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RATE OF CONVERGENCE OF A PARTICLE METHOD TO THE
SOLUTION OF THE MCKEAN–VLASOV EQUATION

BY FABIO ANTONELLI1 AND ARTURO KOHATSU-HIGA2

Università di Chieti and Universitat Pompeu Fabra

This paper studies the rate of convergence of an appropriate discretiza-
tion scheme of the solution of the McKean–Vlasov equation introduced by
Bossy and Talay. More specifically, we consider approximations of the dis-
tribution and of the density of the solution of the stochastic differential equa-
tion associated to the McKean–Vlasov equation. The scheme adopted here is
a mixed one: Euler–weakly interacting particle system. If n is the number of
weakly interacting particles and h is the uniform step in the time discretiza-
tion, we prove that the rate of convergence of the distribution functions of the
approximating sequence in the L1(�× R) norm is of the order of 1√

n
+ h,

while for the densities is of the order h+ 1√
nh1/4 . The rates of convergence

with respect to the supremum norm are also calculated. This result is obtained
by carefully employing techniques of Malliavin calculus.

1. Introduction. In a series of articles (see [1, 2, 16]), Bossy and Talay
studied the numerical approximation of the solutions to the McKean–Vlasov
equation and to the Burgers equation. The McKean–Vlasov equation is obtained
as the diffusive limit of a particle system, describing the behavior of a high density
gas. Its solution is a probability law density and it can be represented as the law of
the solution of an associated nonlinear stochastic differential equation (for further
details we refer the reader to [4]).

In their paper, Bossy and Talay choose to approximate the McKean–Vlasov
limit by replicating the behavior with a system of n weakly interacting particles,
each following a SDE discretized in time with step h ∈ (0,1]. In [1] it is proved
that when n→∞ and h→ 0, then the empirical distribution function of these n
particles converges, in a weak sense to be defined later, toward the solution of the
McKean–Vlasov limit with a rate at least of the order 1√

n
+√

h. Through some
simulations it can be clearly seen that the rate in n is optimal but that the rate in h

is probably better than
√
h.

In this article, we prove that the rate of convergence of the scheme constructed
by Bossy and Talay is actually at least of the order 1√

n
+ h, as they also suspected

on the basis of some numerical simulations they ran.
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To make our introduction more precise, we recall that the McKean–Vlasov
equation can be described by means of four Lipschitz kernels a(x, y), b(x, y),
f (x, y) and g(x, y) from R2 to R and of a differential operator, acting on the
probability measures, defined by

L(µ)h(x)= 1
2

[
b

(
x,

∫
R

g(x, y) dµ(y)

)]2

h′′(x)

+
[
a

(
x,

∫
R

f (x, y) dµ(y)

)]
h′(x).

A family of probability measure {µt}t≥0 is said to be the solution of the McKean–
Vlasov equation if it solves

d

dt
〈µt,h〉 = 〈

µt,L(µt)h
〉 ∀ h ∈C∞

K (R) (compact support), µt=0 =µ0,(1.1)

where µ0 is an initial probability measure. Applications and a general discussion
about the above equation can be found in Gärtner [4]. For example, this kind of
system is the natural limit equation for the theory of propagation of chaos that
allows the interpretation of the above system as the equation satisfied by the limit
of the empirical measure associated with a random particle system with long-range
weak interaction. Applications of this model arise in Newtonian physics, statistical
mechanics, chemical kinetics and segregation problems in biological populations,
among others.

By associating a martingale problem to the operator L, µt can also be
characterized through the stochastic differential equation (SDE),

Xt = ξ +
∫ t

0
a

(
Xs,

∫
R

f (Xs, y) dµs(y)

)
ds

+
∫ t

0
b

(
Xs,

∫
R

g(Xs, y) dµs(y)

)
dWs,

(1.2)

whereµt denotes the law of the solution Xt , while W is a Wiener process on space,
so that the natural filtration generated by W is extended with an initial independent
sigma-algebra G0, to make ξ an F0-measurable random variable with law µ0. As
shown by Gärtner, under appropriate conditions on the coefficients, there exists a
unique strong solution of (1.2), Xt , and its law, µt satisfies (1.1).

The SDE (1.2) is sometimes called nonlinear, since its coefficients involve at the
same time Xs and its law. In [1], it is suggested that the numerical approximation
of (1.2) must act on two levels. On one, the usual time discretization (see [8]) is
needed, based on simulations of the increments of the driving process W . On the
other, it is necessary to use some empirical measure in order to approximate the
measures µs that appear in the coefficients. To this purpose, the simulation scheme
is expanded introducing n independent driving Wiener processes, each generating
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a particle through an equation that approximates (1.2) (for details see Section 3).
These particles, denoted by Xi , i = 1, . . . , n, will interact with each other through
their empirical measure, viewed as an approximation of µs . By some kind of law
of large numbers (or propagation of chaos as it is better known), this interaction
tends to disappear as n→∞.

Bossy and Talay prove that the empirical distribution generated by the Xi

converges to the law of X and therefore give a method to approximate the solution
of the McKean–Vlasov equation (1.1). More exactly, denoting with h the time step
and n the number of particles, they prove the following result, which we report here
for the reader’s convenience, since we will refer to it for the purpose of comparison.

THEOREM 1.1. Let a(x, y)= b(x, y)= y and assume:

(H-1) There exists a strictly positive constant c such that g(x, y) ≥ c > 0,
∀ (x, y) ∈ R

2.
(H-2) The functions f and g are uniformly bounded on R2; f is globally Lipschitz

and g has uniformly bounded first partial derivatives.
(H-3) The initial law µ0 satisfies one of the following:

(i) µ0 is a Dirac measure at x0.
(ii) µ0 has a continuous density p0 so that there exist constants M , α > 0,

η ≥ 0 such that p0(x) ≤ η exp(−α x2

2 ) for |x| > M (if η = 0, µ0 has
compact support).

Furthermore, if u(t, ·) is the distribution function of Xt and u(t, ·) the empirical
distribution function of the sequence Xi

t for i = 1, . . . , n, then for any fixed
t ∈ [0, T ],

E‖u(t, ·)− u(t, ·)‖L1(R) ≤ C

(
1√
n
+√

h

)
.(1.3)

If we substitute (H2) and (H3) with the stronger conditions:

(H-2′) f ∈ C2
b(R

2) and g ∈C3
b(R

2).
(H-3′) The initial law µ0 has a strictly positive density p0 ∈ C2(R) and there exist

constants M,η,α > 0 such that p0 +|p′
0(x)|+ |p′′

0 (x)| ≤ η exp(−α x2

2 ) for
|x|>M ,

then µt has a density, denoted by pt(·), and

E

∥∥∥∥∥pt(·)− 1

n

n∑
j=1

φε(X
j
t − x)

∥∥∥∥∥
L1(R)

≤ C

(
ε+ 1√

ε

(
1√
n
+√

h

))
,(1.4)

where φε(z)= exp(−z2/2ε)√
2πε

.
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The goal of our work is to prove that the rate in (1.3) is actually 1√
n
+ h under

conditions comparable to (H1), (H2) and (H3). We will first establish the result for
the densities showing that the optimal rate in (1.4) is at least of the order 1√

nh
+ h,

when ε = h, rather than h+ 1√
nh

+√
h+ 1.

Our efforts clearly drew inspiration from the remarks made by Bossy and
Talay (see [1] and [2]), who gave numerical evidence that suggested the rate of
convergence was faster than what they proved.

Here we are able to achieve this better rate, by using completely different
techniques from those in [1]. Indeed, we carefully employ Malliavin calculus
techniques together with some ideas brought to light in a recent work by Kohatsu
and Ogawa [7]. The drawback of this method is the high degree of smoothness
required on the coefficients of the equation.

Malliavin calculus allows us to establish when the marginal densities of the
solution of a SDE exist and are regular, so it is indeed very apt to deal with
equations whose coefficients involve probability densities. The introduction of
these techniques in this setting enabled us also to weaken slightly the hypotheses
on the coefficients as well as those on the initial density function. We establish this
result in Section 2 and it is adapted from the similar one obtained by Taniguchi
(see [17]), in the study of the smoothness of densities for time dependent systems.

The key idea in the proof of the result is that the coefficients have to
verify the so-called restricted Hörmander condition. The main difference between
Taniguchi’s results and ours is that we do not require any boundedness for the
coefficients; indeed, bounded differentiability in all the required derivatives is
sufficient; under hypotheses (H0) of the next section, this property is satisfied by
the coefficients of (1.2) and we can apply our results of existence and smoothness
of the densities to the process under study. Another difference with Taniguchi’s
paper is the introduction of an initial random variable. If we were to use a
uniform restricted Hörmander type condition, as in [17], this difference would be
minor. However, applications force the study of the case when the initial random
variable is supported on the whole real line. Therefore, such a uniform restricted
Hörmander condition would be very restrictive. Here we only require some tail
conditions on the initial random variable. In order to carry out the proof in this
case one needs to study carefully the behavior of all the bounds with respect to the
initial random variable.

In Section 3 we study the approximation errors of the particle method used to
approximate the solution of (1.2); this analysis relies on a technique very different
from the one used by Bossy and Talay. We try to separate as much as possible the
effects of the time discretization and the particle method so that one can find the
optimal rate. We believe this to be the main reason why one obtains

√
h instead

of h in (1.3) (see, e.g., Sections 6 and 7 in [16]). One of the key points to do so is
an approximation method for the solution of the SDE generated by the difference
equation, briefly explained at the end of the proof of Theorem 3.5.
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The basic idea is as follows: consider formally the quantity

E

∥∥∥∥∥E(
δx(Xt )

)− 1

n

n∑
j=1

φε(X
j
t − x)

∥∥∥∥∥
L1(R)

≤ ∥∥E(
δx(Xt )

)−E
(
δx(X

1
t )
)∥∥

L1(R)

+E

∥∥∥∥∥E(
δx(X

1
t )
)− 1

n

n∑
j=1

φε(X
j
t − x)

∥∥∥∥∥
L1(R)

.

The second term is about the order 1√
n

(some correlation structure between the Xj

has to be studied). The first is a term of the same kind that arises in classical
weak approximation procedures, except that in our case discretization both in time
and in space (measure discretization) is used. By analyzing separately the two
discretizations one gets a better rate of convergence.

To carry out this idea is not as easy as explained above. It presents some extra
complications with respect to the classical case of diffusions and it is essential
for our method to work, that we run a separate study of the time and space
discretizations.

The results for approximations of the distribution function of Xt are obtained
with similar techniques to those used for the density functions. For this reason we
decided to explain in detail this second case, technically more demanding, and to
sketch the proofs for the first.

We hope the methods exposed here will help develop similar results also for the
Burgers equation and in general for nonlinear equations.

In the area of numerical approximations to nonlinear equations the particle
method is not the only method available to simulate the solution. There are also
other methods that are related to the one presented here (see, e.g., [3, 5, 6, 14]).

The paper is subdivided as follows. In Section 2, we give the preliminary
results that enable concluding the existence and smoothness of the densities of the
solution of (1.2) under restricted Hörmander conditions. Given that the problem
in one dimension simplifies to elliptic conditions we decided to consider the
multidimensional case.

In the rest of the paper we concentrate on the one-dimensional case, the general
multidimensional case being a straightforward generalization. In Section 3 we
establish our approximation results for densities, while in Section 4 we summarize
those and we derive the distribution function case.

We adopt the convention of writing the same letter (usually C) for a constant
even if it changes from line to line. This constant is always independent of h, n
and the partition of the time interval. Unless otherwise stated we will also assume
without loss of generality that all constants are bigger than 1.
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2. Preliminary results. Let [0, T ] be a finite time interval and (�,F ,P )

a complete probability space, where a standard d-dimensional Brownian motion,
W , is defined. We consider the equation in Rn,

Xt = ξ +
∫ t

0
a
(
Xs,F (Xs;µs)

)
ds +

∫ t

0
b
(
Xs,G(Xs;µs)

)
dWs,(2.1)

where F(x;µs) or G(x;µs) denote the functions given by
∫
Rn ζ(x, y) dµs(y)

(ζ = f,g, respectively) and µs indicates the distribution of Xs .
We are going to study the existence and smoothness of the density of the

solution of (2.1). For ease of writing, we call ā(t, x) = a(x,F (x;µt)) and
b̄(t, x)= b(x,G(x;µt)), so we rewrite equation (2.1) as

Xt = ξ +
∫ t

0
ā(s,Xs) ds +

d∑
k=1

∫ t

0
b̄k(s,Xs) dW

k
s .(2.2)

Next, we introduce a series of hypotheses that we need for our goal.

ASSUMPTIONS.

(H0) ξ is an F0-measurable random variable in Rn, such that ξ ∈ ⋂
p≥1 L

p . The
functions

a: R
n × R → R

n, b: R
n ×R → R

n × R
d, f, g: R

n ×R
n → R

are all smooth with bounded derivatives, we call M the constant dominating
them all.

(H1) There exists an integer m0 and a positive constant c, which without loss of
generality we assume smaller than 1/2, such that

m0∑
i=0

∑
v∈Ii

〈v(0, ξ), η〉2 ≥ c > 0 a.e. for all η ∈ Sn−1,

where the sets Ii are given by I0 = {b̄1, . . . , b̄d}, . . . , In = {[b̄k, v], v ∈
In−1,1 ≤ k ≤ d} and [·, ·] denotes the Lie bracket. In this context,
the coefficients are to be understood as vector fields, that is b̄k(t, x) =∑n

i=1 b̄
i
k(t, x)

∂
∂xi

.
(H2) The functions bk are bounded, let us say by the same constant M as in (H0).
(H3) ξ has a density u0 for which there exist positive constants η, α, β and ρ such

that

u0(x)≤ η exp(−α|x|β) for |x| ≥ ρ.

From Hypothesis (H0), it is clear that all the derivatives of v ∈ ⋃n
i=1 Ii are

bounded. Without loss of generality we assume that these derivatives are bounded
by the same constant M .
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Hypothesis (H1) is the so-called restricted Hörmander condition, as it involves
only the diffusion coefficients. In the one-dimensional case this reduces to
saying that almost surely |b̄(0, ξ)| ≥ c > 0, which is very similar to the
corresponding (H-1) in Theorem 1.1, requiring b̄(0, x) ≥ c > 0, for all x ∈ R.
In the multidimensional case, instead Hypothesis (H1) becomes actually much
weaker than (H-1), as it may involve the brackets of order higher than one,
while (H-1) does not.

Hypothesis (H2) is similar to (H-2′) in Theorem 1.1; note that the smoothness in
the coefficients is needed here to allow the study of the smoothness of the density.
Finally, Hypothesis (H3) is slightly weaker than the corresponding (H-3′).

Another difference is given by the fact that in Theorem 1.1 all three conditions
are assumed, while we are going to show, by means of Malliavin calculus
techniques, that it is necessary to assume only Hypothesis (H1) and either
Hypothesis (H2) or (H3). Therefore the combination of Hypothesis (H1) and
(H2) give that the restricted Hörmander condition does not have to be necessarily
uniform as is required in (H-1).

Since all the results in the paper rely heavily on Malliavin calculus, we want to
introduce here some of its terminology very briefly.

For d ∈ N, we denote by C∞
b (Rd) the set of C∞ bounded functions f : R

d → R,
with bounded derivatives of all orders and we assume that a d-dimensional Wiener
process is defined on a probability space.

If we denote by S the class of real random variables F that can be represented
as f (Wt1, . . . ,Wtn) for some n ∈ N, t1, . . . , tn ∈ [0, T ] and f ∈ C∞

b (Rnd), we can
complete this space under the norm ‖ · ‖1,p given by

‖F‖p1,p =E(|F |p)+
(

d∑
j=1

E

(∫ T

0
|Dj

s F |2 ds
)p/2)

,

where Dj is defined as

Dj
s F =

n∑
i=1

∂f

∂xij
(Wt1, . . . ,Wtn)1[0,ti ](s) for j = 1, . . . , d,

obtaining a Banach space, usually indicated by D
1,p. Analogously, we can

construct the space Dk,p, by completing S under the norm

‖F‖pk,p =E(|F |p)

+
k∑

j=1

∑
k1+···+kd=j

E

((∫ T

0
. . .

∫ T

0
|Dd,kd

sj ···sj−kd · · ·D
1,k1
sk1 ···s1

F |2 ds1 · · · dsj
)p/2)

,

where Di,l
s1···slF =Di

s1
· · ·Di

sl
F . Finally, we denote D∞ =⋂

p≥1
⋂

k≥1 Dk,p.
The adjoint of the closable unbounded operator Dj : D1,2 ⊆ L2(�) →

L2([0, T ] × �) is usually denoted by δj and it is called the Skorohod integral.
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The domain of δj is the set of all processes u ∈ L2([0, T ] ×�) such that∣∣∣∣E
(∫ T

0
D

j
t Fut dt

)∣∣∣∣≤ C‖F‖2 ∀ F ∈ S,

for some constant C depending possibly on u.
If u ∈ Dom(δj ), then δj (u) is the square integrable random variable determined

by the duality relation

E(δj (u)F )= E

(∫ T

0
D

j
t Fut dt

)
∀ F ∈ D

1,2.

In the multidimensional case we consider δ =∑
j δ

j .
Finally, for a possibly m-dimensional random variable F we denote its

Malliavin covariance matrix by γF and it is defined as

γ hk
F =

d∑
j=1

∫ T

0
Dj
s F

hDj
s F

k ds, h, k = 1, . . . ,m.

The Malliavin covariance matrix plays a key role when one wants to determine
the existence and the smoothness of the densities of the solutions of stochastic
differential equations. Namely, following [10] (Proposition 2.1.1, page 78), we
have that for any random variable F ∈ (D

1,p
loc )

m for some p > 1, if γF is almost
surely invertible, then the law of F is absolutely continuous with respect to
Lebesgue measure. Moreover if F ∈ D1,2 (and it is one-dimensional) and γ−1

F DF

is in Dom(δ) then F has a continuous and bounded density given by

f (x)=E
(
1{F>x}δ(γ−1

F DF)
)
.

In particular we will use the fact that if F ∈ D∞ and |γ−1
F | ∈⋂

p>1 L
p then F has

an infinitely differentiable density (see [10], Corollary 2.1.2).
The above gives birth to a general formula known as the integration by parts

formula. For any two random variables F,G ∈ D∞, so that |γF |−1 ∈ ∩p>1L
p and

f ∈ C∞
p (R), the following integration by parts formula holds:

E
(
f (m)(F )G

)=E
(
f (F )Hm(F,G)

)
for m≥ 1,(2.3)

where Hm(F,G)=H(F,Hm−1(F,G)) and

H1(F,G)=H(F,G)=
d∑
i=1

δi(Gγ−1
F DiF ),

where δi denotes the adjoint operator of Di .
Moreover following carefully the calculations in [10], page 41, one obtains that

for any p > 1 there exist indices h, k, l, q, q ′, depending on m and p and a constant
C =C(m,p,h, k, l) such that

‖Hm(F,G)‖p ≤ C‖γ−1
F ‖qlp‖F‖q ′m+1,kp‖G‖m,hp.(2.4)
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One can determine exactly l, k and p. For this see [12].
Having introduced all the necessary terminology we first quote a result from [7]

about existence and integrability of the solution of (2.1).

THEOREM 2.1. Let us assume that (H0) is satisfied; then there is a unique
strong solution of (2.1) such that, for all p > 1,

E
(

sup
s≤T

|Xs |p
)
≤∞.

Furthermore Xs ∈ D∞ for all s ∈ [0, T ].
We are now able to state and prove the main result of this section about the

marginal densities of X.

THEOREM 2.2. Assume that Hypotheses (H0) and (H1) are satisfied together
with either Hypotheses (H2) or (H3). Then γ−1

Xt
∈⋂

p≥1L
p and Xt has a smooth

density.

REMARK. We would like to point out that the restricted Hörmander condition
is needed for the densities to be absolutely continuous with respect to Lebesgue
measure when considering time dependent coefficients. It is possible to construct
easy examples where the coefficients of a SDE verify an unrestricted Hörmander
condition at all times and points, but for which the Malliavin covariance matrix
associated to the solution is not invertible (see [17]).

PROOF. Our proof is an adaptation of the method used by [17], extended to
the case when the initial point is random and the uniformity on the Hörmander
condition is relaxed. Since the argument is basically the same under either
Hypothesis (H2) or (H3), we prove the result assuming the latter, being the more
difficult one, and we point out the differences with the other case step by step.

In (2.2) the coefficients are time dependent and because of Hypothesis (H0),
they are smooth in space with bounded derivatives (hence they are also globally
Lipschitz) and globally differentiable in time as many times as needed. Indeed, for
t ∈ [0, T ] and any k,

∂b̄k

∂t
(t, x)= ∂bk

∂t

(
x,E

(
g(x,Xt )

))= ∂bk

∂y

(
x,E

(
g(x,Xt )

))∂E(g(x,Xt))

∂t
.

On the other hand, applying Itô’s lemma to g(x, ·), we get

E
(
g(x,Xt )

)= E
(
g(x, ξ)

)+ ∫ t

0
E

[
n∑

i=1

gxi (x,Xr)ā
i(r,Xr)

]
dr

+
∫ t

0
E

[
n∑

i,j=1

gxixj (x,Xr)

d∑
k=1

b̄ik(r,Xr)b̄
j
k (r,Xr)

]
dr
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and hence we obtain
∂E(g(x,Xt ))

∂t

=E

[
n∑
i=1

gxi (x,Xt )ā
i(t,Xt )+

n∑
i,j=1

gxixj (x,Xt )

d∑
k=1

b̄ik(t,Xt )b̄
j
k (t,Xt )

]
,

which is bounded since all the derivatives of the coefficient g are bounded by
M by hypothesis and we can bound E(|āi(r,Xr)|) and E(|b̄ik(t,Xt )b̄

j
k (t,Xt )|)

by exploiting the mean value theorem and Hypothesis (H0). For instance, for
E(|āi(r,Xr)|) we have

|āi(r,Xr)| =
∣∣∣∣ai

(
Xr,

∫
Rn
f (Xr, y)µr(dy)

)∣∣∣∣
=

∣∣∣∣ai
(
Xr,

∫
Rn
f (Xr, y)µr(dy)

)
− ai

(
ξ,

∫
Rn
f (ξ, y)µ0(dy)

)∣∣∣∣
+

∣∣∣∣ai
(
ξ,

∫
Rn
f (ξ, y)µ0(dy)

)
− ai

(
0,

∫
Rn
f (0, y)µ0(dy)

)∣∣∣∣
+

∣∣∣∣ai
(

0,
∫

Rn
f (0, y)µ0(dy)

)∣∣∣∣
≤M

(
|Xr − ξ | +M|Xr − ξ |

+
∣∣∣∣
∫

Rn
f (ξ, y)µr(dy)−

∫
Rn
f (ξ, y)µ0(dy)

∣∣∣∣
)

+M

(
|ξ | +

∫
Rn

|f (ξ, y)− f (0, y)|µ0(dy)

)

+
∣∣∣∣ai

(
0,

∫
Rn
f (0, y)µ0(dy)

)∣∣∣∣
≤M(|Xr − ξ | + 2M|Xr − ξ |)+M(|ξ | +M|ξ |)

+
∣∣∣∣ai

(
0,

∫
Rn
f (0, y)µ0(dy)

)∣∣∣∣.
Taking expectations, E(|āi(r,Xr)|) is finite. The same argument applies to the
other term.

Of course, the same procedure may be repeated for ā and the spatial and time
derivatives of any order, proving the smoothness in time of the coefficients of the
equation. It is exactly this smoothness that allows us, differently from Taniguchi’s
paper, to include in our discussion coefficients that might not be bounded. Without
loss of generality we assume that all the derivatives of ā and b̄ are bounded by the
same constant M .
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Let ζt denote the derivative of the stochastic flow associated with (2.2) and
ζ−1 the inverse flow, then both sups≤t |ζt (ξ)| and sups≤t |ζ−1

t (ξ )| ∈⋂
p≥1 L

p and
we can write the Malliavin derivative as Dk

sXt = ζt (ξ)ζ
−1
s (ξ)b̄k(s,Xs) (see [10],

page 109), where by Dk we are denoting the Malliavin derivative with respect to
the kth component of the Brownian motion.

Since we already noticed that Xt ∈ D∞, to conclude the existence and regularity
of the density, it is enough to check that

γ−1
Xt

=
[

d∑
k=1

ζt (ξ)

∫ t

0
ζ−1
s (ξ)b̄k(s,Xs)b̄k(s,Xs)

T ζ−1
s (ξ)T dsζt (ξ)

T

]−1

∈ ⋂
p≥1

Lp,

where by T we denote the transpose. Using the Lp boundedness of ζt (ξ) and
Lemma 2.3.1 in [10], this amounts to showing that for all p ≥ 2 there exists ε0(p)

such that for all ε ≤ ε0(p),

P

(
d∑

k=1

∫ t

0
ζ−1
s (ξ)b̄k(s,Xs)b̄k(s,Xs)

T ζ−1
s (ξ)T ds < ε

)
≤ εp.(2.5)

Following [17] or [10], to prove (2.5) it suffices to show that for all η in the unit
ball Sn−1,

P

(
d∑

k=1

∫ t

0

〈
ζ−1
s (ξ)b̄k(s,Xs), η

〉2
ds < ε

)
≤ εp.(2.6)

In particular we will prove that for the same m0 of Hypothesis (H1), ν(m0) =
5 · 4m0 and for any sufficiently large N ∈ N, we have

P

(
d∑

k=1

∫ t

0

〈
ζ−1
s (ξ)b̄k(s,Xs), η

〉2
ds <

1

Nν(m0)

)
≤ 1

Npν(m0)
.

In order to do so, we fix τ ∈ R+ and we divide this probability into two parts,

P

(
d∑

k=1

∫ t

0

〈
ζ−1
s (ξ)b̄k(s,Xs), η

〉2
ds < ε

)

≤ P

(
d∑

k=1

∫ t

0

〈
ζ−1
s (ξ)b̄k(s,Xs), η

〉2
ds < ε, |ξ | ≤ τ

)
+ P (|ξ | ≥ τ )

= p1 + p2.

For p2 we use Hypothesis (H3), which gives P (|ξ | > τ) ≤ C exp(−ατβ) for
τ ≥ ρ. At the end of the proof, we will specify how to choose τ to have (2.5)
satisfied. From now on, we assume without loss of generality that M > 1 also is
an upper bound for max0≤i≤m0,v∈Ii |v(0,0)|. As for p1, we first note that, given
Hypothesis (H1) and |ξ | ≤ τ , one has that for all η ∈ Sn−1, |y− ξ | ≤R and s ≤R,

m0∑
i=0

∑
v∈Ii

∣∣〈v(s, y), η〉2 − 〈
v(0, ξ), η

〉2∣∣≤ 4M2R(R + τ + 1)dm0+2n.
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If we impose 4M2R(R+ τ +1)dm0+2n < c
4 , then by solving the inequality we get

R <
1 + τ

2

[√
1 + c

4M2ndm0+2(τ + 1)2
− 1

]
.

Then choosing R = c

32dm0+2M2n(τ+1)
we have that the inequality is satisfied.

Therefore we have
m0∑
i=0

∑
v∈Ii

〈
v(s, y), η

〉2 ≥ 3c

4
> 0,(2.7)

when |y − ξ | ≤R and s ≤R.
If we are instead assuming (H2), it is not necessary to split the probability

in (2.6) into two parts and (2.7) holds automatically with R = c

16M2dm0+2 which
does not depend on τ .

Let us define the stopping time

σN = inf
{
s ∈

[
0,

1

N3

)
: |Xs − ξ | ≥ R

2
or |ζ−1

s (ξ)− I | ≥ 1

2

}
∧ R

2
.

There exists an appropriate constant C0 > 1 such that for N ≥ max(C0(τ

+1)2/3, t−1/3)≥ min(R2 , t)
−1/3 we have σN ≤ 1

N3 and

p1 ≤ P

(
d∑

k=1

∫ σN

0

〈
ζ−1
s (ξ)b̄k(s,Xs), η

〉2
ds < ε, |ξ | ≤ τ

)
.(2.8)

Let us remark that by definition of σN , for any q > 1, we have

P

(
σN <

1

N3

)
≤ P

(
sup

0≤s≤1/N3
|Xs − ξ | ≥ R

2

)
+ P

(
sup

0≤s≤1/N3
|ζ−1
s (ξ)− I | ≥ 1

2

)

≤
(

2

R

)q
E

(
sup

0≤s≤1/N3
|Xs − ξ |q

)
+ 2qE

(
sup

0≤s≤1/N3
|ζ−1
s (ξ)− 1|q

)

≤
(
C1

Rq
+C2

)
2q

(
1

N3

)q/2

,

for some constants C1 and C2. At this point, let us remark that

d∑
k=1

〈
ζ−1
s (ξ)b̄k(s,Xs), η

〉2 = ∑
v∈I0

〈
ζ−1
s (ξ)v(s,Xs), η

〉2
and let us introduce, as in [17], the following sets:

Ej(N)=
{ j∑
i=0

∑
v∈Ii

∫ σN

0

〈
ζ−1
s (ξ)v(s,Xs), η

〉2
ds <

dj

Nγj

}
∩ {|ξ | ≤ τ },
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where γj = 5 · 4m0−j , for j = 0, . . . ,m0 (note that γj = 4γj+1 and γ0 = ν(m0)).
We now chose in (2.6), ε = 1

Nγ0 ; therefore from (2.8) we get

p1 ≤ P

(∑
v∈I0

∫ σN

0

〈
ζ−1
s (ξ)b̄k(s,Xs), η

〉2
ds <

1

Nγ0
, |ξ | ≤ τ

)
= P

(
E0(N)

)

≤ P

(
E0(N)∩

{
σN <

1

N3

})
+ P

(
E0(N)∩

{
σN = 1

N3

})

≤ P

(
σN <

1

N3

)
+

m0−1∑
j=0

P

(
Ej(N)∩Ej+1(N)c ∩

{
σN = 1

N3

})

+P

(
Em0(N)∩

{
σN = 1

N3

})
.

We now prove that the last probability is actually zero. In fact, the Hörmander
condition (2.7), gives that on the set {σN = 1

N3 }, we necessarily have that on

{s ≤ σN }, 1
2 ≤ |ζ−1

s (ξ)| ≤ 3
2 and |Xs − ξ | ≤ R

2 , hence (2.7) holds a.s. with Xs

in place of y and consequently,
m0∑
i=0

∑
v∈Ii

∫ σN

0

〈
ζ−1
s (ξ)v(s,Xs), η

〉2
ds ≥ 3

8
cσN.

This implies that on the set

Em0(N) ∩
{
σN = 1

N3

}

=
{
m0∑
i=0

∑
v∈Ii

∫ σN

0

〈
ζ−1
s (ξ)v(s,Xs), η

〉2
ds ≤ dm0

N5 , σN = 1

N3 , |ξ |< τ

}

we have

3

4

c

N3 ≤
m0∑
i=0

∑
v∈Ii

∫ σN

0

〈
ζ−1
s (ξ)v(s,Xs), η

〉2
ds ≤ dm0

N5

which is clearly not verified, as soon as N > (4dm0

3c )1/2.
It remains to analyze the probabilities P (Ej(N) ∩ Ej+1(N)c ∩ {σN = 1

N3 }),
j = 0, . . . ,m0 − 1. On this set, we have

j∑
i=0

∑
v∈Ii

∫ σN

0

〈
ζ−1
s (ξ)v(s,Xs), η

〉2
ds ≤ dj

Nγj

and
j+1∑
i=0

∑
v∈Ii

∫ σN

0

〈
ζ−1
s (ξ)v(s,Xs), η

〉2
ds >

dj+1

Nγj+1
.
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Under these conditions we obtain that for N ≥ (2/d)1/15,
j+1∑
i=0

∑
v∈Ii

∫ σN

0

〈
ζ−1
s (ξ)v(s,Xs), η

〉2
ds

≥ ∑
v∈Ij+1

∫ σN

0

〈
ζ−1
s (ξ)v(s,Xs), η

〉2
ds

=
j+1∑
i=0

∑
v∈Ii

∫ σN

0

〈
ζ−1
s (ξ)v(s,Xs), η

〉2
ds

−
j∑
i=0

∑
v∈Ii

∫ σN

0

〈
ζ−1
s (ξ)v(s,Xs), η

〉2
ds

≥ dj+1

Nγj+1
− dj

Nγj
≥ dj+1

2Nγj+1
.

On the other hand, the cardinality of the set {v ∈ Ii, i = 0,1, . . . , j} is less than
dj+2, for any j = 0, . . . ,m0; thus at least one of the terms in the above sum must
be greater than or equal to dj+1

2dj+2N
γj+1 = 1

2dNγj+1 . Moreover

dj

Nγj
= dj

N4γj+1−9+9 ≤ 1

N4γj+1−9 ,

if N9 > dm0 > dj , for all j . Taking all these remarks into account, we may
conclude that

Ej(N)∩Ej+1(N)c ⊆
j⋃
i=0

⋃
v∈Ii

{∫ σN

0

〈
ζ−1
s (ξ)v(s,Xs), η

〉2
ds ≤ 1

N4γj+1−9

}

∩
{

d∑
k=1

∫ σN

0

〈
ζ−1
s (ξ)[b̄k, v](s,Xs), η

〉2
ds >

1

2dNγj+1

}

∩ {|ξ | ≤ τ }.
The coefficients of (2.2) are differentiable in time and space as many times as
needed and consequently so are the vector fields v ∈ Ii , i = 0, . . . ,m0. Applying
Itô’s lemma and the integration by parts to ζ−1

s (ξ)v(s,Xs) we obtain

ζ−1
s (ξ)v(s,Xs)

= v(0, ξ)+
∫ s

0
ζ−1
r (ξ)

{
∂v

∂s
+ [ā, v] + 1

2

d∑
h=1

[
b̄h, [b̄h, v]]

}
(r,Xr) dr

+
d∑

h=1

∫ s

0
ζ−1
r (ξ)[b̄h, v](r,Xr) dW

h
r .
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Clearly,
∑d

h=1 ζ
−1
r (ξ)[b̄h, v](r,Xr) is the diffusion coefficient associated to

ζ−1
s (ξ)v(s,Xs).

With considerations similar to those employed before, it is possible to show that
when s ≤ σN and |ξ | ≤ τ , due to the bounds on R we have for L= 16dm0+2M2n,

|ζ−1
s (ξ)| ≤ 3

2
,

|b̄k(s,Xs)| ≤M
(
s + |Xs − ξ | + |ξ | + |b(0,0)|)

≤M(2R+ τ +M)≤M

(
c

L
+ τ +M

)
.

Similarly we may conclude that there exists a constant λ, depending on n,M,m0,
c, d , so that for s ≤ σN and |ξ | ≤ τ ,

|ζ−1
s (ξ)v(s,Xs)|,

d∑
h=1

ζ−1
s (ξ)[b̄h, v](s,Xs)≤ λ(1 + τ )(2.9)

for all v ∈ Ii , with i = 0, . . . ,m0. In the same way one can treat the drift associated
to ζ−1

s (ξ)v(s,Xs). Without loss of generality we assume that it is bounded also by
λ(1 + τ ).

If we assume (H2) instead of (H3), this whole argument goes through, with the
only difference that estimate (2.9) is valid independently of τ .

As shown in [17], if we apply Theorem 8.26 of [15] (with R = (2d)−1, Q= 1,
M1 =M2 = λ(1 + τ )), we obtain for m= γj+1 ≥ 5,

P

(
Ej(N)∩Ej+1(N)c, σN = 1

N3

)

≤
j∑
i=0

∑
v∈Ii

P

(
|ξ | ≤ τ, σN = 1

N3
,

∫ σN

0

〈
ζ−1
s (ξ)v(s,Xs), η

〉2
ds ≤ 1

N4γj+1−9 ,

d∑
k=1

∫ σN

0

〈
ζ−1
s (ξ)[b̄k, v](s,Xs), η

〉2
ds >

1

2dNγj+1

)

≤
j∑
i=0

∑
v∈Ii

√
2Nγj+1−5 exp

{
− N

211d2λ2(1 + τ )2

}
.
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Summarizing, we can conclude for N ≥ max(C0(τ + 1)2/3, t−1/3, (2/d)λ/15,

dm0/9, (4dm0

3c )1/2),

P

(
d∑

k=1

∫ t

0

〈
ζ−1
s (ξ)b̄k(s,Xs), η

〉2
ds <

1

N5·4m0

)

≤ P (|ξ | ≥ τ )+ P

(
σN <

1

N3

)

+
m0−1∑
j=0

P

(
Ej(N)∩Ej+1(N)c ∩

{
σN = 1

N3

})

≤ C exp(−ατβ)+
(
C1

Rq
+C2

)
2q

(
1

N3

)q/2

+
m0−1∑
j=0

j∑
i=0

∑
v∈Ii

√
2Nγj+1−5 exp

{
− dN

29m2
0λ

2(1 + τ )2

}

≤ C exp(−ατβ)+
(
C1

Rq
+C2

)
2q

(
1

N3

)q/2

+
m0−1∑
j=0

dj+1
√

2Nγj+1−5 exp
{
− dN

29m2
0λ

2(1 + τ )2

}

and the result follows by taking τ = O(| log(( 1
N3 )

q/α)|1/β), for any q which is

equivalent to taking N big enough when considering N ≥C0(τ + 1)2/3. �

We would like to remark that it is exactly the use of the restricted Hörmander
condition that makes the above theorem true for time dependent coefficients, since
it enables the use of Theorem 8.26 of [15], which involves only the diffusion
coefficients of the process and therefore does not call for an unrestricted condition.
In fact, one can find a counterexample to the general statement of existence of
densities under the general Hörmander condition (see page 310 in [17]).

From the previous theorem we know that there exists a unique solution to (2.1)
with smooth density that we denote by pt(x), which we are eventually interested
in approximating. From now on, we restrict to the one-dimensional case. So
n= d = 1.

In order to relate the unique solution of (2.1) to the McKean–Vlasov equation
we recall that, under appropriate conditions (see [16] or [1]), the distribution
function of Xt , denoted by u(t, x), satisfies the equation

∂u

∂t
(t, x)= 1

2

∂

∂x

[
b2(x,G(

x; ∂xu(t, ·)))∂u
∂x

(t, x)

]
− a

(
x,F

(
x; ∂xu(t, ·)))∂u

∂x
(t, x),

u(0, x)= P (ξ ≤ x).
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Under the same assumptions of Theorem 2.2 the density function, denoted by
pt(x)≡ p(t, x), exists, is regular and satisfies the following nonlinear equation:

∂p

∂t
(t, x)= 1

2

∂2

∂x2

[
b2(x,G(

x;p(t, ·)))p(t, x)]− ∂

∂x

[
a
(
x,F

(
x;p(t, ·)))p(t, x)],

u(0, x)= p0(x).

Therefore, it becomes of interest to approximate both the distribution and density
function of Xt for fixed t > 0.

To do this, in the next section we introduce a particle method described in Bossy
and Talay [1] and [2] and we evaluate the rate of convergence of this method to the
solution.

3. Particle method. In this section we describe the actual particle method that
we use to approximate pt(x). In order to do so, we proceed by the following steps.

1. Approximate the density pt(x) by Gaussian densities; that is,

pt(x)=
∫

R

δx(y)pt (y) dy ∼
∫

R

φh(y − x)pt (y) dy = E
(
φh(Xt − x)

)
,

where φh(z)= exp(−z2/2h)√
2πh

.
2. Consider the difference pt(x)−E(φh(Xt − x)).
3. Given a partition π = {0 = t0 < t1 < · · · < tn = T }, which without loss of

generality we assume to be uniform with mesh h; that is, h=Dt = ti+1 − ti for
any i, we define the Euler scheme for (2.1) as

Yt = Yη(t) + a
(
Yη(t),F (Yη(t); vη(t)))(t − η(t)

)
+ b

(
Yη(t),G(Yη(t); vη(t)))(Wt −Wη(t)),

(3.1)

where η(t)= sup{ti ≤ t: ti ∈ π} and F(x; vη(t))= ∫
R
f (x, y) dvη(t)(y), with vs

denoting the distribution of Ys .
4. Consider the difference E(φh(Xt − x))−E(φh(Yt − x)).
5. Using n one-dimensional independent Brownian motions, Wi , i = 1, . . . , n

independent of W , generate n independent copies of the Euler scheme, which
we denote by Y i and consider the difference,

E
(
φh(Yt − x)

)− 1

n

n∑
j=1

φh(Y
j
t − x).

6. Consider the Euler–weakly interacting particle system given by

Xi
t =Xi

η(t) + a
(
Xi
η(t),F (X

i
η(t); µ̄η(t))

)(
t − η(t)

)
+ b

(
Xi
η(t),G(X

i
η(t); µ̄η(t))

)
(Wi

t −Wi
η(t)),

(3.2)
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where

µ̄η(t)(dx)= 1

n

n∑
j=1

δ
X
j
η(t)

(dx).

7. Consider the difference

1

n

n∑
j=1

φh(Y
j
t − x)− 1

n

n∑
j=1

φh(X
j
t − x).

A similar procedure is followed to analyze the approximations for distributions
functions, where the role of φh is played by its distribution function Fh(x) =∫ x
−∞ φh(y) dy. Our aim is to show the following result.

THEOREM 3.1. Assume (H0), (H1) and either (H2) or (H3). Then for any
fixed t ∈ (0, T ],∫

R

E

(∣∣∣∣∣u(t, x)− 1

n

n∑
j=1

1{Xj
t ≤x}

∣∣∣∣∣
)
dx ≤ C

(
h+ 1√

n

)
,(3.3)

∫
R

E

(∣∣∣∣∣pt(x)− 1

n

n∑
j=1

φh(X
j
t − x)

∣∣∣∣∣
)
dx ≤ C

(
h+ 1√

n
+ 1√

nh1/4

)
.(3.4)

Furthermore, if we choose n=O( 1
h
)k for some k > 0, then for each p > 1, there

exists a positive constant Cp independent of h (and n) such that

sup
x∈R

E

(∣∣∣∣∣u(t, x)− 1

n

n∑
j=1

Fh(X
j
t − x)

∣∣∣∣∣
)
≤ Cp

(
h+ 1√

nh(p−1)/2

)
,(3.5)

sup
x∈R

E

(∣∣∣∣∣pt(x)− 1

n

n∑
j=1

φh(X
j
t − x)

∣∣∣∣∣
)
≤ Cp

(
h+ 1√

n
+ 1√

nh1−1/2p

)
.(3.6)

Before moving toward this goal, we need to mention a result from [7], that
provides an important tool for the subsequent proofs.

LEMMA 3.2 [7]. Let Xt and Yt be defined, respectively, by (2.1) and by (3.1)
and let condition (H0) be fulfilled.

Then Xt,Yt ∈ D∞ for any t ∈ [0, T ] and for any n = 0,1, . . . and any fixed
q ≥ 1 we have

sup
s1,...,sn≤T

∥∥∥∥∥sup
t≤T

|Ds1 · · ·DsnXt |
∥∥∥∥∥

2q

+ sup
s1,...,sn≤T

∥∥∥∥∥sup
t≤T

|Ds1 · · ·DsnYt |
∥∥∥∥∥

2q

≤ C,

sup
s1,...,sn≤T

∥∥∥∥∥sup
t≤T

|Ds1 · · ·Dsn(Xt − Yt )|
∥∥∥∥∥

2q

≤ Chq,

with C a positive constant that depen ds only on M , q , n and T .
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By virtue of this lemma, we can prove the following result about the Malliavin
variance that, later on, will help us establish the convergence rate of the
approximations toward the solution.

In the rest of the article we will assume that (H0), (H1) are satisfied and that
either one of (H2) or (H3) is satisfied.

LEMMA 3.3. Let ν be a constant in [0,1] and let W̄ denote a Wiener process
independent of W , then for any fixed s, t ∈ (0, T ], a ∈ R+ and p ∈ N, we have

sup
ν∈[0,1]

‖ν(Yt −Xt)+ aW̄s‖1,p ≤K1
√
h+K2a,

sup
h∈(0,1]

sup
ν∈[0,1]

‖γ−1
Xt+ν(Yt−Xt)+

√
hW̄s

‖p <∞.

PROOF. Let us denote by (�̄, F̄ , P̄ ) the canonical space where W̄ lives and
let us define the Sobolev norms for the product space �× �̄ in the natural manner,
that is to say (having denoted by P ′ = P × P̄ and E′ = E × Ē). Also recall all
the definitions of Sobolev norms given before Theorem 2.1 also apply here with
D1 =D and D2 = D̄. We start proving the first inequality.

‖ν(Yt −Xt)+ aW̄s‖p1,p = E′(|ν(Yt −Xt)+ aW̄s|p)
+E

[(∫ T

0
ν2|Dr(Yt −Xt)|2 dr

)p/2]

+ Ē

[(∫ T

0
a2|D̄rW̄s |2 dr

)p/2]

≤ 2p−1[νpE(|Yt −Xt |p)+ apĒ(|W̄s |p)]
+ νpE

[(∫ T

0
|Dr(Yt −Xt)|2 dr

)p/2]
+ (a2s)p/2

≤ C
(
νp ‖Yt −Xt‖p1,p + ap‖W̄s‖p1,p

)
.

But Lemma 3.2 gives that

E

(
sup
t≤T

|Yt −Xt |p
)
+ sup

r≤T
E

(
sup
t≤T

|Dr(Yt −Xt)|p
)
≤ C1,ph

p/2

and applying this estimate in the previous inequality, we get

‖ν(Yt −Xt)+ aW̄s‖p1,p ≤ C1,ph
p
2 + ap‖W̄s‖p1,p,

so our inequality is satisfied.
For the second inequality, we subdivide the proof in steps.
Step 1. By Theorem 2.2, we have already proved

‖γ−1
Xt

‖p <∞.(3.7)
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Step 2. We want to show

‖γ−1
Xt+ν(Yt−Xt)+aW̄s

‖p ≤ 1

s

1

a2 .(3.8)

By the definition of Malliavin covariance matrix, we have

γXt+ν(Yt−Xt)+aW̄s
=

∫ T

0

∣∣Dr

(
Xt + ν(Yt −Xt)

)∣∣2 dr + ∫ T

0
a2|D̄rW̄s |2 dr

=
∫ t

0
|DrXt(1 − ν)+ νDrYt |2 dr + a2s ≥ a2s,

which gives (3.8).
Step 3. Let us consider the set A= {|γXt+ν(Yt−Xt)+aW̄s

− γXt | ≤ 1
2 |γXt |}. We

have

E′(|γ−1
Xt+ν(Yt−Xt)+aW̄s

|p)
= E′(|γ−1

Xt+ν(Yt−Xt)+aW̄s
|p1A

)+E′(|γ−1
Xt+ν(Yt−Xt )+aW̄s

|p1Ac

)
≤ 2pE′(|γ−1

Xt
|p1A

)+E′(|γ−1
Xt+ν(Yt−Xt)+aW̄s

|p1Ac

)
≤ 2pE′(|γ−1

Xt
|p1A

)+ P (Ac)1/2E′(|γ−1
Xt+ν(Yt−Xt)+aW̄s

|2p)1/2
.

From (3.8) we know that E′(|γ−1
Xt+ν(Yt−Xt )+aW̄s

|2p)1/2 ≤ 1
a2s

, so taking a = √
h

and using (3.7), we can conclude the proof by noticing that

P ′(Ac)≤ 2kE′(|γ−1
Xt

|k|γXt+ν(Yt−Xt)+hW̄t
− γXt |k

)≤ Chk/2,

for any k. Taking k big enough, one obtains the result. �

In the light of the previous lemma, we can consider the first step of our
approximation procedure and obtain the following.

LEMMA 3.4. With the above notation and the hypotheses of Theorem 3.1, we
have

sup
x∈R

∣∣pt(x)−E
(
φh(Xt − x)

)∣∣≤ Ch,(3.9)

∫
R

∣∣pt(x)−E
(
φh(Xt − x)

)∣∣dx ≤ Ch,(3.10)

with C independent of h.

PROOF. To evaluate (3.9), as we did in Lemma 3.3 let us consider a Brownian
motion W̄ , independent of the original one and let E′ denote the expectation on the
canonical product space, while D and D̄ are the Malliavin derivatives with respect
to W and W̄ .
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The difference in (3.9) can be written as

pt(x)−E
(
φh(Xt − x)

)= pt(x)−E′(δx(Xt + h1/2W̄1)
)

= E′[δx(Xt )− δx(Xt + h1/2W̄1)
]
.

But as Xt and Xt + h1/2W̄1 have smooth densities, it is known that φa(y − x)→
δx(y) as a→ 0, so the last equality leads to

pt(x)−E
(
φh(Xt − x)

)= lim
a→0

E′[φa(Xt − x)− φa(Xt + h1/2W̄1 − x)
]

=− lim
a→0

E′[φ′
a(Xt − x)h1/2W̄1 + 1

2φ
′′
a (ξt − x)hW̄ 2

1
]

=− lim
a→0

[
h1/2E′(φ′

a(Xt − x)
)
E′(W̄1)

+ 1
2E

′(φ′′
a (ξt − x)hW̄ 2

1
)]

=− lim
a→0

1
2hE

′(φ′′
a(ξt − x)W̄ 2

1
)
,

where ξt represents a midpoint between Xt and Xt + h1/2W̄1 and we used the
independence between X and W̄ .

We remark that for any smooth function f we may rewrite the mean value
theorem for two random variables M and N as

f (M)− f (N)=
∫ 1

0
f ′(M + ν(N −M)

)
dν(M −N).(3.11)

In our case, using Fubini’s theorem, we have

E′(φ′′
a (ξt − x)W̄ 2

1
)= ∫ 1

0
E′(φ′′

a (Xt + ν
√
hW̄1 − x)W̄ 2

1
)
dν.

In our case, applying the integration by parts formula (2.3), we obtain

E′(φ′′
a (ξt − x)W̄ 2

1
)

=
∫ 1

0
E′(φ′′

a (Xt + ν
√
hW̄1 − x)W̄ 2

1
)
dν

=
∫ 1

0
E′(Fa(Xt + ν

√
hW̄1 − x)H3(Xt + ν

√
hW̄1 − x, W̄ 2

1 )
)
dν,

where by Fa we mean the Gaussian distribution function with density φa . By
definition, H is independent of x and 0 ≤Fa ≤ 1, so from (2.4) for some constants
k, b, b′, q and q ′ we may conclude that∣∣E′(φ′′

a (ξt − x)W̄ 2
1
)∣∣

≤
∫ 1

0
E′(Fa(Xt + ν

√
hW̄1 − x)|H3(Xt + ν

√
hW̄1, W̄

2
1 )|

)
dν

≤ C

∫ 1

0
‖γ−1

Xt+ν
√
hW̄1

‖qk‖Xt + ν
√
hW̄1‖q

′
4,b‖W̄ 2

1 ‖3,b′ dν.
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By Theorem 2.1 and Lemma 3.3, ‖γ−1
Xt+ν

√
hW̄1

‖k ≤ ‖γ−1
Xt

‖k is bounded uniformly

in ν and h. Moreover ‖W̄ 2
1 ‖3,b′ < ∞ and ‖Xt + ν

√
hW̄1‖4,b ≤ ‖Xt‖4,b +

‖ν√hW̄1‖4,b and the two terms are bounded, the first because of Lemma 3.2, the
second can be bounded independently of ν and h, if we assume without loss of
generality that h≤ 1.

Consequently we may conclude that there exists a constant C independent of h,
a and x such that |E′(φ′′

a (ξt − x)W̄ 2
1 )| ≤ C, that implies∣∣pt(x)−E
(
φh(Xt − x)

)∣∣≤ 1
2Ch,

and concludes the proof of (3.9).
It remains to show inequality (3.10). We have∫
R

∣∣pt(x)−E
(
φh(Xt − x)

)∣∣dx
=

∫
R

∣∣∣∣ lim
a→0

h

2
E′(φ′′

a (ξt − x)W̄ 2
1
)∣∣∣∣dx

= h

2

∫
R

∣∣∣∣ lim
a→0

E′
(∫ 1

0
φ′′
a (Xt + ν

√
hW̄1 − x) dνW̄ 2

1

)∣∣∣∣dx
≤ h

2

∫
R

lim
a→0

∫ 1

0

∣∣E′(φ′′
a (Xt + ν

√
hW̄1 − x)W̄ 2

1
)∣∣dν dx

= h

2
lim
a→0

∫
R

∫ 1

0

∣∣E′(φa(Xt + ν
√
hW̄1 − x)H2(Xt + ν

√
hW̄1, W̄

2
1 )

)∣∣dν dx
≤ h

2

∫ 1

0
E′(|H2(Xt + ν

√
hW̄1, W̄

2
1 )|

)
dν.

In order to assure the interchange between the limit and the integral in the fourth
passage, we are going to show that the family of functions is uniformly integrable.
This will conclude the proof of (3.10).

Uniform square integrability suffices, so we want to prove that

sup
a∈(0,1]

∫
R

∫ 1

0

∣∣E′(φa(Xt + ν
√
hW̄1 − x)H2(Xt + ν

√
hW̄1, W̄

2
1 )

)∣∣2 dν dx <∞,

by exploiting the classical estimates on the exponential tails of the Gaussian
density. For fixed K ∈ R

+, let us divide the integral into two pieces,∫
R

=
∫
{|x|≤K}

+
∫
{|x|>K}

= I1 + I2.

Using the same proof as for (3.9) we have that supa∈(0,1] I1 < 2KC2
1 . For I2, let

us consider A = {|Xt + ν
√
hW̄1| < |x|

2 } and let us notice that if we consider the
function Ha(x)=−(1−Fa(x))1{x>0}+Fa(x)1{x≤0}, then H ′

a(x)= φa(x), hence
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by applying the integration by parts, I2 can be rewritten as follows:

I2 =
∫
{|x|>K}

∫ 1

0

∣∣E′(Ha(Xt + ν
√
hW̄1 − x)

×H3(Xt + ν
√
hW̄1, W̄

2
1 )(1A + 1Ac)

)∣∣2 dν dx
≤ 2

∫
{|x|>K}

∫ 1

0

∣∣E′(Ha(Xt + ν
√
hW̄1 − x)

×H3(Xt + ν
√
hW̄1, W̄

2
1 )1A

)∣∣2 dν dx
+ 2

∫
{|x|>K}

∫ 1

0

∣∣E′(Ha(Xt + ν
√
hW̄1 − x)

×H3(Xt + ν
√
hW̄1, W̄

2
1 )1Ac

)∣∣2 dν dx.
On A we have that |Xt + ν

√
hW̄1 − x|> |x|

2 , thus for |x| large enough, we can use
the estimate

Ha(Xt + ν
√
hW̄1 − x)≤ exp

(
−x2

8a

)
,

so that∫
{|x|>K}

∫ 1

0

∣∣E′(Ha(Xt + ν
√
hW̄1 − x)H3(Xt + ν

√
hW̄1, W̄

2
1 )1A

)∣∣2 dν dx
≤

∫
{|x|>K}

exp
(
−x2

4a

)∫ 1

0
E′(|H3(Xt + ν

√
hW̄1, W̄

2
1 )|2

)
dν dx ≤ C <∞

∀ a ∈ (0,1].
On Ac, it is enough to apply Chebyshev’s inequality to obtain that∫

{|x|>K}

∫ 1

0

∣∣E′(Ha(Xt + ν
√
hW̄1 − x)H3(Xt + ν

√
hW̄1, W̄

2
1 )1Ac

)∣∣2 dν dx
≤

∫
{|x|>K}

∫ 1

0
E′(|H3(Xt + ν

√
hW̄1, W̄

2
1 )|2

)
P (Ac) dν dx

≤
∫
{|x|>K}

∫ 1

0
E′(|H3(Xt + ν

√
hW̄1, W̄

2
1 )|2

)

× 2k

|x|k E(|Xt + ν
√
hW̄1|k) dν dx < C <∞,

for k > 1 and all a ∈ (0,1]. �
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We can now begin the second step of our procedure. This is rather more
complicated than the first and it needs several lemmas for its proof. The
main ingredient is a cumbersome integration by parts result which is given in
Lemma A.1 in the Appendix. The main result for the second step is summarized
as follows.

THEOREM 3.5. Under the same hypotheses as in Theorem 3.1, the following
holds:

sup
x∈R

∣∣E(
φh(Xt − x)− φh(Yt − x)

)∣∣≤Ch(3.12)

with C independent of h.

PROOF. By the mean value theorem, we have

E
(
φh(Xt − x)− φh(Yt − x)

)
=E′(φh/2(Xt +

√
hW̄1/2 − x)− φh/2(Yt +

√
hW̄1/2 − x)

)
=E′(φ′

h/2(ξ
1
t +√

hW̄1/2 − x)(Xt − Yt)
)
,

where ξ1
t is a random midpoint between Xt and Yt . We will repeat this procedure

a few times, keeping in mind that the coefficients F and G are smooth as they
inherit this property from the kernels f and g. Therefore the idea is to add and
subtract the proper terms and apply the mean value theorem to each difference in
the expression for X− Y . We obtain

Xt − Yt =
∫ t

0

{
ax

(
ξ2
s ,F (Xs;µs)

)
(Xs − Ys)

+ ay(Ys, η
1
s )[F(Xs;µs)− F(Ys; vs)]}ds

+
∫ t

0

{
ax

(
ζ 1
s ,F (Ys; vs)

)
(Ys − Yη(s))

+ ay(Yη(s), θ
1
s )[F(Ys; vs)− F(Yη(s); vη(s))]}ds

+
∫ t

0

{
bx

(
ξ3
s ,G(Xs;µs)

)
(Xs − Ys)

+ by(Ys, η
2
s )[G(Xs;µs)−G(Ys; vs)]}dWs

+
∫ t

0

{
bx

(
ζ 2
s ,G(Ys; vs)

)
(Ys − Yη(s))

+ by(Yη(s), θ
2
s )[G(Ys; vs)−G(Yη(s); vη(s))]}dWs
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with midpoints [intended in the sense of formula (3.11)],

ξ2
s , ξ

3
s ∈ [Xs;Ys], ζ 1

s , ζ
2
s ∈ [Ys;Yη(s)],

η1
s ∈ [F(Xs;µs);F(Ys; vs)], η2

s ∈ [G(Xs;µs);G(Ys; vs)],
θ1
s ∈ [F(Ys; vs);F(Yη(s), vη(s))], θ2

s ∈ [G(Ys; vs);G(Yη(s), vη(s))],
where we adopted [V ;Z] as standard notation to indicate the interval with random
variables Z,V as endpoints. By adding and subtracting F(Ys;µs) in the second
term of the first time integral, G(Ys;µs) in the second term of the first Brownian
integral, and applying once again the mean value theorem to those, we get

Xt − Yt =
∫ t

0

[
ax

(
ξ2
s ,F (Xs;µs)

)+ ay(Ys, η
1
s )F

′(ξ4
s ;µs)

]
(Xs − Ys) ds

+
∫ t

0

{
ay(Ys, η

1
s )[F(Ys;µs)− F(Ys; vs)]}ds

+
∫ t

0

{
ax

(
ζ 1
s ,F (Ys; vs)

)
(Ys − Yη(s))

+ ay(Yη(s), θ
1
s )[F(Ys; vs)− F(Yη(s); vη(s))]}ds

+
∫ t

0

[
bx

(
ξ3
s ,G(Xs;µs)

)+ by(Ys, η
2
s )G

′(ξ5
s ;µs)

]
(Xs − Ys) dWs

+
∫ t

0

{
by(Ys, η

2
s )[G(Ys;µs)−G(Ys; vs)]} dWs

+
∫ t

0

{
bx

(
ζ 2
s ,G(Ys; vs)

)
(Ys − Yη(s))

+ by(Yη(s), θ
2
s )[G(Ys; vs)−G(Yη(s); vη(s))]}dWs,

with ξ4
s , ξ

5
s ∈ [Xs;Ys]. For simplicity of notation, from now on we set

αs = [
ax

(
ξ2
s ,F (Xs;µs)

)+ ay(Ys, η
1
s )F

′(ξ4
s ;µs)

]
,

βs = [
bx

(
ξ3
s ,G(Xs;µs)

)+ by(Ys, η
2
s )G

′(ξ5
s ;µs)

]
,

Ht =
∫ t

0

{
ay(Ys, η

1
s )[F(Ys;µs)− F(Ys; vs)]

+ ay(Yη(s), θ
1
s )[F(Ys; vs)− F(Yη(s); vη(s))]}ds

+
∫ t

0

{
by(Ys, η

2
s )[G(Ys;µs)−G(Ys; vs)]

+ by(Yη(s), θ
2
s )[G(Ys; vs)−G(Yη(s); vη(s))]} dWs,

dKs = ax
(
ζ 1
s ,F (Ys; vs)

)
ds + bx

(
ζ 2
s ,G(Ys; vs)

)
dWs, K0 = 0.
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With this new notation, the above equation becomes

Xt − Yt =
∫ t

0
(Xs − Ys)(αs ds + βs dWs)+Ht +

∫ t

0
(Ys − Yη(s)) dKs,

whose explicit solution is given by

Xt − Yt = Et

∫ t

0
E−1
s

{
dHs + (Ys − Yη(s)) dKs

− d

[∫ •
0
βr dWr,H + (Y − Yη) ·K

]
s

}
,

(3.13)

where Et denotes

exp
(∫ t

0
(αs − β2

s /2) ds +
∫ t

0
βs dWs

)
.

To simplify further and to regroup the terms in ds and dWs , we consider the
process Ut = E−1

t (Xt − Yt ). With a few computations, from the definition of H ,
(3.13) can be rewritten as

Ut =
∫ t

0
E−1
s (Ys − Yη(s))

[
dKs − βsbx

(
ζ 2
s ,G(Ys; vs)

)
ds

]
+

∫ t

0
E−1
s

{
ay(Ys, η

1
s )[F(Ys;µs)− F(Ys; vs)]

+ ay(Yη(s), θ
1
s )[F(Ys; vs)− F(Yη(s); vη(s))]

− βs
(
by(Ys, η

2
s )[G(Ys;µs)−G(Ys; vs)]

+ by(Yη(s), θ
2
s )[G(Ys; vs)−G(Yη(s); vη(s))])}ds

+
∫ t

0
E−1
s

{
by(Ys, η

2
s )[G(Ys;µs)−G(Ys; vs)]

+ by(Yη(s), θ
2
s )[G(Ys; vs)−G(Yη(s); vη(s))]} dWs.

The differences in F and G can be reformulated making use of their respective
kernels. Indeed, if we introduce independent copies of X and Y , say X̃ and Ỹ and
the canonical space (�̃, F̃ , P̃ ) where they live, we can look at those differences in
the following manner:

F(Ys;µs)− F(Ys; vs)= Ẽ
(
f (Ys, X̃s)

)− Ẽ
(
f (Ys, Ỹs)

)
= Ẽ

(
fy(Ys, ξ̃

1
s )(X̃s − Ỹs)

)
,

G(Ys;µs)−G(Ys; vs)= Ẽ
(
gy(Ys, ξ̃

2
s )(X̃s − Ỹs)

)
,

F (Ys; vs)− F(Yη(s); vη(s))= Ẽ
(
fx(ζ

3
s , Ỹη(s))(Ys − Yη(s))

+ fy(Ys, ζ̃
1
s )(Ys − Yη(s))

)
,
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G(Ys; vs)−G(Yη(s); vη(s))= Ẽ
(
gx(ζ

4
s , Ỹη(s))(Ys − Yη(s))

+ gy(Ys, ζ̃
2
s )(Ys − Yη(s))

)
,

where Ẽ denotes the expectation in (�̃, F̃ , P̃ ) and where we used once again the
mean value theorem, with ξ̃1

s , ξ̃
2
s ∈ [X̃s; Ỹs] and ζ 3

s , ζ
4
s ∈ [Yη(s);Ys] and ζ̃ 1

s , ζ̃
2
s ∈

[Ỹη(s); Ỹs]. Similarly, if we take an independent copy of E , say Ẽ , the above
equation for Ut is transformed into

Ut =
∫ t

0
E−1
s (Ys − Yη(s))

[
dKs − βsbx

(
ζ 2
s ,G(Ys; vs)

)
ds

]

+
∫ t

0
E−1
s

[
ay(Ys, η

1
s )Ẽ

(
fy(Ys, ξ̃

1
s )ẼsŨs

)
− βsby(Ys, η

2
s )Ẽ

(
gy(Ys, ξ̃

2
s )ẼsŨs

)]
ds

+
∫ t

0
E−1
s (Ys − Yη(s))

[
ay(Yη(s), θ

1
s )Ẽ

(
fx(ζ

3
s , Ỹη(s))

)
− βsby(Yη(s), θ

2
s )Ẽ

(
gx(ζ

4
s , Ỹη(s))

)]
ds

+
∫ t

0
E−1
s

[
ay(Yη(s), θ

1
s )Ẽ

(
fy(Ys, ζ̃

1
s )(Ỹη(s) − Ỹs)

)
− βsby(Yη(s), θ

2
s )Ẽ

(
gy(Ys, ζ̃

2
s )(Ỹη(s) − Ỹs)

)]
ds

+
∫ t

0
E−1
s by(Ys, η

2
s )Ẽ

(
gy(Ys, ξ̃

2
s )ẼsŨs

)
dWs

+
∫ t

0
E−1
s by(Yη(s), θ

2
s )

[
(Ys − Yη(s))Ẽ

(
gx(ζ

4
s , Ỹη(s))

)
+ Ẽ

(
gy(Ys, ζ̃

2
s )(Ỹη(s) − Ỹs)

)]
dWs.

We are finally in position to rearrange the terms and obtain a simpler form
for (3.13),

Ut =
∫ t

0
E−1
s

[
ay(Ys, η

1
s )Ẽ

(
fy(Ys, ξ̃

1
s )ẼsŨs

)
− βsby(Ys, η

2
s )Ẽ

(
gy(Ys, ξ̃

2
s )ẼsŨs

)]
ds

+
∫ t

0
E−1
s by(Ys, η

2
s )Ẽ

(
gy(Ys, ξ̃

2
s )ẼsŨs

)
dWs +

∫ t

0
E−1
s dZs,

(3.14)

where we set

dZs = (Ys − Yη(s))(As ds +BsdWs)

+ Ẽ
(
(Ỹs − Ỹη(s))Ãs

)
ds + Ẽ

(
(Ỹs − Ỹη(s))B̃s

)
dWs,

Bs = bx
(
ζ 2
s ,G(Ys; vs)

)+ by(Yη(s), θ
2
s )Ẽ

(
gx(ζ

4
s , Ỹη(s))

)
,
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As = ax
(
ζ 1
s ,F (Ys; vs)

)+ ay(Yη(s), θ
1
s )Ẽ

(
fx(ζ

3
s , Ỹη(s))

)− βsBs,

B̃s = by(Yη(s), θ
2
s )gy(Ys, ζ̃

2
s ),

Ãs = ay(Yη(s), θ
1
s )fy(Ys, ζ̃

1
s )− βsB̃s .

It is easy to show that (3.14) has a unique solution and that the sequence of iterates
defined as

Uk(t)=
∫ t

0
E−1
s Ẽ

([
ay(Ys, η

1
s )fy(Ys, ξ̃

1
s )

− βsby(Ys, η
2
s )gy(Ys, ξ̃

2
s )

]
ẼsŨk−1(s)

)
ds

+
∫ t

0
E−1
s by(Ys, η

2
s )Ẽ

(
gy(Ys, ξ̃

2
s )ẼsŨk−1(s)

)
dWs +U0(t),

U0(t)=
∫ t

0
E−1
s dZs

(3.15)

for k = 1, . . . , converges to the solution (see [7]).
In Lemma B.2 in Appendix B it is proved that there exists a constant R

independent of k, x and t such that

∣∣E′(φ′
h/2(ξ

1
t +√

hW̄1/2 − x)EtUk(t)
)∣∣≤ h

k∑
j=1

(Rt)j

j ! .(3.16)

Then by the dominated convergence theorem, this implies that
∣∣E′(φ′

h/2(ξ
1
t +

√
hW̄1/2 − x)EtU(t)

)∣∣
= lim

k→∞
∣∣E′(φ′

h/2(ξ
1
t +

√
hW̄1/2 − x)EtUk(t)

)∣∣≤ heRT

and the theorem is proved. �

We now want to establish the same result as Theorem 3.5, for the L1 norm.

THEOREM 3.6. Under the same hypotheses as Theorem 3.1, the following
inequality holds: ∫

R

∣∣E(
φh(Xt − x)− φh(Yt − x)

)∣∣dx ≤ Ch,

with C independent of h.

PROOF. Since the proof is a slight modification of that of Theorem 3.5, we are
going to sketch it only. By following exactly the same steps as before, we have by
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dominated convergence theorem that∫
R

∣∣E(
φh(Xt − x)− φh(Yt − x)

)∣∣dx
=

∫
R

∣∣E′(φ′
h/2(ξ

1
t +√

hW̄1/2 − x)(Xt − Yt)
)∣∣dx

=
∫

R

∣∣E′(φ′
h/2(ξ

1
t +√

hW̄1/2 − x)EtUt

)∣∣dx
= lim

k→∞

∫
R

∣∣E′(φ′
h/2(ξ

1
t +√

hW̄1/2 − x)EtUk(t)
)∣∣dx.

One starts by dividing the above integral in two regions,∫
R

(1{|x|≤K} + 1{|x|>K})
∣∣E′(φ′

h/2(ξ
1
t +√

hW̄1/2 − x)EtUk(t)
)∣∣dx.

Interpreting the midpoint ξ1 in the notation of (3.11), from now on, we use the

notation Z
ν,W̄
t =Xt + ν(Yt −Xt)+

√
hW̄1/2.

For the region |x| ≤ K one uses the previous results. For the complementary
region one uses the result explained in Remark A.2(c) of Appendix A. In fact one
can explain the result in the remark by noting that

∣∣E′(φ′
h/2(Z

ν,W̄
t − x)EtU0(t)1B

)∣∣≤At exp
(
−x2

4h

)
,

where A is a constant depending on M and T and B = {|Zν,W̄
t − x| > |x|

2 }.
Similarly, one also obtains that for fixed k ∈ N,

∣∣E′(φ′
h/2(Z

ν,W̄
t − x)EtU0(t)1B

)∣∣≤ At

|x|k .

Then we may conclude that∫
R

∣∣E′(φ′
h/2(ξ

1
t +

√
hW̄1 − x)EtU0(t)

)∣∣dx ≤Aht,

with A a constant independent of t , h and U0. We then proceed by induction on k.
That is, using the definition of Uk in (3.15), we arrive at the following inequality:∫

R

∣∣E′(φ′
h/2(ξ

1
t +

√
hW̄1/2 − x)EtUk(t)

)∣∣dx
≤Aht +

∫
R

∫ 1

0

∫ 1

0

∫ 1

0

∫ t

0

∣∣∣∣∣E′′′
[
φ′
h/2(Z

ν,W̄
t − x)

×
4∑

i=1

Zi
k−1(t, s)

]
ds

∣∣∣∣∣dν dµ1 dµ2 dx,
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where, following the same calculation as in the previous lemmas, we set with a
somewhat simplified notation,

Z1
k−1(t, s)= EtE

−1
s ay(Ys,F

µ2
s )Ẽ

(
fy(Ys, Z̃

µ1
s )ẼsŨk−1(s)

)
,

Z2
k−1(t, s)= EtE

−1
s βsby(Ys,G

µ2
s )Ẽ

(
gy(Ys, Z̃

µ1
s )ẼsŨk−1(s)

)
,

Z3
k−1(t, s)=DsEtE

−1
s by(Ys,G

µ2
s )Ẽ

(
gy(Ys, Z̃

µ1
s )ẼsŨk−1(s)

)
,

Z4
k−1(t, s)=DsZ

ν,W̄
t EtE

−1
s by(Ys,G

µ2
s )Ẽ

(
gy(Ys, Z̃

µ1
s )ẼsŨk−1(s)

)
.

Then for each of the four terms above one has to apply Lemma B.2 in
the case that |x| ≤ K . For the case |x| > K one has to apply the result in
Remark A.2(c) of Appendix A. The proof is complete by checking that the constant
is uniformly bounded, therefore allowing the definition of R as in the proof of
Theorem 3.5. �

We can pass to the next step in our procedure and consider the difference

E

(∣∣∣∣∣E(
φh(Yt − x)

)− 1

n

n∑
j=1

φh(Y
j
t − x)

∣∣∣∣∣
)
,

where the Y j are independent copies of Y . By using the strong law of large
numbers we have that the difference converges to zero almost surely as n→ ∞
for fixed h. Moreover, we can find the rate of convergence in L1(P ); in fact,∣∣∣∣∣E(

φh(Yt − x)
)− 1

n

n∑
j=1

φh(Y
j
t − x)

∣∣∣∣∣=
∣∣∣∣∣1

n

n∑
j=1

[
E
(
φh(Yt − x)

)− φh(Y
j
t − x)

]∣∣∣∣∣
thus, by taking into account the independence of the copies, formula (3.7),
Lemmas 3.2 and 3.3 and the boundedness of Fh, we obtain

E

[(
1

n

n∑
j=1

[
E
(
φh(Yt − x)

)− φh(Y
j
t − x)

])2]

≤ 1

n2

n∑
j=1

E
(
φh(Yt − x)

)2 = E′(φh/4(Yt +
√
hW̄1/4 − x))

2
√
πhn

= C√
hn

∣∣E′(Fh/4(Yt +
√
hW̄1/4 − x)H(Yt +

√
hW̄1/4,1)

)∣∣
≤ C√

hn
‖γ−1

Yt+
√
hW̄1/4

‖a‖Yt +
√
hW̄1/4‖1,b ≤ C√

hn
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for some a, b positive constants and for all x ∈ R. Consequently,

sup
x∈R

E

(∣∣∣∣∣E(
φh(Yt − x)

)− 1

n

n∑
j=1

φh(Y
j
t − x)

∣∣∣∣∣
)
≤ C√√

hn

.(3.17)

Also we have, employing the same argument as the one at the end of the proof of
Lemma 3.4,

∫
R

E

(∣∣∣∣∣E(
φh(Yt − x)

)− 1

n

n∑
j=1

φh(Y
j
t − x)

∣∣∣∣∣
)
dx

≤
(

1

2
√
πhn

)1/2 ∫
R

(
E′(φh/4(Yt +

√
hW̄1/4 − x)

))1/2
dx ≤ C√√

hn

.

(3.18)

Indeed, for fixed K > 0, by integration by parts∫
{|x|≤K}

(
E′(φh/4(Yt +

√
hW̄1/4 − x)

))1/2
dx

=
∫
{|x|≤K}

∣∣E′(Fh/4(Yt +
√
hW̄1/4 − x)H(Yt +

√
hW̄1/4),1

)∣∣1/2
dx

≤
∫
{|x|≤K}

E′(|H(Yt +
√
hW̄1/4,1)|)1/2

dx ≤ CK

for some constant C, by virtue of Lemmas 3.2 and 3.3. Consider the set A =
{|Xt + ν

√
hW̄1| < |x|

2 }. Employing considerations analogous to those at the end
of the proof of Lemma 3.4 by the exponential decay of the function Hh/4(x) =
−(1 −Fh/4(x))1{x>0} +Fh/4(x)1{x≤0}, we can prove∫

{|x|>K}
(
E′(φh/4(Yt +

√
hW̄1/4 − x)

))1/2
dx

≤
∫
{|x|>K}

∫ 1

0

∣∣E′(Hh/4(Yt +
√
hW̄1/4 − x)

×H(Yt +
√
hW̄1/4,1)(1A + 1Ac)

)∣∣1/2
dx < C <∞

and hence we can obtain (3.18).
We are ready to proceed with our last step.

THEOREM 3.7. Under the same hypotheses of Theorem 3.1, for each p > 1,
there exist positive constants Cp and C, independent of x, t and h, such that

sup
x∈R

E

(∣∣∣∣∣1

n

n∑
j=1

φh(Y
j
t − x)− 1

n

n∑
j=1

φh(X
j
t − x)

∣∣∣∣∣
)
≤ Cp

1

h1−1/2p
√
n

(3.19)
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for n=O( 1
h
)k for some k > 0,

∫
R

E

(∣∣∣∣∣1

n

n∑
j=1

φh(Y
j
t − x)− 1

n

n∑
j=1

φh(X
j
t − x)

∣∣∣∣∣
)
dx ≤ C

1√
hn

.(3.20)

PROOF. As usual, by applying the mean value theorem we may write

φh(Y
j
t − x)− φh(X

j
t − x)= φ′

h(ρ
j
t − x)(Y

j
t −X

j
t ),

with ρ
j
t ∈ [Y j

t ;Xj
t ]. Following the same procedure as before, it is clear that the

difference in (3.19) becomes

1

n
E

(∣∣∣∣∣
n∑

j=1

[φh(Y j
t − x)− φh(X

j
t − x)]

∣∣∣∣∣
)
= 1

n
E

(∣∣∣∣∣
n∑

j=1

φ′
h(ρ

j
t − x)(Y

j
t −X

j
t )

∣∣∣∣∣
)

≤ 1

n

n∑
j=1

E
(|φ′

h(ρ
j
t − x)||Y j

t −X
j
t |
)
.

In the case of (3.20) one can easily see that∫
R

E
(|φ′

h(ρ
j
t − x)||Y j

t −X
j
t |
)
dx = E

(∫
R

1

h
|ρjt − x|φh(ρjt − x) dx|Y j

t −X
j
t |
)

=
√

2

πh
E(|Y j

t −X
j
t |).

In the case of (3.19), with analogous notation as before, for Zν,j
t = (1 − ν)X

j
t +

νY
j
t we have

E
(|φ′

h(ρ
j
t − x)||Y j

t −X
j
t |
)= ∫ 1

0
E
(|φ′

h(Z
ν,j
t − x)||Y j

t −X
j
t |
)
dν.(3.21)

Therefore, choosing 1
p
+ 1

q
= 1, by Hölder’s inequality, the integrand can be

dominated as

E
(|φ′

h(Z
ν,j
t − x)||Y j

t −X
j
t |
)≤ ‖φ′

h(Z
ν,j
t − x)‖p‖Y j

t −X
j
t ‖q .(3.22)

Furthermore, by the properties of the Gaussian density,

E
(|φ′

h(Z
ν,j
t − x)|p)= 1√

2π
p−1

1√
ph3p/2−1/2E

(|Zν,j
t − x|pφh/p(Zν,j

t − x)
)

= 1√
2π

p−1

1√
ph3p/2−1/2

∫
R

∫
R

φh/2p(y − x)p
ν,j
t (y)

× |y − z− x|pφh/2p(z) dv du
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= 1√
2π

p−1

1√
php−1/2

∫
R

∫
R

φ1/2p(u)p
ν,j
t (u

√
h+ x)

× |u− v|pφ1/2p(v) dv du

≤ 1

hp−1/2

p∑
i=0

C(p, i, t)

∫
R

|u|iφ1/2p(u)p
ν,j
t (

√
hu+ x) du,

where p
ν,j
t (u) denotes the density function of V

ν,j
t = Z

ν,j
t + √

h/2pW̄1. The
proof of (3.19) is finished once we prove that

∫
R
|y|pφ1/2p(y)p

ν,j
t (

√
hy + x) dy

is bounded, for which it is enough to show the boundedness of p
ν,j
t (y). The

link described at the beginning of Section 2 between the density of a random
variable and its Malliavin derivative (we are now considering the space � × �̄

with derivatives D,D̄) can be applied here and we have that there exist positive
constants a and b such that

p
ν,j
t (y)= E′

(
1{V ν,j

t >x}H(V
ν,j
t ,1)

)
≤ ‖γ−1

V
ν,j
t

‖a‖V ν,j
t ‖1,b <∞.(3.23)

By definition, it is clear that

‖V ν,j
t ‖1,b ≤ ‖Y j

t ‖1,b + ‖Xj
t − Y

j
t ‖1,b +

∥∥∥∥
√

h

2p
W̄1

∥∥∥∥
1,b
.

Since by Lemma 3.2 we know that ‖Y j
t ‖1,b is finite, the whole question is reduced

to evaluating ‖Y j
t −X

j
t ‖b , ‖Xj

t − Y
j
t ‖1,b , for b > 1 and ‖γ−1

V
ν,j
t

‖a . The first ones

are proved in the next lemma, while the second is shown in Lemma 3.9 (where we
use the hypothesis n = O( 1

h
)k for some k > 0). Applying these results to (3.21),

(3.22) and (3.23), we obtain our thesis. �

LEMMA 3.8. For any p > 1, we have

E(|Y j
t −X

j
t |p)1/p ≤ C

1√
n
, ‖Y j

t −X
j
t ‖1,p ≤ C

1√
n
.

PROOF. We will only prove the first assertion for p = 2. The proofs of the
second inequality and of the general case are similar. The difference Y i

t − Xi
t

verifies the following equation:

Y i
t −Xi

t = Y i
η(t) −Xi

η(t)

+ [
a
(
Y i
η(t),F (Y

i
η(t); vη(t))

)− a
(
Xi
η(t),F (X

i
η(t); µ̄η(t))

)]
(t − η(t))

+ [
b
(
Y i
η(t),G(Y

i
η(t); vη(t))

)− b
(
Xi
η(t),G(X

i
η(t); µ̄η(t))

)]
(Wi

t −Wi
η(t)).
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We want to show that Y i
t −Xi

t is uniformly bounded in the L2 norm. In order to
show this, by virtue of the mean value theorem, we linearize the above equation.
From now on, we denote that by Zi = Y i −Xi ,

Zi
t = Zi

η(t) + ax
(
ξ1
η(t)(i),F (Y

i
η(t); vη(t))

)
Zi
η(t)

(
t − η(t)

)
+ ay

(
Xi
η(t), θ

1
η(t)(i)

)[
F(Y i

η(t); vη(t))− F(Xi
η(t); µ̄η(t))

](
t − η(t)

)
+ bx

(
ξ2
η(t)(i),G(Y

i
η(t); vη(t))

)
Zi
η(t)(W

i
t −Wi

η(t))

+ by
(
Xi
η(t), θ

2
η(t)(i)

)[
G(Y i

η(t); vη(t))−G(Xi
η(t); µ̄η(t))

]
(Wi

t −Wi
η(t)),

(3.24)

with θ1
η(t)(i)∈[F(Y i

η(t); vη(t));F(Xi
η(t); µ̄η(t))], θ2

η(t)(i)∈[G(Y i
η(t); vη(t));G(Xi

η(t);
µ̄η(t))] and ξ1

η(t)(i), ξ
2
η(t)(i) ∈ [Y i

η(t);Xi
η(t)]. By recalling the definition of F and G,

and keeping in mind that the copies of X and those of Y are, respectively, identi-
cally distributed, we can write

F(Y i
η(t); vη(t))− F(Xi

η(t); µ̄η(t))

=
∫

R

f (Y i
η(t), y)vη(t)(dy)−

1

n

n∑
j=1

f (Xi
η(t),X

j
η(t))

= 1

n

n∑
j=1

[
Ej (f (Y i

η(t), Y
j
η(t))

)− f (Y i
η(t), Y

j
η(t))

]

+ 1

n

n∑
j=1

[
f (Y i

η(t), Y
j
η(t))− f (Xi

η(t),X
j
η(t))

]

= 1

n

n∑
j=1

[
Ej (f (Y i

η(t), Y
j
η(t))

)− f (Y i
η(t), Y

j
η(t))

]

+ 1

n

n∑
j=1

{
fx(λ

1,i
η(t), Y

j
η(t))Z

i
η(t) + fy(X

i
η(t), λ

2,j
η(t))Z

j
η(t)

}
,

with Ej denoting the expectation relative to Wj ; similarly for the terms in G,

G(Y i
η(t); vη(t))−G(Xi

η(t); µ̄η(t))

= 1

n

n∑
j=1

[
Ej

(
g(Y i

η(t), Y
j
η(t))

)− g(Y i
η(t), Y

j
η(t))

]

+ 1

n

n∑
j=1

{
gx(λ

3,i
η(t), Y

j
η(t))Z

i
η(t) + gy(X

i
η(t), λ

4,j
η(t))Z

j
η(t)

}
,

where λ1,i
η(t), λ

3,i
η(t) ∈ [Y i

η(t);Xi
η(t)] and λ

2,j
η(t), λ

4,j
η(t) ∈ [Y j

η(t);Xj
η(t)].
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Hence (3.24) becomes

Zi
t =

∫ t

0

[
A
i,i
η(s)Z

i
η(s) +

n∑
j  =i

A
i,j
η(s)Z

j
η(s)

]
ds

+
∫ t

0

[
B
i,i
η(s)Z

i
η(s) +

n∑
j  =i

B
i,j
η(s)Z

j
η(s)

]
dWi

s +
∫ t

0
Ci
η(s) ds +

∫ t

0
J iη(s) dW

i
s ,

(3.25)

where for i, j = 1, . . . , n ,

Ai,i
. = ax

(
ξ1
. (i),F (Y

i
. ; v.)

)

+ ay
(
Xi

. , θ
1
. (i)

)(1

n

n∑
j=1

fx(λ
1,i
. , Y j

. )+
1

n
fy(X

i
. , λ

2,i
. )

)
,

Ai,j
. = ay

(
Xi

. , θ
1
. (i)

)1

n
fy(X

i
. , λ

2,j
. ), i  = j,

Bi,i
. = bx

(
ξ2
. (i),G(Y

i
. ; v.)

)

+ by
(
Xi

. , θ
2
. (i)

)(1

n

∑
j=1

gx(λ
3,i
. , Y j

. )+ gy(X
i
. , λ

4,i
. )

)
k,

Bi,j
. =−by(Xi

. , θ
2
. (i)

)1

n
gy(X

i
. , λ

4,j
. ), i  = j,

Ci
. = ay

(
Xi

. , θ
1
. (i)

)1

n

n∑
j=1

[
Ej

(
f (Y i

. , Y
j
. )

)− f (Y i
. , Y

j
. )

]
,

J i. = by
(
Xi

. , θ
2
. (i)

)1

n

n∑
j=1

[
Ej (g(Y i

. , Y
j
. )

)− g(Y i
. , Y

j
. )

]
,

form the entries of the matrices that we denote by A and B and of the vectors C
and J . So (3.25) can be written in vector form as

Z∗
t =H ∗

t +
∫ t

0
Z∗
η(s) dN

∗
s ,(3.26)

where we are using ∗ to denote the transpose of a matrix and dN
i,j
s = A

i,j
s ds +

B
i,j
s dWi

s and dH ∗
s = (C1

η(s) ds + J 1
η(s) dW

1
s , . . . ,C

n
η(s) ds + Jnη(s) dW

n
s ). At the

points of the partition, the process Z is given by Z∗
tm
=∑m−1

k=0 Z∗
tk
(N∗

tk+1
−N∗

tk
)+

H ∗
tm

, which has a unique solution ([13], page 271),

Z∗
tm
=U∗

tm

m−1∑
k=0

(U∗)−1
tk

[
(H ∗

tk+1
−H ∗

tk
)− ([H ∗,N∗]tk+1 − [H ∗,N∗]tk )

]
,
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where U∗ and (U∗)−1 are, respectively, the unique solutions of the matrix
equations,

U∗
t = I +

∫ t

0
U∗
η(s) dN

∗
s , (U∗)−1

t = I −
∫ t

0

(
d(N∗ − [N∗,N∗])s)(U∗)−1

η(s).

Let us remark that the entries of the matrices A and B are uniformly bounded;
namely, it is immediate to see that

|Ai,i |, |Bi,i | ≤M2 +M and |Ai,j |, |Bi,j | ≤ M2

n
for i  = j.

From (3.25), keeping in mind that (
∑n

i=1 xi)
2 ≤ n

∑n
i=1 x

2
i and Jensen’s inequality,

we get

|Zi
t |2 ≤ 6

{
T

∫ t

0

[
|Ai,i

η(s)|2|Zi
η(s)|2 + (n− 1)

∑
j  =i

|Ai,j
η(s)|2|Zj

η(s)|2 + |Ci
η(s)|2

]
ds

+
∣∣∣∣∣
∫ t

0
B
i,i
η(s)Z

i
η(s) dW

i
s

∣∣∣∣∣
2

+
∣∣∣∣∣
∫ t

0

∑
j  =i

B
i,j
η(s)Z

j
η(s) dW

i
s

∣∣∣∣∣
2

+
∣∣∣∣∣
∫ t

0
J iη(s)dW

i
s

∣∣∣∣∣
2}
.

Taking the supremum over [0, t] and the expectation, by employing Doob’s
inequality for martingales we finally obtain

E

(
sup

0≤s≤t
|Zi

s |2
)
≤ 6TE

(∫ t

0

[
(M +M2)2 sup

0≤r≤s
|Zi

r |2

+ M4

n

∑
j  =i

sup
0≤r≤s

|Zj
r |2 + |Ci

η(s)|2
]
ds

)

+ 24E
(∫ t

0

[
(M +M2)2 sup

0≤r≤s
|Zi

r |2

+ M4

n

∑
j  =i

sup
0≤r≤s

|Zj
r |2 + |J iη(s)|2

]
ds

)

summarized into

ϑi(t)≤
∫ t

0

(
K1ϑi(s)+ K2

n

∑
j  =i

ϑj (s)+K3xi(s)

)
ds,

where ϑi(t) = E(sup0≤s≤t |Zi
s |2), xi(s) = E(|J iη(s)|2 + |Ci

η(s)|2), K3 = 6T + 24,

K2 =K3M
4 and K1 =K3(M +M2)2. Gronwall’s inequality then implies

E

(
sup

0≤s≤t
|Zi

s |2
)
≤ exp(K1T )

∫ t

0
E

[
K2

n

∑
j  =i

sup
0≤r≤s

|Zj
r |2

+ K3(|J iη(s)|2 + |Ci
η(s)|2)

]
ds,

n∑
i=1

E

(
sup

0≤s≤t
|Zi

t |2
)
≤ exp(K4T )K5

∫ t

0

n∑
i=1

E(|J iη(s)|2 + |Ci
η(s)|2) ds

(3.27)
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with K4 = exp(K1T )K2 and K5 = exp(K1T )K3. Consequently the problem
is reduced to analyzing the vectors C and J . We can evaluate the last two
expectations by the propagation of chaos. We focus our attention only on
E(‖Ctk‖2) (‖ · ‖ here means the Euclidean norm), as the other case is similarly
carried out.

Since the sequence Y i is formed by independent copies of the original
process Y , also the processes f (Y i

. , Y
j
. ) and f (Y i

. , Y
l
. ) become conditionally

independent, given Y i , provided j  = l, so for each i and each r = tk , the following
inequality is fulfilled:

E(|Ci
r |2)= E

{∣∣∣∣ay(Xi
tk
, θ1

r (i)
)1

n

n∑
j=1

[
Ej (f (Y i

r − Y j
r )

)
, f (Y i

r , Y
j
r )

]∣∣∣∣
2}

≤ M2

n2

{
2E

[∑
j,l
l<j

[
Ej (f (Y i

r , Y
j
r )

)− f (Y i
r , Y

j
r )

]

× [
El

(
f (Y i

r , Y
l
r )
)− f (Y i

r , Y
l
r )
]]+

n∑
j=1

Var
(
f (Y i

r , Y
j
r )

)}

≤ M2

n2
2E

[
E

(∑
j,l
l<j

[
Ej

(
f (Y i

r , Y
j
r )

)− f (Y i
r , Y

j
r )

]

× [
El(f (Y i

r , Y
l
r )
)− f (Y i

r , Y
l
r )
]∣∣∣∣Y i

r

)]
+ 4M4

n

≤ M2

n2 2E

{∑
j,l
l<j

E
[
Ej

(
f (Y i

r , Y
j
r )

)− f (Y i
r , Y

j
r )

∣∣Y i
r

]

×E
[
El(f (Y i

r , Y
l
r )
)−f (Y i

r , Y
l
r )
∣∣Y i

r

]}+ 4M4

n
=0+ 4M4

n
.

Substituting in (3.27), we finally obtain

E

(∑
i

sup
0≤t≤T

|Zi
t |2

)
≤ exp(K4T )K5P

n−1∑
k=0

(tk+1 − tk)
M4

n
= Q

n
tm ≤ Q

n
T

for appropriately chosen constants P, Q and, of course, the same inequality holds
for each component.

To prove the second statement, it remains to show that for all j ,
n∑
i=1

∫ T

0
E
(|Di

s(Y
j
t −X

j
t )|2

)
ds ≤C

1√
n
.
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Starting again from (3.26), it is possible to show that for each i the matrix process
(Di

sZ
j
t )=X

j
(i)(s, t) verifies the linear matrix SDE,

X∗
(i)(s, t)= K̃(i)(s, t)+

∫ t

s
X∗
(i)(s, r) dÑ

∗
(i)(s, r),

where the matrices are given by(
dÑ∗

(i)(s, r)
)
jk =Di

sA
j,k
r dr for j  = i,(

dÑ∗
(i)(s, r)

)
i,k =Di

sA
i,k
r dr +Di

sB
i,k
r dWi

r ,

K̃k
(i)(s, t)=Di

sH
k
t for k  = i,

K̃i
(i)(s, t)=Di

sH
i
t + (Z∗

s B
∗
s )

i .

With computations similar to those shown before, it is possible to deduce an
inequality analogous to (3.27) with the coefficients of K(i) in place of those of H ,
from which will follow the result by propagation of chaos and so we conclude the
proof. �

We would like to remark that when we apply the inequality of Lemma 3.8 to
our terms in Theorem 3.7 we have

1

n

1√
2πh

n∑
j=1

E(|Y j
t −X

j
t |2)1/2 ≤ 1√

2πh
(QT )1/2 1√

n

1

n
n≤ C

1√
nh

,

giving the right order of convergence.
It remains to check the boundedness of the last factor.

LEMMA 3.9. Let V ν,j
t = Z

ν,j
t +

√
h

2pW̃1 (where Z
ν,j
t = (1 − ν)X

j
t + νY

j
t )

and n=O( 1
h
)k for some k > 0; then the following holds:

sup
h∈(0,1]

sup
ν∈[0,1]

‖γ−1
V
ν,j
t

‖p <∞ for all p ∈ N and t ∈ (0, T ].

PROOF. Let X̂j denote the unique strong solution to (2.1) when the stochastic
equation is driven by Wj . That is, X̂1, . . . , X̂n are n independent copies of X. The
proof goes along the same lines of the proof of Lemma 3.3 so we only sketch it.
The three main points that one needs to check in order to prove the boundedness
of the Malliavin covariance matrix are:

(i) supν∈[0,1] ‖V ν,j
t − X̂

j
t ‖1,p ≤ C( 1√

n
+√

h).

(ii) ‖γ−1
X̂
j
t

‖p <∞ for all p ∈ N.

(iii) ‖γ−1
V
ν,j
t

‖p ≤ Ch−1.
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The first inequality uses Lemma 3.2 and the same lines of proof as Propo-
sition 4.1 in [7]. The third inequality is direct. The second one was proved in
Lemma 2.2 for the process X, but clearly the same is true for the copies. �

4. Proof of Theorem 3.1. This brief section is intended to gather all the
results that we presented previously and to finally obtain the proof of Theorem 3.1.

The statement of Theorem 3.1 deals with both density and distribution
functions, but as we announced, we focus our attention only on the proof for
the first ones, for which we have laid out all the necessary results. To get the
same conclusion in the case of distributions, the whole procedure should be
reconstructed, but we will just describe it briefly.

For the densities, we first consider the L1 norm (3.4):

∫
R

E

(∣∣∣∣∣pt(x)− 1

n

n∑
j=1

φh(X
j
t − x)

∣∣∣∣∣
)
dx

≤
∫

R

∣∣pt(x)−E
(
φh(Xt − x)

)∣∣dx
+

∫
R

∣∣E(
φh(Xt − x)− φh(Yt − x)

)∣∣dx
+

∫
R

E

[∣∣∣∣∣E(
φh(Yt − x)

)− 1

n

n∑
j=1

φh(Y
j
t − x)

∣∣∣∣∣
]
dx

+
∫

R

E

[∣∣∣∣∣1

n

n∑
j=1

φh(Y
j
t − x)− 1

n

n∑
j=1

φh(X
j
t − x)

∣∣∣∣∣
]
dx

≤C

(
h+ 1√

n
+ 1√

nh1/4

)
.

The above bounds follow from Lemma 3.4, Theorem 3.6, (3.18) and Theorem 3.7.
The analogous result (3.6), when adopting the norm of the supremum follows by
applying instead Lemma 3.4, Theorem 3.5, (3.17) and Theorem 3.7.

Consider now the proofs for distribution functions (3.3):

∫
R

E

[∣∣∣∣∣u(t, x)− 1

n

n∑
j=1

1{Xj
t ≤x}

∣∣∣∣∣
]
dx

≤
∫

R

|E(1{Xt≤x} − 1{Yt≤x})|dx

+
∫

R

E

∣∣∣∣∣E(1{Yt≤x})− 1

n

n∑
j=1

1{Y j
t ≤x}

∣∣∣∣∣dx
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+
∫

R

E

[∣∣∣∣∣1

n

n∑
j=1

1{Y j
t ≤x} −

1

n

n∑
j=1

1{Xj
t ≤x}

∣∣∣∣∣
]
dx

=A1 +A2 +A3.

Let us consider the quantity A1, for this one has to prove that there exits a positive
constant C independent of ε ∈ (0,1] and h such that∣∣E(

1{Xt≤x} −Fε(x −Xt)
)∣∣≤ Cε,∣∣E(

Fε(x −Xt)−Fε(x − Yt )
)∣∣≤ Ch,∣∣E(

Fε(x − Yt)− 1{Yt≤x}
)∣∣≤ Cε.

The first and third assertions are proved by the same argument as in Lemma 3.4
[note that we know that γ−1

Yt+√
εW̄1/2

∈⋂
p>1L

p(�) by taking ν = 0 in Lemma 3.3]

while the second one is proved along the lines of the proof of Theorem 3.5.
The quantity A2 can be analyzed in the same way as we showed in (3.18), while

for A3 we have

∫
R

E

(∣∣∣∣∣1

n

n∑
j=1

1{Y j
t ≤x} −

1

n

n∑
j=1

1{Xj
t ≤x}

∣∣∣∣∣
)
dx

≤ 1

n

n∑
j=1

E

(∫
R

∣∣1{Y j
t ≤x} − 1{Xj

t ≤x}
∣∣dx)

≤ 1

n

n∑
j=1

E(|Y j
t −X

j
t |)≤ C√

n
.

This completes the proof of (3.3). For (3.5) the proof is similar to that for (3.4). �

5. Conclusions. In this work, we analyzed the rate of convergence of a
particle method introduced by Bossy and Talay in order to approximate the
solution to the McKean–Vlasov equation and we showed that it is faster than the
one obtained in [1]. Besides, the rate of convergence here obtained seems to match
their simulations run in the particular case of the Burgers equation.

We also analyzed the rate of convergence when approximating the marginal
densities of the solution. In order to carry out the necessary calculations we had to
study the existence and smoothness of these densities.

The problem of obtaining the optimal rate of convergence for the Burgers
equations is still open and the authors hope the method developed here might
apply, if properly adapted, also to this case. The rate in (3.3) is definitely optimal.
In the other results the rate is probably not optimal but the authors believe that
a modification of the present technique should give the optimal rate. In this
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presentation we strived for a unified presentation and not for a case-by-case
study.

Some straightforward generalizations of the above results were not included in
our exposition for reasons of space. For instance, it is not difficult to consider the
case when also the initial random variable has to be approximated or when the
measurement of the error is done through the variances [i.e., L2(�)] rather than
through the expectations. Yet another generalization is to consider approximations
of the type φε rather than φh; if ε = O(hr) for some r > 0 a similar analysis
can be carried out. For r ≥ 1/2 the rates are the same as the ones obtained here.
Otherwise h2r becomes the dominant rate.

The condition that all coefficients of the equation have derivatives bounded
by M can be further weakened if the arguments given here are analyzed closely.
We assumed boundedness to shorten the length of the paper.

Finally we remark that the condition n=O( 1
h
)k for some k > 0 in Theorem 3.1

(used to obtain Lemma 3.9) is merely technical rather than restrictive, since k can
be chosen freely.

APPENDIX A

Here we prove an important ingredient of the proofs of Theorems 3.5 and 3.6
which consists of a complex integration by parts formula that measures with some
accuracy the effect of each component.

It looks a little cumbersome, but we need to state it in this generality to be
able to apply it to Lemmas B.1 and B.2, which provide the steps of the induction
invoked in the proof of the main Theorem 3.5. The statement is divided into two
parts, the first regards bounded functions, while the second gives the analogous
estimate for the the approximations φh/2, that clearly are not bounded as h→ 0.
The second part requires the introduction of yet another independent Brownian
motion to exploit the integration by parts formula.

LEMMA A.1. Let W and W̃ be two independent Brownian motions, so that
(2.1) and (3.1), defining X and Y , are driven by W , while independent copies
of those, X̃ and Ỹ , are driven by W̃ . E′′ = E × Ẽ denotes the expectation on
the canonical product space � × �̃. Let V h, Zh be two sequences of processes
adapted to the filtration generated by W , such that

sup
s1,...,sn≤T

E′′[sup
t≤T

|Ds1 · · ·DsnV
h
t |2q

]1/2q ≤ CV ≡CV (T ),

sup
s1,...,sn≤T

E′′[sup
t≤T

|Ds1 · · ·DsnZ
h
t |2q

]1/2q ≤ CZ ≡CZ(T )

(A.1)

for some constants CV ,CZ > 0, some q ≥ 4 and for all n= 0,1, . . . ,4.
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Moreover let α: R4 → R, γ : R+×R4 → R, β: R+×R8 → R be differentiable
real valued functions, for which exist positive constants Cα , Cβ , Cγ , such that

‖α(i)‖∞, |α(0,0)| ≤ Cα,

sups∈[0,T ] ‖β(i)s ‖∞, sups∈[0,T ] |βs(0,0)| ≤ Cβ,

sups∈[0,T ] ‖γ (i)
s ‖∞, sups∈[0,T ] |γs(0,0)| ≤ Cγ ,

(A.2)

for all i = 1, . . . ,4 (f (i) denotes any partial derivative or order i).
Then, if we set Us = (U1

s ,U
2
s )= ((Xη(s), Yη(s), X̃η(s), Ỹη(s)), (Xs,Ys, X̃s, Ỹs)),

we have ∣∣∣∣E′′
[
V h
t α(U

2
t )

∫ t

0
Zh
s βs(Us)

∫ s

η(s)
γη(r)(U

1
r ) dW

j1
r dWj2

s

]∣∣∣∣
≤CV CZCαCβCγCht,

(A.3)

where dW 0
s = ds, and (W 1,W 2) = (W, W̃ ), j1, j2 = 0,1,2 and C > 0 depends

only on the constant appearing in Lemma 3.2 and it is independent of h and CV ,
CZ , Cα , Cβ , Cγ .

Let W̄ be a Wiener process independent of W and W̃ and let E′′′ =E× Ẽ× Ē

denote the expectation in the cross product space supporting all three independent
processes. Let us take α(U2

t )= α(Xt , Yt )= φ
(p)
h/2(Xt +ν(Yt −Xt)+

√
hW̄1/2−x),

for p ∈ {0,1}. Then, if (A.1) holds with q ≥ 32 and β and γ verify (A.2) for
i = 1, . . . , p+ 3, we have∣∣∣∣E′′′

[
V h
t α(U

2
t )

∫ t

0
Zh
s βs(Us)

∫ s

η(s)
γη(r)(U

1
r )dW

j1
r dWj2

s

]∣∣∣∣
≤ CVCZCβCγCht,

(A.4)

uniformly for ν ∈ [0,1].

The constant C in (A.4) is not the same as in (A.3) and in (A.4) clearly α

is no longer assumed bounded. From now on, we use the notation Z
ν,W̄
t =

Xt + ν(Yt −Xt)+
√
hW̄1/2.

PROOF. We prove (A.3) only when j1 = 1, j2 = 1, which is computationally
the most cumbersome case; all the others can be treated similarly by applying the
integration by parts one or two times less. Indeed, we have to use integration by
parts one time less each time we have a Lebesgue integral instead of a stochastic
one. Also, when j1 = 1 and j2 = 2 (or vice versa), which corresponds to double
integrals with respect to the two independent Brownian motions, the procedure
we are going to describe simplifies, as some terms will become zero, because the
processes V h and Zh depend only upon W . To simplify notation, we are going to
omit the arguments of the functions.
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By the integration by parts formula of Malliavin calculus with respect to W , we
have ∣∣∣∣E′′

[
V h
t α

∫ t

0
Zh
s βs

∫ s

η(s)
γη(r) dWr dWs

]∣∣∣∣
=

∣∣∣∣E′′
[∫ t

0
Ds{V h

t α}Zh
s βs

∫ s

η(s)
γη(r) dWr ds

]∣∣∣∣
=

∣∣∣∣E′′
[∫ t

0

∫ s

η(s)
Dr [Ds{V h

t α}Zh
s βs]γη(r) dr ds

]∣∣∣∣
≤

∫ t

0

∫ s

η(s)

∣∣E′′[Dr [Ds{V h
t α}Zh

s βs]γη(r)
]∣∣dr ds.

It is then clear that to obtain (A.3), it suffices to show that

sup
s∈[0,t]

r∈(η(s),s]

∣∣E′′[Dr[Ds{V h
t α}Zh

s βs]γη(r)
]∣∣≤ CVCZCαCβCγC,

where C is a positive constant that depends only on T and the constant appearing
in Lemma 3.2. Applying assumption (A.1) and Hölder’s inequality, we get

∣∣E′′(Dr

{
Ds{V h

t α}Zh
s βs

}
γη(r)

)∣∣
≤E′′[|DrDs{V h

t α}Zh
s βsγη(r)|

+ |Ds{V h
t α}DrZ

h
s βsγη(r)| + |Ds{V h

t α}Zh
s Drβsγη(r)|]

≤ ‖γη(r)‖4
{‖Zh

s ‖4
(‖βs‖4‖DrDs{V h

t α}‖4 + ‖Drβs‖4‖Ds{V h
t α}‖4

)
+ ‖DrZ

h
s ‖4‖βs‖4‖Ds{V h

t α}‖4
}
.

From now on, we denote each component of U by Ui for i = 1, . . . ,8. We are
going to analyze each single term. By using assumptions (A.1), (A.2) and Hölder’s
inequality, the following hold for any r , s, t ∈ [0, T ]:

‖Zh
s ‖4 ≤ CZ, ‖DrZ

h
s ‖4 ≤CZ;(A)

‖γη(r)‖4 ≤
∥∥∥∥∥

4∑
i=1

∂γη(r)

∂xi
Ui
r

∥∥∥∥∥
4

+ ‖γη(r)(0)‖4 ≤ Cγ

( 4∑
i=1

‖Ui
r‖4 + 1

)
;(B)

‖βs‖4 ≤
∥∥∥∥∥

8∑
i=1

∂βs

∂xi
Ui
s

∥∥∥∥∥
4

+ ‖βs(0)‖4 ≤ Cβ

( 8∑
i=1

‖Ui
s‖4 + 1

)
;(C)

‖Drβs‖4 ≤
∥∥∥∥∂βs∂x5

DrU
5
s +

∂βs

∂x6
DrU

6
s

∥∥∥∥
4
≤ Cβ

(‖DrX̃s‖4 + ‖DrỸs‖4
);(D)
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‖Ds(V
h
t α)‖4

≤
∥∥∥∥∥DsV

h
t

( 4∑
i=1

∂α

∂xi
Ui+4
t + α(0)

)∥∥∥∥∥
4

+
∥∥∥∥V h

t

(
∂α

∂x1
DsXt + ∂α

∂x2
DsYt

)∥∥∥∥
4

≤ Cα

{
‖DsV

h
t ‖8

(
1 +

8∑
i=5

‖Ui
t ‖8

)
+ ‖V h

t ‖8(‖DsXt‖8 + ‖DsYt‖8)

}

≤ CVCα

[ 8∑
i=5

‖Ui
t ‖8 + 1 + ‖DsXt‖8 + ‖DsYt‖8

]
;

(E)

‖DrDs{V h
t α}‖4

≤ ‖DrDsV
h
t ‖8

( 4∑
i=1

∥∥∥∥ ∂α∂xi Ui+4
t

∥∥∥∥
8
+ ‖α(0)‖8

)

+‖DsV
h
t ‖8

∥∥∥∥∥
2∑

i=1

∂α

∂xi
DrU

i+4
t

∥∥∥∥∥
8

+ ‖DrV
h
t ‖8

∥∥∥∥∥
2∑

i=1

∂α

∂xi
DsU

i+4
t

∥∥∥∥∥
8

+‖V h
t ‖8

[∥∥∥∥ ∑
i,j=1,2

∂2α

∂xi∂xj
DsU

i+4
t DrU

j+4
t

∥∥∥∥
8

+
∥∥∥∥ ∑
i,j=1,2

∂α

∂xi
DrDsU

i+4
t

∥∥∥∥
8

]

≤ CVCα

{ 8∑
i=5

‖Ui
t ‖8 + 1 + 2

(‖DsU
5
t ‖8 + ‖DsU

6
t ‖8

)

+ (‖DsU
5
t ‖16 + ‖DsU

6
t ‖16

)2 + ‖DrDsU
5
t ‖8 + ‖DrDsU

6
t ‖8

}
.

(F)

By virtue of all the previous estimates and using Lemma 3.2, we may conclude
that X and Y together with their Malliavin derivatives are bounded in the Lp norms
(p ≤ 16) uniformly in t , let us say by a common constant C, so we finally get

sup
s∈[0,t]

r∈[η(s),s]

∣∣E′′[Dr [Ds{V h
t α}Zh

s βs]γη(r)
]∣∣

≤ CVCZCαCβCγ (4C + 1)(8C + 1)(4C2 + 20C + 2).

To prove the second result in the statement, we restrict to the case j1 = 2,
j2 = 1 (also to deal with a different case). Even if we do not have uniform
bounds on the derivatives of α, a double application of integration by parts will
help us. Again, by integration by parts, the problem is reduced to showing that

|E′′′[D̃r{Ds[V h
t φ

(p)
h/2(Z

ν,W̄
t − x)]Zh

s βs}γη(r)]| is bounded uniformly in s, r and ν.
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Carrying out the calculations, we get∣∣E′′′[D̃r

{
Ds[V h

t φ
(p)
h/2(Z

ν,W̄
t − x)]Zh

s βs
}
γη(r)

]∣∣
≤ ∣∣E′′′[φ(p)h/2(Z

ν,W̄
t − x)γη(r)DsV

h
t Z

h
s D̃rβs

]∣∣
+ ∣∣E′′′[φ(p+1)

h/2 (Z
ν,W̄
t − x)DsZ

ν,W̄
t γη(r)V

h
t Z

h
s D̃rβs

]∣∣
= ∣∣E′′′[Fh/2(Z

ν,W̄
t − x)Hp+1(Z

ν,W̄
t ,N1)

]∣∣
+ ∣∣E′′′[Fh/2(Z

ν,W̄
t − x)Hp+2(Z

ν,W̄
t ,N2)

]∣∣,
where N1 and N2 are obviously defined through the above equation. By
applying (2.4) to the above terms we may conclude that for q3 ≥ 4,∣∣E′′′[D̃r

{
Ds[V h

t φ
(p)
h/2(Z

ν,W̄
t − x)]Zh

s βs
}
γη(r)

]∣∣
≤ Cp+1‖γ−1

Z
ν,W̄
t

‖m1
q1
‖Zν,W̄

t ‖m2
p+2,q2

‖N1‖p+1,q3

+Cp+2‖γ−1

Z
ν,W̄
t

‖n1
d1
‖Zν,W̄

t ‖n2
p+3,d2

‖N2‖p+2,d3,

but ‖γ−1

Z
ν,W̄
t

‖q1 , ‖γ−1

Z
ν,W̄
t

‖d1 are bounded by virtue of Lemma 3.3. Moreover, we know

that ‖Zν,W̄
t ‖p+3,q2 ≤ ‖Xt‖p+3,q2 + ‖Yt‖p+3,q2 < +∞ and the increasingness of

the Sobolev norms implies that also the term ‖Zν,W̄
t ‖p+2,d2 is bounded.

It remains to evaluate ‖N1‖p+1,q3 and ‖N2‖p+2,d3 . We will show the bounded-
ness only of the first term, as the proof is the same for both.

If we apply Hölder’s inequality for Sobolev norms, we obtain

‖N1‖p+1,q3 ≤ ‖γη(r)DsV
h
t Z

h
s D̃rβs‖p+1,q3

≤ ‖γη(r)‖p+1,b1‖DsV
h
t ‖p+1,b2‖Zh

s ‖p+1,b3‖D̃rβs‖p+1,b4

≤ CVCZ‖γη(r)‖p+1,b1‖D̃rβs‖p+1,b4,

where 1
b1

+ 1
b2

+ 1
b3

+ 1
b4

= 1
q3

(this is the reason why one requires q ≥ 32 in the
statement). On the other hand, it is easy to prove that, if f is a smooth function
with its derivatives and |f (0)| all bounded by a constant A and G is a random
variable, then

‖f (G)‖p+1,q ≤QA‖G‖p+1,nq,

for appropriate Q and n. Consequently, in our case we have

‖γη(r)‖p+1,b1 ≤Q1Cγ

(‖Xη(r)‖p+1,nb1 + ‖Yη(r)‖p+1,nb1

)
,

‖D̃rβs‖p+1,b4 ≤Q2Cβρ(C),



468 F. ANTONELLI AND A. KOHATSU-HIGA

for some fixed polynomial function ρ, constants Q1, Q2 and integers m, n, which
concludes the proof. �

REMARK A.2.

(a) The same technique applies also to prove

∣∣∣∣E′(φ(p)h/2(Z
ν,W̄
t − x)V h

t

∫ t

0
Zh
s βs dW

j
s )

∣∣∣∣≤ ρ(C)CV Cβ

∫ t

0
CZ(s) ds,

j = 0,1,p= 0,1

for some properly chosen polynomial ρ, when β depends only on X, Y and
verifies (A.2). Here CZ(s) stands for the bound in (A.1) where instead of T one
has s, for s ∈ [0, T ]. For example, when the inner integral is stochastic, we have

∣∣∣∣E′(φ(p)h/2(Z
ν,W̄
t − x)V h

t

∫ t

0
Zh
s βs dWs)

∣∣∣∣
≤

∫ t

0

[‖γ−1

Z
ν,W̄
t

‖m1
q1
‖Zν,W̄

t ‖m2
p+2,q2

‖DsV
h
t Z

h
s βs‖p+1,q3

+ ‖γ−1

Z
ν,W̄
t

‖n1
d1
‖Zν,W̄

t ‖n2
p+3,d2

‖DsZ
ν,W̄
t V h

t Z
h
s βs‖p+2,d3

]
ds

and we may proceed as before.
(b) The previous lemma holds even when α is a smooth random function

independent of W , W̃ , with the bounds in (A.2) holding for every ω. In this case,
the same proof goes through, since the Malliavin derivatives of α do not intervene
in the computation; only the spatial ones intervene. Therefore the right-hand side
of (A.3) will yield a random function bounded by the same constant uniformly
in ω.

(c) Combining the above proof with the end of the proof of Lemma 3.4, under
similar conditions to (A.4), one can obtain that for any k ∈ N and |x| > K for a
positive constant K ,

∣∣∣∣E′′′
[
V h
t α(U

2
t )

∫ t

0
Zh
s βs(Us)

∫ s

η(s)
γη(r)(U

1
r ) dW

j1
r dWj2

s

]∣∣∣∣
≤ CVCZCβCγCht

(
exp

(
−x2

4h

)
+ 1

|xk|
)
.

(d) Finally, we remark that one might assume a lower degree of integrability
in (A.1), if one chooses to penalize the other terms more when applying Hölder’s
inequality.
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APPENDIX B

In order to prove (3.16), we proceed by induction, the first step being carried out
in the next lemma and the general case in Lemma B.2. Here we use the notation
established before Theorem 3.5.

LEMMA B.1. Let ξ1
t be a random point between Xt and Yt in the sense

of (3.11) and U0(t) = ∫ t
0 E−1

s dZs . Then there exists a deterministic constant A
depending on M , but independent of t , x, U0, such that the following hold:∣∣E′(φ′

h/2(ξ
1
t +

√
hW̄1/2 − x)EtU0(t)

)∣∣≤Ath,

|Ẽ(u(X̃t , Ỹt )Ẽt Ũ0(t))| ≤Ath.
(B.1)

Here u: � × R2 → R is any smooth random measurable function with its first
four derivatives bounded by M uniformly in �, independent of W̃ . (X̃, Ỹ , Ũ ) is an
independent copy of (X,Y,U).

PROOF. Recalling the definition of Z, we can rewrite∣∣E′(φ′
h/2(ξ

1
t +√

hW̄1/2 − x)EtU0(t)
)∣∣

≤
∣∣∣∣E′

[
φ′
h/2(ξ

1
t +√

hW̄1/2 − x)Et

∫ t

0
E−1
s

{
(Ys − Yη(s))As

+ Ẽ
(
(Ỹs − Ỹη(s))Ãs

)}
ds

]∣∣∣∣
+

∣∣∣∣E′
[
φ′
h/2(ξ

1
t +

√
hW̄1/2 − x)Et

∫ t

0
E−1
s

{
(Ys − Yη(s))Bs

+ Ẽ
(
(Ỹs − Ỹη(s))B̃s

)}
dWs

]∣∣∣∣.
The four terms in the above expression are qualitatively very similar (due to the
hypotheses on the coefficients) and they differ basically only in the integrators.
We show inequality (B.1) only for the fourth one; this is the most complicated
term since it contains both Brownian motions. The proof of all the other terms
runs along similar lines. As an independent copy of Y , Ỹ must verify an analogous
equation,

Ỹs − Ỹη(s) = a
(
Ỹη(s),F (Ỹη(s); vη(s)))(s − η(s)

)
+ b

(
Ỹη(s),G(Ỹη(s); vη(s)))(W̃s − W̃η(s)),

so substituting the latter in the fourth term of the previous inequality, this term
becomes
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E′
(
φ′
h/2(ξ

1
t +

√
hW̄1/2 − x)

× Et

∫ t

0
E−1
s Ẽ

[
B̃sa(Ỹη(s),F

(
Ỹη(s); vη(s)))

∫ s

η(s)
dr

]
dWs

)

+E′
(
φ′
h/2(ξ

1
t +√

hW̄1/2 − x)

× Et

∫ t

0
E−1
s Ẽ

[
B̃sb

(
Ỹη(s),G(Ỹη(s); vη(s)))

∫ s

η(s)
dW̃r

]
dWs

)
.

Again we look only at the last term, as the other can be treated similarly. As
we already mentioned, the midpoint ξ1

t is to be understood in the sense of

expression (3.11), so recalling the definition of Zν,W̄
t , under the expectation E′′′

on �× �̄× �̃ (therefore E′′′ =E′ × Ẽ), we have

E′
(∫ 1

0
φ′
h/2(Z

ν,W̄
t − x) dνEt

×
∫ t

0
E−1
s Ẽ

[
B̃sb(Ỹη(s),G(Ỹη(s); vη(s)))

∫ s

η(s)
dW̃r

]
dWs

)

=
∫ 1

0
E′′′

(
φ′
h/2(Z

ν,W̄
t − x)Et

×
∫ t

0
E−1
s B̃sb(Ỹη(s),G(Ỹη(s); vη(s)))

∫ s

η(s)
dW̃r dWs

)
dν,

(B.2)

and we are in condition to apply Lemma A.1. If we recall the definition of B̃ and
we translate the midpoints θ2

s and ζ̃ 2
s appearing there in the notation (3.11), we

obtain that this last term can be actually expressed as∫ 1

0
E′′′

(
φ′
h/2(Z

ν,W̄
t − x)Et

∫ t

0
E−1
s by(Yη(s), θ

2
s )gy(Ys, ζ̃

2
s )

×
∫ s

η(s)
b
(
Ỹη(s),G(Ỹη(s); vη(s)))dW̃r dWs

)
dν

=
∫ 1

0

∫ 1

0

∫ 1

0
E′′′

[
φ′
h/2(Z

ν,W̄
t − x)Et

×
∫ t

0
E−1
s by

(
Yη(s), (1 − ε)G(Yη(s); vη(s))+ εG(Ys; vs))

× gy
(
Ys, (1 −µ)Ỹη(s) +µỸs

)
×

∫ s

η(s)
b
(
Ỹη(s),G(Ỹη(s); vη(s)))dW̃r dWs

]
dµdε dν.

Indeed, by virtue of Hypothesis (H0), the functions

γ (x1)= b

(
x1,

∫
R

g(x1, z)dvη(s)

)
,
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β(x1, x2, x3, x4)= by

(
x1, (1 − ε)

∫
R

g(x1, z) dvη(s) + ε

∫
R

g(x1, z) dvs

)

× gy
(
x3, (1 −µ)x2 +µx4

)
,

respectively, applied to Yη(s) and (Yη(s), Ỹη(s), Ys, Ỹs), verify condition (A.2). They
are differentiable four times and the derivative of order i of each of them is
bounded by C2 = 22(i+1)M2(i+2) , in the worst of cases. Besides, Et and its inverse
are solutions to SDEs with coefficients with bounded spatial derivatives. Therefore
it is not difficult to prove that they satisfy for n= 0,1, . . . ,4 and q ∈ N (see [10],
Theorem 2.2.2),

sup
s1,...,sn≤T

E
[
sup
t≤T

|Ds1 · · ·DsnEt |2q
]

+ sups1,...,sn≤T E
[
supt≤T |Ds1 · · ·DsnE

−1
t |2q

]
≤ C,

(B.3)

for some positive constant C independent of h which without loss of generality we
assume is the same as the one appearing in Lemma 3.2.

So we can take Zh
s = E−1

s , V h
t = Et , p = 1, γ and β as above, satisfying (A.1)

and (A.2). From here, we conclude that (B.2) is bounded by some constant A1 > 0
and ∣∣∣∣E′

(
φ′
h/2(ξ

1
t +

√
hW̄1/2 − x)Et

×
∫ t

0
E−1
s Ẽ

[
B̃sb

(
Ỹη(s),G(Ỹη(s); vη(s)))

∫ s

η(s)
dW̃r

]
dWs

)∣∣∣∣≤A1th.

Repeating the same argument with all the other terms, we can find a proper con-
stant A such that the thesis is satisfied. The proof for the case |Ẽ(u(Xt , Yt , X̃t , Ỹt )

Ẽt Ũ0(t))| ≤Ath is similar. Indeed, as before, we may decompose Ẽt Ũ0(t) into its
integral terms and apply the first part of Lemma A.1 with a uniformly bounded
smooth random function, as we observed in Remark A.2(b). �

We now prove the second step of the induction in the lemma that follows.

LEMMA B.2. There exists a constant R > 0, independent of t , h, x and k such
that

∣∣E′(φ′
h/2(ξ

1
t +√

hW̄1/2 − x)EtUk(t)
)∣∣≤ h

k+1∑
j=1

(Rt)j

j ! ,

∣∣Ẽ(
u(X̃t , Ỹt )Ẽt Ũk(t)

)∣∣≤ h

k+1∑
j=1

(Rt)j

j ! .

Here u: �×R2 → R is any smooth random measurable function with its first four
derivatives bounded by M uniformly in �.
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PROOF. We proceed by induction. Having proved the case k = 0 in the
previous lemma, let us assume the result true for k and prove it for k+ 1. From the
proof we will determine the constant R. Using (3.15), we have

∣∣E′(φ′
h/2(ξ

1
t +

√
hW̄1/2 − x)EtUk+1(t)

)∣∣
≤ ∣∣E′(φ′

h/2(ξ
1
t +√

hW̄1/2 − x)EtU0(t)
)∣∣

+
∣∣∣∣E′

(
φ′
h/2(ξ

1
t +

√
hW̄1/2 − x)Et

×
∫ t

0
E−1
s Ẽ

(
ay(Ys, η

1
s )fy(Ys, ξ̃

1
s )ẼsŨk(s)

)
ds

)∣∣∣∣
+

∣∣∣∣E′
(
φ′
h/2(ξ

1
t +

√
hW̄1/2 − x)Et

×
∫ t

0
E−1
s Ẽ

(
βsby(Ys, η

2
s )gy(Ys, ξ̃

2
s )ẼsŨk(s)

)
ds

)∣∣∣∣
+

∣∣∣∣E′
(
φ′
h/2(ξ

1
t +

√
hW̄1/2 − x)Et

×
∫ t

0
E−1
s by(Ys, η

2
s )Ẽ

(
gy(Ys, ξ̃

2
s )ẼsŨk(s)

)
dWs

)∣∣∣∣.

By the previous lemma, the first term in the right-hand side of the inequality is
certainly less than or equal to Aht ; hence let us focus our attention on the other
two terms.

First we rewrite the above inequality, by using the midpoint notation (3.11), for
βs , ξ1

s , ξ3
s , ξ5

s , η1
s , and η2

s , so we have

∣∣E′(φ′
h/2(ξ

1
t +√

hW̄1/2 − x)EtUk+1(t)
)∣∣

≤Aht +
∫ 1

0

∫ 1

0

∣∣∣∣E′
(
φ′
h/2(Z

ν,W̄
t − x)Et

×
∫ t

0
E−1
s ay(Ys,F

ε
s )Ẽ

(
fy(Ys, ξ̃

1
s )ẼsŨk(s)

)
ds

)∣∣∣∣dε dν
+

∫ 1

0

∫ 1

0

∫ 1

0

∣∣∣∣E′
(
φ′
h/2(Z

ν,W̄
t − x)Et

∫ t

0
E−1
s bx

(
Zλ
s ,G(Xs;us))

× by(Ys,G
ε
s )Ẽ

(
gy(Ys, ξ̃

2
s )ẼsŨk(s)

)
ds

)∣∣∣∣dλdε dν
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+
∫ 1

0

∫ 1

0

∫ 1

0

∣∣∣∣E′
(
φ′
h/2(Z

ν,W̄
t − x)Et

∫ t

0
E−1
s b2

y(Ys,G
ε
s)G

′(Zρ
s ;us)

× Ẽ
(
gy(Ys, ξ̃

2
s )ẼsŨk(s)

)
ds

)∣∣∣∣dλdε dν
+

∫ 1

0

∫ 1

0

∣∣∣∣E′
(
φ′
h/2(Z

ν,W̄
t − x)Et

×
∫ t

0
E−1
s by(Ys,G

ε
s)Ẽ

(
gy(Ys, ξ̃

2
s )ẼsŨk(s)

)
dWs

)∣∣∣∣dε dν,
where we set Fε

s = (1 − ε)F (Xs;us) + εF (Ys; vs), Gε
s = (1 − ε)G(Xs;us) +

εG(Ys; vs) and Zλ =Xt + λ(Yt −Xt), for 0 ≤ λ, ν, ε ≤ 1.
Let us notice that the functions

β1(x5, x6)= ay

(
x6, (1 − ε)

∫
R

f (x5, z) dµs(z)+ ε

∫
R

f (x6, z) dvs(z)

)
,

β2(x5, x6)= by

(
x6, (1 − ε)

∫
R

g(x5, z) dµs(z)+ ε

∫
R

g(x6, z) dvs(z)

)
,

β3(x5, x6)= bx

(
(1 − λ)x5 + λx6,

∫
R

g(x5, z) dµs(z)

)
,

β4(x5, x6)=
∫

R

gx
(
(1 − λ)x5 + λx6, z

)
dµs(z),

β5(x5, x6)= β2(x5, x6)β3(x5, x6)+ β2
2(x5, x6)β4(x5, x6),

all have derivatives up to order 4, uniformly bounded by a fixed constant depending
on M , that we will denote with CM .

We now want to apply Remark A.2(a), taking V h
t = Et , Zh

s = E−1
s Ẽ(fy(Ys, ξ̃

1
s )

×ẼsŨk(s)) or Zh
s = E−1

s Ẽ(gy(Ys, ξ̃
2
s )ẼsŨk(s)) and βs(x1, . . . , x8) = βi(x1, x2),

i = 1,2,5, so we have to verify that the hypotheses of Lemma A.1 are satisfied.
We have to find a bound for ‖Zh

s ‖n,q , for q large enough and n≤ 4. For this, first
note that Et and E−1

s verify (B.3), in the sense of Sobolev norms with respect only
to W , just as in Remark A.2(a).

Using the usual midpoint notation, our task is made equivalent to finding a
bound for ‖E−1

s Ẽ(uy(Ys, Z̃
τ
s )ẼsŨk(s))‖n,q , where Zτ = Xt + τ (Yt − Xt) for

0 ≤ τ ≤ 1 and u is either f or g. It is important to observe that in this case uy(Ys, ·)
is a smooth random function independent of Uk and of τ ∈ [0,1].

By Hölder’s inequality we have for n≤ 4,

∥∥E−1
s Ẽ

(
uy(Ys, Z̃

τ
s )ẼsŨk(s)

)∥∥
n,q ≤ ‖E−1

s ‖n,q1

∥∥Ẽ(
uy(Ys, Z̃

τ
s )ẼsŨk(s)

)∥∥
n,q2

≤ C1
∥∥Ẽ(

uy(Ys, Z̃
τ
s )ẼsŨk(s)

)∥∥
n,q2

,
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with 1
q1

+ 1
q2

= 1
q

. For example, consider the case when n = 2. We derive our
estimate only in this case, to keep the computations more understandable. For
n= 3,4 it is just a matter of considering also the Malliavin derivatives of order 3
and 4. By differentiating we obtain

DrẼ
(
uy(Ys, Z̃

τ
s )ẼsŨk(s)

)=DrYsẼ
(
uyx(Ys, Z̃

τ
s )ẼsŨk(s)

)
,

DrDuẼ
(
uy(Ys, Z̃

τ
s )ẼsŨk(s)

)=DrDuYsẼ
(
uyxx(Ys, Z̃

τ
s )ẼsŨk(s)

)
and consequently we have that∥∥Ẽ(

uy(Ys, Z̃
τ
s )ẼsŨk(s)

)∥∥q2
2,q2

≤E
(∣∣Ẽ(

uy(Ys, Z̃
τ
s )ẼsŨk(s)

)∣∣q2)
+E

[(∫ T

0
|DrYs |2

∣∣Ẽ(
uyx(Ys, Z̃

τ
s )ẼsŨk(s)

)∣∣2 dr
+

∫ T

0

∫ T

0
|DrDuYs |2

∣∣Ẽ(
uyxx(Ys, Z̃

τ
s )ẼsŨk(s)

)∣∣2 dudr)q2/2]
.

But uy(Ys, ·) and uyxx(Ys, ·) have derivatives uniformly bounded by M for all ω;
therefore we see that the inductive hypotheses can be applied to conclude that

∣∣Ẽ(
ϕ(Ys, Z̃

τ
s )ẼsŨk(s)

)∣∣≤ h

k+1∑
j=1

(Rt)j

j ! for ϕ = uy,uyx, uyxx,

which implies

∥∥Ẽ(
uy(Ys, Z̃

τ
s )ẼsŨk(s)

)∥∥
2,q2

≤ h

k+1∑
j=1

(Rs)j

j !
(
1 + ‖Ys‖2,q2

)≤ Ch

k+1∑
j=1

(Rs)j

j ! ,

because of Lemma 3.2. Summarizing, it is possible to find a constant C̄,
independent of all the parameters, that depends polynomially on the constants M ,
T and the constant C in Lemma 3.2 such that

∣∣E′(φ′
h/2(ξ

1
t +√

hW̄1/2 − x)EtUk+1(t)
)∣∣≤ Aht + C̄C1

∫ t

0
h

k+1∑
j=1

(Rs)j

j ! ds

≤ h

(
Rt +

k+1∑
j=1

(Rt)j+1

(j + 1)!
)

choosing R ≥ max(A, C̄C1).
Similarly as in Lemma B.1 one may prove that for a random function,

independent of W̃ u: � × R
2 → R with derivatives bounded by M uniformly
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in �×R2 one has that

∣∣Ẽ(
u(Ỹt , X̃t )Ẽt Ũk+1(t)

)∣∣≤ h

(
Rt +

k+1∑
j=1

(Rt)j+1

(j + 1)!
)
.

This concludes the proof. �
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