LIMIT THEOREMS FOR MANDELBROT'S MULTIPLICATIVE CASCADES

BY QUANSHENG LIU AND ALAIN ROUAULT

Université Rennes 1 and Université Versailles-Saint-Quentin

Let $W \ge 0$ be a random variable with EW = 1, and let $Z^{(r)} (r \ge 2)$ be the limit of a Mandelbrot's martingale, defined as sums of product of independent random weights having the same distribution as W, indexed by nodes of a homogeneous *r*-ary tree. We study asymptotic properties of $Z^{(r)}$ as $r \to \infty$: we obtain a law of large numbers, a central limit theorem, a result for convergence of moment generating functions and a theorem of large deviations. Some results are extended to the case where the number of branches is a random variable whose distribution depends on a parameter *r*.

1. Introduction and main results. Let $\mathbb{N}^* = \{1, 2, ...\}$ be the set of positive integers, and let

$$\mathbf{U} = \{ arnothing \} \cup igcup_{k=1}^\infty {(\mathbb{N}^\star)}^k$$

be the set of all finite sequences containing the null sequence \emptyset . Let $W \ge 0$ be a non-negative random variable with EW = 1 and $P(W = 1) \ne 1$, and let $\{W_u : u \in \mathbf{U}\}$ be independent copies of W. For $r = 2, 3, \ldots$, let $Z^{(r)}$ be the Mandelbrot's variable associated with W and parameter r:

$$Z^{(r)} := \lim_{n \to \infty} Y_n^{(r)},$$

where

$$Y_{n}^{(r)} = \sum_{(i_{1},...,i_{n})\in\{1,...,r\}^{n}} \frac{W_{i_{1}}\cdots W_{i_{1}}\cdots i_{n}}{r^{n}}.$$

It is easily seen that $Z = Z^{(r)}$ satisfies the following distributional equation:

(E)
$$Z^{(r)} = \frac{1}{r} \sum_{i=1}^{r} W_i Z_i^{(r)}$$

where $Z_i^{(r)}(1 \le i \le r)$ are independent random variables having the same distribution as Z, and are also independent of $\{W_i : 1 \le i \le r\}$. In terms of Laplace transforms $\phi^{(r)}(t) = E \exp\{tZ^{(r)}\}$, the equation reads

(E')
$$\phi^{(r)}(t) = [E\phi^{(r)}(Wt/r)]^r, \quad t \le 0.$$

The model was first introduced by Mandelbrot (1974a, b) to analyse precisely some problems of turbulence, and is referred as Mandelbrot's multiplicative

Received October 1998; revised April 1999.

AMS 1991 subject classifications. Primary 60G42; secondary 60F05, 60F10.

Key words and phrases. Self-similar cascades, Mandelbrot's martingales, law of large numbers, central limit theorem, convergence of moment generating function, large deviations.

cascades. For fixed r, the properties of $Z^{(r)}$ and related subjects have been studied by many authors; see, for example, Kahane and Peyrière (1976), Durrett and Liggett (1983), Guivarc'h (1990) and Holley and Waymire (1992). In particular, by Theorems 1 and 2 of Kahane and Peyrière (1976), we have $EZ^{(r)} = 1$ if $EW \log W < \log r$, and $Z^{(r)} = 0$ almost surely otherwise; in the case where the condition is satisfied, $E[(Z^{(r)})^2] < \infty$ if and only if $E[W^2] < r$. See also Liu (1997a, b), (1998) for more general results and for related topics.

Since in general, it is hopeless to give explicitly the distribution of $Z^{(r)}$, it is desirable to give its asymptotic properties. The purpose of this paper is to give limit theorems for the process $\{Z^{(r)} : r \geq 2\}$ as $r \to \infty$. The following results will be established.

THEOREM 1.1 (A law of large numbers). If $EW \log^+ W < \infty$, then $\lim_{n \to \infty} Z^{(r)} = 1 \quad in \ probability.$

Notice that $EZ^{(r)} = 1$ for all r > 1 sufficiently large. By Sheffé's theorem, we obtain:

COROLLARY 1.1 (Convergence in L^1). If $EW \log^+ W < \infty$, then

$$\lim_{r \to \infty} Z^{(r)} = 1 \quad in \ L^1$$

THEOREM 1.2 (A central limit theorem). If $E(W^2) < \infty$, then as $r \to \infty$,

$$rac{\sqrt{r}}{\sqrt{EW^2-1}}(Z^{(r)}-1)$$
 converges in law to the normal law $\mathcal{N}(0,1)$.

Let w = ess inf W and $\overline{w} = ess$ sup W. Then

$$0 \leq \underline{w} < 1 < \overline{w} \leq +\infty.$$

THEOREM 1.3 (Convergence of moment generating function). *The following* assertions are equivalent:

(i) *w* < ∞;
(ii) *for all t* > 0,

$$\lim_{r \to \infty} E \exp\{tZ^{(r)}\} = \exp\{t\}.$$

Before stating our results on large deviations, let us recall some elementary properties of the cumulant generating function of *W* defined by

$$\Lambda(t) := \log E e^{tW} \le +\infty \qquad (t \in \mathbb{R}),$$

and its Fenchel-Legendre dual defined by

$$\Lambda^*(x) \mathrel{:=} \sup_{t\in\mathbb{R}} tx - \Lambda(t) \leq +\infty \qquad (t\in\mathbb{R}).$$

[See Chapter 2 of Dembo and Zeitouni (1998) and the references therein.] The function Λ is convex and continuously differentiable in the interior of its domain of finiteness which contains $(-\infty, 0)$ since W is non-negative, and which is \mathbb{R} if $\overline{w} < \infty$. The function Λ^* is convex and lower semi-continuous; it is decreasing on $(-\infty, 1]$ with $\Lambda^*(x) = \sup_{t \le 0} tx - \Lambda(t)$ $(x \le 1)$, and increasing on $[1, \infty)$ with $\Lambda^*(x) = \sup_{t \ge 0} tx - \Lambda(t)$ $(x \ge 1)$; it is always non-negative with

$$\Lambda^*(x) \begin{cases} = +\infty, & \text{if } x < \underline{w} \text{ or } x > \overline{w}, \\ = -\log P(W = \underline{w}), & \text{if } x = \underline{w}, \\ = -\log P(W = \overline{w}), & \text{if } x = \overline{w}, \\ \in (0, \infty), & \text{if } \underline{w} < x < 1 \text{ or } 1 < x < \overline{w} < \infty \\ = 0, & \text{if } x = 1; \end{cases}$$

it is continuous on $[\underline{w}, 1]$ and, similarly, if $\overline{w} < \infty$, then it is also continuous on $[1, \overline{w}]$. (At left endpoints, we mean the continuity from right, and at right endpoints, the continuity from left.)

We are interested in asymptotic behavior of $P(Z^{(r)} \le x)$ and $P(Z^{(r)} \ge x)$ as $r \to \infty$, for all x > 0. Notice that by the law of large numbers, we have

$$\lim_{r\to\infty}P(Z^{(r)}\leq x)=1 \quad \text{if } x>1 \quad \text{ and } \quad \lim_{r\to\infty}P(Z^{(r)}\geq x)=1 \quad \text{if } x<1;$$

by the central limit theorem, $\lim_{r\to\infty} P(Z^{(r)} \leq 1) = \lim_{r\to\infty} P(Z^{(r)} \geq 1) = 1/2$. Therefore, it suffices to consider the limit behavior of $P(Z^{(r)} \leq x)$ for $x \in (0, 1)$, and that of $P(Z^{(r)} \geq x)$ for $x \in (1, \infty)$. (In these cases, the probabilities tend to 0 as r tends to ∞ .) We notice that

$$(0,1) = \bigcup_{k\geq 0}^{\infty} [\underline{w}^{k+1}, \underline{w}^k) \quad \text{ if } \underline{w} > 0$$

and

$$(1,\infty) = \bigcup_{k\geq 0}^{\infty} (\overline{w}^k, \overline{w}^{k+1}] \quad \text{if } \overline{w} < \infty.$$

THEOREM 1.4 (Large deviations). Assume $EW \log^+ W < \infty$. (a) If $\underline{w} = 0$, then for any $x \in (0, 1)$,

(1.1)
$$\lim_{r \to \infty} \frac{-\log P(Z^{(r)} \le x)}{r} = \Lambda^*(x);$$

if $\underline{w} > 0$, then for any $k \ge 0$ and any $x \in [\underline{w}^{k+1}, \underline{w}^k)$,

(1.2)
$$\lim_{r \to \infty} \frac{-\log P(Z^{(r)} \le x)}{r^{k+1}} = \Lambda^*(x\underline{w}^{-k}).$$

(b) If $\overline{w} < \infty$, then for any $k \ge 0$ and any $x \in (\overline{w}^k, \overline{w}^{k+1}]$,

(1.3)
$$\lim_{r \to \infty} \frac{-\log P(Z^{(r)} \ge x)}{r^{k+1}} = \Lambda^*(x\overline{w}^{-k}).$$

We remark that the limits are strictly positive and finite, except in the case where $x = \underline{w}^k$ (k = 0, 1, ...) and $P(W = \underline{w}) = 0$ for (1.2), and in the case where $x = \overline{w}^{k+1}$ (k = 0, 1, ...) and $P(W = \overline{w}) = 0$ for (1.3); in these exceptional cases, the exact equivalent of the tail probabilities remains unknown; however we have in the first case,

(1.4a)
$$\lim_{r \to \infty} \frac{-\log P(Z^{(r)} \le \underline{w}^{k+1})}{r^{k+1}} = \infty, \quad k = 0, 1, \dots$$

(1.4b)
$$\lim_{r \to \infty} \frac{-\log P(Z^{(r)} \le \underline{w}^{k+1})}{r^{k+2}} = 0, \quad k = 0, 1, \dots$$

and in the second case,

(1.5a)
$$\lim_{r \to \infty} \frac{-\log P(Z^{(r)} \ge \overline{w}^{k+1})}{r^{k+1}} = \infty, \quad k = 0, 1, \dots$$

(1.5b)
$$\lim_{r \to \infty} \frac{-\log P(Z^{(r)} \ge \overline{w}^{k+1})}{r^{k+2}} = 0, \quad k = 0, 1, \dots$$

In fact, (1.4a) follows from (1.2) because $\Lambda^*(\underline{w}) = -\log P(W = \underline{w}) = \infty$; (1.4b) also follows from (1.2) because, for all $k \ge 0$ and all $0 < \varepsilon < 1 - \underline{w}$,

$$\limsup_{r\to\infty}\frac{-\log P(Z^{(r)} \le \underline{w}^k)}{r^{k+1}} \le \limsup_{r\to\infty}\frac{-\log P(Z^{(r)} \le (1-\varepsilon)\underline{w}^k)}{r^{k+1}} = \Lambda^*(1-\varepsilon),$$

so that $\limsup_{r\to\infty}(-\log P(Z^{(r)} \leq \underline{w}^k))/r^{k+1} = \Lambda^*(1) = 0$ for all $k \geq 0$. A similar argument shows that (1.3) implies (1.5a) and (1.5b). By (1.4b), we see that the formula (1.2) also holds at right endpoints $\underline{w}^k, k \geq 0$; similarly, by (1.5b), the formula (1.3) also holds at left endpoints $\overline{w}^k, k \geq 0$.

Our theorem gives a "hierarchy" of large deviation principles with different speeds r^k , k = 1, 2, ... and corresponding rate functions $\Lambda^*(\cdot \overline{w}^{-k+1})$ for the right tail and $\Lambda^*(\cdot \underline{w}^{-k+1})$ for the left tail. For the generic interval $[\underline{w}, \overline{w}]$, the same large deviation principle is satisfied by $Z^{(r)} = \frac{1}{r} \sum_{i=1}^{r} W_i Z_i^{(r)}$ and by $\frac{1}{r} \sum_{i=1}^{r} W_i$, which is rather natural in view of Theorem 1.1. For the other intervals, we observe a kind of self-similarity.

If $\overline{w} < \infty$, Theorem 1.4 implies that

$$\lim_{r \to \infty} Z^{(r)} = 1$$
 almost surely.

In closing this section, we point out that the problems also arise in the case where the number of branches is a random variable whose distribution, say F_r , depends on a parameter r. However, for simplicity we shall only give an extension of Theorems 1.2 and 1.4(a), which covers the case where F_r is the r-fold convolution of a fixed distribution on \mathbb{N}^* : see Section 7. We also mention that the main results of this paper can be extended to the Mandelbrot's measures (of which $Z^{(r)}$ are the masses): see the forthcoming paper Liu and Rouault (1999).

2. Proof of Theorem 1.1: A law of large numbers. Write

(2.1)
$$\varepsilon(t) = \begin{cases} \frac{e^{-t} - 1 + t}{t}, & \text{if } t > 0, \\ 0, & \text{if } t = 0. \end{cases}$$

Then ε is increasing and continuous on $[0, \infty)$ and satisfies $0 \le \varepsilon(t) \le 1$. Write $\Psi_r(t) = \phi_r(-t) = Ee^{-tZ^{(r)}}$ and

(2.2)
$$\Psi_r(t) - 1 + t = t\varepsilon_r(t), \quad t > 0; \quad \varepsilon_r(0) = 0.$$

Then

(2.3)
$$\varepsilon_r(t) = EZ^{(r)}\varepsilon(tZ^{(r)}), \quad t \ge 0,$$

and

$$E\Psi_{r}(tWr^{-1}) = 1 - tr^{-1} + tr^{-1}EW\varepsilon_{r}(tWr^{-1}).$$

By equation (E'), $\log \Psi_r(t) = r \log E \Psi_r(t W r^{-1})$, so that as $r \to \infty$,

(2.4)
$$\log \Psi_r(t) \sim -t \Big(1 - E W \varepsilon_r(t W r^{-1}) \Big), \quad t > 0.$$

We need to prove that $\Psi_r(t) \rightarrow e^{-t}$, and for this we need only to prove that

(2.5)
$$\lim_{r\to\infty} EW\varepsilon_r(tWr^{-1}) = 0, \quad t>0.$$

By the dominated convergence theorem, since $0 \le \varepsilon_r \le 1$, it is enough to prove that, for all x > 0, $\lim_{r \to \infty} \varepsilon_r(xr^{-1}) = 0$, that is

(2.6)
$$\lim_{r\to\infty} EZ^{(r)}\varepsilon(xr^{-1}Z^{(r)}) = 0.$$

Since $EZ^{(r)} = 1$ we have, for all $\eta > 0$,

(2.7)
$$EZ^{(r)}\varepsilon(xr^{-1}Z^{(r)}) \le \varepsilon(\eta) + EZ^{(r)}\mathbf{1}_{\{Z^{(r)}>r\eta x^{-1}\}}.$$

Let us prove that for all a > 0,

(2.8)
$$\lim_{r \to \infty} EZ^{(r)} \mathbf{1}_{\{Z^{(r)} > ar\}} = 0.$$

For fixed r, a > 0, put

$$h(x) = h_{r,a}(x) = \left\{ egin{array}{ll} x(ar)^{-1}, & ext{if} & 0 \le x \le ar, \ 1, & ext{if} & ar < x. \end{array}
ight.$$

Then *h* is concave and increasing with h(0) = 0 and $0 \le h \le 1$. Therefore, by a lemma of Asmussen and Hering [(1983), page 41], if $\gamma_1, \ldots, \gamma_r$ are independent nonnegative random variables, and if $\gamma = \gamma_1 + \cdots + \gamma_r$, then

(2.9)
$$E\gamma h(\gamma) \leq E\sum_{i=1}^{r} \gamma_i h(\gamma_i) + (E\gamma)h(E\gamma).$$

Using this inequality for $\gamma_i = W_i Z_i^{(r)} r^{-1}$ and equation (E), we obtain

$$(2.10) EZh(Z) \le E\Big(WZ \ h(WZr^{-1})\Big) + h(1),$$

where $Z = Z^{(r)}$, W is independent of Z and of $\{W_1, W_2, \ldots\}$. Using (2.9) again for the sum $WZr^{-1} = \sum_{i=1}^{r} WW_i Z_i r^{-2}$, we obtain

$$E(WZh(WZr^{-1})) \le E(WW_1Zh(WW_1Zr^{-2})) + h(r^{-1}).$$

Therefore, by (2.10)

$$EZh(Z) \le h(1) + h(r^{-1}) + E(WW_1Z \ h(WW_1Zr^{-2})).$$

Continuing in this way, we obtain for all $k \ge 1$,

(2.11)
$$EZh(Z) \le h(1) + h(r^{-1}) + \dots + h(r^{-k+1}) + V_k,$$

where

(2.12)
$$V_k = E\Big(WW_1 \cdots W_{k-1}Z \ h(WW_1 \cdots W_{k-1}Zr^{-k})\Big),$$

Z, W_1 , W_2 ,... being mutually independent. Fix r > 1 such that $\log r > EW \log W$. To prove that $\lim_{k\to\infty} V_k = 0$, we use a change of distribution. Let $\tilde{W}, \tilde{W}_1, \ldots$ be a sequence of independent random variables with common distribution $P_{\tilde{W}}(dx) = x P_W(dx)$, which are also independent of Z. Then

(2.13)
$$V_k = E\Big(Zh(\tilde{W}\tilde{W}_1\cdots\tilde{W}_{k-1}Zr^{-k})\Big).$$

By the strong law of large numbers, we have almost surely,

$$\lim_{k \to \infty} \frac{\log(Wr^{-1}) + \dots + \log(W_{k-1}r^{-1})}{k} = E \log(\tilde{W}r^{-1})$$
(2.14)
$$= EW \log(Wr^{-1}) < 0.$$

[Remark that by the definition of \tilde{W} , $P(\tilde{W} = 0) = 0$.] Therefore, almost surely

$$\lim_{k\to\infty}\tilde{W}\tilde{W}_1\cdots\tilde{W}_{k-1}r^{-k}=0.$$

Since *h* is continuous with h(0) = 0 and $0 \le h \le 1$, the dominated convergence theorem yields $V_k \to 0$. Therefore by (2.11), for all $r > \max\{\exp(EW \log W), 1/a\}$,

(2.15)
$$EZh(Z) \le \sum_{k=0}^{\infty} h(r^{-k}) = \frac{1}{a(r-1)}$$

Because $Z = Z^{(r)}$, this gives

(2.16)
$$\lim_{r \to \infty} EZ^{(r)}h(Z^{(r)}) = 0, \quad a > 0.$$

Since $1_{\{Z^{(r)}>ar\}} \leq h(Z^{(r)})$, (2.16) gives (2.8). Using (2.8) and letting $r \to \infty$ in (2.7), we see that

(2.17)
$$\limsup_{r\to\infty} Z^{(r)} \varepsilon \left(xr^{-1}Z^{(r)} \right) \le \varepsilon(\eta), \ \eta > 0.$$

Since $\lim_{\eta\to 0} \varepsilon(\eta) = 0$, this gives (2.6), which ends the proof of Theorem 1.1.

3. Convergence in L^2 . The following result will be used in the next section.

THEOREM 3.1. If $EW^2 < r < \infty$, then

$$E\left[\left(Z^{(r)}-1\right)^{2}\right] = \frac{EW^{2}-1}{r-EW^{2}}.$$

In particular, as $r \to \infty$,

$$Z^{(r)} \rightarrow 1$$
 in L^2 .

PROOF. Since the function $f(s) = \log EW^s$ is convex, we have $f(2) - f(1) \ge f'(1)$, which gives $EW \log W \le \log EW^2$; therefore the condition $EW^2 < r < \infty$ implies $EW \log W < \log r$, so that by Theorems 1 and 2 of Kahane and Peyrière (1976), $EZ^{(r)} = 1$ and $E[(Z^{(r)})^2] < \infty$. For convenience, we write $Z = Z^{(r)}$ and $Z_i = Z_i^{(r)}$. By equation (E), we have consecutively,

$$\begin{split} Z^2 &= \frac{1}{r^2} \left[\sum_{1 \le i \le r} W_i^2 Z_i^2 + \sum_{1 \le i, j \le r, i \ne j} W_i W_j Z_i Z_j \right], \\ EZ^2 &= \frac{1}{r^2} \left[r E W^2 E Z^2 + \sum_{1 \le i, j \le r, i \ne j} E W_i E W_j E Z_i E Z_j \right] \\ &= \frac{1}{r} E W^2 E Z^2 + \frac{1}{r^2} (r^2 - r). \end{split}$$

So $E[(Z^{(r)})^2] = E[Z^2] = (r-1)/(r-EW^2)$. Since $E[(Z^{(r)}-1)^2] = E[(Z^{(r)})^2]-1$, this gives the desired conclusions. \Box

4. Proof of Theorem 1.2: A central limit theorem. Let $r_0 > EW^2$. By Theorem 3.1, for $r \ge r_0$, $EZ^{(r)} = 1$ and $E[(Z^{(r)})^2] = (r-1)/(r-EW^2)$. By equation (E),

$$rZ^{(r)} - r = \sum_{i=1}^{r} (W_i Z_i^{(r)} - 1).$$

Let S_r ($r \ge r_0$) be the above sum, and let $s_r \ge 0$ be defined by

$$s_r^2 = \sum_{i=1}^r E[(W_i Z_i^{(r)} - 1)^2]$$

We remark that $W_i Z_i^{(r)} - 1(i = 1, ..., r)$ are independent and identically distributed random variables with $E[W_i Z_i^{(r)} - 1] = 0$, and that

$$s_r^2 = r[E(W^2)E((Z^{(r)})^2) - 1].$$

We shall verify Lindeberg's condition for the sequence $\{S_r: r \ge r_0\}$. For all $\varepsilon > 0$, we have

$$\begin{split} \sum_{k=1}^{r} \frac{1}{s_{r}^{2}} \int_{|W_{k}Z_{k}^{(r)}-1| \ge \varepsilon s_{r}} [W_{k}Z_{k}^{(r)}-1]^{2} dP \\ &= \frac{r}{s_{r}^{2}} \int_{|W_{1}Z_{1}^{(r)}-1| \ge \varepsilon s_{r}} [W_{1}Z_{1}^{(r)}-1]^{2} dP \\ &= \frac{1}{E(W^{2})E((Z^{(r)})^{2})) - 1} \int_{A_{r}} [W_{1}Z_{1}^{(r)}-1]^{2} dP \end{split}$$

where $A_r = \{|W_1Z_1^{(r)} - 1| \ge \varepsilon \sqrt{r[E(W^2)E((Z^{(r)})^2) - 1]}\}$. Since

$$[W_1 Z_1^{(r)} - 1]^2 = W_1^2 [(Z_1^{(r)})^2 - 1] - 2W_1 [Z_1^{(r)} - 1] + (W_1 - 1)^2,$$

and, as $r \to \infty$

$$egin{aligned} & EW_1^2|(Z_1^{(r)})^2-1| = EW_1^2E|(Z^{(r)})^2-1| o 0, \ & E|-2W_1[Z_1^{(r)}-1]| = 2EW_1E|Z_1^{(r)}-1| o 0, \ & E(W_1-1)^2\mathbf{1}_{\{A_r\}} o 0 \end{aligned}$$

(the last assertion holds by the dominated convergence theorem, remarking that $1_{\{A_r\}} \to 0$ in L^1 and in probability by Markov's inequality applied to $[W_1 Z_1^{(r)} - 1]^2$), it follows that

$$\lim_{r \to \infty} \sum_{k=1}^{r} \frac{1}{s_r^2} \int_{|W_k Z_k^{(r)} - 1| \ge \varepsilon s_r} [W_k Z_k^{(r)} - 1]^2 dP = 0.$$

So by Lindeberg's theorem, S_r/s_r converges in law to the normal law $\mathcal{N}(0, 1)$. Since $s_r^2/[r(EW^2 - 1)] \to 1 \ (r \to \infty)$, this implies that, as $r \to \infty$,

$$\frac{\sqrt{r}}{\sqrt{EW^2-1}}(Z^{(r)}-1) \qquad \text{converges in law to } \mathcal{N}(0,1). \qquad \Box$$

5. Proof of Theorem 1.3: Convergence of moment generating function. We prove the following version of Theorem 1.3. It will be applied in the next section to study large deviations.

THEOREM 5.1. The following assertions are equivalent:

(i) $\overline{w} < \infty$; (ii) for all t > 0; $\lim_{r \to \infty} Ee^{tZ^{(r)}} = e^t$; (ii') for some t > 0, $\lim_{r \to \infty} Ee^{tZ^{(r)}} = e^t$; (iii) for all t > 0, $Ee^{Wt} < \infty$ and $\lim_{r \to \infty} Ee^{tWZ^{(r)}} = Ee^{Wt}$; (iii') for some t > 0, $Ee^{Wt} < \infty$ and $\lim_{r \to \infty} Ee^{tWZ^{(r)}} = Ee^{Wt}$. PROOF. The implications (ii) \Rightarrow (ii') and (iii) \Rightarrow (iii') are evident. The implication (ii') \Rightarrow (i) is easy, because (a) if $\overline{w} = \infty$ and $EW \log^+ W < \infty$, then for all r > 1 with $EW \log W < \log r$, $Z^{(r)}$ cannot have finite moments of all order [cf. Kahane and Peyrière (1976)], so that $Ee^{tZ^{(r)}} = \infty$ for all t > 0; (b) if $EW \log^+ W = \infty$, then $Z^{(r)} = 0$ almost surely for all r. The implication (iii') \Rightarrow (i) follows from the same reason. It remains to prove the implications (i) \Rightarrow (ii) and (i) \Rightarrow (iii).

Assume (i). Put $Y_0^{(r)} = 1$ and, for n > 0, let $Y_n^{(r)}$ be defined as in Section 1. Write $\phi_n^{(r)}(t) = Ee^{tY_n^{(r)}}$, $n \ge 0$. Then

$$\phi_{n+1}^{(r)}(t) = [E\phi_n^{(r)}(Wt/r)]^r, \qquad n \ge 0.$$

In the following, we shall use an argument of Rösler [(1992), Theorem 6] to give an upperbound of $\sup_{n\geq 0} \phi_n^{(r)}(t)$, valid for all t in a neighborhood of 0 whose length depends linearly on r. [In the context of Rösler (1992), r is fixed.] Fix K > 0, and put

$$g_{r,K}(x) = Ee^{(W-1)x+K(W^2-r)x^2}, \qquad x \ge 0.$$

Then $g_{r,K}(0) = 1$, $g'_{r,K}(0) = 0$ and $g''_{r,K}(0) = E[(W-1)^2] + 2KE[W^2 - r]$. Let $r_K > \max\{2, \overline{w}\}$ be an integer sufficiently large such that $g''_{r_K,K}(0) < 0$. Then there is $\eta_K = \eta(K, r_K) > 0$ small enough such that $g''_{r_K,K}(x) < 0$ for all $x \in [0, \eta_K]$. Consequently $g'_{r_K,K}(x) < g'_{r_K,K}(0) = 0$ and $g_{r_K,K}(x) \le g_{r_K,K}(0) = 1$ if $0 < x \le \eta_K$. Note that the function $g_{r,K}(x)$ is decreasing in r, we have

$$g_{r,K}(x) \leq 1$$
 if $r \geq r_K$ and $0 \leq x \leq \eta_K$.

Therefore, if $r \ge r_K$ and if $\phi_n^{(r)}(t) \le \exp\{t + Kt^2\}$ for all $0 \le t \le r\eta_K$, then for these r and t,

$$egin{aligned} \phi_{n+1}^{(r)}(t) &= [E \phi_n^{(r)}(Wt/r)]^r \ &\leq [E \exp\{Wt/r + K(Wt/r)^2\}]^r & ext{(notice that } Wt/r \leq t \leq r \eta_K) \ &= \exp\{t + Kt^2\}[g_{r,K}(t/r)]^r \ &\leq \exp\{t + Kt^2\}. \end{aligned}$$

So by induction on *n*, we have proved that for all $n \ge 0$,

$$Ee^{tY_n^{(\prime)}} \leq \exp\{t + Kt^2\} \text{ if } r \geq r_K \text{ and } 0 \leq t \leq r\eta_K.$$

Letting $n \to \infty$ and using Fatou's lemma give

(r)

$$Ee^{tZ^{(r)}} \leq \exp\{t + Kt^2\} ext{ if } r \geq r_K ext{ and } 0 \leq t \leq r\eta_K.$$

Now letting $r \to \infty$, we see that

$$\limsup_{r o \infty} E \exp\{t Z^{(r)}\} \le \exp\{t + Kt^2\}.$$

Since t > 0 and K > 0 are arbitrary, letting $K \rightarrow 0$ gives

$$\limsup_{r\to\infty} Ee^{tZ^{(r)}} \le e^t, \qquad t>0.$$

On the other hand, by Jensen's inequality we obtain, for all t > 0, $E \exp\{tZ^{(r)}\} \ge \exp\{t\}$, so that,

$$\liminf_{r\to\infty} E \exp\{tZ^{(r)}\} \ge \exp\{t\}.$$

Therefore for all t > 0, $\lim_{r\to\infty} E \exp\{tZ^{(r)}\} = \exp\{t\}$, and the assertion (ii) is proved. The assertion (iii) can be obtained in a similar way. This ends the proof of Theorem 5.1. \Box

6. Proof of Theorem 1.4: Large deviations. We use a version of the Gärtner-Ellis theorem (Dembo and Zeitouni 1998) convenient for the study of right tails and left tails. Theorem 6.1 below is a slight modification of Theorem 1 of Biggins and Bingham [(1993), page759] where the authors give a short sketch of proof. To the sake of completeness and for convenience of readers, we present a proof of Theorem 6.1 in the Appendix.

Let $(\nu_r)_{r \in \mathbb{R}_+}$ be a family of probability distributions on \mathbb{R} and let $\{a_r\}$ be a sequence of positive numbers with $\lim_{r\to\infty} a_r = +\infty$. We assume that for some $t_0 \in [0, \infty]$ and for every $t \in [0, t_0)$, as $r \to \infty$,

$$l_r(t) := rac{1}{a_r} \log \int \exp\{ta_r\xi\} d\nu_r(\xi) \to l(t) < \infty.$$

We remark that l is convex on $(0, t_0)$ as limit of convex functions, and we do not assume anything outside $[0, t_0)$. Denote the left and right derivative of a convex function g by g'_- and g'_+ respectively; the derivative g'(t) exists if and only if $g'_-(t) = g'_+(t)$. For all $x \in \mathbb{R}$, put

$$l^*(x) = \sup\{ux - l(u); u \in [0, t_0)\}.$$

It can be easily checked that $l^*(x) = tx - l(t)$ if $x \in [l'_-(t), l'_+(t)]$, $t \in (0, t_0)$; in particular, $l^*(l'(t)) = l'(t)t - l(t)$ if l is differentiable at $t \in (0, t_0)$. In the case where l is continuously differentiable on $(0, t_0)$, we have $l'_+(0) = \lim_{t \to 0, u > 0} l'(u)$, $l'_-(t_0) = \lim_{u \to t_0, u < t_0} l'(u)$ if $t_0 < \infty$, and we put $l'_-(\infty) = l'(\infty) = \lim_{u \to \infty} l'(u)$ if $t_0 = \infty$.

THEOREM 6.1. (a) For all $x > l'_+(0)$,

$$\limsup \frac{1}{a_r} \log \nu_r([x, +\infty)) \le -l^*(x),$$

and this bound is strictly negative.

(b) If x = l'(t) for some $t \in (0, t_0)$, then for any y < x,

$$\liminf \frac{1}{a_r} \log \nu_r((y, +\infty)) \ge -l^*(x).$$

(c) If l is continuously differentiable on $(0, t_0)$, then for all $x \in (l'_+(0), l'_-(t_0))$,

$$\lim \frac{1}{a_r} \log \nu_r([x,\infty)) = -l^*(x).$$

To apply this theorem we need the asymptotic behavior of

(6.1)
$$\Lambda_k^{(r)}(t) := \frac{1}{r^{k+1}} \log E \exp\{tr^{k+1}Z^{(r)}\},$$

for $r \to \infty$ and $k \ge 0$. It is given by the following proposition. Recall that $\Lambda(t) = \log E e^{tW}$ by definition.

PROPOSITION 6.1. (a) If $EW \log^+ W < \infty$, then for any $t \le 0$,

$$\lim_{r \to \infty} \Lambda_0^{(r)}(t) = \Lambda(t)$$

if additionally $\underline{w} > 0$ *, then for any* $t \leq 0$ *and* $k \geq 0$ *,*

$$\lim_{r\to\infty}\Lambda_k^{(r)}(t)=\Lambda(t\underline{w}^k).$$

(b) If $\overline{w} < \infty$, then for any $t \ge 0$ and $k \ge 0$,

$$\lim_{r \to \infty} \Lambda_k^{(r)}(t) = \Lambda(t\overline{w}^k).$$

PROOF. From the fundamental equation (E) we have by independence,

(6.2)
$$\Lambda_0^{(r)}(t) = \log E \exp\{tWZ^{(r)}\}$$

for any $t \leq 0$; it also holds for any $t \in \mathbb{R}$ if $\overline{w} < \infty$.

(a) From (6.2), Theorem 1.1 and the dominated convergence theorem, we obtain

$$\lim_{r \to \infty} \Lambda_0^{(r)}(t) = \Lambda(t), \quad t \le 0.$$

When $\underline{w} > 0$, we will prove the remaining result by induction on k. The definition (6.1) may be written as

$$\exp\{r^{k+1}\Lambda_k^{(r)}(t)\} = E\exp\{r^{k+1}tZ^{(r)}\},\$$

so that, by inserting an independent extra variable W, we get

$$E\exp r^{k+1}\Lambda_k^{(r)}(tW) = E\exp\{r^{k+1}tWZ^{(r)}\}.$$

Applying the formula (6.2) and the definition (6.1) gives

$$E \exp\{r^{k+1} t WZ^{(r)}\} = \exp \Lambda_0^{(r)} (tr^{k+1}) = \exp\{r^{k+1} \Lambda_{k+1}^{(r)}(t)\};$$

together with the preceding equality, this identity yields the important formula :

(6.3)
$$\Lambda_{k+1}^{(r)}(t) = \frac{1}{r^{k+1}} \log E \exp\{r^{k+1} \Lambda_k^{(r)}(tW)\}.$$

Assume that for some $k \ge 0$ and for any $t \le 0$,

$$\Lambda_k^{(r)}(t) \to \Lambda(t\underline{w}^k)$$

By (6.3), for all $t \leq 0$, $\Lambda_{k+1}^{(r)}(t) \leq \Lambda_k^{(r)}(t\underline{w})$; therefore

$$\limsup_{r \to \infty} \Lambda_{k+1}^{(r)}(t) \le \Lambda(t\underline{w}^{k+1})$$

by the hypothesis of induction. On the other hand, for any $\varepsilon > 0$ and all $t \leq 0$,

$$egin{aligned} &\Lambda_{k+1}^{(r)}(t) \geq rac{1}{r^{k+1}}\log E[1_{W < \underline{w} + arepsilon}\exp\{r^{k+1}\Lambda_k^{(r)}(tW)\}] \ &\geq \Lambda_k^{(r)}(t(\underline{w} + arepsilon)) + rac{1}{r^{k+1}}\log P(W < \underline{w} + arepsilon). \end{aligned}$$

Hence

$$\liminf \Lambda_{k+1}^{(r)}(t) \ge \Lambda(t(\underline{w} + \varepsilon)\underline{w}^k).$$

Since $\varepsilon > 0$ is arbitrary, this ends the proof of part (a).

(b) Part (b) can be proved along the same line, but instead of the dominated convergence theorem, we use Theorem 5.1 (iii). \Box

END OF THE PROOF OF THEOREM 1.4. From the definition of Λ , we have

$$\Lambda'(0) = EW = 1, \quad \Lambda'(-\infty) = \underline{w} \quad \text{and} \quad \Lambda'(+\infty) = \overline{w}.$$

For points in the open intervals, (1.1) and (1.2) follow from Theorem 6.1 where ν_r is the distribution of $-Z^{(r)}$, $t_0 = +\infty$ and $a_r = r$ or r^k , together with Proposition 6.2 a); (1.3) follows from a similar argument using Theorem 6.1 where ν_r is the distribution of $Z^{(r)}$. For the endpoints, we shall only show (1.3) for simplicity. For all $k \ge 0$ and for any $0 < \varepsilon < 1 - 1/\overline{w}$, using the proved result (1.3) for internal points, we obtain

$$\begin{split} \limsup \frac{1}{r^{k+1}} \log P(Z^{(r)} \ge \overline{w}^{k+1}) \le \limsup \frac{1}{r^{k+1}} \log P(Z^{(r)} \ge \overline{w}^{k+1}(1-\varepsilon)) \\ = -\Lambda^*(\overline{w}(1-\varepsilon)), \end{split}$$

so that

$$\limsup \frac{1}{r^{k+1}} \log P(Z^{(r)} \ge \overline{w}^{k+1}) \le -\Lambda^*(\overline{w}) = \log P(W = \overline{w}).$$

It remains only to prove that, when $P(W = \overline{w}) > 0$,

(6.4)
$$\liminf \frac{1}{r^{k+1}} \log P(Z^{(r)} \ge \overline{w}^{k+1}) \ge \log P(W = \overline{w}).$$

Actually from the fundamental equation (E), we have, for any $k \ge 0$,

(6.5)
$$P(Z^{(r)} \ge \overline{w}^{k+1}) \ge P(W = \overline{w})^r P\left(\frac{1}{r} \sum_{k=1}^r Z_k^{(r)} \ge \overline{w}^k\right).$$

Since by independence

$$P\left(rac{1}{r}\sum_{k=1}^{r}Z_{k}^{(r)}\geq\overline{w}^{k}
ight)\geq\left[P(Z^{(r)}\geq\overline{w}^{k})
ight]^{r},$$

a first use of (6.5) shows that $\liminf 1/r^{k+1} \log P(Z^{(r)} \ge \overline{w}^{k+1})$ is non decreasing in k for $k \ge 0$; a second use (for k = 0) shows that

(6.6)
$$\lim \inf \frac{1}{r} \log P(Z^{(r)} \ge \overline{w}) \\ \ge \log P(W = \overline{w}) + \liminf \frac{1}{r} \log P\left(\frac{1}{r} \sum_{k=1}^{r} Z_{k}^{(r)} \ge 1\right).$$

It remains only to prove that

(6.7)
$$\liminf \frac{1}{r} \log P\left(\frac{1}{r} \sum_{k=1}^{r} Z_k^{(r)} \ge 1\right) \ge 0.$$

Notice that $P(\frac{1}{r}\sum_{k=1}^{r}Z_{k}^{(r)} \ge 1) = P(U_{r} \ge 0)$, where

(6.8)
$$U_r := \sum_{k=1}^r (Z_k^{(r)} - 1).$$

For a lower bound of $P(U_r \ge 0)$, we start from the inequality

(6.9)
$$P(U \ge 0) \ge \frac{(EU^2)^2}{4EU^4},$$

which holds for any random variable U with EU = 0 and $EU^4 < \infty$ [Billings-ley (1986), Theorem 9.2], and we apply it to $U = U_r$. Again by independence, we have

$$\begin{split} EU_r^2 &= rE(Z^{(r)}-1)^2,\\ EU_r^4 &= rE(Z^{(r)}-1)^4 + 3r(r-1)[E(Z^{(r)}-1)^2]^2\\ &= rE(Z^{(r)}-1)^4 + 3\left(1-\frac{1}{r}\right)(EU_r^2)^2. \end{split}$$

It is known from Theorem 3.1 that $E(Z^{(r)}-1)^2 = (EW^2-1)/(r-EW^2)$, so that as $r \to \infty$,

$$\lim EU_{r}^{2} = EW^{2} - 1$$

To obtain an upper bound for the fourth moment, for simplicity we use the inequality

$$rac{(Z^{(r)}-1)^4}{4!} \leq \exp\{\mid Z^{(r)}-1\mid\} \leq \exp\{Z^{(r)}+1\},$$

although this is not optimal. By Theorem 1.3, this inequality implies

$$\limsup_{r\to\infty} \ E(Z^{(r)}-1)^4 < \infty.$$

It is then easy to deduce from (6.9) and the above calculations that

$$\liminf_{r\to\infty} rP(U_r\geq 0)>0,$$

which by (6.8) means

$$\liminf_{r\to\infty} rP\bigg(\frac{1}{r}\sum_{k=1}^r Z_k^{(r)} \ge 1\bigg) > 0.$$

So (6.7) is true, and the proof of Theorem 1.4. is complete. \Box

7. Extension. Our results may be extended to more general cascades where the number of branches is random. For simplicity, we shall generalize only Theorems 1.2 and 1.4(a).

Let $\{N^{(r)} : r \in \mathbb{N}^*\}$ (or $r \in (0, \infty)$) be a family of random variables with values on \mathbb{N}^* , whose distribution are denoted by F_r . We will use the following assumptions:

- (A1) For every r the mean m(r) and the variance $\sigma^2(r)$ of $N^{(r)}$ are finite and, as $r \to \infty$, $E \log N^{(r)} \to \infty$.
- (A2) As $r \to \infty$, $[N^{(r)} m(r)]/\sigma(r)$ converges in law to the normal law $\mathcal{N}(0, 1)$.
- (A3) As $r \to \infty$,

$$\lambda_r(t) := \frac{1}{m(r)} \log \int e^{tx} dF_r(x) \to \lambda(t)$$

uniformly for $t \leq 0$, with λ continuously differentiable on $(-\infty, 0]$ and $\lambda'_{-}(0) = 1$.

Notice that in (A1), the condition $E \log N^{(r)} \to \infty$ is satisfied if $N^{(r)} \to \infty$ in probability, and that in (A3), we have $\lambda'_{r-}(0) = 1$ for all r, so it is quite possible that $\lambda'_{-}(0) = 1$. A typical example for which all the conditions (A1)– (A3) hold is the case where for all $r \in \mathbb{N}^*$, F_r is the r-fold convolution of some distribution F on \mathbb{N}^* with finite variance. The theorems which we shall obtain will be applicable in this case. The classical model is the case where F is the Dirac measure δ_1 .

Let $\{N_u^{(r)} : u \in \mathbf{U}\}$ be a family of independent random variables with distributions F_r , and independent of $\{W_u : u \in \mathbf{U}\}$. Put

$$Y_n^{(r)} = \sum \frac{W_{i_1} \cdots W_{i_1 \cdots i_n}}{m(r)^n},$$

where the sum is taken over all (i_1, \ldots, i_n) such that $1 \le i_1 \le N^{(r)}, 1 \le i_2 \le N^{(r)}_{i_1}, \ldots, 1 \le i_n \le N^{(r)}_{i_1 \cdots i_{n-1}}$. For fixed r, the sequence $\{Y_n^{(r)}\}$ is a martingale, and its almost sure limit

$$Z^{(r)} = \lim_{n \to \infty} Y_n^{(r)}$$

satisfies the distributional equation

(
$$\tilde{\mathbf{E}}$$
) $Z^{(r)} = \frac{1}{m(r)} \sum_{i=1}^{N^{(r)}} W_i Z_i^{(r)},$

where $Z_i^{(r)}$ are independent random variables with the same distribution as $Z^{(r)}$, and are also independent of $(N^{(r)}, W_1, W_2, \ldots)$. In terms of Laplace transforms $\phi^{(r)}(t) = Ee^{tZ^{(r)}}$, the equation reads

$$(\tilde{\mathrm{E}}')$$
 $\phi^{(r)}(t) = E[E\phi^{(r)}(Wt/m(r))]^{N^{(r)}}, t \le 0.$

It is known [see Theorems 3.1 and 5.1 of Liu (1997a)] that $EZ^{(r)} = 1$ if $E(W \log W) < E(\log N^{(r)})$, and $Z^{(r)} = 0$ almost surely otherwise; when the condition is satisfied, $E[(Z^{(r)})^2] < \infty$ if and only if $E[(N^{(r)})^2] < \infty$ and $EW^2 < m(r)$. Therefore, if $E[W^2] < \infty$ and if (A1) holds, then $EZ^{(r)} = 1$ and $E[(Z^{(r)})^2] < \infty$ for all r large enough, remarking that the condition (A1) implies $m(r) \to \infty$.

The following theorem deals with the convergence in L^2 and the central limit theorem. For a random variable X, we denote by Var X its variance.

THEOREM 7.1. Assume (A1) and $\sigma_0^2 := EW^2 - 1 < \infty$.

(i) For all r large enough,

Consequently, as $r \to \infty$, $Z^{(r)} \to 1$ in L^2 if and only if

(7.2)
$$\sigma(r)/m(r) \to 0.$$

(ii) Assume (A2), (7.2) and that

(7.3)
$$\lim_{r \to \infty} \sigma^2(r) / m(r) = a^2$$

for some $a \in [0, \infty)$. Then as $r \to \infty$,

$$rac{\sqrt{m(r)}}{\sqrt{a^2+\sigma_0^2}}(Z^{(r)}-1) \quad converges \ in \ law \ to \ the \ normal \ law \ \mathscr{N}(0,1).$$

PROOF. (i) Let *r* be sufficiently large such that $EZ^{(r)} = 1$ and $E[(Z^{(r)})^2] < \infty$. From the fundamental equation (\tilde{E}), by a similar argument as in the proof of Theorem 3.1, we get,

(7.4)
$$E[(Z^{(r)})^2] = \frac{E[N(r)^2] - m(r)}{m(r)^2 - m(r)EW^2}$$

from which (7.1) holds.

(ii) For all real t, put

$$u_r = u_r(t) := \left[E \exp\left(\frac{it}{\sqrt{m(r)}\sigma_0} (WZ^{(r)} - 1)\right) \right]^{m(r)}.$$

From equation (\tilde{E}) and the usual decomposition, (7.5)

$$E\exp\left(\frac{it\sqrt{m(r)}}{\sigma_0}(Z^{(r)}-1)\right) = E\left[u_r^{\frac{N^{(r)}}{m(r)}}\exp\left(\frac{it}{\sqrt{m(r)}\sigma_0}(N^{(r)}-m(r))\right)\right].$$

Since $m(r) \to \infty$ and $Z^{(r)} \to 1$ in L^2 , a similar argument as in the proof of Theorem 1.2 shows that for all $\varepsilon > 0$,

(7.6)
$$\lim_{r \to \infty} \frac{1}{E(W^2)E((Z^{(r)})^2)) - 1} \int_{\tilde{A}_r} [W_1 Z_1^{(r)} - 1]^2 dP = 0,$$

where $\tilde{A}_r = \{ |W_1 Z_1^{(r)} - 1| \ge \varepsilon \sqrt{m(r)[E(W^2)E((Z^{(r)})^2) - 1]} \}$. We claim that (7.6) implies that for all real t,

(7.7)
$$u_r \to u := \exp\left(-\frac{t^2}{2}\right).$$

In fact, if m(r) are integers for all r, then (7.6) simply says that

$$rac{X_{r,1}+\dots+X_{r,m(r)}}{s(r)} \quad ext{converges in law to } \mathscr{N}(0,1),$$

where for each r, $\{X_{r,i}: i \ge 1\}$ are independent random variables, each distributed as $W_1Z_1^{(r)} - 1$, and $s(r)^2 = m(r)E[(W_1Z_1^{(r)} - 1)^2]$, so that (7.7) follows from (7.6) by Lindeberg's theorem [(7.6) is the Lindeberg condition]. In the general case where m(r) are not necessarily integers, (7.7) also follows from (7.6), using the Fourier method of the proof of Lindeberg's theorem; see Feller (1971), Chapter XV.6, proof of Theorem 1. Note that by (7.2), $N^{(r)}/m(r) \to 1$ in L^2 , in probability. So that, by Assumption (A2),

$$\left(rac{N^{(r)}}{m(r)},rac{1}{\sqrt{m(r)}}(N^{(r)}-m(r))
ight) \quad ext{converges in law to } \delta_1\otimes \mathscr{N}(0,a^2),$$

which implies

(7.8)
$$Eu^{\frac{N^{(r)}}{m(r)}} \exp\left\{\frac{it}{\sqrt{m(r)}\sigma_0}(N^{(r)}-m(r))\right\} \to u \exp\left(-\frac{a^2t^2}{2\sigma_0^2}\right).$$

Let (r_n) be any sequence with $r_n \to \infty$, and let (r'_n) be a subsequence such that $N^{(r'_n)}/m(r'_n) \to 1$ almost surely. By the dominated convergence theorem,

$$u_r^{rac{N^{(r'_n)}}{m(r'_n)}} - u^{rac{N^{(r'_n)}}{m(r'_n)}} o 0 \quad ext{ in } L^1.$$

Since the sequence (r_n) is arbitrary, this implies that (for all fixed t)

(7.9)
$$u_r^{\frac{N^{(r)}}{m(r)}} - u_r^{\frac{N^{(r)}}{m(r)}} \to 0 \quad \text{in } L^1$$

Therefore the difference of the right side of (7.5) and the left side of (7.8) tends to 0, so that by (7.8), the right side of (7.5) tends to

$$u \exp\left(-rac{a^2t^2}{2\sigma_0^2}
ight) = \exp\left(-rac{(\sigma_0^2+a^2)t^2}{2\sigma_0^2}
ight).$$

The last statement means that

$$rac{\sqrt{m(r)}}{\sigma_0}(Z^{(r)}-1) \quad ext{converges in law to } \mathscr{N}\left(0,rac{\sigma_0^2+a^2}{\sigma_0^2}
ight),$$

which ends the proof of Theorem 7.1. \Box

We now give a large deviations result. In Section 6, the key tool was the function $\Lambda(t) = \log E e^{tW}$. Here the same role is played by

$$\Lambda(t) := \lambda(\Lambda(t)).$$

With our assumptions, $\tilde{\Lambda}$ is defined on $(-\infty, 0]$, convex, continuously differentiable on $(-\infty, 0]$ and satisfies $\tilde{\Lambda}(0) = 0$ and $\tilde{\Lambda}'_{-}(0) = 1$. Define

(7.10) $\underline{n} := \lambda'(-\infty) \ge 0 \text{ and } \underline{\tilde{w}} := \underline{w} \ \underline{n}.$

Then $\tilde{\Lambda}'(-\infty) = \underline{\tilde{w}}$. Notice that for all $t \leq 0$ and all r, $\lambda_r(t) \geq t$ by Jensen's inequality, so that $\lambda(t) \geq t$. Therefore $\underline{n} = \lim_{t \to -\infty} \lambda(t)/t \leq 1, 0 \leq \underline{\tilde{w}} < 1$. Let

$$\tilde{\Lambda}^*(x) = \sup\{tx - \tilde{\Lambda}(t); t \le 0\}.$$

Then $0 \leq \tilde{\Lambda}^*(x) \leq \Lambda^*(x)$ for all $x \in (0, 1]$, and in particular $\tilde{\Lambda}^*(1) = 0$.

THEOREM 7.2. Assume (A1), (A3), $EW^2 < \infty$ and (7.2).

(a) If $\underline{\tilde{w}} = 0$, then for any $x \in (0, 1)$

(7.11)
$$\lim_{r \to \infty} \frac{-\log P(Z^{(r)} \le x)}{m(r)} = \tilde{\Lambda}^*(x);$$

(b) if $\underline{\tilde{w}} > 0$, then for any $k \ge 0$ and any $x \in (\underline{\tilde{w}}^{k+1}, \underline{\tilde{w}}^{k}]$,

(7.12)
$$\lim_{r \to \infty} \frac{-\log P(Z^{(r)} \le x)}{m(r)^{k+1}} = \underline{n}^k \tilde{\Lambda}^*(x \underline{\tilde{w}}^{-k})$$

PROOF. We follow the same line as in the proof of Theorem 1.4 (a) with similar notation. For k = 0, 1, ..., put

$$ilde{\Lambda}_k^{(r)}(t) := rac{1}{m(r)^{k+1}} \log E \exp\{tm(r)^{k+1} Z^{(r)}\}.$$

It suffices to prove that

(7.13)
$$\lim_{r \to \infty} \tilde{\Lambda}_0^{(r)}(t) = \tilde{\Lambda}(t), \quad t < 0,$$

and, if $\underline{w} > 0$, then

(7.14)
$$\lim_{r \to \infty} \tilde{\Lambda}_k^{(r)}(t) = \underline{n}^k \tilde{\Lambda}(t \underline{w}^k), \quad t < 0, \ k = 0, 1, \dots$$

In fact, for internal points, (7.11) and (7.12) follow from (7.13) and (7.14), by Proposition (6.1); for $x = \underline{\tilde{w}}^k > 0$, (7.12) also holds by a similar argument as in the proof of (1.4b).

Now from (\tilde{E}') , we have, for all t < 0,

(7.15)
$$\tilde{\Lambda}_0^{(r)}(t) = \lambda_r(s_r) \quad \text{where } s_r = \log E \exp(tWZ^{(r)}).$$

By Theorem 7.1(i), $Z^{(r)} \to 1$ in probability, so that $s_r \to \Lambda(t)$ by the dominated convergence theorem; therefore (7.13) follows from (7.15) and the uniform convergence of λ_r .

It remains to prove (7.14). Assume $\underline{\tilde{w}} > 0$. If k = 0, then (7.14) reduces to (7.13), so that it holds. Assume that it holds for some $k \ge 0$, we shall prove that it also holds for k + 1. In fact, again by equation $(\underline{\tilde{E}'})$,

(7.16)
$$\tilde{\Lambda}_{k+1}^{(r)}(t) = \frac{1}{m(r)^{k+1}} \lambda_r \left(\log E \exp\{m(r)^{k+1} \tilde{\Lambda}_k^{(r)}(tW)\} \right).$$

Therefore, for all t < 0,

(7.17)
$$\tilde{\Lambda}_{k+1}^{(r)}(t) \leq \frac{1}{m(r)^{k+1}}\lambda_r(t_r),$$

where $t_r = m(r)^{k+1} \tilde{\Lambda}_k^{(r)}(t\underline{w})$. By the induction hypothesis, $\lim \tilde{\Lambda}_k^{(r)}(t\underline{w}) = \underline{n}^k \tilde{\Lambda}(t\underline{w}^{k+1})$. Since $\tilde{\Lambda}$ is convex and satisfies $\tilde{\Lambda}(0) = 0$ and $\tilde{\Lambda}_-(0) = 1$, we have $\tilde{\Lambda}(s) < 0$ for s < 0, and consequently $t_r \to -\infty$ as $r \to +\infty$. By the uniform convergence of $\lambda_r(t)$, we have

$$|\lambda_r(t_r)-\lambda(t_r)|\leq \sup_{t\leq 0}|\lambda_r(t)-\lambda(t)| o 0,$$

so that

(7.18)
$$\lim \frac{\lambda_r(t_r)}{t_r} = \lim \frac{\lambda(t_r)}{t_r} = \underline{n}.$$

Therefore (7.17) implies that

$$\limsup_{r\to\infty}\tilde{\Lambda}_{k+1}^{(r)}(t)\leq\lim\frac{\lambda_r(t_r)}{t_r}\lim\tilde{\Lambda}_k^{(r)}(t\underline{w})=\underline{n}^{k+1}\tilde{\Lambda}(t\underline{w}^{k+1}).$$

The opposite inequality $\liminf_{r\to\infty} \tilde{\Lambda}_{k+1}^{(r)}(t) \geq \underline{n}^{k+1}\tilde{\Lambda}(t\underline{w}^{k+1})$ follows from a similar argument, remarking that for all $\varepsilon > 0$,

$$egin{aligned} & ilde{\Lambda}_{k+1}^{(r)}(t) \geq rac{1}{r^{k+1}}\lambda_rig(\log Eig[\mathbf{1}_{W<\underline{w}+arepsilon}\exp\cdotsig]ig) \ &\geq rac{1}{r^{k+1}}\lambda_r(t_r'), \end{aligned}$$

where

$$t'_r = \log P(W < \underline{w} + \varepsilon) + r^{k+1} \tilde{\Lambda}_k^{(r)}(t(\underline{w} + \varepsilon)).$$

Hence by induction we have proved that (7.14) holds for all k = 0, 1, ... and the proof is complete. \Box

APPENDIX: PROOF OF THEOREM 6.1

PROOF OF THE UPPER BOUND (a). The classical exponential inequality yields that for any $u \in [0, t_0)$ and any $x \in \mathbb{R}$,

$$\nu_r([x,+\infty)) \leq \int \exp\{ua_r(\xi-x)\}d\nu_r(\xi).$$

Taking logarithm and letting $r \to \infty$, we see that

$$\limsup \frac{1}{a_r} \log \nu_r([x, +\infty)) \le -[ux - l(u)].$$

Since $u \in [0, t_0)$ is arbitrary, it gives the upper bound $-l^*(x)$. Now, $l'_+(0) = \lim l(u)/u$, so that for $x > l'_+(0)$ there exists $u_0 \in (0, t_0)$ such that $l(u_0)/u_0 < x$. This yields $l^*(x) \ge u_0 x - l(u_0) > 0$, which ends the proof of part (a).

PROOF OF THE LOWER BOUND (b). For $t \in (0, t_0)$, we define the new distributions:

$$d\nu_r^t(\xi) = \exp\{ta_r\xi - a_rl_r(t)\}d\nu_r(\xi).$$

For every *y* and z > y we have

$$\begin{split} \nu_r((y,+\infty)) &= \int_{(y,+\infty)} \exp\{-ta_r\xi + a_rl_r(t)\}d\nu_r^t(\xi) \\ &\geq \int_{(y,z)} \exp\{-ta_rz + a_rl_r(t)\}d\nu_r^t(\xi), \end{split}$$

so that

(i)
$$\frac{1}{a_r} \log \nu_r((y, +\infty)) \ge -tz + l_r(t) + \frac{1}{a_r} \log \nu_r^t((y, z)).$$

To obtain a lower bound of the last term in the right side of (i), we start with the identity

(ii)
$$\nu_r^t((y,z)) = 1 - \nu_r^t((-\infty, y]) - \nu_r^t([z, +\infty)).$$

By the definition of ν_r^t , its normalized cumulant generating function is

$$L_{r}^{t}(s) = \frac{1}{a_{r}} \log \int \exp\{sa_{r}\xi\} d\nu_{r}^{t}(\xi) = l_{r}(t+s) - l_{r}(t),$$

so that for every $s \in [-t, t_0 - t)$,

$$L_r^t(s) \to l(t+s) - l(t) =: L^t(s), \qquad r \to \infty.$$

Notice that as $r \to \infty$, the normalized cumulant generating function of $d\nu_r^t(-\xi)$ converges to $L^t(-s)$ for $s \in [0, t)$, whose right derivative at 0 is equal to $-(L^t)'_{-}(0) = -l'_{-}(t)$; similarly, the normalized cumulant generating function of $d\nu_r^t(\xi)$ converges to $L^t(s)$ for $s \in [0, t_0 - t)$, whose right derivative at 0 is equal to $(L^t)'_{+}(0) = l'_{+}(t)$. Therefore, applying part (a) to the measures $d\nu_r^t(-\xi)$ and to $d\nu_r^t(\xi)$, we see that if $y < l'_{-}(t)$ and $z > l'_{+}(t)$, then

$$\limsup \frac{1}{a_r} \log \nu_r^t((-\infty, y]) < 0,$$
$$\limsup \frac{1}{a_r} \log \nu_r^t([z, +\infty)) < 0,$$

so that, from (ii),

$$\liminf \frac{1}{a_r} \log \nu_r^t([y,z]) \geq 0.$$

Consequently, by (i), for all t, y, z satisfying $t_0 > t > 0$ and $y < l'_-(t) \le l'_+(t) < z$,

$$\liminf \frac{1}{a_r} \log \nu_r((y, +\infty)) \ge -tz + l(t).$$

If *l* is differentiable at *t*, then letting $z \rightarrow l'(t)$ gives

(iii)
$$\liminf \frac{1}{a_r} \log \nu_r((y, +\infty)) \ge -tl'(t) + l(t).$$

Since the right side is just $-l^*(l'(t))$, the proof of part (b) is complete.

PROOF OF PART (c). Fix $x \in (l'_+(0), l'_-(t_0))$. In view of a), it suffices to prove that

(iv)
$$\liminf \frac{1}{a_r} \log \nu_r([x, +\infty)) \ge -l^*(x).$$

Since *l* is continuously differentiable on $[0, \infty)$, and *l'* non decreasing,

$$\mathscr{X} := \operatorname{int} \{ y : y = l'(t), t > 0 \} = (l'_+(0), l'_-(t_0)).$$

Therefore by part (b), for all h > 0 such that $x + h \in \mathscr{X}$,

$$\liminf \frac{1}{a_r} \log \nu_r([x,+\infty)) \geq \liminf \frac{1}{a_r} \log \nu_r((x,+\infty)) \geq -l^*(x+h).$$

Since l^* is convex, it is continuous on \mathscr{X} , so that, letting $h \to 0$ in the last inequality gives (iv), which completes the proof of the theorem. \Box

Acknowledgments. The first author is very grateful to Professor Yves Guivarc'h for helpful discussions.

REFERENCES

- [1] ASMUSSEN, S. and HERING, H. (1983). Branching Processes. Birkhäuser, Boston.
- [2] BIGGINS, J. D. and BINGHAM, N. H. (1993). Large deviations in the supercritical branching process. Adv. in Appl. Prob. 25 757-772.
- [3] BILLINGSLEY, P. (1986). Probability and Measure. Wiley, New York.
- [4] DEMBO, A. and ZEITOUNI, O. (1998). Large Deviations Techniques and Applications. Springer, New York.
- [5] DURRETT, R. and LIGGETT, T. (1983). Fixed points of the smoothing transformation. Z. Wahrsch. Verw. Gebeite 64 275–301.
- [6] FELLER, W. (1971). An Introduction to Probability Theory and Its Aapplications 2, 2nd. ed. Wiley, New York.
- [7] GRIMMETT, G. R. and WELSH, D. J. A. (1982). Flow in networks with random capacities. Stochastics 7 205–229.
- [8] GUIVARC'H, Y. (1990). Sur une extension de la notion de loi semi-stable. Ann. Inst. H. Poincaré Probab. Statist. 26 261–285.
- [9] HOLLEY, R. and WAYMIRE, E. C. (1992). Multifractal dimensions and scaling exponents for strongly bounded cascades. Ann. Appl. Prob. 2 819–845.
- [10] KAHANE, J. P. and PEYRIÈRE, J. (1976). Sur certaines martingales de Benoit Mandelbrot. Adv. Math. 22 131-145.
- [11] LIU, Q. S. (1996). The growth of an entire characteristic function and the tail probabilities of the limit of a tree martingale. In *Trees* (B. Chauvin, S. Cohen and A. Rouault, eds) 51–80. Birkhäuser, Boston.
- [12] LIU, Q. S. (1997a). Sur une équation fonctionnelle et ses applications : une extension du théorème de Kesten-Stigum concernant des processus de branchement. Adv. in Appl. Probab. 29 353-373.
- [13] LIU, Q. S. (1997b). On generalized multiplicative cascades. Stochastic Process Appl. To appear.
- [14] LIU, Q. S. (1998). Fixed points of a generalized smoothing transformation and applications to branching random walks. Adv. in Appl. Probab. 30 85–112.
- [15] LIU, Q. S. and ROUAULT, A. (1999). Limit theorems for multiplicative processes. Prépublication 32–99, LAMA, Université de Versailles-Saint Quentin. To appear.
- [16] MANDELBROT, B. (1974a). Multiplications aléatoires et distributions invariantes par moyenne pondérée aléatoire. C. R. Acad. Sci. Paris Ser. I 278 289–292; 355–358.
- [17] MANDELBROT, B. (1974b). Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier. J. Fluid Mech. 62 331–333.

MULTIPLICATIVE CASCADES

- [18] RÖSLER, U. (1992). A fixed point theorem for distributions. Stochastic. Process Appl. 42 195– 214.
- [19] WAYMIRE, E. C. and WILLIAMS, S. C. (1995). Multiplicative cascades: dimension spectra and dependence. J. Fourier Anal. Appl. (Kahane Special Issue) 589–609.

UNIVERSITÉ DE RENNES 1 INSTITUT MATHEMATIQUE DE RENNES CAMPUS DE BEAULIEU 35042 RENNES FRANCE E-MAIL: liu@univ-rennes1.fr UNIVERSITÉ VERSAILLES-SAINT-QUENTIN LAMA CNRS EP1755 BATIMENT FERMAT 45, AVENUE DES ETATS-UNIS 78035 VERSAILLES CEDEX FRANCE E-MAIL: rouault@math.uvsq.fr