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Starting at time 0, unit-length intervals arrive and are placed on the
positive real line by a unit-intensity Poisson process in two dimensions; the
left endpoints of intervals appear at the rate of 1 per unit time per unit
distance. An arrival is accepted if and only if, for some given x, the inter-
val is contained in �0� x� and overlaps no interval already accepted. This
stochastic, on-line interval packing problem generalizes the classical park-
ing problem, the latter corresponding only to the absorbing states of the
interval packing process, where successive packed intervals are separated
by gaps less than or equal to 1 in length.

In earlier work, the authors studied the distribution of the number of
intervals accepted during �0� t�. This paper is concerned with the vacant
intervals (gaps) between consecutive packed intervals. Let p�t� y� be the
limit x → ∞ of the fraction of the gaps at time t which are at most y in
length. We prove that

p�t� y� =



2
∫ t
0 �1−e−vy�β�v�dv

α�t� � y ≤ 1,

p�t�1� + �1−exp�−t�y−1���tβ�t�
α�t� � y > 1,

where α�t� = ∫ t
0 β�v�dv, β�t� = exp�−2 ∫ t0��1− e−v�/v�dv�.

We briefly discuss the recent importance acquired by interval packing
models in connection with resource-reservation systems. In these applica-
tions, our vacant intervals correspond to times between consecutive reser-
vation intervals. The results of this paper improve our understanding of
the fragmentation of time that occurs in reservation systems.

1. Introduction. Unit intervals arrive at random times and at random
locations in R+. The arrival times and left endpoints comprise a unit-intensity
Poisson process in two dimensions. Thus, the probability of an arrival in the
time interval �t� t+dt� with left endpoint in �y�y+dy� is dtdy+ o�dtdy�. The
number of intervals packed entirely within �0� x� during �0� t� is denoted by
I�t� x� and has a mean denoted by K�t� x�. In [3], it is shown that, for any
given T > 0,

sup
0≤t≤T

∣∣K�t� x� − (
α�t�x+ α�t� + β�t� − 1

)∣∣ = O
(
exp�−ξx log x�)(1)

for all ξ ∈ �0�1�, where

α�t� =
∫ t

0
β�v�dv� β�t� = exp

[
−2

∫ t

0

1− e−v

v
dv

]
�
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And for the variance, it is shown in [3] that, for any given T > 0,

sup
0≤t≤T

∣∣σ2(I�t� x�)− (
µ�t�x+ µ1�t�

)∣∣ = O
(
exp�−ξx log x�)�(2)

for all ξ ∈ �0�1�, where µ�t� and µ1�t� are explicitly computable (see [3, Equa-
tions (75) and (76)]), and where µ�t� > 0 for all t > 0.

In this paper, we study the vacant intervals, or gaps, between successive
packed intervals at time t. We derive an explicit formula for the limit of the
distribution function as x → ∞. Our results are presented and discussed in
Section 2. Most of the proof details are left to subsequent sections. In the
remainder of this section, we cover the background on a closely related prob-
lem, and briefly discuss modern applications that have rekindled interest in
interval packing.

The intimate relationship between the classical parking problem of [7] and
our on-line interval packing problem is easy to see. In the former problem,
unit-length cars are parked sequentially along a curb (interval) �0� x�, x > 1.
Each car chooses a parking place independently and uniformly at random
from those available, that is, from those where it will not overlap cars already
parked or the curb boundaries. This uniform parking of cars continues until
every unoccupied gap is less than 1 in length; that is, no further cars can be
parked. It is verified in [3] that, as might be expected, I�t� x� tends to Ĩ�x� in
distribution as t → ∞, where Ĩ�x� is the number parked at the conclusion of
the parking process. Extending results of Renyi [7], Dvoretzky and Robbins [5]
showed that the mean of Ĩ�x� has the estimate in (1), once the limit t → ∞ is
taken, where α�∞� = 0�748 � � � . Similarly, the combined results of [5] and [6]
showed that the variance of Ĩ�x� has the estimate in (2), once the limit t → ∞
is taken; in this limit,

µ�∞�=µ1�∞�= 4
∫ ∞

0

[
e−y�1−e−y� α̃�y�

y
− e−2y�e−y−1+y�α̃2�y�

β�y�y2

]
dy−α�∞��

= 0�0381 � � � �

where α̃�y� 
= α�∞� − α�y�.
Although one expects some strong form of convergence of I�t� x� to Ĩ�x�, it

is surprising at first to find that, for all x > 2, the expected time to absorp-
tion of the interval packing process is infinite. It is shown in [3] that, if Tx

denotes the time-to-absorption of the interval packing process, then for any
fixed x, P�Tx > t� tends to 0 like 1/t, and hence, Tx is finite almost surely but
ETx = ∞.

Dvoretzky and Robbins [5] gave a central limit theorem for the parking
problem, basing the second of their two proofs on various properties of Ĩ�x�
also shared by I�t� x�. In [3], it is observed that one can adapt the technique
to the interval packing problem so as to obtain a central limit theorem for
any fixed t. The details of a rigorous proof can be found in [2]. Bankovi [1] in-
vestigated the distribution of vacant intervals for the parking problem, as did
Mackenzie [6] for a discretized version of the problem. This paper generalizes
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their results to the interval packing problem. For additional literature on the
parking problem, see [3].

We conclude this section with a few comments on applications. Modeling
reservation protocols in communication systems was the source of our inter-
val packing problem (see, e.g., [3] and the references therein). In the baseline
model, there is a single resource and there are randomly arriving requests,
each specifying a future time interval during which it wants to use the re-
source. A request arriving at time t identifies the desired interval �t1� t2� by
giving the advance notice t1 − t and the duration t2 − t1. Scheduling decisions
are made on-line: a requested reservation is approved or accepted if and only
if the specified interval does not overlap an interval already reserved for some
earlier request. In the stochastic set-up, requests are Poisson arrivals at rate
λ, advance notices are independently and uniformly distributed over �0� a� for
some given a, and intervals have unit durations. Suppose that, at some time
t in equilibrium, we look at the pattern of vacant intervals that were created
by the reservations made during �t − x� t� for some large x. If a is large rel-
ative to x, one expects that, except for negligible edge effects, this pattern is
approximately the same stochastically as the pattern of vacant intervals cre-
ated in �0� x� according to the Poisson model of on-line interval packing during
the time interval �0� λ�. This statement is made rigorous and a corresponding
limit law proved in [4]; certain generalizations of the above model are also
accommodated.

2. The main results. Let N�t� x� be the number of vacant intervals in
�0� x� at time t, so N�t� x� = I�t� x� + 1. For the mean, write V�t� x� 
=
EN�t� x� = K�t� x� + 1. Let Ny�t� x� be the number of gaps of length at most
y in �0� x� at time t, and denote its mean by Vy�t� x�. Define the function

p�t� y� x� 
= Vy�t� x�
V�t� x� �

We will prove the following theorem.

Theorem 1. The limit p�t� y� 
= limx→∞ p�t� y� x� exists for all t� y ≥ 0,
and is given by

p�t� y� =




2
∫ t
0�1− e−vy�β�v�dv

α�t� � y ≤ 1,

p�t�1� + �1− exp�−t�y− 1���tβ�t�
α�t� � y > 1.

(3)

For fixed t, (3) shows that p�t� y� is a continuous, strictly increasing func-
tion of y, with p�t�0� = 0. In Corollary 1, we also verify that p�t�∞� 
=
limy→∞ p�t� y� = 1, so p�t� y� is in fact a distribution function in y. A differ-
entiation of (3) shows that the derivative of p�t� y� with respect to y is also
continuous, except for a jump of t2β�t�/α�t� at y = 1. In Corollary 2, we will
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prove that p�t� y� is strictly increasing in t for every y, and in Corollary 3, we
will compute the mean gap size m�t� from the distribution in Theorem 1.

As defined above, p�t� y� is the limit, as x → ∞, of the ratio of two expec-
tations. But we will go further and prove that p�t� y� is the stochastic limit of
the empirical distribution of the gap sizes. This is done in Theorem 4, but in
preparation, we need Theorems 2 and 3 giving large-x asymptotic results for
the first and second moments of Ny�t� x�. For the first moment, we have the
following theorem.

Theorem 2. As x → ∞,

Vy�t� x� = α�t�p�t� y�x+O�1��

For the second moment, My�t� x� 
= E�N2
y�t� x��, we have Theorem 3.

Theorem 3. As x → ∞,

My�t� x� = �α�t�p�t� y��2x2 +O�x��
and hence for the variance, we obtain σ2

y�t� x� = O�x�, as x → ∞.

We remark that the asymptotics of Theorems 2 and 3 can be improved, but
the improvements require cumbersome calculations and do not seem interest-
ing. Our interest in Theorems 2 and 3 is restricted to their use in deriving
Theorem 4.

Define the empirical distribution of gap sizes by

F∗
t� x�y� 
=

Ny�t� x�
N�t� x� �

the proportion of gaps of length at most y. Let →P denote stochastic conver-
gence (i.e., convergence in probability).

Theorem 4. For all y ≥ 0, we have

F∗
t� x�y� P→ p�t� y� as x → ∞�

Proof. From Theorems 2 and 3 and Chebyshev’s inequality, we obtain

Ny�t� x�
α�t�p�t� y�x

P→ 1 as x → ∞�

Similarly, from Theorems 4 and 13 in [3] and Chebyshev’s inequality, we get

N�t� x�
α�t�x

P→ 1 as x → ∞�

which when divided into the previous equation gives the theorem. ✷
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Fig. 1. The mean gap size, m�t�.

Note that, from (1), it is easy to argue what the formula for the mean gap
size m�t� should be. The amount of an interval �0� x� that is vacant at time
t is �1 − α�t��x + O�1� for large x, and the number of packed intervals, and
hence gaps, in �0� x� at time t is α�t�x + O�1�, for large x, so the mean gap
size is

�1− α�t��x+O�1�
α�t�x+O�1� ∼ m�t� = 1− α�t�

α�t� as x → ∞�

The fast convergence of m�t� as t → ∞ is shown in Figure 1. The limiting
value is limt−∞ m�t� = 0�337 � � � .

Fix t and define the transforms

�y�t� u� 
=
∫ ∞

1
Vy�t� x�e−ux dx� �y�t� u� 
=

∫ ∞

1
My�t� x�e−ux dx�

for t ≥ 0 and �u > 0. The next section proves Theorem 1 by deriving a formula
for �y�t� u� and then applying Karamata’s Tauberian theorem. Proving Theo-
rems 2 and 3 requires more work, which starts in Section 3 with the derivation
of a formula for �y�t� u�. From the formulas for �y and �y, Section 4 extracts
analytic continuations, singularities, and growth estimates. From these prop-
erties, Section 5 constructs a proof of Theorems 2 and 3 using the inversion
formula for Laplace transforms and the Cauchy residue theorem.

3. Proof of Theorem 1. We prove Theorem 1 in four steps by (1) deriv-
ing integro-differential equation for Vy�t� x�; (2) converting this to a partial
differential equation (pde) for the transform �y; (3) solving the pde and (4)
applying Karamata’s theorem to the formula for �y obtained in Step 3.
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Step 1. At time t+�t, consider what happened to the initial vacant interval
�0� x�, where x ≥ 1, during the first �t time units. If there was no arrival, then
Vy�t + �t� x� = Vy�t� x�, and if there was, say at �z� z + 1�, z ≤ x − 1, then
Vy�t + �t� x� = Vy�t� z� + Vy�t� x − 1 − z�. Thus, according to the Poisson
arrival process, we have

Vy�t+ �t� x� = �1− �x− 1��t�Vy�t� x�

+�t
∫ x−1

0

[
Vy�t� z� +Vy�t� x− 1− z�]dz

+o��t�� x ≥ 1� t ≥ 0�

Dividing by �t, letting �t → 0, and exploiting symmetry, we obtain

∂Vy

∂t
= −�x− 1�Vy + 2

∫ x−1

0
Vy�t� z�dz� x ≥ 1� t ≥ 0�(4)

In addition to (4), Vy satisfies the following boundary conditions: if y ≤ 1,

Vy�t� x� =
{1� if 0 ≤ x ≤ y� t ≥ 0,
0� if y < x ≤ 1� t ≥ 0,
0� if x > 1� t = 0

(5)

and if y > 1,

Vy�t� x� =


1� if 0 ≤ x ≤ 1� t ≥ 0,
1� if 1 < x ≤ y� t = 0,
0� if x > y� t = 0.

(6)

Equations (5) and (6) follow directly from the fact that, with probability 1,
�0� x� is vacant at time t = 0 for all x, and vacant for all t ≥ 0 when x ≤ 1.

Step 2. To convert (4) into a pde for �y, multiply (4) by e−ux and integrate
over 1 ≤ x < ∞; this gives

∂�y
∂t

= �y + ∂�y
∂u

+ 2e−u

u

[
�y +

∫ 1

0
Vy�t� x�e−ux dx

]
�

From the boundary conditions for Vy�t� x�, we get

∫ 1

0
Vy�t� x�e−ux dx = gy�u�

u
�

where

gy�u� 
= 1− exp�−min�1� y�u��(7)

so the pde can be rewritten

∂�y
∂t

= ∂�y
∂u

+
(
1+ 2e−u

u

)
�y + 2e−u

u2
gy�u�� u > 0� t ≥ 0�(8)
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with the boundary condition

�y�0� u� = hy�u� 
=


0� if y ≤ 1,
e−u − e−yu

u
� if y > 1.

(9)

Step 3. A formula for �y can be found by using results in [3]. To this end,

rewrite (8) as follows. Let �y�t� u� = �
�1�
y �t� u�+�

�2�
y �t� u�, where �

�1�
y � �

�2�
y are

defined to be the respective solutions to

∂�
�1�
y

∂t
= ∂�

�1�
y

∂u
+
(
1+ 2e−u

u

)
�

�1�
y + 2e−u

u2
gy�u�� �

�1�
y �0� u�= 0� u> 0�(10)

∂�
�2�
y

∂t
= ∂�

�2�
y

∂u
+
(
1+ 2e−u

u

)
�

�2�
y � �

�2�
y �0� u�=hy�u��(11)

Equation (10) is identical to (51) in [3], with 2gy�u� replacing � �t� u�. Hence,
by (54) in [3],

�
�1�
y = 2e−u

u2β�u�
∫ u+t

u
gy�v�β�v�dv�(12)

To solve (11), let y > 1, since for y ≤ 1, we have �
�2�
y = 0. Make the change

of variables r = u + t, s = t and define �̃
�2�
y �s� r� 
= �

�2�
y �s� r − s�. Then (11)

transforms to the pde

∂�̃
�2�
y

∂s
=

(
1+ 2

es−r

r− s

)
�̃

�2�
y � �̃

�2�
y �0� r� = hy�r�� r > 0� 0 ≤ s ≤ r�

For fixed r, this is an ordinary linear differential equation for �̃
�2�
y in s, and

has the solution

�̃
�2�
y �s� r� = hy�r� exp

[∫ s

0

(
1+ 2ev−r

r− v

)
dv

]
�

Then in terms of the t� u variables, elementary manipulations show that

�
�2�
y �t� u�= �̃

�2�
v �t� t+u�= exp�−u�−exp�−yu−�y−1�t�

u2β�u� �u+t�β�u+t��(13)

which together with (12) yields the desired formula

�y�t� u� =
2e−u

u2β�u�
∫ u+t

u
gy�v�β�v�dv

(14)
+χ�y�exp�−u� − exp�−yu− �y− 1�t�

u2β�u� �u+ t�β�u+ t��

where χ�y� = 0 for y < 1, and χ�y� = 1 for y ≥ 1.

Step 4. To complete the proof of Theorem 1, consider first the limit u → 0
of (14). We find that, as u → 0

�y�t� u� ∼
ky�t�
u2

�
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where

ky�t� 
= 2
∫ t

0
gy�v�β�v�dv+ χ�y�(1− exp�−�y− 1�t�)tβ�t��

Then by Karamata’s Tauberian theorem,

lim
x→∞

∫ x
0 Vy�t� z�dz

x2/2
= ky�t��(15)

Duplicating the reasoning of Theorem 2 in [3], we can replace the left-hand
side of (15) by limx→∞Vy�t� x�/x. Theorem 2 in [3] shows that

lim
x→∞

K�t� x�
x

= α�t��
which together with (15) proves Theorem 1. ✷

We now prove the corollaries to Theorem 1 that were mentioned in Section 2.

Corollary 1. For fixed t� p�t� y� is a distribution function in y, that is,
p�t�∞� = 1.

Proof. First, observe that β′�v� = −2�1−e−v�β�v�/v, so an integration by
parts gives

2
∫ t

0
�1− e−v�β�v�dv = −

∫ t

0
vβ′�v�dv = −tβ�t� + α�t��

Now substitute this into

p�t�∞� = 2
∫ t
0�1− e−v�β�v�dv+ tβ�t�

α�t� �

which we obtain from Theorem 1. The corollary follows. ✷

Corollary 2. The following hold.

(i) For fixed y > 0, p�t� y� is strictly increasing in t, and
(ii) limt→∞ p�t� y� = 1 uniformly in y ≥ 1.

Proof. For part (i), consider first 0 < y ≤ 1. Differentiate (3) and get

∂p

∂t
= α�t�2�1− e−ty�β�t� − ∫ t

0�1− e−vy�β�v�dvβ�t�
α2�t�

= 2β�t�
α2�t�

[∫ t

0
�1− e−ty�β�v�dv−

∫ t

0
�1− e−vy�β�v�dv

]

= 2β�t�
α2�t�

∫ t

0
�e−vy − e−ty�β�v�dv�

But e−vy is decreasing in v, so ∂p/∂t > 0 and part (i) is proved for 0 < y ≤ 1.
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For y > 1, let y → ∞ in (3), apply p�t�∞� = 1 and obtain

p�t�1� + tβ�t�/α�t� = 1�(16)

which together with (3) gives

1− p�t� y� = exp�−t�y− 1���1− p�t�1�� for y ≥ 1�

Since both exp�−t�y − 1�� and �1 − p�t�1�� are positive, strictly decreasing
functions of t, this proves (i) for y > 1.

For part (ii), it suffices to show that limt→∞ p�t�1� = 1, since p�t� y� in-
creases in y. But β�t� = O�1/t2� as t → ∞, so we obtain the desired result by
letting t → ∞ in (16). ✷

Corollary 3. The limiting mean gap length [i.e., the mean of p�t� y�] is

m�t� = 1− α�t�
α�t� �

Proof. By (1) for large x, there are asymptotically α�t�x vacant intervals
with a total size of �1− α�t��x, so m�t� = �1− α�t��/α�t� follows from a simple
argument. However, let us determine m�t� by differentiating (3), as a check
on (3). Accordingly, we have the density

∂p

∂y
= 2

∫ t
0 vβ�v� exp�−vy�dv+ χ�y�t2 exp�−t�y− 1��β�t�∫ t

0 β�v�dv
�

Thus, the expected value is given by

m�t� = 2
∫ 1
0

∫ t
0 vyβ�v� exp�−vy�dvdy+ t2β�t� ∫∞

1 y exp�−t�y− 1��β�t�∫ t
0 β�v�dv

= 2
∫ t
0 β�v�dv

∫ 1
0 vye−vy dy+ t2β�t� ∫∞

0 �y+ 1�e−ty dy∫ t
0 β�v�dv

�

Now substitute from∫ 1

0
vye−vy dy = 1

v

∫ v

0
ye−y dy = 1− e−v

v
− e−v

and ∫ 1

0
�y+ 1�e−ty dy = 1

t
+ 1

t2

to obtain

m�t� = 2
∫ t
0 β�v���1− e−v�/v�dv− 2

∫ t
0 β�v�e−v dv+ �t+ 1�β�t�∫ t

0 β�v�dv
�

Now β′�v� = −2�1 − e−v�β�v�/v, so after routine manipulations we find that
2
∫ t
0 β�v���1−e−v�/v�dv = 1−β�t�, and −2 ∫ t

0 β�v�e−v dv = −tβ�t�−∫ t
0 β�v�dv;

after substitution into the above expression for m�t�, we get the desired
formula. ✷
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4. The second-moment transform. We derive a formula for �y�t� u�
using the method of the previous section. Let t ≥ 0 and u > 0. We begin
by computing an integro-differential equation for �y. Let x ≥ 1 and let
Ny�t� x� z� denote the conditional number of gaps at time t in �0� x� with
lengths at most y, given that at time 0 an interval was packed in �z� z + 1�
with 0 ≤ z ≤ x − 1. Clearly, Ny�t� x� z� = Ny�t� z� + Ny�t� x − 1 − z�. But
Ny�t� z� and Ny�t� x− 1− z� are independent, so we can write

My�t+ �t� x� = �1− �x− 1��t�My�t� x�

+�t
∫ x−1

0
E�Ny�t� z� +Ny�t� x− 1− z��2 dz+ o��t�

= �1− �x− 1��t�My�t� x�

+2�t
[∫ x−1

0
My�t� z�dz

+
∫ x−1

0
Vy�t� z�Vy�t� x− 1− z�dz

]
+ o��t�

and then divide by �t and take the limit �t → 0 to get

∂My

∂t
= − �x− 1�My + 2

∫ x−1

0
My�t� z�dz

(17)
+ 2

∫ x−1

0
Vy�t� z�Vy�t� x− 1− z�dz� x ≥ 1� t ≥ 0�

We must solve (17) subject to the boundary conditions in (5) and (6). Taking
the Laplace transform of (17), we obtain

∂�y

∂t
= �y + ∂�y

∂u
+ 2e−u

u

[
�y +

∫ 1

0
My�t� z�e−uz dz

]

+ 2e−u
[
�y +

∫ 1

0
�y�t� z�e−uz dz

]2
�

Now,
∫ 1
0 My�t� z�e−uz dz = ∫ 1

0 Vy�t� z�e−uz dz = gy�u�/u, where gy�u� is given
by (7), so the pde can be rewritten

∂�y

∂t
= ∂� y

∂u
+

(
1+ 2e−u

u

)
�y + 2e−u

u2
�y�t� u�� t ≥ 0� u > 0�(18)

where

�y�t� u� 
= �u�y�2 + 2gy�u�u�y + gy�u� + g2
y�u��(19)

The boundary condition that �y must satisfy is �y�0� u� = hy�u�, where
hy�u� is given by (9). To solve (18), let �y = �

�1�
y + �

�2�
y , where �

�1�
y ��

�2�
y
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are the respective solutions to

∂�
�1�
y

∂t
= ∂�

�1�
y

∂u
+

(
1+ 2e−u

u

)
�

�1�
y

(20)
+2e−u

u2
�y�t� u�� �

�1�
y �0� u� = 0�

∂�
�2�
y

∂t
= ∂�

�2�
y

∂u
+

(
1+ 2e−u

u

)
�

�2�
y � �

�2�
y �0� u� = hy�u��(21)

Note that (20) is similar in form to (10). Applying (54) in [3], as in the last
section, we obtain

�
�1�
y �t� u� = e−u

∫ t

0

�y�t− v�u+ v�
�u+ v�2 exp

[
2
∫ u+v

u

e−z

z
dz

]
dv

= e−u

u2β�u�
∫ u+v

u
�y�t+ u− v� v�β�v�dv�

(22)

Now (21) is (11) with �
�2�
y replaced by �

�2�
y . Hence, � �2�

y �t� u� = �
�2�
y �t� u�, and

we get

�y�t� u� =
e−u

u2β�u�
∫ u+v

u
�y�t+ u− v� v�β�v�dv+ �

�2�
y �t� u��

where �
�2�
y �t� u� is given by (13).

5. Properties of �� y and �� y. As pointed out earlier, we obtain the esti-
mates of Theorems 2 and 3 for �y and �y by analyzing the inverses of the
transforms �y and �y. For this purpose, we need analyticity properties and
estimates on the growth of the transforms.

Analyticity. We begin with �y.

Lemma 1. The transform �y�t� u� is analytic in u except at u = 0 where it
has the estimate

�y�t� u� =
ky�t�
u2

+O

(
1
u

)
as u → 0�

Proof. Inspection of (12) shows that � �1�
y �t� u� is analytic for u �= 0, and

since β�0� = 1, it also shows that

�
�1�
y �t� u� = 2

∫ t
0 gy�v�β�v�dv

u2
+O

(
1
u

)
as u → 0�

For y ≤ 1, � �2�
y �t� u� = 0 and for y > 1, (13) shows that � �2�

y �t� u� is analytic
for u �= 0 and that

�
�2�
y �t� u� =

(
1− exp�−�y− 1�t�)tβ�t�

u2
+O

(
1
u

)
as u → 0�

The lemma follows immediately, since �y = �
�1�
y + �

�2�
y . ✷
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Our study of �y first requires the analytic properties of �y�t − u�u� and
�y�t� u� 
= �y�t− u�u�β�u�

Lemma 2. For fixed t ≥ 0, �y�t−u�u� and �y�t� u� are analytic for u �= 0.
At u = 0, these functions have the expansions

�y�t− u�u� = k2
y�t�
u2

+ 2k2
y�t�
u

+ · · · �(23)

�y�t� u� =
k2
y�t�
u2

+ 0
u

+ · · · �(24)

Proof. By (12) and (13), we have

�
�1�
y �t− u�u� = e−u

u2β�u�
[
2
∫ t

u
gy�v�β�v�dv

]
�(25)

�
�2�
y �t− u�u� = χ�y�(1− exp�−�y− 1�t�)tβ�t� e−u

u2β�u� �(26)

from which we see that �y�t−u�u� is analytic for u �= 0. Then (19) shows that
both �y�t− u�u� and �y�t� u� are analytic for u �= 0. We have the expansion

e−u

u2β�u� = 1
u2

+ 1
u

+ · · · �

and, since gy�0� = 0, the expansion

∫ t

u
gy�v�β�v�dv =

∫ t

0
gy�v�β�v�dv+ 0u+ · · · �

Equations (25) and (26), together with the above expansions, give

�y�t− u�u� = ky�t�
u2

+ ky�t�
u

+ · · · �

Since gy�u� is entire with gy�0� = 0, this last expansion implies (23), and
since β�u� = 1− 2u+ · · ·, (23) in turn implies (24). ✷

Lemma 3. For fixed t, the transform �y�t� u� is analytic in u for u �= 0 and
satisfies

�y�t� u� =
2k2

y�t�
u3

+O

(
1
u2

)
as u → 0�

Proof. Define κy�t� u� 
= �y�t� u�−2k2
y�t�/u2. From the formula for �y�u�

and elementary manipulations, we may rewrite κy�t� u� as

κy�t� u� = k2
y�t�f1�y�u� + kyf2�y�u� + f3�y�u��
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where fi�y; 1 ≤ i ≤ 3, are specified entire functions of u. This formula shows
that κy�t� u� is entire in t� u. Rewrite (22) as

�
�1�
y �t� u� = e−u

u2β�u�
∫ t+u

u

[
κy�t+ u� v� + 2k2

y�t+ u�
v2

]
dv

= e−u

u2β�u�
[∫ t+u

u
κy�t+ u� v�dv+ 2k2

y�t+ u�
u

− 2k2
y�t+ u�
t+ u

]
�

In this form, we see that � �1�
y is analytic for u �= 0 and satisfies �

�1�
y �t� u� =

�2k2
y�t�/u3� + O�1/u2� as u → 0. Next, by (13), � �2�

y = �
�2�
y is analytic for

u �= 0, and has a second-order pole at u = 0. The lemma follows immediately,
since �y = �

�1�
y +�

�2�
y . ✷

Estimates. We estimate �y = �
�1�
y + �

�2�
y and �y = �

�1�
y +�

�2�
y , but since

�
�2�
y = �

�2�
y , we need only estimate �

�1�
y , � �2�

y and �
�1�
y . For y > 1, we shall

also require an estimate for �
�2�2�
y , where �

�2�
y = �

�2�1�
y + �

�2�2�
y with

�
�2�1�
y = exp�−u� − exp�−yu− �y− 1�t�

u+ t
(27)

�
�2�2�
y = �

�2�1�
y

(
exp

[
2
∫ u+t

u

e−x

x
dx

]
− 1

)
�(28)

It proves convenient to rewrite (12), (22) and (13) using the identity

β�v�
β�u� = u2

v2
exp

[
2
∫ v

u

e−x

x
dx

]
�

We obtain in so doing

�
�1�
y = 2e−u

∫ t

0

gy�u+ v�
�u+ v�2 exp

[
2
∫ u+v

u

e−x

x
dx

]
dv(29)

�
�1�
y = 2e−u

∫ t

0

�y�t− v�u+ v�
�u+ v�2 exp

[
2
∫ u+v

u

e−x

x
dx

]
dv(30)

�
�2�
y =�

�2�
y =χ�y�exp�−u�−exp�−yu−�y−1�t�

u+ t
exp

[
2
∫ u+v

u

e−x

x
dx

]
dv�(31)

In the lemma to follow, c�σ� denotes a generic constant depending only on σ .

Lemma 4. Assume that t > 0 and �u ≥ σ . Then:

(i)
∣∣∣� �2�2�

y �t� u�
∣∣∣ ≤ c�σ�t

�u�2 � �u� ≥ 2t.

(ii)
∣∣∣� �2�

y �t� u�
∣∣∣ ≤ c�σ�t

�u� � �u� ≥ 2t.
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(iii)
∣∣∣� �1�

y �t� u�
∣∣∣ ≤ c�σ�t

�u�2 � �u� ≥ 2t.

(iv)
∣∣∣� �1�

y �t� u�
∣∣∣ ≤ c�σ�t

�u�2 � �u� ≥ 3t.

Proof. We use repeatedly the elementary estimates

�e−u� ≤ e−σ for �u ≥ σ� �u+ t� ≥ �u�
2

≥ t for �u� ≥ 2t�(32)

Note that the conditions in the above estimates apply to the inequalities in
the lemma.

Proof of (i). From (32), we get∣∣∣∣
∫ u+t

u

e−x

x
dx

∣∣∣∣ =
∣∣∣∣
∫ t

0

exp�−�u+ v��
u+ v

dv

∣∣∣∣ ≤ 2te−σ

�u� �

which together with the inequality �ez − 1� ≤ e�z� − 1 yields∣∣∣∣exp
(
2
∫ u+t

u

e−x

x
dx

)
− 1

∣∣∣∣
(33)

≤ exp
(∣∣∣∣2

∫ u+t

u

e−x

x
dx

∣∣∣∣
)
− 1 ≤ exp

(
4te−σ

�u�
)
− 1�

Then, by the fact that ez − 1 ≤ zez, for z ≥ 0, we get∣∣∣∣exp
(
2
∫ u+t

u

e−x

x
dx

)
− 1

∣∣∣∣ ≤ 4te−σ

�u� exp
(
4te−σ

�u�
)
≤ 4t exp�−σ + 2e−σ�

�u� �

It also follows from (32) that, for y > 1,∣∣∣∣exp�−u� − exp�−yu− �y− 1�t�
u+ t

∣∣∣∣ ≤ 2
e−σ + e−yσ

�u� �(34)

Then (27) and (28) together with the above inequalities show that (i) holds
with the choice

c�σ� = 8�e−σ + e−yσ� exp�−σ + 2e−σ�� ✷

Proof of (ii). The estimates in (33) imply∣∣∣∣exp
(
2
∫ u+t

u

e−x

x
dx

)∣∣∣∣ ≤ exp
(
4te−σ

�u�
)
≤ exp�2e−σ��(35)

which combined with (31) and (34) gives (ii) with the choice

c�σ� = 2�e−σ + e−yσ� exp�2e−σ�� ✷
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Proof of (iii). We have

�gy�u�� ≤ ay�σ� 
= 1+ exp�−min�1� y�σ��(36)

so by (29), (32) and (35), we obtain (iii) with the choice

c�σ� = 8ay�σ� exp�−σ + 2e−σ�� ✷

Proof of (iv). We first estimate �y�t� u� for �u ≥ σ and �u� ≥ 2t. We see
from (iii) that

∣∣u� �1�
y

∣∣ ≤ 8ay�σ�t exp�−σ + 2e−σ�
�u� ≤ 4ay�σ� exp�−σ + 2e−σ�(37)

and from (ii), ∣∣u� �2�
y

∣∣ ≤ 2�e−σ + e−yσ� exp�2e−σ��
so

�u�y� ≤ by�σ� 
= 4ay�σ� exp�−σ + 2e−σ� + 2�e−σ + e−yσ� exp�2e−σ��(38)

Assembling (19), (36) and (38), we find that

��y�t� u�� ≤ c1�σ� 
= b2y�σ� + 2ay�σ�by�σ�
(39)

+ay�σ� + a2
y�σ� for �u ≥ σ� �u� ≥ 2t�

Now if we keep with �u ≥ σ , but require �u� ≥ 3t, then for 0 ≤ v ≤ t, (39)
implies ��y�t−v�u+v�� ≤ c1�σ�, which together with (30), (32) and (35) yields
the desired bound in (iv) with the choice

c�σ� = 8c1�σ� exp�−σ + 2e−σ�� ✷

6. Proofs of Theorems 2 and 3. The proofs are based on the estimates of
Lemma 4. We work out the details for Theorem 2 but omit them for Theorem 3;
except for minor details, the proof of Theorem 3 mirrors that of Theorem 2.
The only essential difference is that the residue at u = 0 of �yeux is linear in
x [cf. (40) below], while that of �ye

ux is quadratic in x.
We use the Laplace inversion formula,

Vy�t� x� =
1

2πi

∫ σ+i∞

σ−i∞
�y�t� u�eux du�

the integration path being the vertical line �u = σ directed upward, with σ
any positive real. We shift the integration path to the left of the origin and
apply the residue theorem. We observe first from Lemma 1 that �y�t� u�eux is
analytic everywhere except at the origin where it has a pole. From Lemma 1
and the power series eux = 1+ xu+ · · ·, we find that

�y�t� u�eux = ky�t�
u2

+ ky�t�x+ l

u
+ · · · � u �= 0�(40)
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where l is the coefficient of u−1 in the expansion for �y. By the residue theorem,

1
2πi

∫
0�ρ�

�y�t� u�exu du = ky�t�x+ l�

where 0�ρ� is the rectangular contour sketched in Figure 2, with σ� ρ > 0 and
ϑ ≥ 2t.

The estimates in Lemma 4(ii) and (iii) show that the contribution of the
horizontal sides of 0�ρ� tends to 0 as ρ → ∞, so as ρ → ∞, the contour
integral becomes

1
2πi

∫ σ+i∞

σ−i∞
�y�t� u�eux du = ky�t�x+ l+ 1

2πi

∫ −ϑ+i∞

−ϑ−i∞
�y�t� u�eux du�

Then Theorem 2 is proved, provided we can show that

1
2πi

∫ −ϑ+i∞

−ϑ−i∞
�y�t� u�eux du → 0 as x → ∞�(41)

To show this, we write [see (27)–(29)]

�y = �
�1�
y + �

�2�1�
y + �

�2�2�
y

and prove that the contribution of each term to the integral tends to 0 as
x → ∞. By Lemma 4(iii),∣∣∣∣ 1

2πi

∫ −ϑ+i∞

−ϑ−i∞
�

�1�
y �t� u�eux du

∣∣∣∣ ≤ c�−ϑ�e−ϑx
∫ ∞

−∞
dy

ϑ2 + y2

= πc�−ϑ�
v

e−ϑx�

Fig. 2. Rectangular contour of integration.
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which also holds for � �2�2�, by Lemma 4(i). Thus,

1
2πi

∫ −ϑ+∞

−ϑ−i∞

(
�

�1�
y + �

�2�2�
y

)
eux du → 0 as x → 0�(42)

For the contribution of � �2�1�, we need an additional argument, as we now
have only � �2�1� = O�1/�u�� [not O�1/�u�2�]. The argument reduces to integra-
tion by parts. We first write

∫ −ϑ+i∞

−ϑ−i∞
�

�2�1�
y �t� u�eux du =

∫ −ϑ+i∞

−ϑ−i∞
exp��x− 1�u�du

u+ t

−
∫ −ϑ+i∞

−ϑ−i∞
exp��x− y�u− �y− 1�t�du

u+ t
�


= Z1 +Z2�

For x > 1, integration by parts gives

Z1 =
1

x− 1

∫ −ϑ+i∞

−ϑ−i∞
exp��x− 1�u�du

�u+ t�2

and so

�Z1� ≤
1
x
exp�−ϑ�x− 1��

∫ ∞

−∞
dy

�−ϑ+ t�2 + y2

= π

x

exp�−ϑ�x− 1��
ϑ− t

We derive a similar estimate forZ2 when y > x, again by integration by parts.
The estimates for Z1 and Z2 yield

∫ −ϑ+i∞

−ϑ−i∞
�

�2�1�
y �t� u�euxdu → 0�as x → ∞�

which along with (42) proves (41). ✷
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[7] Rényi, A. (1958). On a one-dimensional random space-filling problem. MTA Mat. Kut. Int.
Kz̈l. 3 109–127.

E. G. Coffman, Jr.
Bell Labs, Lucent Technologies
700 Mountain Ave. 2C-381
Murray Hill, New Jersey 07974
E-mail: egc@bell-labs.com

L. Flatto
Bell Labs, Lucent Technologies
700 Mountain Ave. 2C-302A
Murray Hill, New Jersey 07974
E-mail: lflatto@research.bell-labs.com

P. Jelenković
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