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LIMIT THEOREMS FOR MANDELBROT’S
MULTIPLICATIVE CASCADES

BY QUANSHENG LIU AND ALAIN ROUAULT
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Let W > 0 be a random variable with EW = 1, and let Z(r) (r>2)
be the limit of a Mandelbrot’s martingale, defined as sums of product of
independent random weights having the same distribution as W, indexed
by nodes of a homogeneous r-ary tree. We study asymptotic properties of
Z(") as r — co: we obtain a law of large numbers, a central limit theorem,
a result for convergence of moment generating functions and a theorem of
large deviations. Some results are extended to the case where the number
of branches is a random variable whose distribution depends on a param-
eter r.

1. Introduction and main results. Let N* = {1,2,...} be the set of
positive integers, and let -
U={epu U
k=1
be the set of all finite sequences containing the null sequence @. Let W > 0
be a non-negative random variable with EW = 1 and P(W = 1) # 1, and let
{W, : u € U} be independent copies of W. For r = 2,3,..., let Z(") be the
Mandelbrot’s variable associated with W and parameter r:
Z0 = lim Y\,

n—o0o

where
W, W

1 1y
rn ’

vw=- ¥

(1senstp)e{1,.or 3"

It is easily seen that Z = Z(") satisfies the following distributional equation:

17 ,
(E) z0 ="y Wz,

ria

where Zgr) (1 < ¢ < r) are independent random variables having the same
distribution as Z, and are also independent of {W; : 1 < i < r}. In terms of
Laplace transforms ¢(")(¢) = E exp{tZ("}, the equation reads

(E) d(t) = [EdTD(Wt/r)]", ¢t <O0.

The model was first introduced by Mandelbrot (1974a, b) to analyse precisely
some problems of turbulence, and is referred as Mandelbrot’s multiplicative
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MULTIPLICATIVE CASCADES 219

cascades. For fixed r, the properties of Z(") and related subjects have been
studied by many authors; see, for example, Kahane and Peyriere (1976), Dur-
rett and Liggett (1983), Guivarc’h (1990) and Holley and Waymire (1992).
In particular, by Theorems 1 and 2 of Kahane and Peyriere (1976), we have
EZ(") =1if EWlogW < logr, and Z(") = 0 almost surely otherwise; in the
case where the condition is satisfied, E[(Z("))?] < cc if and only if E[W?] < r.
See also Liu (1997a, b), (1998) for more general results and for related topics.

Since in general, it is hopeless to give explicitly the distribution of Z(, it
is desirable to give its asymptotic properties. The purpose of this paper is to
give limit theorems for the process {Z(") : r > 2} as r — oc. The following
results will be established.

THEOREM 1.1 (A law of large numbers). If EWlog® W < oo, then
lim Z") =1 in probability.

r—o0

Notice that EZ(") = 1 for all r > 1 sufficiently large. By Sheffé’s theorem,
we obtain:

COROLLARY 1.1 (Convergence in L'). If EWlogt W < oo, then
lim ZW =1 in L.

r—oo

THEOREM 1.2 (A central limit theorem). If E(W?) < oo, then as r — oo,

Jr .
———~——(Z") — 1) converges in law to the normal law .# (0, 1).
vEW?2 -1

Let w = ess inf W and w = ess sup W. Then
O<w=<1l< w<+oo.
THEOREM 1.3 (Convergence of moment generating function). The following
assertions are equivalent:

(1) w < oo;
(i) for all t > 0,

lim E exp{tZ"} = exp{t}.
r—o0
Before stating our results on large deviations, let us recall some elementary
properties of the cumulant generating function of W defined by
A(t) :=log Ee™ < +00  (teR),
and its Fenchel-Legendre dual defined by

A*(x) :=sup tx — A(t) < +oo (t € R).
teR
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[See Chapter 2 of Dembo and Zeitouni (1998) and the references therein.]
The function A is convex and continuously differentiable in the interior of
its domain of finiteness which contains (—oo, 0) since W is non-negative, and
which is R if w < oo. The function A* is convex and lower semi-continuous; it
is decreasing on (—oo, 1] with A*(x) = sup,.y tx—A(¢) (x < 1), and increasing
on [1, 00) with A*(x) = sup,., tx—A(¢) (x > 1); it is always non-negative with

= +00, ifx <worx>w,
— —log P(W=w), ifx=uw,

A(x)] =-logP(W=w), ifx=1w,
€ (0, 00), fw<x<lorl<x<w<oo,
=0, if x =1;

it is continuous on [w, 1] and, similarly, if w < oo, then it is also continuous
on [1, w]. (At left endpoints, we mean the continuity from right, and at right
endpoints, the continuity from left.)
We are interested in asymptotic behavior of P(Z(") < x) and P(Z(") > x)
as r — oo, for all x > 0. Notice that by the law of large numbers, we have
lim P(ZM <x)=1ifx>1 and lim P(ZW >x)=1 ifx <1;

by the central limit theorem, lim,_, ., P(Z(") < 1) = lim,_, ., P(Z") > 1) = 1/2.
Therefore, it suffices to consider the limit behavior of P(Z(") < x) for x € (0, 1),
and that of P(Z(") > x) for x € (1, 00). (In these cases, the probabilities tend
to 0 as r tends to oco.) We notice that

o0

0,1)= U w* ifw>0
k>0

and

(1,00) = J@", w"]  ifw < 0.
k=0

THEOREM 1.4 (Large deviations). Assume EWlog™ W < occ.
(a) If w =0, then for any x € (0, 1),

—log P(Z™) < x)
r

(1.1) lim

r—o00

= A*(x);
if w> 0, then for any k > 0 and any x € [w*!, w*),

_ o)
(1.2) lim — 108 P(ZT = x)

r—o00 rk+1

= A(xwh).

(b) If w < oo, then for any k > 0 and any x € (wk, wk+1],
_ ()
(1.3) lim — 108 P(Z = x)

ARk
lim ) = AN(xw™").
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We remark that the limits are strictly positive and finite, except in the case
where x = w* (k=0,1,...) and P(W = w) = 0 for (1.2), and in the case where
x =w"*1 (k=0,1,...) and P(W = @) = 0 for (1.3); in these exceptional cases,
the exact equivalent of the tail probabilities remains unknown; however we
have in the first case,

—log P(Z\) < w**!)

(1.4a) lim ) oo, k=0,1,...
-1 (r) k+1
. im 1BPEN W) o o1,
(1.4b) 1 )
r—oo r
and in the second case,
-1 P Z(r) —k+1
(1.5a) lim —EPET W) _ o p=o,1,
r—o00 r
—log P(Z() > gttt
(1.5b) lim —8PZ 2 W) o o1,

r—oo rk+2
In fact, (1.4a) follows from (1.2) because A*(w) = —log P(W = w) = o0; (1.4b)
also follows from (1.2) because, for all k> 0and all0 < e <1 —w,

—log P(Z") < w") —~log P(Z") < (1-&)wh)
s} PyES]

< lim sup
r—oQ

lim sup =A*(1-¢),

so that limsup, . (—log P(Z") < w*))/r**1 = A*(1) = 0 for all & > 0. A
similar argument shows that (1.3) implies (1.5a) and (1.5b). By (1.4b), we see
that the formula (1.2) also holds at right endpoints w*, £ > 0; similarly, by
(1.5b), the formula (1.3) also holds at left endpoints @*, & > 0.

Our theorem gives a “hierarchy” of large deviation principles with different
speeds r*, k = 1,2, ... and corresponding rate functions A*(. w—k+1) for the
right tail and A*(. w**') for the left tail. For the generic interval [w, W],

the same large deviation principle is satisfied by Z(") = % 1 WiZEr) and
by %Z;zl W, which is rather natural in view of Theorem 1.1. For the other
intervals, we observe a kind of self-similarity.
If w < oo, Theorem 1.4 implies that
lim Z") =1 almost surely.

r—0o0

In closing this section, we point out that the problems also arise in the case
where the number of branches is a random variable whose distribution, say
F,, depends on a parameter r. However, for simplicity we shall only give an
extension of Theorems 1.2 and 1.4(a), which covers the case where F, is the
r-fold convolution of a fixed distribution on N*: see Section 7. We also men-
tion that the main results of this paper can be extended to the Mandelbrot’s
measures (of which Z(") are the masses): see the forthcoming paper Liu and
Rouault (1999).
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2. Proof of Theorem 1.1: A law of large numbers. Write

et —1+1¢ .
@.1) =1 ¢ > =0
0, if t=0.

Then ¢ is increasing and continuous on [0, co) and satisfies 0 < &(¢) < 1. Write
W.(t) = ¢,(—t) = Ee 2" and

(2.2) V.(¢)—1+¢t=te(t), t>0; ¢.(0)=0.
Then

(2.3) e,(t)= EZMe(tZM), t>0,

and

EV,(tWr ™) =1—tr '+ tr 'EWe, (tWr).
By equation (E), log ¥,(¢) = rlog EWV,(tWr~1), so that as r — oo,
(2.4) log W, (¢) ~ —t(l - EWs,(tWr*1)>, t > 0.
We need to prove that ¥,.(¢#) — e%, and for this we need only to prove that
(2.5) lim EWe, (tWr ') =0, ¢>0.

By the dominated convergence theorem, since 0 < ¢, < 1, it is enough to prove
that, for all x > 0, lim, ., &,(xr~!) = 0, that is

(2.6) lim EZWe(xr1Z") =0,

Since EZ(") = 1 we have, for all 5 > 0,

(2.7) EZVe(xr 'Z")) < e(n) + EZD1 5002 e 1y-
Let us prove that for all a > 0,

(2.8) lim EZD 14010y = 0.

For fixed r, a > 0, put

x(ar) !, if 0<x<ar,
h(x) = hyo(x) = { 1( : ;f ar < x.

Then % is concave and increasing with £(0) = 0 and 0 < & < 1. Therefore, by a
lemma of Asmussen and Hering [(1983), page 411, if vy;, ..., v, are independent
nonnegative random variables, and if y = y; +--- + vy,, then

(2.9) Eyh(y) < EY vih(v) + (Ev)h(Ev).
i=1

Using this inequality for y; = WiZEr)r_l and equation (E), we obtain
(2.10) EZWZ) < E(WZ h(WZr-l)) + h(1),
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where Z = Z("), W is independent of Z and of {W, W, ...}. Using (2.9) again
for the sum WZr—! =] WW,Z,r2, we obtain

E(WZh(Wzr-l)) < E(WW1Z h(WWIZr‘Z)) +A(rY).
Therefore, by (2.10)
EZWZ) < h(1)+ h(r~Y) + E(WW1Z h(WWer‘2)).

Continuing in this way, we obtain for all £ > 1,

(2.11) EZWZ)<h(1)+h(r' )+ -+ h(r )+ V,,
where
(2.12) V, = E(WW1 W Z KWW, - W,Hzr—k)),

Z, Wi, W,o,... being mutually independent. Fix r > 1 such that logr >
EWlog W. To prove that lim, .V, = 0, we use a change of distribution.
Let W, W4, ... be a sequence of independent random variables with common
distribution Py (dx) = xPyw(dx), which are also independent of Z. Then

(2.13) V, = E(Zh(WW1 . Wk,lzr—k)).
By the strong law of large numbers, we have almost surely,

lim log(Wr!) +-- 'k+ log(Wj_r™)

= Elog(Wr)

(2.14) = EWlog(Wr 1) < 0.
[Remark that by the definition of W, P(W = 0) = 0.] Therefore, almost surely
];llm WWl s Wk,lr_k =0.

Since 4 is continuous with ~2(0) = 0 and 0 < & < 1, the dominated convergence
theorem yields V;, — 0. Therefore by (2.11), for all r > max{exp(EW log W),

1/a},

x 1
(2.15 EZWMZ)< Y h(r %)= ——.
) (Z2) g) ( ar—1)
Because Z = Z("), this gives
. 1m =0, a>0.
(2.16) lim EZOW(Z) =0 0

r—00

Since 1704y < R(Z™), (2.16) gives (2.8). Using (2.8) and letting » — oo in
(2.7), we see that
(2.17) limsup ZMe(xr1ZM) < &(n), n > 0.

Since lim,_,( &(n) = 0, this gives (2.6), which ends the proof of Theorem 1.1.
O
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3. Convergence in L2. The following result will be used in the next sec-
tion.

THEOREM 3.1. If EW? < r < oo, then

B0 )= P

In particular, as r — oo,

Z") 51 in L2

PrROOF. Since the function f(s) = log EW* is convex, we have f(2)—f(1) >
f'(1), which gives EW log W < log EW?; therefore the condition EW? < r < o0
implies EW log W < log r, so that by Theorems 1 and 2 of Kahane and Peyriere

(1976), EZ(") =1 and E[(Z(’))Z] < oo. For convenience, we write Z = Z(") and
Z, =27 Er). By equation (E), we have consecutively,

1
p-tlgwae 5 wwaz),

1<i<r 1<i,j<r,i#j
1
EZ® = = [rEW2EZ2 + > EWiEWjEZiEZj}
r 1<i,j<r,ij
1 1
= ;EWQEZZ + ﬁ(rz —r).

So E[(Z")?] = E[Z?] = (r—1)/(r—EW?). Since E[(Z("-1)%] = E[(Z")?]-1,
this gives the desired conclusions. O

4. Proof of Theorem 1.2: A central limit theorem. Let r, > EW2. By
Theorem 3.1, for r > r,, EZ") =1 and E[(Z")?] = (r — 1)/(r — EW?). By
equation (E),

rz0 —r =W,z - 1).
i=1
Let S, (r > ry) be the above sum, and let s, > 0 be defined by
=Y E[(W,Z2\" —1)].

i=1

We remark that WiZEr) —1(i = 1,...,r) are independent and identically
distributed random variables with E[W;Z §r> —1] =0, and that

sy = r[E(W?)E((Z")*) - 1].
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We shall verify Lindeberg’s condition for the sequence {S, : r > ry}. For all
g > 0, we have

2

k=1

1 r) 112
- W,z —1]2dP
s? /\WkZ?—llzssr[ S

7
87 (W12 -1|zes,

1
~ E(W2)E(Z"))) -

(W, 2\ — 1]2dP

/ W,z —12aP,
174,

where A, = {|W,2) — 1| > e/7[E(WE)E((ZD)2) — 1]}. Since
(W12 — 12 = W2 [(2)? - 1] - 2W, [2{) — 1]+ (W, - 1)?,
and, as r — oo
r r 2
EW?|(Z2) — 1) = EW2E|(Z")" - 1| - 0,
E|-2W,[z\" - 1] =2EW,E|Z{” - 1| > 0,
E(Wl — 1)21{Ar} -0

(the last assertion holds by the dominated convergence theorem, remarking
that 1,4, — 0 in L' and in probability by Markov’s inequality applied to

[W, 2\ — 112, it follows that

lim )~

2 (
r—o0 7 87 Wz - 1)zes,

(W,Z) —1]2dP = 0.

So by Lindeberg’s theorem, S, /s, converges in law to the normal law .#7(0, 1).
Since s2/[r(EW? —1)] — 1(r — 00), this implies that, as r — oo,

JT .
—Y____(Zz" —-1) converges in law to .#7(0, 1). O
vEW? -1

5. Proof of Theorem 1.3: Convergence of moment generating func-
tion. We prove the following version of Theorem 1.3. It will be applied in the
next section to study large deviations.

THEOREM 5.1. The following assertions are equivalent:

(1) w < oo;
(i) for all t > 0; lim, , Ee'Z"” = ¢t
(ii’) for some t > 0, lim,_, ., Ee'Z"” = e
(iii) for all t > 0, Ee"™ < oo and lim,_, Ee™Z" = Ee™;

. o)
(iii’) for some t > 0, Ee™ < co and lim,_, ., Ee™?" = Ee™V.
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PROOF. The implications (ii) = (ii’) and (iii) = (iii’) are evident. The im-
plication (ii’) = (i) is easy, because (a) if w = oo and EWlog™ W < oo, then
for all » > 1 with EWlog W < logr, Z(") cannot have finite moments of all
order [cf. Kahane and Peyriere (1976)], so that Eet?” = o for all t > 0; (b) if
EWlogt™ W = oo, then Z(") = 0 almost surely for all r. The implication (iii’)
= (i) follows from the same reason. It remains to prove the implications (i) =
(ii) and (1) = (iii).

Assume (i). Put Yg) =1 and, for n > 0, let Y/ be defined as in Section 1.
Write d)%”(t) = EetY("r), n > 0. Then

() = [E6D (W), n=0.

In the following, we shall use an argument of Rosler [(1992), Theorem 6] to give

an upperbound of sup,,. q’)ﬁ,r)(t), valid for all ¢ in a neighborhood of 0 whose
length depends linearly on r. [In the context of Rosler (1992), r is fixed.] Fix
K > 0, and put

gr.x(x) = EeV D=Vt e > 0,

Then g, x(0) =1, g, x(0) =0 and g x(0) = E[(W —1)*] + 2KE[W? —r]. Let
rg > max{2, w} be an integer sufficiently large such that g/,/K, %(0) < 0. Then
there is ng = n(K, rg) > 0 small enough such that g,/ ,(x) < 0 for all x €

[0, 7x]. Consequently g/ (%) < g, <(0) = 0 and g, x(x) < g, x(0) = 1
if 0 < x < ng. Note that the function g, x(x) is decreasing in r, we have

g .k(x)<1 ifr>rgand0=<x<ng.

Therefore, if r > rg and if qﬁg)(t) < exp{t+ Kt?} for all 0 < ¢ < rng, then for
these r and ¢,

S (1) = [EY (We/r)]
< [E exp{Wt/r + K(Wt/r)?}]" (notice that Wt/r <t < rny)
= exp{t + K¢*}{g, x(t/r)]
< exp{t + Kt*}.
So by induction on n, we have proved that for all n > 0,
EetY <exp{t+ Kt?}ifr>rgand 0 <t < rng.
Letting n — oo and using Fatou’s lemma give
Ee'Z"” < exp{t + Kt?}if r>rg and 0 <t < ryg.
Now letting r — oo, we see that

lim sup E exp{tZ("} < exp{t + Kt?}.

r—oo
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Since ¢t > 0 and K > 0 are arbitrary, letting K — 0 gives

lim sup Ee!?" < ¢!, t>0.
r—00
On the other hand, by Jensen’s inequality we obtain, for all ¢ > 0, E exp{¢tZ("}
> exp{t}, so that,

liminf E exp{tZ"} > exp{t}.

Therefore for all ¢ > 0, lim,_, . Eexp{tZ")} = exp{t}, and the assertion (ii)
is proved. The assertion (iii) can be obtained in a similar way. This ends the
proof of Theorem 5.1. O

6. Proof of Theorem 1.4: Large deviations. We use a version of the
Gartner-Ellis theorem (Dembo and Zeitouni 1998) convenient for the study of
right tails and left tails. Theorem 6.1 below is a slight modification of Theorem
1 of Biggins and Bingham [(1993), page759] where the authors give a short
sketch of proof. To the sake of completeness and for convenience of readers,
we present a proof of Theorem 6.1 in the Appendix.

Let (v,),cr, be a family of probability distributions on R and let {a,} be a
sequence of positive numbers with lim,_, ., @, = +00. We assume that for some
to € [0, 0o] and for every ¢ € [0, ), as r — oo,

1.(t) = ailog/exp{tarf}dv,(f) — I(t) < o0.

We remark that [ is convex on (0, ¢y) as limit of convex functions, and we do
not assume anything outside [0, ¢;). Denote the left and right derivative of a
convex function g by g’ and g, respectively; the derivative g'(¢) exists if and
only if g’ (t) = g/.(¢). For all x € R, put
U*(x) = sup{ux — l(u);u € [0, £y)}.

It can be easily checked that I*(x) = tx — I(t) if x € [I".(2), ', ()], t € (0, ty);
in particular, I*(I'(¢)) = U'(¢)t — I(¢) if I is differentiable at ¢ € (0,¢;). In
the case where [ is continuously differentiable on (0, ¢y), we have // (0) =
lim, g 420 '(w), I_(2o) = lim,_,, . I'(w) if t; < oo, and we put I’ (c0) =
U'(c0) =lim,_, . U'(u) if ¢, = oco.

THEOREM 6.1. (a) For all x > I’ (0),

1
lim sup o logv,([x, +00)) < =1"(x),
and this bound is strictly negative.
(b) If x = U'(t) for some t € (0, ty), then for any y < x,

lim inf llog v.((y, +00)) = —1*(x).
a

r
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(¢) If L is continuously differentiable on (0, t), then for all x € (I'_(0), I"_(%y)),

lim al logv,.([x, 00)) = —1*(x).

r

To apply this theorem we need the asymptotic behavior of
1

CY
(6.1) A0 =

log E exp{tr**1Z(™},
for r - oo and k£ > 0. It is given by the following proposition. Recall that
A(t) =log Ee'V by definition.
PROPOSITION 6.1. (a) If EWlog™ W < oo, then for any t <0,
lim A7(2) = A(1);
if additionally w > 0, then for any t <0 and k > 0,
lim A}(1) = A(w).
(b) If w < oo, then for any t > 0 and k > 0,
lim AV () = A(twh).

PROOF. From the fundamental equation (E) we have by independence,
(6.2) AV (2) = log E exp{tWZ "}

for any ¢ < 0; it also holds for any ¢t € R if w < oo.
(a) From (6.2), Theorem 1.1 and the dominated convergence theorem, we
obtain

lim AV (6) = A(r), t<o.

When w > 0, we will prove the remaining result by induction on k. The
definition (6.1) may be written as

exp{r* 1AL (1)} = E exp{rt*1tZ("},
so that, by inserting an independent extra variable W, we get
Eexp r*P AV (tW) = E exp{r** 1 Wz ("},
Applying the formula (6.2) and the definition (6.1) gives
E exp{r""1WZ ("} = exp Af)r)(trkﬂ) = exp{rkHAgl(t)};

together with the preceding equality, this identity yields the important for-
mula :

1
rk+1

(6.3) AV (8) = log E exp{r*" 1A (eW)}.
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Assume that for some %2 > 0 and for any ¢ < 0,
AL (@) - A(twh).
By (6.3), for all ¢ < 0, AY),(£) < AV (tw); therefore
lim sup Ag_gl(t) < A(tw**h)
by the hypothesis of induction. On the other hand, for any £ > 0 and all ¢ < 0,

ADL() = 5 log E[Ly s exp{r“lA“)(tW)}]

> Ag)(t(y t+e)+——log P(W < w + &).

rk+1
Hence
liminf AY), (£) > A(t(w + &)w").

Since ¢ > 0 is arbitrary, this ends the proof of part (a).
(b) Part (b) can be proved along the same line, but instead of the dominated
convergence theorem, we use Theorem 5.1 (iii). O

END OF THE PROOF OF THEOREM 1.4. From the definition of A, we have
NO)=EW=1, AN(—oc0)=w and A'(+o0)=w.
For points in the open intervals, (1.1) and (1.2) follow from Theorem 6.1 where
v, is the distribution of —Z(), ¢{; = 400 and a, = r or r*, together with
Proposition 6.2 a); (1.3) follows from a similar argument using Theorem 6.1
where v, is the distribution of Z("). For the endpoints, we shall only show (1.3)

for simplicity. For all £ > 0 and for any 0 < &£ < 1 — 1/w, using the proved
result (1.3) for internal points, we obtain

lim sup — log P(Z™ > w**1) < lim sup - log P(ZD > w1 - ¢))

= —A*(w(l —&)),
so that

. 1 ") o — . —
lim sup sy log P(Z") > w**) < —A*(w) = log P(W = w).
It remains only to prove that, when P(W =w) > 0,
1
(6.4) liminf —— log P(Z") > w**!) > log P(W = w).
r

Actually from the fundamental equation (E), we have, for any £ > 0,

6.5 P(ZD > Yy > PW=wy P13 20 > ).
(6.5) ( k
T p=1
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Since by independence
172 r r
i (; >z = wk) =[Pz =wh],
k=1

a first use of (6.5) shows that liminf 1/r**1log P(Z(") > w"**1) is non decreas-
ing in % for k£ > 0; a second use (for £ = 0) shows that

lim inf 1 log P(Z") > w)
r

(6.6) ) 17w
>log P(W =w) + liminf —log P{ = > Z," > 1].
r riz

It remains only to prove that

(6.7) liminf = log P (1 Yz > 1) > 0.
r ria
Notice that P( Y}, der) >1)= P(U, > 0), where
(6.8) U, =5 (2" -1
k=1

For a lower bound of P(U, > 0), we start from the inequality

(EU?)?

. p

(6.9) (U202

which holds for any random variable U with EU = 0 and EU* < oo [Billings-
ley (1986), Theorem 9.2], and we apply it to U = U,.. Again by independence,
we have

EU? =rE(Z™ —1)?,
EU*=rE(Z" —1)* 4+ 3r(r — 1)[E(Z") — 1)?]

=rE(ZM -1)*+3 <1 - %) (EU?).

It is known from Theorem 3.1 that E(Z(") — 1) = (EW? — 1)/(r — EW?), so
that as r — oo,
lim EU? = EW? — 1.

To obtain an upper bound for the fourth moment, for simplicity we use the
inequality

(20 1)t

4!
although this is not optimal. By Theorem 1.3, this inequality implies
limsup E(Z" —1)* < .

r—o00

< exp{| Z" — 1]} < exp{Z" + 1},
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It is then easy to deduce from (6.9) and the above calculations that

liminf rP(U, > 0) > 0,

r—0o0

which by (6.8) means

10
lim inf rP<— DA 1) > 0.

r—0o0 r =1

So (6.7) is true, and the proof of Theorem 1.4. is complete. O

7. Extension. Our results may be extended to more general cascades
where the number of branches is random. For simplicity, we shall general-
ize only Theorems 1.2 and 1.4(a).

Let {N") : r € N*} (or r € (0, <)) be a family of random variables with
values on N*, whose distribution are denoted by F',. We will use the following
assumptions:

(A1) For every r the mean m(r) and the variance o%(r) of N are finite and,
as r — 0o, Elog N — oo.

(A2) As r — oo, [N") — m(r)]/o(r) converges in law to the normal law
(0, 1).

(A3) As r — oo,

1
m(r)

uniformly for ¢ < 0, with A continuously differentiable on (—oo, 0] and
A_(0) =1.

Notice that in (Al), the condition Elog N — oo is satisfied if N — oo
in probability, and that in (A3), we have A,_(0) = 1 for all r, so it is quite
possible that A’ (0) = 1. A typical example for which all the conditions (Al)—
(A3) hold is the case where for all r € N*, F', is the r-fold convolution of some
distribution F' on N* with finite variance. The theorems which we shall obtain
will be applicable in this case. The classical model is the case where F is the
Dirac measure §;.

A(2) =

log / e“dF (x) — A(t)

Let {N D iue U} be a family of independent random variables with dis-
tributions F,, and independent of {W, : u € U}. Put

v oy Wi Wiy
m(ryr
where the sum is taken over all (iy,...,7,) such that 1 <i; < N 1< i, <

NE:), L l<i, < NE:A)HL-H. For fixed r, the sequence {Ygf)} is a martingale,
and its almost sure limit

Z® = lim v}

n—oo
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satisfies the distributional equation

1 N®
> W,z

m(r) &5

(E) Z0 =

where Z Er) are independent random variables with the same distribution as
Z(™, and are also independent of (N, W;, W,,...). In terms of Laplace

transforms ¢()(¢) = Ee'2” | the equation reads
(&) ¢"(t) = E[E¢D(We/m(r)]V”, ¢ <o0.

It is known [see Theorems 3.1 and 5.1 of Liu (1997a)] that EZ™ = 1 if
E(Wlog W) < E(log N), and Z(") = 0 almost surely otherwise; when the
condition is satisfied, E[(Z(")?] < oo if and only if E[(N")?] < oo and
EW? < m(r). Therefore, if E[W?] < oo and if (A1) holds, then EZ(") = 1
and E[(Z(M)?] < cc for all r large enough, remarking that the condition (A1)
implies m(r) — oo.

The following theorem deals with the convergence in L? and the central
limit theorem. For a random variable X, we denote by Var X its variance.

THEOREM 7.1. Assume (Al) and o := EW? — 1 < o0.

(i) For all r large enough,

-1
(7.1) Var Z() = [ % ﬂ} [1 - ﬂ} :

m(r)  m(r)? m(r)

Consequently, as r — oo, Z") — 1 in L? if and only if

(7.2) o(r)/m(r) — 0.
(i1) Assume (A2), (7.2) and that
(7.3) rlgglo a(r)/m(r) = a®

for some a € [0, 00). Then as r — oo,

M( Z0 1)
\/az + O'g
PROOF. (i) Let r be sufficiently large such that EZ(") = 1 and E[(Z()?] <

oo. From the fundamental equation (E), by a similar argument as in the proof
of Theorem 3.1, we get,

converges in law to the normal law .#°(0, 1).

E[N(r)*] — m(r)

(7.4) E[(Z(r))Q] = m(,,.)2 _ m(r)EW2 >

from which (7.1) holds.
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(i1) For all real ¢, put

. m(r)
Uu, = u,(t) = |:Eexp (\/ln—r(WZ(r) — 1)>i| .
)0

From equation (E) and the usual decomposition,
(7.5)

E exp (@(Z“) _ 1)> _ [ 78 exp (\/m( )UO(N(r) m(,«)))} .

Since m(r) — oo and Z(") — 1in L2, a similar argument as in the proof of
Theorem 1.2 shows that for all £ > 0,

1 (r) 2
7.6 lim W, Z," —1]*dP =0,
(7.6) ; (W2)E(( (r)) = f~ [W.Z; 1]

where A, = { [W, 2" = 1] > ey/m(r)[E(W2)E((Z")2) — 1] }. We claim that
(7.6) implies that for all real ¢,

£2
(7.7) U, —> u:= exp(—E).
In fact, if m(r) are integers for all r, then (7.6) simply says that
Xr +ee Tt Xr m(r .
1 S0 m(r) converges in law to .#(0, 1),

where for each r, {X,; :i > 1} are independent random variables, each dis-
tributed as le(’ 1, and s(r)? = m(r)E[(W,Z\” —1)2], so that (7.7) follows
from (7.6) by Llndebergs theorem [(7.6) is the Lindeberg condition]. In the
general case where m(r) are not necessarily integers, (7.7) also follows from
(7.6), using the Fourier method of the proof of Lindeberg’s theorem; see Feller
(1971), Chapter XV.6, proof of Theorem 1. Note that by (7.2), N /m(r) — 1
in L2, in probability. So that, by Assumption (A2),

<n]j((;)) * Jm(n) m(r))> converges in law to 8; ® .#(0, a?),

which implies

2
203

\/m( )T

Let (r,) be any sequence with r, — oo, and let (7)) be a subsequence such
that NU%)/m(r)) — 1 almost surely. By the dominated convergence theorem,

(7.8) Buo exp { —— (N — m(r))} — u exp (_£> )

) h)
() T

Ur —umw -0 in L1,
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Since the sequence (r,) is arbitrary, this implies that (for all fixed t)

(7.9) u'” —um — 0 in L.

Therefore the difference of the right side of (7.5) and the left side of (7.8) tends
to 0, so that by (7.8), the right side of (7.5) tends to

a’t? (o5 +a?)t?
u exp —m = exp —T .
0 0

The last statement means that

2
)

— 2, 2
M(Z(’) —1) converges in law to .4 (O, ntae ) ,
0o
which ends the proof of Theorem 7.1. O

We now give a large deviations result. In Section 6, the key tool was the
function A(¢) = log Ee?’V. Here the same role is played by

A(t) := A(A(2)).

With our assumptions, A is defined on (—oo, 0], convex, continuously differen-
tiable on (—oc, 0] and satisfies A(0) = 0 and A’ (0) = 1. Define

(7.10) n:=A(-00)>0 and w:=w n.

Then A’(—o0) = @. Notice that for all ¢ < 0 and all r, A.(¢) > ¢ by Jensen’s
inequality, so that A(¢) > ¢t. Therefore n =lim, ,_ A(¢)/t <1,0 <@ < 1. Let

A*(x) = sup{tx — A(t);t < 0}.
Then 0 < A*(x) < A*(x) for all x € (0, 1], and in particular A*(1) = 0.
THEOREM 7.2. Assume (Al), (A3), EW?2 < oo and (7.2).
(a) If w = 0, then for any x € (0,1)
—log P(Z(™) < x) oz

(7.11) }Lrgo () A*(x);
(b) if w > 0, then for any k > 0 and any x € (QkH,Qk],

. —log P(Z") < x) e
(7.12) rll)rglo () = nfA*(x0 7).

PROOF. We follow the same line as in the proof of Theorem 1.4 (a) with
similar notation. For 2 =0,1,..., put

AVt = log E exp{tm(r)*1Z("}.

1
m(r)k+t
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It suffices to prove that
(7.13) lim AP =A@w), t<o,
and, if w > 0, then
(7.14) rlggo[\;’)(t) = nfA(tw?), t<0, k=0,1,....

In fact, for internal points, (7.11) and (7.12) follow from (7.13) and (7.14), by
Proposition (6.1); for x = Qk > 0, (7.12) also holds by a similar argument as
in the proof of (1.4b).

Now from (E’), we have, for all £ < 0,

(7.15) ]\(()r)(t) = A(s,) where s, =log E exp(tWZ ™).

By Theorem 7.1(i), Z(") — 1 in probability, so that s, — A(¢) by the dominated
convergence theorem; therefore (7.13) follows from (7.15) and the uniform con-
vergence of A,.

It remains to prove (7.14). Assume @ > 0. If 2 = 0, then (7.14) reduces to
(7.13), so that it holds. Assume that it holds for some 2 > 0, we shall prove
that it also holds for & + 1. In fact, again by equation (E’),

(7.16) A A, (log E exp{m(r)* AV (eW)}).

()= OGRS
Therefore, for all ¢ < 0,

—(r 1
(7.17) AL = Smrh (@),

where £, = m(r)**'A{(tw). By the induction hypothesis, lim A (tw) =
nkA(tw*1). Since A is convex and satisfies A(0) = 0 and A’ (0) = 1, we
have /~\(s) < 0 for s < 0, and consequently ¢, - —oco as r — +oo. By the
uniform convergence of A.(t), we have

A,(6) = At,)] = sup A, (6) = A(B)| 0.

so that

(7.18) lim A’t(t’) —lim )‘(tt’) —n

Therefore (7.17) implies that

X (r M) L ar x
lim sup AV (1) < thhmA( ) tw) = n T A(tw" ).
M SUP Aty ; k

r
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The opposite inequality liminf,_, f\g;zl(t) > Q”l/&(twk“) follows from a sim-

ilar argument, remarking that for all ¢ > 0,

< (r 1
Agell(t) > m)\,(log E[1W<y+a exp - - ])

1 /
> m)\r(tr)a

where
t.=log P(W <w+e)+ rk*’lf\g)(t(w + ¢)).

Hence by induction we have proved that (7.14) holds for all £ = 0,1, ... and
the proof is complete. O

APPENDIX: PROOF OF THEOREM 6.1

PROOF OF THE UPPER BOUND (a). The classical exponential inequality yields
that for any u € [0, ¢;,) and any x € R,

vp([x, +00)) = [ exp{ua, (¢ - x)}dv, ().

Taking logarithm and letting r — oo, we see that

lim sup al logv,([x, +00)) < —[ux — I(u)].

r

Since u € [0, ty) is arbitrary, it gives the upper bound —/*(x). Now, [/ (0) =
lim /(u)/u, so that for x > I/, (0) there exists u, € (0, ¢y) such that I(u)/uy < x.
This yields I*(x) > ugx — I(ug) > 0, which ends the proof of part (a).

PROOF OF THE LOWER BOUND (b). For ¢ € (0, ¢;), we define the new distri-
butions:

dllf.(g) = exp{ta,f - arlr(t)}dyr(g)‘

For every y and z > y we have
v+ = [ exp{ta & +a,,(t)}di(e)
(y,+00)

= ) exp{—ta,z + arlr(t)}dvi(f)a
(5,2
so that
. 1 1 ¢
i) —10g 7, (3, +00)) = ~tz +1,(t) + — log v} (3, 2)).

r
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To obtain a lower bound of the last term in the right side of (i), we start with
the identity

(ii) (3, 2)) = 1 = vp((=00, y]) — vi([2, +00)).

By the definition of v, its normalized cumulant generating function is

Li(s) = —log [ exp{sa, £)dut(&) = (¢ + )~ 1,(0),

so that for every s € [—¢, £y — ),
Li(s) — U(t+s)—I(t) =: L'(s), r— oo.

Notice that as r — oo, the normalized cumulant generating function of dvi(—§)
converges to L!(—s) for s € [0, t), whose right derivative at 0 is equal to
—(L?*Y_(0) = -1’ (t); similarly, the normalized cumulant generating function
of dvi(£) converges to L(s) for s € [0, ¢, — ¢), whose right derivative at 0 is
equal to (L), (0) = I/, (¢). Therefore, applying part (a) to the measures dv.(—¢)
and to dvi(£), we see that if y <[’ (¢) and z > I/ (¢), then

1
lim sup . log v ((—o0, ¥]) <0,

r

1
lim sup — log v([2, +0)) < 0,
a

R
so that, from (ii),

lim inf 1 log vi([, z]) > 0.
a

r

Consequently, by (i), for all ¢, y, z satisfying ¢, > ¢ > 0 and y < I’ (t) < I’ (¢)
<z,

1
liminf —logv,((y, +00)) = ~tz + 1(2).
If [ is differentiable at ¢, then letting z — I'(¢) gives
1
(iii) lim inf a—log v.((y, +00)) = —tl'(t) + I(¢).

r

Since the right side is just —{*({'(¢)), the proof of part (b) is complete.

PROOF OF PART (c). Fix x e (I/.(0), 1" _(¢y)). In view of a), it suffices to prove
that

(iv) lim inf ai logv,.([x, +00)) > —I*(x).

r
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Since [ is continuously differentiable on [0, 00), and !’ non decreasing,

2 =int {y:y=1(t),t> 0} = (1,(0), I (ty)).

Therefore by part (b), for all A > 0 such that x + h € &,

lim inf 1 logv,.([x, +00)) > liminf 1 log v,((x, +00)) > —I*(x + h).
a a

r r

Since [* is convex, it is continuous on 27, so that, letting 2~ — 0 in the last
inequality gives (iv), which completes the proof of the theorem. O
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