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LIMIT THEOREMS FOR MANDELBROT’S
MULTIPLICATIVE CASCADES

By Quansheng Liu and Alain Rouault

Université Rennes 1 and Université Versailles-Saint-Quentin

Let W ≥ 0 be a random variable with EW = 1, and let Z�r� �r ≥ 2�
be the limit of a Mandelbrot’s martingale, defined as sums of product of
independent random weights having the same distribution as W, indexed
by nodes of a homogeneous r-ary tree. We study asymptotic properties of
Z�r� as r→ ∞: we obtain a law of large numbers, a central limit theorem,
a result for convergence of moment generating functions and a theorem of
large deviations. Some results are extended to the case where the number
of branches is a random variable whose distribution depends on a param-
eter r.

1. Introduction and main results. Let �� = �1�2� � � �� be the set of
positive integers, and let

U = �∅� ∪
∞⋃
k=1

����k

be the set of all finite sequences containing the null sequence ∅. Let W ≥ 0
be a non-negative random variable with EW = 1 and P�W = 1� 
= 1, and let
�Wu � u ∈ U� be independent copies of W. For r = 2�3� � � � � let Z�r� be the
Mandelbrot’s variable associated with W and parameter r:

Z�r� �= lim
n→∞Y

�r�
n �

where

Y
�r�
n = ∑

�i1�����in�∈�1�����r�n

Wi1
· · ·Wi1···in
rn

�

It is easily seen that Z = Z�r� satisfies the following distributional equation:

�E� Z�r� = 1
r

r∑
i=1
WiZ

�r�
i �

where Z�r�
i �1 ≤ i ≤ r� are independent random variables having the same

distribution as Z, and are also independent of �Wi � 1 ≤ i ≤ r�. In terms of
Laplace transforms φ�r��t� = E exp�tZ�r��, the equation reads

�E′� φ�r��t� = �Eφ�r��Wt/r��r� t ≤ 0�

The model was first introduced by Mandelbrot (1974a, b) to analyse precisely
some problems of turbulence, and is referred as Mandelbrot’s multiplicative

Received October 1998; revised April 1999.
AMS 1991 subject classifications. Primary 60G42; secondary 60F05, 60F10.
Key words and phrases. Self-similar cascades, Mandelbrot’s martingales, law of large numbers,

central limit theorem, convergence of moment generating function, large deviations.

218



MULTIPLICATIVE CASCADES 219

cascades. For fixed r, the properties of Z�r� and related subjects have been
studied by many authors; see, for example, Kahane and Peyrière (1976), Dur-
rett and Liggett (1983), Guivarc’h (1990) and Holley and Waymire (1992).
In particular, by Theorems 1 and 2 of Kahane and Peyrière (1976), we have
EZ�r� = 1 if EW logW < log r, and Z�r� = 0 almost surely otherwise; in the
case where the condition is satisfied, E��Z�r��2� <∞ if and only if E�W2� < r.
See also Liu (1997a, b), (1998) for more general results and for related topics.
Since in general, it is hopeless to give explicitly the distribution of Z�r�, it

is desirable to give its asymptotic properties. The purpose of this paper is to
give limit theorems for the process �Z�r� � r ≥ 2� as r → ∞� The following
results will be established.

Theorem 1.1 (A law of large numbers). If EW log+W <∞, then

lim
r→∞Z

�r� = 1 in probability�

Notice that EZ�r� = 1 for all r > 1 sufficiently large. By Sheffé’s theorem,
we obtain:

Corollary 1.1 (Convergence in L1). If EW log+W <∞, then

lim
r→∞Z

�r� = 1 in L1�

Theorem 1.2 (A central limit theorem). If E�W2� <∞, then as r→ ∞,
√
r√

EW2 − 1
�Z�r� − 1� converges in law to the normal law � �0�1��

Let w = ess infW and w = ess supW. Then

0 ≤ w < 1 < w ≤ +∞�

Theorem 1.3 (Convergence of moment generating function). The following
assertions are equivalent:

(i) w <∞;
(ii) for all t > 0,

lim
r→∞E exp�tZ�r�� = exp�t��

Before stating our results on large deviations, let us recall some elementary
properties of the cumulant generating function of W defined by

��t� �= logEetW ≤ +∞ �t ∈ ���
and its Fenchel-Legendre dual defined by

�∗�x� �= sup
t∈�

tx− ��t� ≤ +∞ �t ∈ ���
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[See Chapter 2 of Dembo and Zeitouni (1998) and the references therein.]
The function � is convex and continuously differentiable in the interior of
its domain of finiteness which contains �−∞�0� since W is non-negative, and
which is � if w <∞. The function �∗ is convex and lower semi-continuous; it
is decreasing on �−∞�1� with �∗�x� = supt≤0 tx−��t� �x ≤ 1�, and increasing
on �1�∞� with �∗�x� = supt≥0 tx−��t� �x ≥ 1�; it is always non-negative with

�∗�x�




= +∞� if x < w or x > w�
= − logP�W = w�� if x = w�
= − logP�W = w�� if x = w�
∈ �0�∞�� if w < x < 1 or 1 < x < w <∞�
= 0� if x = 1�

it is continuous on �w�1� and, similarly, if w < ∞, then it is also continuous
on �1�w�. (At left endpoints, we mean the continuity from right, and at right
endpoints, the continuity from left.)
We are interested in asymptotic behavior of P�Z�r� ≤ x� and P�Z�r� ≥ x�

as r→ ∞, for all x > 0. Notice that by the law of large numbers, we have

lim
r→∞P�Z

�r� ≤ x� = 1 if x > 1 and lim
r→∞P�Z

�r� ≥ x� = 1 if x < 1�

by the central limit theorem, limr→∞P�Z�r� ≤ 1� = limr→∞P�Z�r� ≥ 1� = 1/2�
Therefore, it suffices to consider the limit behavior ofP�Z�r� ≤ x� for x ∈ �0�1�,
and that of P�Z�r� ≥ x� for x ∈ �1�∞�. (In these cases, the probabilities tend
to 0 as r tends to ∞.) We notice that

�0�1� =
∞⋃
k≥0

�wk+1�wk� if w > 0

and

�1�∞� =
∞⋃
k≥0

�wk�wk+1� if w <∞�

Theorem 1.4 (Large deviations). Assume EW log+W <∞.
(a) If w = 0, then for any x ∈ �0�1�,

�1�1� lim
r→∞

− logP�Z�r� ≤ x�
r

= �∗�x��

if w > 0, then for any k ≥ 0 and any x ∈ �wk+1�wk�,

�1�2� lim
r→∞

− logP�Z�r� ≤ x�
rk+1

= �∗�xw−k��

(b) If w <∞, then for any k ≥ 0 and any x ∈ �wk�wk+1�,

�1�3� lim
r→∞

− logP�Z�r� ≥ x�
rk+1

= �∗�xw−k��
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We remark that the limits are strictly positive and finite, except in the case
where x = wk �k = 0�1� � � �� and P�W = w� = 0 for (1.2), and in the case where
x = wk+1 �k = 0�1� � � �� and P�W = w� = 0 for (1.3); in these exceptional cases,
the exact equivalent of the tail probabilities remains unknown; however we
have in the first case,

�1�4a� lim
r→∞

− logP�Z�r� ≤ wk+1�
rk+1

= ∞� k = 0�1� � � �

�1�4b� lim
r→∞

− logP�Z�r� ≤ wk+1�
rk+2

= 0� k = 0�1� � � �

and in the second case,

�1�5a� lim
r→∞

− logP�Z�r� ≥ wk+1�
rk+1

= ∞� k = 0�1� � � �

�1�5b� lim
r→∞

− logP�Z�r� ≥ wk+1�
rk+2

= 0� k = 0�1� � � � �

In fact, (1.4a) follows from (1.2) because �∗�w� = − logP�W = w� = ∞; (1.4b)
also follows from (1.2) because, for all k ≥ 0 and all 0 < ε < 1−w,

lim sup
r→∞

− logP�Z�r� ≤wk�
rk+1

≤ lim sup
r→∞

− logP�Z�r� ≤ �1− ε�wk�
rk+1

=�∗�1− ε��

so that lim supr→∞�− logP�Z�r� ≤ wk��/rk+1 = �∗�1� = 0 for all k ≥ 0� A
similar argument shows that (1.3) implies (1.5a) and (1.5b). By (1.4b), we see
that the formula (1.2) also holds at right endpoints wk�k ≥ 0; similarly, by
(1.5b), the formula (1.3) also holds at left endpoints wk�k ≥ 0�
Our theorem gives a “hierarchy” of large deviation principles with different

speeds rk� k = 1�2� � � � and corresponding rate functions �∗�. w−k+1� for the
right tail and �∗�. w−k+1� for the left tail. For the generic interval �w�w�,
the same large deviation principle is satisfied by Z�r� = 1

r

∑r
i=1WiZ

�r�
i and

by 1
r

∑r
i=1Wi, which is rather natural in view of Theorem 1.1. For the other

intervals, we observe a kind of self-similarity.
If w <∞, Theorem 1.4 implies that

lim
r→∞Z

�r� = 1 almost surely�

In closing this section, we point out that the problems also arise in the case
where the number of branches is a random variable whose distribution, say
Fr, depends on a parameter r. However, for simplicity we shall only give an
extension of Theorems 1.2 and 1.4(a), which covers the case where Fr is the
r-fold convolution of a fixed distribution on �∗: see Section 7. We also men-
tion that the main results of this paper can be extended to the Mandelbrot’s
measures (of which Z�r� are the masses): see the forthcoming paper Liu and
Rouault (1999).
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2. Proof of Theorem 1.1: A law of large numbers. Write

�2�1� ε�t� =


e−t − 1+ t

t
� if t > 0�

0� if t = 0�

Then ε is increasing and continuous on �0�∞� and satisfies 0 ≤ ε�t� ≤ 1. Write
�r�t� = φr�−t� = Ee−tZ�r�

and

�2�2� �r�t� − 1+ t = tεr�t�� t > 0� εr�0� = 0�

Then

�2�3� εr�t� = EZ�r�ε�tZ�r��� t ≥ 0�

and

E�r�tWr−1� = 1− tr−1 + tr−1EWεr�tWr−1
)
�

By equation (E’), log�r�t� = r logE�r�tWr−1�, so that as r→ ∞,

�2�4� log�r�t� ∼ −t
(
1−EWεr�tWr−1�

)
� t > 0�

We need to prove that �r�t� → e−t, and for this we need only to prove that

�2�5� lim
r→∞EWεr�tWr

−1) = 0� t > 0�

By the dominated convergence theorem, since 0 ≤ εr ≤ 1, it is enough to prove
that, for all x > 0, limr→∞ εr�xr−1

) = 0� that is

�2�6� lim
r→∞EZ

�r�ε
(
xr−1Z�r�� = 0�

Since EZ�r� = 1 we have, for all η > 0,

�2�7� EZ�r�ε
(
xr−1Z�r�� ≤ ε�η� +EZ�r�1�Z�r�>rηx−1��

Let us prove that for all a > 0,

�2�8� lim
r→∞EZ

�r�1�Z�r�>ar� = 0�

For fixed r� a > 0, put

h�x� = hr�a�x� =
{
x�ar�−1� if 0 ≤ x ≤ ar�
1� if ar < x�

Then h is concave and increasing with h�0� = 0 and 0 ≤ h ≤ 1. Therefore, by a
lemma of Asmussen and Hering [(1983), page 41], if γ1� � � � � γr are independent
nonnegative random variables, and if γ = γ1 + · · · + γr, then

�2�9� Eγh�γ� ≤ E
r∑
i=1
γih�γi� + �Eγ�h�Eγ��

Using this inequality for γi =WiZ
�r�
i r

−1 and equation (E), we obtain

�2�10� EZh�Z� ≤ E
(
WZ h�WZr−1�

)
+ h�1��



MULTIPLICATIVE CASCADES 223

where Z = Z�r�,W is independent of Z and of �W1�W2� � � ��. Using (2.9) again
for the sum WZr−1 =∑r

1WWiZir
−2, we obtain

E
(
WZh�WZr−1�

)
≤ E

(
WW1Z h�WW1Zr

−2�
)
+ h�r−1��

Therefore, by (2.10)

EZh�Z� ≤ h�1� + h�r−1� +E
(
WW1Z h�WW1Zr

−2�
)
�

Continuing in this way, we obtain for all k ≥ 1,

�2�11� EZh�Z� ≤ h�1� + h�r−1� + · · · + h�r−k+1� +Vk�
where

�2�12� Vk = E
(
WW1 · · ·Wk−1Z h�WW1 · · ·Wk−1Zr

−k�
)
�

Z� W1� W2� � � � being mutually independent. Fix r > 1 such that log r >
EW logW. To prove that limk→∞Vk = 0, we use a change of distribution.
Let W̃� W̃1� � � � be a sequence of independent random variables with common
distribution PW̃�dx� = xPW�dx�, which are also independent of Z. Then

�2�13� Vk = E
(
Zh�W̃W̃1 · · · W̃k−1Zr

−k�
)
�

By the strong law of large numbers, we have almost surely,

lim
k→∞

log�W̃r−1� + · · · + log�W̃k−1r−1�
k

= E log�W̃r−1�

�2�14� = EW log�Wr−1� < 0�

[Remark that by the definition of W̃, P�W̃ = 0� = 0.] Therefore, almost surely

lim
k→∞

W̃W̃1 · · · W̃k−1r
−k = 0�

Since h is continuous with h�0� = 0 and 0 ≤ h ≤ 1, the dominated convergence
theorem yields Vk → 0� Therefore by (2.11), for all r > max�exp�EW logW��
1/a��

�2�15� EZh�Z� ≤
∞∑
k=0
h�r−k� = 1

a�r− 1� �

Because Z = Z�r�, this gives

�2�16� lim
r→∞EZ

�r�h�Z�r�� = 0� a > 0�

Since 1�Z�r�>ar� ≤ h�Z�r��, (2.16) gives (2.8). Using (2.8) and letting r→ ∞ in
(2.7), we see that

�2�17� lim sup
r→∞

Z�r�ε
(
xr−1Z�r�) ≤ ε�η�� η > 0�

Since limη→0 ε�η� = 0, this gives (2.6), which ends the proof of Theorem 1.1.
✷
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3. Convergence in L2. The following result will be used in the next sec-
tion.

Theorem 3.1. If EW2 < r <∞, then

E
[
�Z�r� − 1�2

]
= EW

2 − 1
r−EW2

�

In particular, as r→ ∞,

Z�r� → 1 in L2�

Proof. Since the function f�s� = logEWs is convex, we have f�2�−f�1� ≥
f′�1�, which givesEW logW ≤ logEW2; therefore the conditionEW2 < r <∞
impliesEW logW < log r, so that by Theorems 1 and 2 of Kahane and Peyrière
(1976), EZ�r� = 1 and E��Z�r��2� <∞. For convenience, we write Z = Z�r� and
Zi = Z�r�

i . By equation (E), we have consecutively,

Z2 = 1
r2

[ ∑
1≤i≤r

W2
iZ

2
i +

∑
1≤i�j≤r�i 
=j

WiWjZiZj

]
�

EZ2 = 1
r2

[
rEW2EZ2 + ∑

1≤i�j≤r�i 
=j
EWiEWjEZiEZj

]

= 1
r
EW2EZ2 + 1

r2
�r2 − r��

SoE��Z�r��2� = E�Z2� = �r−1�/�r−EW2�� SinceE��Z�r�−1�2� = E��Z�r��2�−1,
this gives the desired conclusions. ✷

4. Proof of Theorem 1.2: A central limit theorem. Let r0 > EW2. By
Theorem 3.1, for r ≥ r0, EZ�r� = 1 and E��Z�r��2� = �r − 1�/�r − EW2�� By
equation (E),

rZ�r� − r =
r∑
i=1

�WiZ
�r�
i − 1��

Let Sr �r ≥ r0� be the above sum, and let sr ≥ 0 be defined by

s2r =
r∑
i=1
E��WiZ

�r�
i − 1�2��

We remark that WiZ
�r�
i − 1 �i = 1� � � � � r� are independent and identically

distributed random variables with E�WiZ
�r�
i − 1� = 0� and that

s2r = r�E�W2�E��Z�r��2� − 1��
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We shall verify Lindeberg’s condition for the sequence �Sr � r ≥ r0�. For all
ε > 0, we have

r∑
k=1

1
s2r

∫
�WkZ

�r�
k −1�≥εsr

�WkZ
�r�
k − 1�2dP

= r

s2r

∫
�W1Z

�r�
1 −1�≥εsr

�W1Z
�r�
1 − 1�2dP

= 1

E�W2�E��Z�r��2�� − 1

∫
Ar

�W1Z
�r�
1 − 1�2dP�

where Ar = ��W1Z
�r�
1 − 1� ≥ ε

√
r�E�W2�E��Z�r��2� − 1��. Since

�W1Z
�r�
1 − 1�2 =W2

1 ��Z�r�
1 �2 − 1� − 2W1 �Z�r�

1 − 1� + �W1 − 1�2�
and, as r→ ∞

EW2
1��Z�r�

1 �2 − 1� = EW2
1E��Z�r��2 − 1� → 0�

E� − 2W1�Z�r�
1 − 1�� = 2EW1E�Z�r�

1 − 1� → 0�

E�W1 − 1�21�Ar� → 0

(the last assertion holds by the dominated convergence theorem, remarking
that 1�Ar� → 0 in L1 and in probability by Markov’s inequality applied to

�W1Z
�r�
1 − 1�2), it follows that

lim
r→∞

r∑
k=1

1
s2r

∫
�WkZ

�r�
k −1�≥εsr

�WkZ
�r�
k − 1�2dP = 0�

So by Lindeberg’s theorem, Sr/sr converges in law to the normal law � �0�1�.
Since s2r/�r�EW2 − 1�� → 1 �r→ ∞�, this implies that, as r→ ∞,

√
r√

EW2 − 1
�Z�r� − 1� converges in law to � �0�1�� ✷

5. Proof of Theorem 1.3: Convergence of moment generating func-
tion. We prove the following version of Theorem 1.3. It will be applied in the
next section to study large deviations.

Theorem 5.1. The following assertions are equivalent:

(i) w <∞;
(ii) for all t > 0; limr→∞EetZ

�r� = et�
(ii′) for some t > 0, limr→∞EetZ

�r� = et�
(iii) for all t > 0, EeWt <∞ and limr→∞EetWZ

�r� = EeWt�
(iii′) for some t > 0, EeWt <∞ and limr→∞EetWZ

�r� = EeWt�
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Proof. The implications (ii) ⇒ (ii’) and (iii) ⇒ (iii’) are evident. The im-
plication (ii’) ⇒ (i) is easy, because (a) if w = ∞ and EW log+W < ∞, then
for all r > 1 with EW logW < log r, Z�r� cannot have finite moments of all
order [cf. Kahane and Peyrière (1976)], so that EetZ

�r� = ∞ for all t > 0; (b) if
EW log+W = ∞, then Z�r� = 0 almost surely for all r. The implication (iii’)
⇒ (i) follows from the same reason. It remains to prove the implications (i) ⇒
(ii) and (i) ⇒ (iii).
Assume (i). Put Y�r�

0 = 1 and, for n > 0, let Y�r�
n be defined as in Section 1.

Write φ�r�
n �t� = EetY�r�

n � n ≥ 0� Then

φ
�r�
n+1�t� = �Eφ�r�

n �Wt/r��r� n ≥ 0�

In the following, we shall use an argument of Rösler [(1992), Theorem 6] to give
an upperbound of supn≥0φ

�r�
n �t�, valid for all t in a neighborhood of 0 whose

length depends linearly on r. [In the context of Rösler (1992), r is fixed.] Fix
K > 0, and put

gr�K�x� = Ee�W−1�x+K�W2−r�x2� x ≥ 0�

Then gr�K�0� = 1� g′
r�K�0� = 0 and g′′

r�K�0� = E��W− 1�2� + 2KE�W2 − r�. Let
rK > max�2�w� be an integer sufficiently large such that g′′

rK�K
�0� < 0. Then

there is ηK = η�K�rK� > 0 small enough such that g′′
rK�K

�x� < 0 for all x ∈
�0� ηK�. Consequently g′

rK�K
�x� < g′

rK�K
�0� = 0 and grK�K�x� ≤ grK�K�0� = 1

if 0 < x ≤ ηK. Note that the function gr�K�x� is decreasing in r, we have
gr�K�x� ≤ 1 if r ≥ rK and 0 ≤ x ≤ ηK�

Therefore, if r ≥ rK and if φ�r�
n �t� ≤ exp�t+Kt2� for all 0 ≤ t ≤ rηK� then for

these r and t,

φ
�r�
n+1�t� = �Eφ�r�

n �Wt/r��r

≤ �E exp�Wt/r+K�Wt/r�2��r (notice that Wt/r ≤ t ≤ rηK�
= exp�t+Kt2��gr�K�t/r��r

≤ exp�t+Kt2��
So by induction on n, we have proved that for all n ≥ 0,

EetY
�r�
n ≤ exp�t+Kt2� if r ≥ rK and 0 ≤ t ≤ rηK�

Letting n→ ∞ and using Fatou’s lemma give

EetZ
�r� ≤ exp�t+Kt2� if r ≥ rK and 0 ≤ t ≤ rηK�

Now letting r→ ∞, we see that

lim sup
r→∞

E exp�tZ�r�� ≤ exp�t+Kt2��



MULTIPLICATIVE CASCADES 227

Since t > 0 and K > 0 are arbitrary, letting K→ 0 gives

lim sup
r→∞

EetZ
�r� ≤ et� t > 0�

On the other hand, by Jensen’s inequality we obtain, for all t > 0,E exp�tZ�r��
≥ exp�t�, so that,

lim inf
r→∞ E exp�tZ�r�� ≥ exp�t��

Therefore for all t > 0, limr→∞E exp�tZ�r�� = exp�t�� and the assertion (ii)
is proved. The assertion (iii) can be obtained in a similar way. This ends the
proof of Theorem 5.1. ✷

6. Proof of Theorem 1.4: Large deviations. We use a version of the
Gärtner-Ellis theorem (Dembo and Zeitouni 1998) convenient for the study of
right tails and left tails. Theorem 6.1 below is a slight modification of Theorem
1 of Biggins and Bingham [(1993), page759] where the authors give a short
sketch of proof. To the sake of completeness and for convenience of readers,
we present a proof of Theorem 6.1 in the Appendix.
Let �νr�r∈�+ be a family of probability distributions on � and let �ar� be a

sequence of positive numbers with limr→∞ ar = +∞. We assume that for some
t0 ∈ �0�∞� and for every t ∈ �0� t0�, as r→ ∞,

lr�t� �=
1
ar

log
∫
exp�tarξ�dνr�ξ� → l�t� <∞�

We remark that l is convex on �0� t0� as limit of convex functions, and we do
not assume anything outside �0� t0�. Denote the left and right derivative of a
convex function g by g′

− and g′
+ respectively; the derivative g′�t� exists if and

only if g′
−�t� = g′

+�t�� For all x ∈ �, put

l∗�x� = sup�ux− l�u��u ∈ �0� t0���
It can be easily checked that l∗�x� = tx − l�t� if x ∈ �l′−�t�� l′+�t��� t ∈ �0� t0��
in particular, l∗�l′�t�� = l′�t�t − l�t� if l is differentiable at t ∈ �0� t0�� In
the case where l is continuously differentiable on �0� t0�, we have l′+�0� =
limt→0�u>0 l

′�u�, l′−�t0� = limu→t0�u<t0 l
′�u� if t0 < ∞, and we put l′−�∞� =

l′�∞� = limu→∞ l′�u� if t0 = ∞.

Theorem 6.1. (a) For all x > l′+�0�,

lim sup
1
ar

log νr��x�+∞�� ≤ −l∗�x��

and this bound is strictly negative.
(b) If x = l′�t� for some t ∈ �0� t0�, then for any y < x,

lim inf
1
ar

log νr��y�+∞�� ≥ −l∗�x��
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(c) If l is continuously differentiable on �0� t0�, then for all x ∈ �l′+�0�� l′−�t0��,

lim
1
ar

log νr��x�∞�� = −l∗�x��

To apply this theorem we need the asymptotic behavior of

�6�1� �
�r�
k �t� �= 1

rk+1
logE exp�trk+1Z�r���

for r → ∞ and k ≥ 0. It is given by the following proposition. Recall that
��t� = logEetW by definition.

Proposition 6.1. (a) If EW log+W <∞, then for any t ≤ 0,

lim
r→∞�

�r�
0 �t� = ��t��

if additionally w > 0, then for any t ≤ 0 and k ≥ 0,

lim
r→∞�

�r�
k �t� = ��twk��

(b) If w <∞, then for any t ≥ 0 and k ≥ 0,

lim
r→∞�

�r�
k �t� = ��twk��

Proof. From the fundamental equation (E) we have by independence,

�6�2� �
�r�
0 �t� = logE exp�tWZ�r��

for any t ≤ 0; it also holds for any t ∈ � if w <∞.
(a) From (6.2), Theorem 1.1 and the dominated convergence theorem, we

obtain

lim
r→∞�

�r�
0 �t� = ��t�� t ≤ 0�

When w > 0, we will prove the remaining result by induction on k. The
definition (6.1) may be written as

exp�rk+1��r�
k �t�� = E exp�rk+1tZ�r���

so that, by inserting an independent extra variable W, we get

E exp rk+1��r�
k �tW� = E exp�rk+1tWZ�r���

Applying the formula (6.2) and the definition (6.1) gives

E exp�rk+1tWZ�r�� = exp��r�
0 �trk+1� = exp�rk+1��r�

k+1�t���
together with the preceding equality, this identity yields the important for-
mula :

�6�3� �
�r�
k+1�t� =

1
rk+1

logE exp�rk+1��r�
k �tW���
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Assume that for some k ≥ 0 and for any t ≤ 0,

�
�r�
k �t� → ��twk��

By (6.3), for all t ≤ 0, ��r�
k+1�t� ≤ �

�r�
k �tw�� therefore

lim sup
r→∞

�
�r�
k+1�t� ≤ ��twk+1�

by the hypothesis of induction. On the other hand, for any ε > 0 and all t ≤ 0,

�
�r�
k+1�t� ≥

1
rk+1

logE�1W<w+ε exp�rk+1��r�
k �tW���

≥ ��r�
k �t�w+ ε�� + 1

rk+1
logP�W < w+ ε��

Hence

lim inf ��r�
k+1�t� ≥ ��t�w+ ε�wk��

Since ε > 0 is arbitrary, this ends the proof of part (a).
(b) Part (b) can be proved along the same line, but instead of the dominated

convergence theorem, we use Theorem 5.1 (iii). ✷

End of the proof of Theorem 1.4. From the definition of �, we have

�′�0� = EW = 1� �′�−∞� = w and �′�+∞� = w�
For points in the open intervals, (1.1) and (1.2) follow from Theorem 6.1 where
νr is the distribution of −Z�r�, t0 = +∞ and ar = r or rk, together with
Proposition 6.2 a); (1.3) follows from a similar argument using Theorem 6.1
where νr is the distribution of Z�r�. For the endpoints, we shall only show (1.3)
for simplicity. For all k ≥ 0 and for any 0 < ε < 1 − 1/w, using the proved
result (1.3) for internal points, we obtain

lim sup
1
rk+1

logP�Z�r� ≥ wk+1� ≤ lim sup
1
rk+1

logP�Z�r� ≥ wk+1�1− ε��
= −�∗�w�1− ε���

so that

lim sup
1
rk+1

logP�Z�r� ≥ wk+1� ≤ −�∗�w� = logP�W = w��

It remains only to prove that, when P�W = w� > 0,

�6�4� lim inf
1
rk+1

logP�Z�r� ≥ wk+1� ≥ logP�W = w��

Actually from the fundamental equation (E), we have, for any k ≥ 0,

�6�5� P�Z�r� ≥ wk+1� ≥ P�W = w�r P
(
1
r

r∑
k=1
Z

�r�
k ≥ wk

)
�
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Since by independence

P

(
1
r

r∑
k=1
Z

�r�
k ≥ wk

)
≥ [
P�Z�r� ≥ wk�]r�

a first use of (6.5) shows that lim inf 1/rk+1 logP�Z�r� ≥ wk+1� is non decreas-
ing in k for k ≥ 0; a second use (for k = 0) shows that

�6�6�
lim inf

1
r
logP�Z�r� ≥ w�

≥ logP�W = w� + lim inf
1
r
logP

(
1
r

r∑
k=1
Z

�r�
k ≥ 1

)
�

It remains only to prove that

�6�7� lim inf
1
r
logP

(
1
r

r∑
k=1
Z

�r�
k ≥ 1

)
≥ 0�

Notice that P� 1
r

∑r
k=1Z

�r�
k ≥ 1� = P�Ur ≥ 0�, where

�6�8� Ur �=
r∑
k=1

�Z�r�
k − 1��

For a lower bound of P�Ur ≥ 0�, we start from the inequality

�6�9� P�U ≥ 0� ≥ �EU2�2
4EU4

�

which holds for any random variable U with EU = 0 and EU4 <∞ [Billings-
ley (1986), Theorem 9.2], and we apply it to U = Ur. Again by independence,
we have

EU2
r = rE�Z�r� − 1�2�

EU4
r = rE�Z�r� − 1�4 + 3r�r− 1��E�Z�r� − 1�2�2

= rE�Z�r� − 1�4 + 3
(
1− 1

r

)
�EU2

r�2�

It is known from Theorem 3.1 that E�Z�r� − 1�2 = �EW2 − 1�/�r −EW2�, so
that as r→ ∞,

limEU2
r = EW2 − 1�

To obtain an upper bound for the fourth moment, for simplicity we use the
inequality

�Z�r� − 1�4
4!

≤ exp�� Z�r� − 1 �� ≤ exp�Z�r� + 1��
although this is not optimal. By Theorem 1.3, this inequality implies

lim sup
r→∞

E�Z�r� − 1�4 <∞�
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It is then easy to deduce from (6.9) and the above calculations that

lim inf
r→∞ rP�Ur ≥ 0� > 0�

which by (6.8) means

lim inf
r→∞ rP

(
1
r

r∑
k=1
Z

�r�
k ≥ 1

)
> 0�

So (6.7) is true, and the proof of Theorem 1.4. is complete. ✷

7. Extension. Our results may be extended to more general cascades
where the number of branches is random. For simplicity, we shall general-
ize only Theorems 1.2 and 1.4(a).
Let �N�r� � r ∈ �∗� (or r ∈ �0�∞�) be a family of random variables with

values on �∗, whose distribution are denoted by Fr. We will use the following
assumptions:

(A1) For every r the mean m�r� and the variance σ2�r� ofN�r� are finite and,
as r→ ∞, E logN�r� → ∞.

(A2) As r → ∞, �N�r� − m�r��/σ�r� converges in law to the normal law
� �0�1��

(A3) As r→ ∞,

λr�t� �=
1
m�r� log

∫
etxdFr�x� → λ�t�

uniformly for t ≤ 0, with λ continuously differentiable on �−∞�0� and
λ′−�0� = 1.

Notice that in (A1), the condition E logN�r� → ∞ is satisfied if N�r� → ∞
in probability, and that in (A3), we have λ′r−�0� = 1 for all r, so it is quite
possible that λ′−�0� = 1. A typical example for which all the conditions (A1)–
(A3) hold is the case where for all r ∈ �∗, Fr is the r-fold convolution of some
distribution F on �∗ with finite variance. The theorems which we shall obtain
will be applicable in this case. The classical model is the case where F is the
Dirac measure δ1.
Let �N�r�

u � u ∈ U� be a family of independent random variables with dis-
tributions Fr, and independent of �Wu � u ∈ U�. Put

Y
�r�
n =∑Wi1

· · ·Wi1···in
m�r�n �

where the sum is taken over all �i1� � � � � in� such that 1 ≤ i1 ≤ N�r��1 ≤ i2 ≤
N

�r�
i1
� � � � �1 ≤ in ≤ N�r�

i1···in−1 . For fixed r, the sequence �Y�r�
n � is a martingale,

and its almost sure limit

Z�r� = lim
n→∞ Y

�r�
n
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satisfies the distributional equation

�Ẽ� Z�r� = 1
m�r�

N�r�∑
i=1
WiZ

�r�
i �

where Z�r�
i are independent random variables with the same distribution as

Z�r�, and are also independent of �N�r��W1�W2� � � ��. In terms of Laplace
transforms φ�r��t� = EetZ�r�

, the equation reads

�Ẽ′� φ�r��t� = E�Eφ�r��Wt/m�r���N�r�
� t ≤ 0�

It is known [see Theorems 3.1 and 5.1 of Liu (1997a)] that EZ�r� = 1 if
E�W logW� < E�logN�r��, and Z�r� = 0 almost surely otherwise; when the
condition is satisfied, E��Z�r��2� < ∞ if and only if E��N�r��2� < ∞ and
EW2 < m�r�. Therefore, if E�W2� < ∞ and if (A1) holds, then EZ�r� = 1
and E��Z�r��2� <∞ for all r large enough, remarking that the condition (A1)
implies m�r� → ∞.
The following theorem deals with the convergence in L2 and the central

limit theorem. For a random variable X, we denote by Var X its variance.

Theorem 7.1. Assume (A1) and σ20 �= EW2 − 1 <∞.

(i) For all r large enough,

�7�1� Var Z�r� =
[
σ20
m�r� +

σ�r�2
m�r�2

] [
1− σ

2
0 + 1
m�r�

]−1
�

Consequently, as r→ ∞, Z�r� → 1 in L2 if and only if

�7�2� σ�r�/m�r� → 0�

(ii) Assume (A2), (7.2) and that

�7�3� lim
r→∞σ

2�r�/m�r� = a2

for some a ∈ �0�∞�. Then as r→ ∞,√
m�r�√
a2 + σ20

�Z�r� − 1� converges in law to the normal law � �0�1��

Proof. (i) Let r be sufficiently large such that EZ�r� = 1 and E��Z�r��2� <
∞. From the fundamental equation �Ẽ�, by a similar argument as in the proof
of Theorem 3.1, we get,

�7�4� E��Z�r��2� = E�N�r�2� −m�r�
m�r�2 −m�r�EW2

�

from which (7.1) holds.
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(ii) For all real t, put

ur = ur�t� �=
[
E exp

(
it√
m�r�σ0

�WZ�r� − 1�
)]m�r�

�

From equation �Ẽ� and the usual decomposition,
�7�5�
E exp

(
it
√
m�r�
σ0

�Z�r� − 1�
)
= E

[
u
N�r�
m�r�
r exp

(
it√
m�r�σ0

�N�r� −m�r��
)]
�

Since m�r� → ∞ and Z�r� → 1 in L2, a similar argument as in the proof of
Theorem 1.2 shows that for all ε > 0,

�7�6� lim
r→∞

1

E�W2�E��Z�r��2�� − 1

∫
Ãr

�W1Z
�r�
1 − 1�2dP = 0�

where Ãr = � �W1Z
�r�
1 − 1� ≥ ε

√
m�r��E�W2�E��Z�r��2� − 1� �. We claim that

(7.6) implies that for all real t,

�7�7� ur → u �= exp
(
−t

2

2

)
�

In fact, if m�r� are integers for all r, then (7.6) simply says that

Xr�1 + · · · +Xr�m�r�
s�r� converges in law to � �0�1��

where for each r, �Xr�i � i ≥ 1� are independent random variables, each dis-
tributed asW1Z

�r�
1 −1, and s�r�2 =m�r�E��W1Z

�r�
1 −1�2�, so that (7.7) follows

from (7.6) by Lindeberg’s theorem [(7.6) is the Lindeberg condition]. In the
general case where m�r� are not necessarily integers, (7.7) also follows from
(7.6), using the Fourier method of the proof of Lindeberg’s theorem; see Feller
(1971), Chapter XV.6, proof of Theorem 1. Note that by (7.2), N�r�/m�r� → 1
in L2, in probability. So that, by Assumption (A2),(

N�r�

m�r� �
1√
m�r��N

�r� −m�r��
)

converges in law to δ1 ⊗� �0� a2��

which implies

�7�8� Eu
N�r�
m�r� exp

{
it√
m�r�σ0

�N�r� −m�r��
}
→ u exp

(
−a

2t2

2σ20

)
�

Let �rn� be any sequence with rn → ∞, and let �r′n� be a subsequence such
that N�r′n�/m�r′n� → 1 almost surely. By the dominated convergence theorem,

u
N�r′n�
m�r′n�
r − u

N�r′n�
m�r′n� → 0 in L1�
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Since the sequence �rn� is arbitrary, this implies that (for all fixed t)

�7�9� u
N�r�
m�r�
r − uN�r�

m�r� → 0 in L1�

Therefore the difference of the right side of (7.5) and the left side of (7.8) tends
to 0, so that by (7.8), the right side of (7.5) tends to

u exp

(
−a

2t2

2σ20

)
= exp

(
−�σ20 + a2�t2

2σ20

)
�

The last statement means that√
m�r�
σ0

�Z�r� − 1� converges in law to �

(
0�
σ20 + a2
σ20

)
�

which ends the proof of Theorem 7.1. ✷

We now give a large deviations result. In Section 6, the key tool was the
function ��t� = logEetW. Here the same role is played by

�̃�t� �= λ���t���
With our assumptions, �̃ is defined on �−∞�0�, convex, continuously differen-
tiable on �−∞�0� and satisfies �̃�0� = 0 and �̃′

−�0� = 1. Define

�7�10� n �= λ′�−∞� ≥ 0 and w̃ �= w n�
Then �̃′�−∞� = w̃. Notice that for all t ≤ 0 and all r, λr�t� ≥ t by Jensen’s
inequality, so that λ�t� ≥ t. Therefore n = limt→−∞ λ�t�/t ≤ 1, 0 ≤ w̃ < 1. Let

�̃∗�x� = sup�tx− �̃�t�� t ≤ 0��
Then 0 ≤ �̃∗�x� ≤ �∗�x� for all x ∈ �0�1�, and in particular �̃∗�1� = 0�

Theorem 7.2. Assume (A1), (A3), EW2 <∞ and (7.2).

(a) If w̃ = 0, then for any x ∈ �0�1�

�7�11� lim
r→∞

− logP�Z�r� ≤ x�
m�r� = �̃∗�x��

(b) if w̃ > 0, then for any k ≥ 0 and any x ∈ �w̃k+1� w̃k�,

�7�12� lim
r→∞

− logP�Z�r� ≤ x�
m�r�k+1 = nk�̃∗�xw̃−k��

Proof. We follow the same line as in the proof of Theorem 1.4 (a) with
similar notation. For k = 0�1� � � � � put

�̃
�r�
k �t� �= 1

m�r�k+1 logE exp�tm�r�k+1Z�r���
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It suffices to prove that

�7�13� lim
r→∞ �̃

�r�
0 �t� = �̃�t�� t < 0�

and, if w > 0, then

�7�14� lim
r→∞ �̃

�r�
k �t� = nk�̃�twk�� t < 0� k = 0�1� � � � �

In fact, for internal points, (7.11) and (7.12) follow from (7.13) and (7.14), by
Proposition (6.1); for x = w̃k > 0, (7.12) also holds by a similar argument as
in the proof of (1.4b).
Now from �Ẽ′�, we have, for all t < 0,

�7�15� �̃
�r�
0 �t� = λr�sr� where sr = logE exp�tWZ�r���

By Theorem 7.1(i), Z�r� → 1 in probability, so that sr → ��t� by the dominated
convergence theorem; therefore (7.13) follows from (7.15) and the uniform con-
vergence of λr.
It remains to prove (7.14). Assume w̃ > 0. If k = 0, then (7.14) reduces to

(7.13), so that it holds. Assume that it holds for some k ≥ 0, we shall prove
that it also holds for k+ 1. In fact, again by equation �Ẽ′�,

�7�16� �̃
�r�
k+1�t� =

1
m�r�k+1λr

(
logE exp�m�r�k+1�̃�r�

k �tW��)�
Therefore, for all t < 0,

�7�17� �̃
�r�
k+1�t� ≤

1
m�r�k+1λr�tr��

where tr = m�r�k+1�̃�r�
k �tw�� By the induction hypothesis, lim �̃�r�

k �tw� =
nk�̃�twk+1�. Since �̃ is convex and satisfies �̃�0� = 0 and �̃′

−�0� = 1, we
have �̃�s� < 0 for s < 0, and consequently tr → −∞ as r → +∞. By the
uniform convergence of λr�t�, we have

�λr�tr� − λ�tr�� ≤ sup
t≤0

�λr�t� − λ�t�� → 0�

so that

�7�18� lim
λr�tr�
tr

= lim
λ�tr�
tr

= n�

Therefore (7.17) implies that

lim sup
r→∞

�̃
�r�
k+1�t� ≤ lim

λr�tr�
tr

lim �̃�r�
k �tw� = nk+1�̃�twk+1��



236 Q. LIU AND A. ROUAULT

The opposite inequality lim inf r→∞ �̃
�r�
k+1�t� ≥ nk+1�̃�twk+1� follows from a sim-

ilar argument, remarking that for all ε > 0,

�̃
�r�
k+1�t� ≥

1
rk+1

λr
(
logE

[
1W<w+ε exp · · ·

])
≥ 1
rk+1

λr�t′r��

where

t′r = logP�W < w+ ε� + rk+1�̃�r�
k �t�w+ ε���

Hence by induction we have proved that (7.14) holds for all k = 0�1� � � � and
the proof is complete. ✷

APPENDIX: PROOF OF THEOREM 6.1

Proof of the upper bound (a). The classical exponential inequality yields
that for any u ∈ �0� t0� and any x ∈ �,

νr��x�+∞�� ≤
∫
exp�uar�ξ − x��dνr�ξ��

Taking logarithm and letting r→ ∞, we see that

lim sup
1
ar

log νr��x�+∞�� ≤ −�ux− l�u���

Since u ∈ �0� t0� is arbitrary, it gives the upper bound −l∗�x�. Now, l′+�0� =
lim l�u�/u, so that for x > l′+�0� there exists u0 ∈ �0� t0� such that l�u0�/u0 < x.
This yields l∗�x� ≥ u0x− l�u0� > 0� which ends the proof of part (a).

Proof of the lower bound (b). For t ∈ �0� t0�, we define the new distri-
butions:

dνtr�ξ� = exp�tarξ − arlr�t��dνr�ξ��
For every y and z > y we have

νr��y�+∞�� =
∫
�y�+∞�

exp�−tarξ + arlr�t��dνtr�ξ�

≥
∫
�y�z�

exp�−tarz+ arlr�t��dνtr�ξ��

so that

�i� 1
ar

log νr��y�+∞�� ≥ −tz+ lr�t� +
1
ar

log νtr��y� z���
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To obtain a lower bound of the last term in the right side of (i), we start with
the identity

�ii� νtr��y� z�� = 1− νtr��−∞� y�� − νtr��z�+∞���
By the definition of νtr, its normalized cumulant generating function is

Ltr�s� =
1
ar

log
∫
exp�sarξ�dνtr�ξ� = lr�t+ s� − lr�t��

so that for every s ∈ �−t� t0 − t�,
Ltr�s� → l�t+ s� − l�t� =� Lt�s�� r→ ∞�

Notice that as r→∞, the normalized cumulant generating function of dνtr�−ξ�
converges to Lt�−s� for s ∈ �0� t�, whose right derivative at 0 is equal to
−�Lt�′−�0� = −l′−�t�; similarly, the normalized cumulant generating function
of dνtr�ξ� converges to Lt�s� for s ∈ �0� t0 − t�, whose right derivative at 0 is
equal to �Lt�′+�0� = l′+�t�. Therefore, applying part (a) to the measures dνtr�−ξ�
and to dνtr�ξ�, we see that if y < l′−�t� and z > l′+�t�, then

lim sup
1
ar

log νtr��−∞� y�� < 0�

lim sup
1
ar

log νtr��z�+∞�� < 0�

so that, from (ii),

lim inf
1
ar

log νtr��y� z�� ≥ 0�

Consequently, by (i), for all t� y� z satisfying t0 > t > 0 and y < l′−�t� ≤ l′+�t�
< z,

lim inf
1
ar

log νr��y�+∞�� ≥ −tz+ l�t��

If l is differentiable at t, then letting z→ l′�t� gives

�iii� lim inf
1
ar

log νr��y�+∞�� ≥ −tl′�t� + l�t��

Since the right side is just −l∗�l′�t��, the proof of part (b) is complete.

Proof of part (c). Fix x ∈ �l′+�0�� l′−�t0��. In view of a), it suffices to prove
that

�iv� lim inf
1
ar

log νr��x�+∞�� ≥ −l∗�x��
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Since l is continuously differentiable on �0�∞�, and l′ non decreasing,

� �= int �y � y = l′�t�� t > 0� = �l′+�0�� l′−�t0���

Therefore by part (b), for all h > 0 such that x+ h ∈ � ,

lim inf
1
ar

log νr��x�+∞�� ≥ lim inf
1
ar

log νr��x�+∞�� ≥ −l∗�x+ h��

Since l∗ is convex, it is continuous on � , so that, letting h → 0 in the last
inequality gives (iv), which completes the proof of the theorem. ✷
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51–80. Birkhäuser, Boston.
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