is frequently used in the second
case when ρ is constant.

The following lemma is a consequence of the definition of the spectral gap (7).
The proof is essentially the same as was given in Madras and Piccioni (1999) for
the case of Metropolis chains.

LEMMA 3.1. Let r1 and r2 be two densities with respect to λ on �. Suppose
that R(x, dy) is reversible with respect to the density ρ. Also suppose that there
are constants a and b such that

a ≤ r1(x)

r2(x)
≤ b(22)

for all x ∈� such that r1 and r2 do not vanish simultaneously. Then the spectral
gaps of the associated Metropolis–Hastings chains satisfy

a

b
Gap(R[r2])≤ Gap(R[r1])≤ b

a
Gap(R[r2]).(23)

Next we discuss the method known as Umbrella Sampling. Consider a
probability density κ on � which is written as a convex combination of m other
densities: that is, there are m probability densities φ1, . . . , φm and m positive
constants c1, . . . , cm such that

∑m
i=1 ci = 1 and

κ(x)=
m∑
i=1

ciφi(x).(24)

Now consider a transition kernel R(x, dy) of a Markov chain on � that is
reversible with respect to a probability density ρ. For each i = 1, . . . ,m, define
the transition kernel Ti (x, dy)= R[φi ], the Metropolis–Hastings chain for R with
respect to φi .
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In physical applications, the φi ’s are often natural distributions from which
we want to sample, and the mixture κ is an artificial “umbrella” distribution.
Using the Metropolis–Hastings chain R[κ] to sample from κ (together with the
classical Monte Carlo technique of importance sampling) allows one to sample
from all φi’s in a single simulation run. Torrie and Valleau (1977) first realized the
power of this approach for physical systems, and it was they who introduced the
term “umbrella sampling.” See Madras and Piccioni (1999) for further discussion.
Moreover, this umbrella sampling can be far more efficient than running the m
chains R[φi ] separately. It also turns out that umbrella sampling is at least as good
as simulated tempering, in the following sense.

PROPOSITION 3.2 (Madras–Piccioni). Suppose that the above �, φi’s, ci’s,
and Ti ’s are used to define the simulated tempering chain QPQ of Section 2 on
the augmented state space �× {1, . . . ,m}. Then

Gap(QPQ)≤ Gap(R[κ]).

Note that the invariant measure of QPQ, ψ , is described in equation (17).
Proposition 3.2 is formulated in Madras and Piccioni (1999) in a slightly different
way. It is easier to present the (short) proof than to explain how to modify it, so we
shall do this in Appendix B.

4. State decomposition. To prove the State Decomposition Theorem 1.1, we
shall interpret it in terms of the constructions of Section 3. We are given P (x, dy),
a Markov transition kernel on � that is reversible with respect to the density π(x)
(all densities are with respect to λ(dx)). We are also given A1, . . . ,Am, subsets of
� such that

⋃
Ai =�. For each i = 1, . . . ,m, let φi be the normalized restriction

of π to Ai :

φi(x)= π(x)1Ai (x)

π [Ai] .(25)

Recall

Z =
m∑
i=1

π [Ai] and � := max
x∈� |{i :x ∈Ai}|.(26)

Also let

ci = π [Ai]
Z

(i = 1, . . . ,m),(27)

and define

κ(x)=
m∑
i=1

ciφi(x).(28)
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Then κ is a probability density, and

1

Z
π(x)≤ κ(x)≤ �

Z
π(x).(29)

Let P [κ] be the Metropolis–Hastings chain for P with respect to κ . Since P is
reversible with respect to π , we have

P [π ] = P.(30)

Therefore Lemma 3.1 and equation (29) imply that

1

�
Gap(P )≤ Gap(P [κ])≤�Gap(P ).(31)

The restriction P[Ai ] of P to Ai is the same as the Metropolis–Hastings
chain P [φi ]. Let

R(x, dy)= P [κ](x, dy) and Ti (x, dy)=R[φi ](x, dy) (i = 1, . . . ,m).(32)

Observe that we can write

Ti (x, dy)= P (x, dy)min
{

1,
κ(y)π(x)

κ(x)π(y)

}
min

{
1,
π(y)1Ai (y)κ(x)

π(x)1Ai (x)κ(y)

}
whenever x �= y and x, y ∈Ai.

(33)

It follows from this and equation (29) that

1

�
P [φi ](x, dy)≤ Ti(x, dy)≤ P [φi ](x, dy) whenever x �= y.(34)

Since P [φi] and Ti are both reversible with respect to φi , it follows from the above
bounds and equation (7) that

1

�
Gap(P [φi ])≤ Gap(Ti )≤ Gap(P [φi ]).(35)

The aggregated transition matrix of Section 2 is

Q(i, j)= cj

∫
�

φi(x)φj (x)

κ(x)
λ(dx)

= cj

∫
Ai∩Aj

π(x)2

κ(x)π [Ai ]π [Aj ]λ(dx)(36)

= 1

π [Ai]
∫
Ai∩Aj

π(x)2

Zκ(x)
λ(dx).

Recalling the definition of PH [equation (5)], and using equations (29) and (36),
we see that

PH(ai, aj )≤ Q(i, j)≤�PH(ai, aj ) for i �= j .(37)
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Since both PH and Q are reversible with respect to the same probability
distribution (namely, the one whose weights are the ci’s), equations (37) and (7)
imply that

Gap(PH )≤ Gap(Q)≤�Gap(PH ).(38)

Finally we put the pieces together:

Gap(P )≥ 1

�
Gap(P [κ]) [by equation (31)]

≥ 1

�
Gap(QPQ) (by Proposition 3.2 with R = P and ρ = π )

≥ 1

�
Gap(Q) min

i=1,...,m
Gap(Ti ) (by Theorem 2.1)

≥ 1

�2 Gap(PH ) min
i=1,...,m

Gap(P [φi]) [by equations (38) and (35)]

(39)

Since P [φi ] = P[Ai ], this completes the proof of Theorem 1.1.

5. Density decomposition. This section consists of the proof of the Density
Decomposition Theorem 1.2, which is essentially independent of the rest of the
paper. As usual, all densities are with respect to a reference measure λ on �.

For a given probability density h, we let Eh and Vh respectively denote expec-
tation and variance with respect to h. We write Ej and Emix instead of Eφj and
Eφmix , and similarly for Vj and Vmix.

For an arbitrary function f on the state space, and for j = 0, . . . ,D, define

Bj(f )=
∫∫ (

f (x)− f (y)
)2
R(x, dy)min

{
φj(x)

ρ(x)
,
φj (y)

ρ(y)

}
ρ(x)λ(dx)

[and define Bmix(f ) analogously]. Then the spectral gap of the Metropolis–
Hastings chain for R with respect to φj is given by

Gapj = inf
f

Bj (f )

2Vj(f )
.(40)

Since

min
{
φmix(x)

ρ(x)
,
φmix(y)

ρ(y)

}
≥

D∑
j=0

aj min
{
φj(x)

ρ(x)
,
φj (y)

ρ(y)

}
,
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it follows that for every f ,

Bmix(f )=
∫∫ (

f (x)− f (y)
)2
R(x, dy)min

{
φmix(x)

ρ(x)
,
φmix(y)

ρ(y)

}
× ρ(x)λ(dx)

≥∑
j

ajBj (f )≥
∑
j

aj Gapj 2Vj(f )

≥ 2 min
i

{ai Gapi}
D∑
j=0

Vj (f ).

(41)

Thus, to prove the theorem it suffices to show that for every f such that
Emix(f

2) <∞,

2Vmix(f )≤ 4D

δ

D∑
j=0

Vj (f ).(42)

Let f be an arbitrary function such that Emix(f
2) < ∞. Then we also have

Ei(f
2) <∞ for every i = 1, . . . ,m. For i, j = 0, . . . ,D, define

Cij (f )=
∫∫ (

f (x)− f (y)
)2
φi(x)φj (y)λ(dx)λ(dy).

Then

Cjj (f )= 2Vj(f )

and

2Vmix(f )=
∫∫ (

f (x)− f (y)
)2(∑

i

aiφi(x)

)(∑
j

ajφj (y)

)
λ(dx)λ(dy)

=∑
i,j

aiajCij (f ).

In particular, we have

2Vmix(f )≤ max
i,j

Cij (f ).(43)

Fix j . By the overlap condition (11), there exist probability densities η, τ and ψ
such that

φj = δη+ (1 − δ)τ and φj+1 = δη+ (1 − δ)ψ.

Then

2Vj(f )=
∫∫ (

f (x)− f (y)
)2

× (
δη(x)+ (1 − δ)τ (x)

)(
δη(y)+ (1 − δ)τ (y)

)
λ(dx)λ(dy)

= 2δ2Vη(f )+ 2(1 − δ)2Vτ (f )

+ 2δ(1 − δ)

∫∫ (
f (x)− f (y)

)2
η(x)τ (y)λ(dx)λ(dy)

(44)
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and

Cj,j+1(f )=
∫∫ (

f (x)− f (y)
)2(
δη(x)+ (1 − δ)τ (x)

)
× (
δη(y)+ (1 − δ)ψ(y)

)
λ(dx)λ(dy)

= 2δ2Vη(f )+ (1 − δ)2
∫∫ (

f (x)− f (y)
)2
τ (x)ψ(y)λ(dx)λ(dy)

+ δ(1 − δ)

∫∫ (
f (x)− f (y)

)2(
η(x)ψ(y)+ η(y)τ (x)

)
× λ(dx)λ(dy).

(45)

From (44) we find∫∫ (
f (x)− f (y)

)2
η(x)τ (y)λ(dx)λ(dy)≤ (

Vj(f )− δ2Vη(f )
)
/
(
δ(1 − δ)

)
.(46)

Using (u+ v)2 ≤ 2u2 + 2v2, we obtain∫∫ (
f (x)− f (y)

)2
τ (x)ψ(y)λ(dx)λ(dy)

=
∫∫∫ (

f (x)− f (z)+ f (z)− f (y)
)2
τ (x)ψ(y)η(z)λ(dx)λ(dy)λ(dz)

≤ 2
∫∫∫ ((

f (x)−f (z))2 + (
f (z)−f (y))2)τ (x)ψ(y)η(z)λ(dx)λ(dy)λ(dz)

= 2
∫∫ (

f (x)− f (z)
)2
τ (x)η(z)λ(dx)λ(dz)

+ 2
∫∫ (

f (z)− f (y)
)2
ψ(y)η(z)λ(dy)λ(dz).

Inserting this into (45), and then applying (46) [and the analogue of (46) for j +1],
we see

Cj,j+1(f )≤ 2δ2Vη(f )+ (
2(1 − δ)2 + δ(1 − δ)

)
×
(∫∫ (

f (x)− f (z)
)2
τ (x)η(z)λ(dx)λ(dz)

+
∫∫ (

f (z)− f (y)
)2
ψ(y)η(z)λ(dy)λ(dz)

)
= 2δ2Vη(f )+ (2 − δ)(1 − δ)

×
(∫∫ (

f (x)− f (y)
)2
η(x)τ (y)λ(dx)λ(dy)

+
∫∫ (

f (x)− f (y)
)2
η(x)ψ(y)λ(dx)λ(dy)

)
≤ 2δ2Vη(f )+ (2 − δ)

(
Vj (f )− δ2Vη(f )+ Vj+1(f )− δ2Vη(f )

)
/δ

≤ 2 − δ

δ

(
Vj(f )+ Vj+1(f )

)
.

(47)
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Let X(0), . . . ,X(D) be independent random variables, with X(i) having den-
sity φi . Then for i < j ,

Cij (f )= E
((
f (X(i))− f (X(j))

)2)

= E

((
j−1∑
k=i

f (X(k))− f (X(k+1))

)2)

≤ E

(
(j − i)

j−1∑
k=i

(
f (X(k))− f (X(k+1))

)2)

= (j − i)

j−1∑
k=i

Ck,k+1(f )

(where we used the Schwarz inequality in the third line). Therefore, applying (47),
we see that for all i �= j ,

Cij (f )≤D

D−1∑
k=0

Ck,k+1(f )≤ 2(2 − δ)D

δ

D∑
l=0

Vl(f ).(48)

Notice that the last expression in (48) is also a bound for the case i = j , because
Cjj (f )= 2Vj(f ). Therefore (48) and (43) imply (42) and the theorem is proven.

REMARK. An inspection of the final paragraph of the proof shows that
Theorem 1.2 can be generalized to the case that the overlapping φj ’s are not
linearly arranged. More precisely, we can replace the last two sentences in the
statement of the theorem with the following: Fix δ > 0, and consider a graph
whose vertices are 0,1, . . . ,D, with an edge joining i to j if and only if∫

min{φi(x),φj (x)}λ(dx)≥ δ.

Let M be the diameter of this graph, that is,

M = max
i,j

{minimum number of edges in a path from i to j}.

Then

Gapmix ≥ δ

2M
min

j=0,...,D
aj Gapj .

APPENDIX

A. The Caracciolo–Pelissetto–Sokal result. This appendix contains the
proof of Theorem 2.1 as a consequence of a more general result (Theorem A.1
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below), due to Caracciolo, Pelissetto and Sokal (1992). The proof given here is
their proof, with only editorial changes.

The proof is based on the theory of operators in a Hilbert space. To start, we
shall describe the spaces in which we work, and give some equivalent descriptions
of the spectral gap of a reversible (self-adjoint) operator.

Let ρ be a probability measure on a state space S. For functions f and g on S,
we define

(f, g)ρ =
∫
S
f (x)g(x)ρ(dx)(49)

the inner product on L2(ρ), the Hilbert space all functions that are square-
integrable with respect to ρ. (If S is discrete, then of course all integrals become
sums.)

Let R(x, dy) be the transition kernel of a Markov chain that is reversible with
respect to ρ. That is,

ρ(dx)R(x, dy)= ρ(dy)R(y, dx),(50)

or, more formally,

(f,Rg)ρ = (Rf,g)ρ for all f,g ∈ L2(ρ),(51)

where we write

Rf (x)=
∫
S
R(x, dy)f (y).

Let>ρ be the projection operator that sends each function to the constant function
identical to its mean:

(>ρf )(x) := (f,1)ρ =
∫
S
f (y)ρ(dy) for all x ∈ S.(52)

The spectral gap of R, Gap(R), is defined by

Gap(R)= inf
(f, (I −R)f )ρ

(f, (I −>ρ)f )ρ
(53)

= inf

∫∫ |f (x)− f (y)|2ρ(dx)R(x, dy)
2
∫ |f (x)− (f,1)ρ |2ρ(dx)(54)

where the inf is over all non-constant functions f in L2(ρ). Notice that the
denominator in (53) equals the variance of f (X) if X is a random variable with
distribution ρ.

Let 1⊥ be the orthogonal complement of the constant functions in L2(ρ):

1⊥ := {
f ∈L2(ρ) : (f,1)ρ = 0

} :=
{
f ∈L2(ρ) :

∫
S
f (x)ρ(dx)= 0

}
.
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Observe that (I −R)f ∈ 1⊥ whenever f ∈ 1⊥; therefore we can view I −R as an
operator on the Hilbert space 1⊥. We shall write Spec1⊥(T ) to denote the spectrum
of the operator T on 1⊥. For the reversible probability transition operator R, it is
well known that Spec1⊥(R) is a subset of the real interval [−1,1].

Observe that equations (53) and (54) still hold if we take the inf over f ∈ 1⊥.
Thus we obtain

Gap(R)= inf
f∈1⊥

(f, (I −R)f )ρ

(f,f )ρ

= inf Spec1⊥(I −R) [Yosida (1980), page 320](55)

= 1 − supSpec1⊥(R).

In the case that S is finite, this simply says that Gap(R) is one minus the second-
largest eigenvalue of R.

The preceding paragraphs are very general. For the theorem presently under
consideration, consider a probability measure ψ on the state space S, and let
P (x, dy) be the transition kernel of a Markov chain that is reversible with respect
to ψ . Suppose further that the state space is partitioned into m disjoint pieces:

S = S1 ∪ · · · ∪ Sm.(56)

For each i = 1, . . . ,m, define Pi , the restriction of P to Si , by rejecting jumps that
leave Si :

Pi(x,B)= P (x,B)+ 1{x∈B}P (x,S \ Si ) for x ∈ Si ,B ⊂ Si .(57)

Also define the transition kernel P on S which suppresses all jumps between
different pieces:

P (x,A)= Pi (x,A∩ Si ) if x ∈ Si and A⊂ S.(58)

Let ψi be the normalized restriction of ψ to Si :

ψi(A)= ψ(A ∩ Si)

bi
where bi =ψ(Si ).(59)

This defines ψi to be a measure on S whose support is in Si . However, when
discussing Pi , we shall want to interpret ψi as a measure that is defined on Si
only. We shall not bother to introduce a different notation for this. Similarly, when
discussing Pi and a function f that is defined on all of S [e.g., in (ii) below], we
shall really mean the new function obtained from f by restricting its domain to Si .

The following observations are easy to check:

(i) ψ =∑m
i=1 biψi ;

(ii) (f,Pg)ψ =∑m
i=1 bi(f,Pig)ψi ;

(iii) Pi is reversible with respect to ψi (on the state space Si ); and
(iv) P is reversible with respect to ψ .
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We shall write > for the projection operator >ψ , defined in (52):

(>f )(x)≡ (>f )(x)=
∫
S
f (y)ψ(dy) for all x ∈ S.(60)

Similarly, define the operator which projects onto functions that are constant in
each piece:

(>f )(x)=
∫
Si
f (y)ψi(dy) if x ∈ Si .(61)

Let VS be the vector space of functions on S that are constant within each Si . Then
> is the orthogonal projection onto VS in L2(ψ).

Let Q(x, dy) be another transition kernel that is reversible with respect to ψ .
Then let Q be the following “aggregated transition matrix”:

Q(i, j)= 1

bi

∫
y∈Sj

∫
x∈Si

ψ(dx)Q(x, dy) (i, j = 1, . . . ,m).(62)

Observe that

biQ(i, j)= bjQ(j, i);(63)

that is, if we view the vector b = (b1, . . . , bm) as a probability measure on
{1, . . . ,m}, then Q is reversible with respect to b.

THEOREM A.1 (Caracciolo–Pelissetto–Sokal). Assume that Q is nonnegative
definite. Let Q1/2 be the nonnegative square root of Q. Then

Gap(Q1/2PQ1/2)≥ Gap(Q) min
i=1,...,m

Gap(Pi ).(64)

Given this theorem, we deduce Theorem 2.1 directly, as follows.

PROOF OF THEOREM 2.1. Let S, Si , P , ψ , and Q in this appendix be
the objects of the same names of Section 2. With this choice, we observe that
Pi and bi of this appendix respectively correspond to Ti and ci of Section 2,
and the measure ψi(dx) on Si in this appendix corresponds to the measure
ψi(dx, j)= δi(j)φi(x)λ(dx) on Si =�×{i} in Section 2. With these definitions,
the operators Q defined by equations (19) and (62) are the same. Finally, we
observed in Section 2 that Q is reversible and Q2 = Q, so we conclude that
Q is positive definite and Q1/2 = Q. This completes the translation between
Theorems 2.1 and A.1. �

Before we undertake the proof of Theorem A.1, we record two lemmas.

LEMMA A.2. Let A and B be operators on a Hilbert space, and let c be a
non-zero complex number. Then c is in the spectrum of AB if and only if c is in
the spectrum of BA.
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PROOF. This is Problem 76 of Halmos [(1982), solved on page 224]. �

COROLLARY A.3. Let A and B be transition kernels on the state space S,
such that AB and BA are both nonnegative definite and reversible with respect to
the probability measure ρ. Then Gap(AB)= Gap(BA).

PROOF. Lemma A.2 shows that (0,∞) ∩ Spec1⊥(AB) = (0,∞) ∩
Spec1⊥(BA). Therefore sup Spec1⊥(AB) can differ from supSpec1⊥(BA) only if
both of these numbers are nonpositive. But the spectrum of a reversible nonneg-
ative definite operator is a nonempty subset of [0,∞); so if supSpec1⊥(AB) and
sup Spec1⊥(BA) are nonpositive, then they must both equal 0. Hence these two
sups must be equal. The Corollary now follows from (55). �

REMARK. If S is finite, then we can omit the assumption about nonnegative
definiteness in Corollary A.3. This is because in finite dimensions it is well
known that AB and BA have the same spectrum, including multiplicities of all
eigenvalues.

PROOF OF THEOREM A.1. Let G∗ = mini=1,...,mGap(Pi ). Then, for every i,(
f, (I − Pi)f

)
ψi

≥G∗
(
f, (I −>)f

)
ψi

for every f ∈L2(ψi).(65)

Multiplying this inequality by bi and summing over i gives(
f, (I − P )f

)
ψ ≥G∗

(
f, (I −>)f

)
ψ for every f ∈ L2(ψ).(66)

Since P (x, dy)≥ P (x, dy) whenever x �= y, we have

(
f, (I − P )f

)
ψ = 1

2

∫∫
|f (x)− f (y)|2ψ(dx)P (x, dy)

≥ 1

2

∫∫
|f (x)− f (y)|2ψ(dx)P (x, dy)(67)

= (
f, (I − P )f

)
ψ for every f ∈ L2(ψ).

By Corollary A.3 with A=>Q1/2 and B = Q1/2>, we find that

Gap(>Q>)= Gap(Q1/2>
2
Q1/2).(68)

It is straightforward to see that the restriction of the operator >Q> to the
m-dimensional vector space VS (defined above) corresponds to the matrix Q.
Hence the eigenvalues of >Q> on VS are exactly the same as those of Q. In
particular,

Gap(>Q>)= Gap(Q).(69)
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Combining equations (68) and (69) and using >
2 =>, we conclude that

Gap(Q1/2>Q1/2)= Gap(Q).(70)

Putting the pieces together, we find that for every f in L2(ψ),(
f, (I − Q1/2PQ1/2)f

)
ψ

= (
f, (I − Q)f

)
ψ + (

Q1/2f, (I − P )Q1/2f
)
ψ

≥ (
f, (I − Q)f

)
ψ +G∗

(
Q1/2f, (I −>)Q1/2f

)
ψ [by (68) and (66)]

= (1 −G∗)
(
f, (I − Q)f

)
ψ +G∗

(
f, (I − Q1/2>Q1/2)f

)
ψ

≥ 0 +G∗ Gap(Q)
(
f, (I −>)f

)
ψ [by (70)].

The theorem follows. �

B. The Madras–Piccioni result. This appendix contains the proof of Propo-
sition 3.2.

The spectral gap of the chain QPQ is given by the following inf over all
nonconstant functions f on �× {1, . . . ,m} that are in L2(ψ):

Gap(QPQ)

= inf

∫
�

∫
�

∑
i

∑
j |f (x, i)− f (y, j)|2ψ(dx, i)(QPQ)((x, i), (dy, j))∫

�

∫
�

∑
i

∑
j |f (x, i)− f (y, j)|2ψ(dx, i)ψ(dy, j) .

(71)

We obtain an upper bound on Gap(QPQ) by restricting the inf to functions that do
not depend on i, that is functions f of the form f (x, i)= g(x). Then the numerator
of (71) equals∫
�

∫
�

∑
i

∑
j

|g(x)− g(y)|2ψ(dx, i)(QPQ)
(
(x, i), (dy, j)

)

=
∫
�

∫
�

|g(x)− g(y)|2∑
i

ciφi(x)λ(dx)

×∑
k

ckφk(x)

κ(x)
R(x, dy)min

{
1,
φk(y)ρ(x)

φk(x)ρ(y)

}

≤
∫
�

∫
�
|g(x)− g(y)|2R(x, dy)min

{∑
k

ckφk(x),
∑
k

ck
φk(y)ρ(x)

ρ(y)

}
λ(dx)

=
∫
�

∫
�

|g(x)− g(y)|2R[κ](x, dy)κ(x)λ(dx).
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Also, the denominator of (71) equals∫
�

∫
�

|g(x)− g(y)|2κ(x)λ(dy)κ(y)λ(dy),
so we have

Gap(QPQ)≤ inf

∫
�

∫
� |g(x)− g(y)|2R[κ](x, dy)κ(x)λ(dx)∫

�

∫
� |g(x)− g(y)|2κ(x)λ(dy)κ(y)λ(dy)

where the inf is over all nonconstant g in L2(κ). Since the right hand side of the
last inequality is Gap(R[κ]), the proposition follows.
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