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DISCRETE-REVIEW POLICIES FOR SCHEDULING STOCHASTIC
NETWORKS: TRAJECTORY TRACKING AND FLUID-SCALE
ASYMPTOTIC OPTIMALITY
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Columbia University

This paper describes a general approach for dynamic control of
stochastic networks based on fluid model analysis, where in broad terms,
the stochastic network is approximated by its fluid analog, an associated
fluid control problem is solved and, finally, a scheduling rule for the
original system is defined by interpreting the fluid control policy.

The main contribution of this paper is to propose a general mechanism
for translating the solution of the fluid optimal control problem into an
implementable discrete-review policy that achieves asymptotically optimal
performance under fluid scaling, and guarantees stability if the traffic in-
tensity is less than one at each station. The proposed policy reviews system
status at discrete points in time, and at each such point the controller for-
mulates a processing plan for the next review period, based on the queue
length vector observed, using the optimal control policy of the associated
fluid optimization problem. Implementation of such a policy involves en-
forcement of certain safety stock requirements in order to facilitate the
execution of the processing plans and to avoid unplanned server idleness.

Finally, putting aside all considerations of system optimality, the follow-
ing generalization is considered: every initial condition is associated with a
feasible fluid trajectory that describes the desired system evolution start-
ing at that point. A discrete-review policy is described that asymptotically
tracks this target specification; that is, it achieves the appropriate target
trajectory as its fluid limit.

1. Introduction. Today’s communication, computer and manufacturing
industries offer many examples of technological systems in which “units of
work” visit a number of different “servers” in the course of their processing,
and in which the workflow is subject to stochastic variability. In this paper
such processing systems are modeled as open multiclass queueing networks.
These are networks populated by many job classes that may differ in their
arrival processes, service requirements, and routes through the network, and
there is a many-to-one relation between job classes and servers. The system
controller has discretion as to the sequencing of jobs of the various classes at
each server, and a rule according to which these decisions are made is called a
scheduling policy. For this class of processing networks we study the problem
of finding an admissible policy which is optimal or near-optimal under a given
performance metric.
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Dynamic control problems for stochastic processing networks are both an-
alytically and computationally hard. While most often one relies on the use of
heuristics that are validated through simulation studies, one approach that
has emerged from research over the past ten to fifteen years is based on a
hierarchy of approximate models that provide tractable “relaxations” of these
problems as a framework for analysis and synthesis. In particular, the ana-
Iytical theory associated with fluid approximations has produced important
insights in understanding how the performance of a multiclass network de-
pends on different design and control parameters. This is our starting point.
Specifically, the approach taken here is based on approximating (or replacing)
the stochastic network by its fluid analog (this is a model with determin-
istic and continuous dynamics), solving an associated fluid optimal control
problem and then using the derived fluid control policy in order to define an
implementable rule for the stochastic network. This procedure is summarized
below.

1. Consider a dynamic control problem for the original stochastic network.

2. Form fluid analog of stochastic network and solve the associated fluid op-
timal control problem.

3. Translate/implement the optimal fluid control in original stochastic net-
work.

4. Consider fluid limit of stochastic network under implemented policy.

5. Verify fluid-scale asymptotic optimality and stability.

Stages 1 to 3 are clear. Stages 4 and 5 describe a criterion for performance
analysis under the implemented policy that is consistent with the model ap-
proximation adopted at stage 2 in the following sense: the implementation is
tested for asymptotic optimality in the limiting regime where the model ap-
proximation is valid. This criterion is referred to as fluid-scale asymptotic
optimality (FSAO). To be more precise, fluid limits are derived through a
functional strong law of large numbers (FSLLN) type of scaling, where one
observes the system behavior starting from a large initial condition over a
proportionally long time horizon, which essentially yields a deterministic tran-
sient response model. Thus, the proposed criterion tests whether in the fluid
limit regime the system’s limiting performance achieves that of the optimal
fluid (transient) response that was used in stage 3 in designing the policy un-
der investigation. This is a “minimal” requirement for the implemented policy.
In comparison to the original problem at hand, it provides a relaxed notion of
(transient) optimality that appears to be simpler and one that hopefully could
be achieved even for a general collection of multiclass networks. Finally, apart
from FSAO, we also require that the original stochastic network is stable un-
der the implemented policy provided that the traffic intensity parameter at
each station is less than one; roughly speaking, stability implies that queue
lengths stay finite and that an appropriately defined underlying Markov chain
is positive Harris recurrent. Later on, we will show that for reasonable cost cri-
teria (such as convex, increasing cost rate functions over long time horizons),
FSAO will imply stability.
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The main issue that arises within this policy design framework, and one
that has yet to be broached in the existing literature, is in finding a mecha-
nism to translate the solution of the associated fluid optimal control problem
into an implementable control policy in the stochastic network in a way that
guarantees the criteria described above. The main contribution of this paper is
to describe and analyze a family of discrete-review (DR) policies that provide
the first general translation mechanism that guarantees fluid-scale asymp-
totic optimality and stability. In passing, we will give a precise mathematical
articulation of the fluid-scale asymptotic optimality criterion. Our second con-
tribution is in generalizing this approach to a family of trajectory tracking
discrete-review policies. Our primitive fluid control policy is now defined by
specifying a feasible fluid trajectory that describes a desired evolution for the
queue length process starting at every initial condition. A tracking DR policy
will be described that asymptotically under fluid scaling (i.e., as the backlog
and the system observation time increase according to a LLN type of scaling)
achieves the appropriate target trajectory as its fluid limit. This asymptotic
tracking criterion is similar to that of FSAO, and later we will see how the
latter can be recovered from the former for a special choice of target trajec-
tories. The generalization to tracking policies has some important practical
implications. Target trajectory specifications can now be derived through sim-
pler or alternative methodologies that avoid any explicit optimization in the
fluid model which, although vastly simpler than the original problem at hand,
can still be prohibitive, especially for on-line applications where the “think-
ing” time allowed is limited. The idea of trajectory tracking apart from being
intuitively appealing, it borrows from a very extensive literature in the area of
control theory; there, control policies are designed in order to be able to track
a reference signal (the queue length trajectory in our case), which, in turn, is
dynamically adjusted as a function of the current state.

The focus on fluid approximations is primarily motivated by recent devel-
opments in the area of stability analysis of stochastic networks via fluid model
analysis. The important breakthrough in this area was the theory developed by
Dai (1995a); see also Chen and Mandelbaum (1991), Rybko and Stolyar (1992),
Dai and Meyn (1995), Dai and Weiss (1996), Chen (1995), Stolyar (1995) and
Bramson (1998a) for further discussions, refinements and improvements. Si-
multaneously, there has been a growing interest in using fluid models in a
synthesis framework such as the one described here. Early eamples can be
found in Chen and Yao (1993), Atkins and Chen (1995), Avram, Bertsimas and
Ricard (1995) and Eng, Humphrey and Meyn (1996), where several heuristics
based on fluid model optimization were described; in fact, related work can be
traced back to Newell (1971).

The papers closest to our work are Meyn (1997b) and Chen and Meyn
(1998), where the authors study connections between the optimal policies for
the stochastic network and its associated fluid model. Their analytical results
are presented in the context of trying to solve directly the stochastic con-
trol problem (for the case of Poisson arrivals and exponential service times)
by first approximating the optimal value function with the one derived from
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the solution of the fluid optimization problem, and then using value or pol-
icy iteration. In a related paper, Meyn (1997a) first proposed the fluid-scale
asymptotic optimality criterion, and showed that the optimal behavior of the
stochastic network starting from a large initial condition and over a propor-
tionally long horizon approaches the optimal behavior in the fluid model. In
particular, this suggests that the slope of the switching halfspaces of the fluid
model equals the slope of the corresponding (nonlinear) switching surfaces of
the stochstic system. Following this insight, Meyn (1997b) suggested schedul-
ing policies for the stochastic network based on the switching halfspaces of
the fluid model shifted away from the origin by some constant vector—an
“affine shift.” Finally, recent related results for the case of job shop schedul-
ing problems (with no arrivals and a transient or makespan cost criterion)
can be found in Bertsimas, Gamarnik and Sethuraman (1999) and Dai and
Weiss (1999).

Apart from the connections related to stability analysis, the use of fluid mod-
els is also motivated from the extensive theory on optimal control for deter-
ministic systems with continuous dynamics [see, e.g., the books by Athans and
Falb (1966), Bryson and Ho (1975) and Bertsekas (1995)], and from the vast
computational simplifications they offer that have been exploited in developing
efficient optimization algorithms for their solutions [see Pullan (1993, 1995,
1996)], Weiss (1996, 1997, 1999), Luo and Bertsimas (1996) and Maglaras
(1997)]. Moreover, apart from Meyn’s structural results, there are other ex-
amples that illustrate that the solution of the fluid optimal control problem
retains significant information about the solution of the original stochastic net-
work control problem. The cu rule for example, has been shown to be optimal
for both the underlying stochastic networks and their associated fluid models;
see Chen and Yao (1993), Bertsimas, Paschalidis and Tsitsiklis (1995). In the
spirit of positive results like these, the premise of the fluid model approach
to network control problems is that although we are using a “weak” (FSAO)
criterion for what constitutes a “good” control policy, this relaxed notion of
optimality will guide us in designing “near-optimal” policies for the original
stochastic network control problems.

However, despite the simple structure of fluid models and the apparently
modest objective of FSAQO, the meaning of the fluid policy in the original net-
work is subtle. This will be demonstrated in the next section through the
analysis of the so-called Rybko—Stolyar network, where, although the asso-
ciated fluid optimization problem is “trivial,” each of three “obvious” inter-
pretations in the stochastic network is “wrong.” In fact, given the solution of
the associated fluid optimal control problem, its translation into an imple-
mentable policy for the stochastic network is surprisingly difficult due to the
finer structure of the original network model. A similar example was described
in Meyn [(1997Db), Section 7]. A few simple networks have been analyzed in
the papers cited above, but no general mechanism has been constructed that
guarantees fluid-scale asymptotic optimality, or even stability, for the policy
extracted from the fluid solution. The same translation problem has been ob-
served in the context of the heavy-traffic approach to network control prob-



DISCRETE-REVIEW TRACKING POLICIES 901

lems. There one follows a similar synthesis procedure based on Brownian
approximating models and diffusion scale asymptotic analysis as the traffic
intensity at each station approaches 1; see Harrison (1988, 1996a), Harrison
and Wein (1989, 1990), Kelly and Laws (1993), Williams (1996), Kushner and
Martins (1996).

The first general translation mechanism was proposed by Harrison (1996a)
in his BIGSTEP approach to dynamic control for stochastic networks; this
was done in the context of Brownian approximations and heavy-traffic limits
mentioned above. Harrison (1998) rigorously proved that BIGSTEP is asymp-
totically optimal (in the heavy-traffic sense) for a simple two-station network.
The family of policies described in this paper is an extension, or generaliza-
tion, of BIGSTEP that hinges on the discrete-review structure proposed by
Harrison. Each DR policy in the family to be investigated will be derived from
a target trajectory specification, one example being the solution of a fluid op-
timal control problem. In such a policy, system status is reviewed at discrete
points in time, and at each such point the controller formulates a processing
plan for the next review period in order to best track what the fluid control
policy would do starting at that point. Within each period the system is only
allowed to process jobs that were present upon the review point, which ren-
ders the execution of processing decisions very simple. Implementation of this
policy involves enforcement of certain safety stock requirements in order to
avoid unplanned server idleness. Review periods and magnitudes of safety
stocks increase as queues lengthen, but both grow less-than-linearly as func-
tions of queue length and hence are negligible under fluid scaling. This idea of
safety stocks was originally described by Kelly and Laws [(1993), Section 2] in
the context of a simple example and then in general form by Harrison (1996).
It is also related to the affine shifts proposed by Meyn (1997b).

The rest of the paper is structured as follows. Section 2 analyzes a sim-
ple two-station network that should help motivate the general problem being
addressed. Section 3 describes open multiclass queueing networks, their asso-
ciated fluid models and the family of target trajectories to be considered. The
family of discrete-review polices under investigation is defined in Section 4,
and their associated fluid model is derived in Section 5. Section 6 discusses
fluid optimal control problems, defines fluid-scale asymptotic optimality and
describes a discrete-review policy that is FSAO and stable. Finally, Section 7
contains some concluding remarks.

2. A motivating example. The simple network shown in Figure 1, stud-
ied independently by Kumar and Seidman (1990) and Rybko and Stolyar
(1992), will help illustrate some of the relevant issues to be addressed in this
paper. In Figure 1 the open-ended rectangles represent buffers in which four
distinct job classes reside: classes 1 and 4 are processed by server 1, while
classes 2 and 3 are processed by server 2; there is a renewal input flow with
average arrival rate A; at buffer 1 and another renewal input flow with ar-
rival rate A3 into buffer 3; finally, service times for each job class % are drawn
according to some probability distribution with mean 1/u;. For illustrative



902 C. MAGLARAS

SR I S 5 N E—
1 2

Fic. 1. The Rybko-Stolyar network.

purposes we shall consider the following specific numerical data:
(21) )\1 = /\3 = 1, M1 = Mg = 6 and Mo = Uy = 1.5.

Control capability in this network is with regard to sequencing decisions be-
tween classes 1 and 4 at server 1 and classes 2 and 3 at server 2. Note that the
two job classes waiting to be processed at each server differ in their service
requirements and routes through the network. Now suppose we wish to find
a scheduling policy 7 that minimizes

T 4
(2.2) J;(z):Eg/O S Qu(t) dt,
k=1

where @,(¢) is the class & queue length at time ¢, and E7 denotes the ex-
pectation operator with respect to the probability measure P7 defined by any
admissible policy 7 and initial condition z.

Following the procedure outlined in the introduction, we proceed by form-
ing the associated fluid model. Fluid models are deterministic and continuous-
dynamics approximations of the underlying stochastic networks. Discrete jobs
moving stochastically through different queues are replaced by continuous flu-
ids flowing through different buffers, and system evolution is observed starting
from any initial state. The deterministic rates at which the different fluids flow
through the system are given by the average rates of corresponding stochastic
quantities. Specifically, for the Rybko—Stolyar network the fluid model equa-
tions are as follows. Denoting by 7,(¢) the instantaneous fraction of effort
devoted to serving class % jobs at time ¢ by the associated server, and by @ ()

the amount of fluid in buffer % at time ¢, and defining vector functions T(t)
and Q(¢) in the obvious way, one has

(2.3) Q(t)=A—RT(®), Q0)=z,
24) T(t)=0, Ty&)+T t)<1, Tyt)+Ts(t)<1, Q(t)=>0,

where
)\1 [.Ll 0 O 0
_10 _| M1 M2 O 0
A=l B=l o 0 w0

0 0 0 —u3 py
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(More details on the derivation of these equations will be given in Section 3.)

The associated fluid optimal control problem will be to choose a control T(')
for this fluid model that minimizes

_ T 4 _
(2.5) Jr(2) = /0 Y Qu(t)dt,
k=1

for some fixed T' > 0. The corresponding value function will be denoted by
Vi(2).

It can be shown that the optimal control for the fluid model is to give priority
at each server to the job class that is closer to exiting the system with server
splitting whenever an exiting class is emptied at the other server. That is,
each server has responsibility for one incoming buffer and one exit buffer; the
exit buffer is given priority unless the other server’s exit buffer is empty, in
which case server splitting occurs. For an explanation of the latter situation,
let us focus on the behavior of server 1 when buffer 2 (the exit buffer for
server 2) is empty and buffer 1 is nonempty. In that circumstance, given the
data in (2.1), server 1 devotes 25% of its effort to buffer 1 (its own incoming
buffer) so that server 2 can remain fully occupied with class 2 jobs, and devotes
the other 75% of its effort to draining buffer 4 (its own exit buffer). This
policy is myopic in the sense that it removes fluid from the system at the
fastest possible instantaneous rate, regardless of future considerations, and it
is optimal regardless of the horizon length T'.

Given the solution to the fluid optimization problem, which has the struc-
ture of a static priority rule together with some “boundary modifications,” we
now seek to translate the derived policy back into the original stochastic net-
work. The following natural alternatives arise.

LBFS. The simplest candidate policy is to use the static priority rule that
emerges from the optimal fluid control law, which gives priority to exiting
classes in each server; this is also known as Last-Buffer-First-Served (LBFS).
As was demonstrated by Lu and Kumar (1991) for the deterministic case and
later by Rybko and Stolyar (1992) for the stochastic case, this policy will be
unstable for the system parameters specified in (2.1), despite the fact that the
nominal utilization rate (or traffic intensity parameter) for each server is equal
to 0.833. That is, the static priorities derived from the optimal fluid control
policy by neglecting “boundary behavior” have catastrophic performance: they
cause instability!

LBFS with priority reversal (LBFS/PR). Here each server uses LBFS as its
“default,” but switches to the opposite priority when the other server’s exit
buffer is empty. This policy is stable, but its asymptotic performance is not
satisfactory, as will be explained below.

LBFS with server splitting (LBFS/SS). Here we implement exactly the op-
timal policy derived form the fluid model, splitting server effort in the per-
centages prescribed by the fluid optimal control policy. Whenever one of the
queue lengths is empty, any positive server utilization predicted by the op-
timal fluid control policy for this class will not be implementable due to the
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discrete dynamics of the stochastic network. In such cases, this percentage of
server utilization will be reallocated to the other class waiting to be processed
at that server, if this is nonempty. For example, when q = (0, 0, +, +) the opti-
mal server allocation from the fluid control problem is (0.25, 1, 0, 0.75), yet the
implemented server allocation in the stochastic network will be (0,0, 1, 1); a
“4+” denotes positive buffer content. Again, this policy is stable, but its asymp-
totic performance is not satisfactory.

Using any one of the control policies just described, it is natural to con-
sider system behavior under a sequence of initial conditions {z"}, such that
|z"| = oo as n — oo, keeping all other system parameters fixed. Consider,
for example, the case where z" = n[1,0, 0.5, 1]. Denoting by @"(-) the four-
dimensional queue length process with initial state @"(0) = 2", we define the
fluid scaled version,

(2.6) Q"(t) = @ 0<¢t<T,

and ask whether Q" converges to a limit trajectory as n — oo that is optimal
in the fluid model. [Due to the LLN type of scaling in (2.6), one expects a
deterministic limit to be approached.] Essentially, we are testing whether the
system behavior under one of the implemented policies approaches (as n grows
and the stochastic problem approaches one of fluid, or transient, optimization)
the optimal performance that one started with.

For both LBFS/PR and LBFS/SS, the scaled processes Q" do converge to
a deterministic limit as n» — oo, but that limit does not coincide with the
optimal fluid trajectory. That is, although these policies may be intended as
implementations of the optimal fluid control policy, they do not in fact achieve
as their fluid limits a trajectory that is optimal in the fluid model. In detail,
both LBFS/PR and LBFS/SS will introduce undesirable idling periods at server
2 while waiting for new class 1 jobs to complete service at station 1. This
behavior will not change as n grows, since queue 2 will always have either
one or no jobs waiting, and this will lead to the suboptimal behavior claimed
above. Both policies fail because the servers are too slow in switching from
myopically draining cost out of the system to guarding against idleness that
will prevent optimal cost draining in future times. Following this argument
one would expect that performance under LBFS/SS will be worse than that
under LBFS/PR, which is indeed correct.

The main observation that emerges from the analysis of this example is
that undesirable system behavior is observed when one or more of the buffers
get depleted. In these instances, the idealizations embodied in the fluid ap-
proximating model, especially regarding the continuous versus discrete nature
of the dynamics and the deterministic versus stochastic flows, become unre-
alistic, and the stochastic network can no longer track the target trajectory
derived using the fluid model. To guard against such undesirable effects one
needs to be cautious about the behavior of the system close to the boundaries.
For example, in the Rybko—Stolyar network one just needs to switch priori-
ties when the content of the exit buffer falls below a certain threshold (the
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magnitude of which will be characterized later) in order to achieve asymptotic
optimality; this is in contrast to switching priorities when the buffer content
gets depleted. (This is related to the discussion in Meyn [(1997b), Section 7].)
However, in more complex networks where intuition can be limited, this policy
translation step can be very subtle; successful translation involves relatively
fine structure. The remainder of this paper describes a general and easily
implementable solution to this problem.

3. Network models.

Open multiclass queueing networks. In the description of a multiclass
queueing network we adopt the set-up introduced by Harrison (1988). Con-
sider a queueing network of s1ngle server stations indexed by i = 1,...,S.
(The terms “station” and “server” will be used 1nterchangeably) The network
is populated by job classes indexed by 2 = 1,..., K and infinite capacity
buffers are associated with each class of jobs. Class % jobs are served by a
unique station s(k) and their service times are {7,(n); n > 1}. That is, the
nth class % job requires 7,(n) time units of service from station s(k). Jobs
within a class are served on First-In-First-Out (FIFO) basis. Upon completion
of service at station s(%), a class % job becomes a job of class m with proba-
bility P;,, and exits the network with probability 1 — >, P,,., independent
of all previous history. Assume that the general routing matrix P = [P, ]
is transient (that is, I + P 4+ P? + - - - is convergent). Let {¢*(n)} denote the
sequence of K-dimensional iid Bernoulli random vectors such that d)lj-(n) =1
if upon service completion the nth class % job becomes a class j job and is
zero otherwise, and let ®*(n) = >"_; $*(j). Every job class k can have its
own exogenous arrival process with interarrival times {£,(n), n > 1}. The set
of classes that have a nonnull exogenous arrival process will be denoted by
& and the notation E(¢) will denote the K-dimensional vector of exogenous
arrivals in the time interval [0, ¢]. It is assumed that & # &.

The processes (&, n) should satisfy the following distributional assump-
tions: (i) &4, ..., éx and 74, ..., ng are mutually independent, positive, iid se-
quences; (ii) E[1,(1)] #0 for k=1, ..., K. For some 6 > 0, E[exp 0n;(1)] <
oo fork =1,...,K and E[exp6¢,(1)] < oo for £ € & and (iii) For any
x>0, ke &, P{£(1) = x} > 0. Also, for some positive function p(x) on R,
with [;° p(x)dx > 0, and some integer j;, P{Y72; é,(i) € dx} > p(x)dx.
Condition (ii) is stronger than the first moment condition usually imposed
[e.g., Dai (1995a)], and it is needed in the derivation of large deviation bounds
required in our analysis; (ii) is satisfied by {¢*(n)}. For purposes of proving
asymptotic optimality one needs to ensure that the processes (¢, 1, ¢) satisfy
a SLLN, and thus, the iid assumption could be relaxed. However, in order to
make use of the general stability theory of Dai (1995a) [see also Dai and Meyn
(1995)] we impose (i) as well as the technical conditions in (iii); the latter are
never invoked in propositions that are actually proved in this work.

For future reference, let A, = 1/E[£,(1)] and p, = 1/ E[1,(1)] = 1/m;, be
the arrival and service rates, respectively, for class % jobs,let A = (A4, ..., Ag),
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and let M = diag{m;, ..., mg}; the ' denotes a transpose. The set {k: s(k) =
i}, denoted C,, is called the constituency of the server i, while the S x K
constituency matrix C will be the following incidence matrix:

oo |1 st =i,
ik =10, otherwise.

Given the Markovian routing structure of these networks and the tran-
sience of P, one can compute the vector of effective arrival rates, « = (I —
P’)~1), and the vector of traffic intensities p = CR™!A, where R = (I- P )M !
and p; denotes the nominal load (or utilization level) for server i. Hereafter,
it will be assumed that « > 0.

Note. 'This will help simplify the policy description of Section 4, where class
level safety stock requirements will be imposed, and job classes that could
start empty and have zero effective arrival rates would have to be treated
differently otherwise. This restriction could easily be relaxed. Note that the
case where some or all of the classes have no effective arrivals could be of
practical interest in the context of transient control. The purely static case,
where A = a = 0, is addressed by Bertsimas, Gamarnik and Sethuraman
(1999) and Dai and Weiss (1999).

Denote by @, (t) the total number of class % jobs in the system at time ¢, and
by Q(t) the corresponding K-vector of “queue lengths.” A generic value of Q(t)
will be denoted by g, and the size of this vector is defined as |g| = >, qz. A
scheduling policy is a rule for making server allocation decisions over time. It
takes the form of a K-dimensional cumulative allocation process {77 (¢), ¢ >
0; T¥(0) = 0}, where T7(t) denotes the time allocated by server s(k) into
serving class k jobs up to time ¢, and the superscript “y” denotes the depen-
dence on the initial condition that may include additional information apart
from the initial queue length configuration in the system. The cumulative al-
location process should be nondecreasing, 7%(0) = 0, CT”(¢) < t1 (where 1
denotes the vector of ones of appropriate dimension), and finally it must be
nonanticipating; the last restriction implies that current allocations only de-
pend on information available up to time ¢. Each server can only process one
job at a time.

Given any admissible scheduling policy, a Markovian state descriptor can
be constructed and an underlying Markov chain can be identified for the con-
trolled network. The Markovian state at time ¢ will be denoted by Y (¢) and
the corresponding normed state space will be (Y, || - ||); see the comments by
Dai and Meyn [(1995), Section IIb] or Bramson [(1998a), Section 3] regarding
the choice of | - ||. In the next section, a Markov chain will be constructed for
the family of DR policies under investigation. Other examples can be found in
Dai (1995a).

Fluid models. The fluid models associated with multiclass queueing net-
works are deterministic and have continuous dynamics. They are formally
derived through a FSLLN type of scaling, where the network processes are
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studied starting from large initial conditions and observed over a proportion-
ally long time horizon. In more detail, one considers a sequence of initial
conditions {y"} C Y such that |y"|| - oo as n — oo. For any real valued
process {f”(¢), ¢t > 0} that is right continuous with left limits, its fluid scaled
counterpart is defined by

1
Ly

Applying this scaling on the queue length and cumulative allocation processes,
Dai [(1995a), Theorem 4.1] showed that, provided that o does not belong to
an exceptional set of measure zero, there exists a subsequence {y"/(w)} such
that (Q?" (-, w), T”" (-, w)) = (Q(:, ®), T(-, »)) w.o.c. as j — oo, and the pair
(Q(-, w), T(-, w)) satisfies equations

(3.2) Q(t) = Q(0) + At — (I — PYM'T(¢),
(3.3) Qt)=0, CT{t)<1l, T@)>0 fort>0,

(3.1) fr(t) = Uy 1.

together with some additional conditions specific to the scheduling policy em-
ployed. Fluid limits depend on w through the converging subsequence {y"/}
and the limiting initial condition. They are neither deterministic nor unique,
but their dynamics are captured by the deterministic and continuous equa-
tions of evolution (3.2) and (3.3). Whenever possible, the dependence on » will
be suppressed from the notation. In the sequel, the overbar notation will sig-
nify fluid scaled quantities and a superscript n will be used to signify the scaled
processes corresponding to the initial condition y”. The use of the overbar no-
tation without any superscript will denote the fluid limit of the appropriate
variable; for example, 7(-) as the limit of 77().

Let R,(0) be the |&|-vector and R,(0) be the K-vector of residual times until
the first exogenous arrivals or service completions respectively. Equations (3.2)
and (3.3) are referred to as the undelayed fluid model, and they implicitely
assume that (R,’(0), R.’(0)) — (0,0) almost surely. The limit processes
(@, T) are Lipschitz continuous, and therefore, time derivatives (Q(¢), T(¢))
will exist a.e. [see Dai and Weiss (1996), Lemma 2.1]. Hence, for almost all
times ¢ > 0 the system dynamics can also be expressed in the differential form:
Q(t) = A — RT(t); this representation will be useful later on. We will say that
(Q,T) € FM, or equivalently that it is a fluid solution, if this pair of state
and input trajectories satisfy equations (3.2) and (3.3). Excellent expositions
of fluid models, their derivation, their properties, as well as a discussion of
delayed versus undelayed limits can be found in Dai (1995a, b) and Bramson
[(1998), Section 4].

Target trajectory specifications. Denote by Crx[0, o0) the space of con-

tinuous functions of a parameter ¢ € [0, c0) taking values on Rf and by
AC Rf[O, 00) the corresponding space of absolutely continuous functions. A

fluid trajectory {Q(t),¢t > 0} is feasible if there exists an (fluid) allocation
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process {T(t); t > 0} such that (@, T') satisfies (3.2) and (3.3), for all £ > 0. In
general, the set of feasible fluid trajectories starting from an initial condition
z, denoted by 2., is defined by

2, ={Q() € ACg«[0, 00): Q(0) = 2, 3T(?),

(3.4) _
t >0 suchthat (@, T) e FM}.

Define a fluid trajectory map ¥: R — AC rx[0, 00), that assigns to every
initial condition z a unique target ﬂuld traJectory {¥(¢;2), t > 0}, which is an
element in 2,. That is,

(3.5) V(;2)e 2, forall z>0.

V(-; 2) denotes the target trajectory starting at z, and W (¢; z) denotes the state
vector at time ¢ along this trajectory. The mapping ¥ is measurable in the
following sense: for any measurable set A, where y € A implies that y € 2,
for some z > 0, we have that (¥)"!(A) = {z:z = y(0), Vy € A}, which is
measurable with respect to the Borel measure on ACyx[0, c0).

We will require that ¥ satisfies two conditions. The first is the semigroup
property that

(S) V(t+s;2) =V(s;W(t;2)) forallz>0, £ >0, s> 0.

This is a memoryless property: the target trajectory starting at z is inde-
pendent of the path followed by the system until it reached that point. The
second is a smoothness condition for the vector field associated with V. First,
note that from the Lipschitz continuity of the fluid trajectories it follows that
W(t;2)2dV(t;2)/dt = W(0;¥(t;2)) exists almost everywhere. We will also
require that

c W(-; 2) is continuous in z and that
(©) lP(O; z) is continuous for almost all z > 0.

The main restriction here is that of continuity of ¥ with z, which roughly says
that for two initial conditions that are close to each other the corresponding
target trajectories will also be close. The other requirement in (C) appears to
be a mild one.

Given the trajectory W(:;z) the cumulative allocation process up to any
time ¢ is uniquely defined by Ty (t;2) = R~ 1(z 4+ At — ¥(¢; 2)). Finally, in or-
der to uniquely define derivatives, the following convention will be followed.
At points where W(0; z) either does not exist or is not continuous we assign
V(0;z) = W(0+;2) = limy o W(h;2); this limit exists since there are only
countably many points of discontinuity for ¥ or ¥. This convention makes
no distinction at points where the derivative exists and is continuous, and,
of course, the trajectories W(-; z) and cumulative allocation processes Ty (-; z)
remain unaffected.

Under the standing assumptions, one could describe the target trajectory
mapping either by specifying (-, z) for all z > 0, or, more compactly, by
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specifying W(0; z) or T'(0;2) for all z > 0. The last two specifications are in
state feedback form.

A target trajectory map V¥ describes the desired system behavior that the
controller will try to track. One such choice will be the solution that emerges
from the associated fluid optimal control problem. According to the general
procedure described in the introduction, one needs to formulate a performance
criterion, like the one of stages 4 and 5, that is consistent with this trajectory
tracking formulation. This criterion will be referred to as asymptotic tracking
and is defined as follows.

DEFINITION 3.1. Consider a multiclass open queueing network under an
admissible policy 7 and let @.(-) be the corresponding queue length pro-
cess. For any sequence of initial conditions {y"} C Y such that |y"|| — oo as
n — oo, assume that for some random variable Z, and each converging subse-
quence {y"}, @"(0) > Z, and (R.’(0), R.’(0)) — (0, 0) almost surely. The
policy 7 is said to be asymptotically tracking with respect to the specification
W if for almost all w,

(3.6) Q7 (- ®) = q,(-, w) = V(:; Zo(w)).

This definition assumes that the limiting initial condition converges almost
surely to some well-defined random variable [i.e., @*(0) — Z,]. This appears
to be a mild assumption, and it will be put into use later in the context of
the fluid-scale asymptotic optimality criterion. The restriction to undelayed
fluid limits could be relaxed by extending the mapping V¥ to deal with delayed
initial conditions; however, such an extension appears to have limited practical
significance and will not be addressed here.

An example: minimum time control. A natural candidate for a target tra-
jectory specification is to try to optimize transient performance by minimizing
the time to drain the system starting from any initial condition. As it was
shown by Weiss (1996) for the case of reentrant lines, this problem has a re-
markably simple solution, which is to go to the origin along a straight line.
Assume that p < 1 and let ¢ be the draining time under some control 7(-).
Then,

Q(t)=z+ At — RT(t) =0,
which implies that 7(¢) = R~'z 4+ R~1At. The capacity constraints imply that

CT(t) < 1t = CR'z < (1-p)t

—1.Y.

8.7) = t> t*(z) £ max (CR™2); Z)l.
1<i<S l—pi

We now show how to achieve the lower bound ¢*(z). Define the instantaneous
control T(t) = R~'A + R~ 'z/t*(2), for t < t*(2), and T(¢) = R!A, for t >
t*(2). To verify that this is a feasible control that achieves the bound in (3.7),
note that (a) since R™! = M~1(I — Py = M~ Y(I1 + P’ + P? + -..) which is
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elementwise nonnegative, 7(t) > 0 and (b) that (3.7) implies that CT(t) =
p+CR1z/t(2) < 1.

The corresponding trajectory mapping, denoted W™ is defined by
Pming s 2) = QMin(.), where

O

QU™ (t)=0 for t> t*(2).

) for ¢<t¢*(z) and
(3.8)

It is easy to verify that ™ is continuous in z, that W™ (.;z) exists and
is continuous a.e. [the only points of discontinuity being at ¢ = ¢*(z) when
Pmin($%(2); z) = 0], and finally, that W™ (¢; Q™"(s)) = ¥™(¢ 4 s;2). Hence,
(S) and (C) are satisfied.

Hereafter, it will be assumed that the specification ¥ is known a priori. The
enormous theoretical and algorithmic simplifications offered by fluid models
renders the computation of ¥ simple. The reader is referred to some of the
references mentioned in the introduction for more details.

4. Discrete-review policies. The family of policies we propose is based
on the recent idea of a discrete-review structure introduced by Harrison
(1996a) in his BIGSTEP approach to dynamic flow management in multi-
class networks. Discrete-review policies, and specifically, policies that step
through time in large intervals within which a deterministic planning logic
is employed, have also been proposed by other researchers in the areas of
applied probability and network control. Some examples that are closer to our
work can be found in Bertsimas and van Ryzin (1991), Bambos and Warland
(1993), Tassiulas and Papavassiliou (1995), Gans and van Ryzin (1997), but
other related papers can be found as well. The main idea in all these papers is
that the scheduling and execution steps in the corresponding systems become
more efficient as the planning horizons become longer or, equivalently, as the
amount of work to be processed within each period increases.

A discrete-review policy is defined by or is derived from the trajectory map-
ping V: Rf — ACRf[O, 00), a function I: R, — R,, plus a K-dimensional
vector B that satisfy the following restrictions. First, ¥ satisfies assumptions
(S) and (C). Second, I(-) is real valued, strictly positive, concave, and further
satisfies

I(x) I(x)
(4.1) Tog(x) > ¢, and Tog(x) — 00 asx — 00
and
(4.2) l(x_x)_>0 as x — oo.

And third, B is a vector in Rf that satisfies
(4.3) B > u.
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Initialization. Given the initial condition Q(0), we set the length of the
review periods, /, and the vector of safety stock levels, 6, to be

(4.4) 1=1(Q(0)) and 6= gL

Planning. Under any of the policies to be considered, system status will be
observed at a sequence of times 0 = ¢, < #; < ¢; < ---; we call ¢, the jth review

point and the time interval between ¢ ; and ¢ ;4 the jth planning period. Given

the queue length vector ¢ = Q(¢;) observed at ¢;, server activities over the

next planning period are determined by a two-step procedure.

STEP 1 (Target setting and enforcement of safety stock requirements).
Given the observed queue length vector q, we choose a target z that repre-
sents the system’s nominal ending state upon completion of this review period
as follows. Let [ = 1/|Q(0)|, (¢ — 6)" = (g — 6)*/|Q(0)| where x* = max(x, 0),
and rewrite ¢ as ¢ = g A 0+ (g — 6), where x A y = min(x, y). The first term
corresponds to the safety stock requirement we are striving to maintain. The
second term is our effective queue length vector that we want to drain using
the specification ¥. Upon completion of the review period the nominal ending
state maps g A 6 to 6 and 6 + (¢ — 8)* to |Q(0)[W(/;(q — 6)T). The latter
involves a step of rescaling time and space by a factor of |Q(0)| that reduces
the tracking problem to a normalized scale consistent with the fluid model
specification V. The target state is

(4.5) 2=0+[Q(0)[W((q— 0)").

STEP 2 (Tracking). We now compute a K-vector of time allocations, de-
noted x, that will nominally steer the state from g to its target z over the
ensuing period. Following the decomposition of ¢ and (4.5), we express x in
the form x, + xy, where x, denotes the allocation vector over an interval of
length ¢, that will steer ¢ A 6 to 0, and x¢ denotes the corresponding vec-
tor that will steer the state from (¢ — 8)* to |Q(0)|¥(/;(q — 6)*). From the
definition of ¥ we have that

(4.6) 2y =(Q0)|Ty (I;(g — 6)*).

Next, we compute x4 as the minimum time control from g A 6 to 6. Suppose
that under some feasible allocation 7'(¢) we have that at time ¢, At — RT'(¢) >
(6—q)" = RT(¢t)— [At — (6 — ¢)"] < 0. Multiplying by R~!, which is elemen-
twise nonnegative, and since 7T'(¢) > 0, we get that

(R'(0-a) ) a

(4.7) ¢ > max =1,

Tk (R-1A),

That is, ¢, is a lower bound on the time required to effect a change of (6 — g¢)™,
and the corresponding vector of nominal time allocations x, is given by

(4.8) xy=RAt,— R0 - q)".
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(Similarly to the example of Section 3, linear translation will achieve that
bound.)

In total, the vector of time allocations over the ensuing period, denoted by
x, is given by

(4.9) X =x9+ Xy.
Note that if ¢ > 0, then x = xy.

Execution. Given this vector of nominal time allocations, a plan expressed
in units of jobs of each class to be processed over the ensuing period, and a
nominal idleness plan expressed in units of time for each server to remain
idle over the same period are formed as follows:

pk:{ﬂj fork=1,...,K and
mp,

u, =(+t,—(Cx),)" fori=1,...,8.

(4.10)

The execution of these decisions is as follows. First, the plan p is implemented
in open-loop fashion; that is, each server i processes sequentially p; jobs for
each class k£ € C;. Condition (4.3) implies that if ¢ is close to § = BI, then
g > pl and thus, any feasible processing plan over the ensuing period will
be implementable from jobs present upon the review point. The ordering of
the execution sequence is not important for the asymptotic analysis consid-
ered here, although presumably it could affect performance for the stochastic
problem. If g # ul, then the execution of p is more subtle, since not all jobs
needing to be processed are present at their respective buffers at time ¢;. A
detailed solution for this case is described in Lemma 4.2 of Maglaras (1999).
Later on, we will show that as |Q(0)| increases, the probability that g # ul
vanishes. Let d; denote the time taken to complete processing of all jobs at
server i. Next, each server i will idle for u; A (I + ¢, — d;)" time units. The
completion of this idling period signals the beginning of the (j + 1)st review
period. That is, ;.1 = ¢; + max(l + ¢y, dy, ..., dg).

Hereafter, the notation DR(W, [, B8) will denote the discrete-review policy
derived from the trajectory map W, the function /(-), and the vector B that
satisfy (S) and (C), (4.1), and (4.2) and (4.3), respectively. Also, we shall dif-
ferentiate between review periods by writing q(j), x(j) and so on.

In order to make use of Dai’s stability theory, an underlying Markov chain
for the family of DR policies just described will be constructed as follows.
Assume that ¢; <t < ¢;,;. Let p(¢) be a K-vector, where p,(¢) is the number
of class k& jobs that remain to be processed at time ¢ according to the processing
plan p(j). Let d(¢) be an S-vector, where d;(¢) is the time spent so far in
the jth execution period by server i in the processing of jobs. (Then u(t) =
un(l+ty—d(t))" is the S-vector of remaining idling times for the ensuing
period.)

Finally, let R,(t) be the |&|-vector and R,(¢) be the K-vector of residual
times until the next exogenous arrivals or service completions respectively.
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The Markovian state descriptor is

(4.11) Y(2) =[Q(1); Q(z)); p(t); d(t); R.(¢); Ry(2); [QO)],

and Y will represent the underlying state space. Imitating Dai (1995a) and us-
ing the strong Markov property for piecewise deterministic processes of Davis
(1984), it is easy to show that the process {Y(¢), ¢t > 0} is a strong Markov
process with state space Y. The associated norm will be

1Y@ = Q)] + [p()] + |d(@)] + [R(D)] + | Ro(2)]-

We conclude this section with some general remarks. To avoid undesirable
boundary behavior, we have “shifted” the target trajectories by 6; that is, the
point where all queues are empty is mapped to @(¢) = 6 and these policies will
track desired target trajectories that will tend to steer the state toward that
shifted origin; this is achieved through xy. Steps 1 and 2 extend the trajectory
mapping to initial states where g # 6 by providing a target path to be followed
until the queue length vector is again above 6. (The minimum time control
used in x, is not essential, but what is needed is an adequate positive drift to
be prescribed that will steer the queue length process toward 6.)

There are three relevant time scales in the planning and execution of DR
policies: first, the system is evolving in a time horizon proportional to |Q(¢)[;
second, the DR policy is planning and executing in time intervals of length
{(]Q(0)]) and third, individual events, such as service completions or external
arrivals, occur in a time scale proportional to u and A. Note that for purposes
of transient (or fluid-scale) asymptotic analysis, | (0)| is the appropriate mea-
sure of the scale of the system. This motivates the choices in (4.4). For steady-
state control under DR policies, where the significance of the initial condition
is limited, |Q(0)| should be replaced by the average size of the queue length
vector, which is #(1/(1 — p)); this is consistent with the heavy traffic anal-
ysis and the BIGSTEP approach described in Harrison (1996). Alternatively,
one could adjust the length of the review periods and the magnitude of safety
stocks dynamically, by setting I(j) = I(]q(j)|) and 6(j) = BI(j); this was pro-
posed and analyzed in Maglaras (1999). For purposes of this paper, all three
of these choices yield identical results; we are using the simplest of the three.

Finally, to gain intuition on the design of these policies, it is instructive to
consider the asymptotic behavior of the system as |@(0)| increases. One would
expect the following to be observed: (i) under (4.1) and (4.2), the three time
scales will separate; (ii) tracking within each period will become very accurate
[this follows from (4.1) and elementary large deviations analysis]; (iii) accurate
tracking implies that Q(¢)Z 6, which in turn implies that no capacity is lost
in enforcing the safety stock constraints, that is, x(j) ~ xy(j) and (iv) both
0 and the error between the “shifted” and true trajectories become negligible.
Properties (i)-(iv) will yield asymptotic tracking of V.

The reader is referred to Harrison (1996) and Maglaras (1999) for more
comments on DR policies.
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5. The main result: asymptotic tracking under DR(W,,). Broadly
speaking, the operation of a DR policy is as follows: the controller reviews sta-
tus at a discrete point in time, uses V¥ to select the target trajectory starting
at that point, chooses a target state along this trajectory / time units into the
future, computes a vector of time allocations to move to this target and im-
plements the corresponding plan. Upon completion, status is reviewed again.
The state of the system is potentially different from the target specified in
the previous review period, so a new trajectory is selected through ¥ and the
planning and execution procedure is repeated.

In this section, the asymptotic behavior of these policies is analyzed, and in
particular, it will be shown that the policy DR(V, [, B) is asymptotically track-
ing with respect to the specification V. For example, for the sequence of initial
conditions @"(0) = nz, asymptotic tracking implies that the fluid limit under
the policy DR(V, [, B) achieves the desired trajectory ¥(-; z). In the stochastic
network, this translates into accurate tracking of the target fluid trajectory
when the system is operating at large population levels. Note that this result
does not depend on the traffic intensity vector p of the system; however, de-
pending on p, the feasible specifications ¥ will differ, and the behavior of the
controlled system will vary accordingly.

THEOREM 5.1.  Consider a multiclass open queueing network under the
policy DR(W, [, B). For any sequence of initial conditions {y"} C Y, such that
|y"| = oo as n — oo, assume that for some random variable Z, and each
converging subsequence {y"i}, Q"(0) — Z, and (R, (0), R:’(0)) — (0,0)
almost surely. Then for almost all sample paths w,

(Q_nj("w): Tnj(':(‘))> pnj('7w)’ d_nj("w))
5.1 - (Q(-,w), T(-,w), 0, 0) u.o.c.,

and (Q, T) further satisfies (3.2) and (3.3) together with the policy specific
equations

(52) Q(a 0)) = \P(7 Q(Oa w)) and T(’ w) = T\If('; Q_(O’ w))

In particular, the policy DR(W, [, B) is asymptotically tracking with respect to
the specification V.

PrROOF. Without loss of generality, in the sequel we work directly with the
converging subsequence, thus avoiding the use of double subscripts, and we
assume that ||y"|| =n for all n > 1.

Existence of a converging subsequence and the convergence of the queue
length and allocation processes follow from Theorem 4.1 in Dai (1995a). Recall
the construction of Y (¢). For all ¢+ > 0, p(t) < M~'1 and d(t) < £, + I1,
where f, = max,(R16),/(R~A),. From (4.2) we have that /(n)/n — 0, which
implies that (p"(-), d"(-)) = (p™(n-)/n, d"*(n-)/n) — (0, 0) almost surely. This
establishes (5.1).

We now turn into analyzing the fluid limit of 77(-). First, we introduce
some useful notation. Let j,,,x(nt) = min{j: ¢; > nt} be the number of review
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periods up to time nt. Let T7"(j) be the actual vector of time allocations over
the execution of the jth review period; that is, T(j) is the sum of the service
times for all class % jobs processed during the jth period. Also, x3(j), x4(J)
will denote the vector of nominal time allocations for steps 1 and 2 of the
DR planning logic, respectively, and x"(j) = xj(j) + x4(j) will denote the
total nominal allocation over the jth review period. The queue length vector
observed at time ¢; will be denoted by ¢"(j) and ¢"(j) = q¢"(j)/n. Finally, for
two sequences a”, b" of right continuous functions with left limits, we will say
that a”(-) = b"("), if |a™(:) — b"(:)| — 0, uniformly on compact sets, as n — oco.
Then,

() = %T”(nt)

Jmax(nt)
=Y )

j=1

Jmax(nt) Jmax(nt)

5.3) = Y WL S () -G
j=1

1 jmax(nt) _ .
= > nTy(":9"(J))

=1

Jmax(nt) n. sn( ;

4 =
(5.4) =

=1

W0

t . —
(5.5) @ / T4 (5; Q(0, w)) ds.
0

The remainder of the proof will justify steps (a)—(d). It is divided in three parts.
The first is the derivation of some large deviations estimates that describe
the operation of the DR structure, and the second is an application of FSLLN.
These parts are used in proving statements (a) and (b). The third part is
used in establishing (c) and (d), and it involves the actual properties of the
trajectory specification V.

The following result was proved in Lemmas 4.1 and 4.3 of Maglaras (1999).
If q(j) = wl, then p(j) < q(j) (this implies that the processing plan will be
implemented from jobs present at time t ;) and moreover, for any & > 0 and for
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1 (or |Q(0))) sufficiently large,
(5.6) P(q(j+1) # (1— )0 | q(j) = ul) < exp(—F()]),

where f (&) is a positive and convex rate function that depends on the distribu-
tional characteristics of the interarrival and service time processes.

If g(j) # wl,then it may be that the processing plan cannot be implemented
from work present at the corresponding buffers at time ¢;, and as a result
some undesirable idleness may be incurred while shifting work through the
network. A specific execution methodology was described in Lemma 4.2 of
Maglaras (1999) for which the following result was proved.

For any ¢ > 0 and |Q(0)| sufficiently large,

(5.7) P(g(j+1) 2 (1-2)0]q(j) % ul) <exp(—h(e)l),

where h(e) is a positive and convex rate function. Moreover, for some constant
L > 0, independent of ¢ and |Q(0)|, and some positive and convex function

g(L),

(5.8) P(tj,1 —t; > Ll) < exp(—g(L)1).

Now, |@™"(0)| = n and " = [(|Q"(0)|). From condition (4.1), it follows that
for any positive constant k, we can choose n sufficiently large such that (f(&)A
h(€))l" > klog(n). This will make the upper bounds in (5.6)—(5.8) decay at
the polynomial rate n*.

Define the sequence of events {A,}, where A, ={w: ¢"(j)?(1—¢)6" for
some 1 < j < jo..(nt)}. Suppose that |@(0)| > N(e, k), where N(g, k) is a
sufficiently large constant. Then,

P(A,) =P(q"(1) % (1-¢)0")

+Y P@"(j+1) #(1-e)o", ¢"(i) > (1—&)0", i <j)

j=1
< e <log(m) 4. jmi(jm)P(q”(j +1) 2(1-2)0"[q"(() = (1—¢)0", i < j)
j=1
xP(q"(i) = (1—-#)0", i <J)
< ni + jmjztﬁ)P(q”(j +1) 2(1-2)0" [g"(1) = (1—¢e)0", i <))
- Jmax(18)

nK
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For k > 3,

YPA)< Y PA)+ Y Zman)

n<N(e,x) noN(ew)
1
<N(e,k)+c > T < oo
nx-

n>N(e,k)

Applying the Borel-Cantelli lemma we get that P (lim sup,, A,) = 0 for any
g > 0. That is, as n — o0, Q"(tj) > 6" for all j > 1 a.s. To correct for the
fact that potentially some of the components of the initial condition at time ¢,
were not above 6", one simply incurs a maximum penalty of L[" time units
that, in turn, is negligible under fluid scaling.

Following the last remark and applying the FSLLN for the interarrival,
service time and switching processes we establish step (a); see Proposition 4.2
in Maglaras (1999) for a proof. Furthermore, it follows that for some constant
a that depends on u, A and P,

Jmax(nt) 1
S ())<= (LI + na).
=1

Since & can be made arbitrarily small, it follows that 3 ; xj(j) — 0 a.s. This
establishes step (b).

Existence of the limit in step (c) follows from Theorem 4.1 of Dai (1995a).
It remains to prove (d). We know that the Reimann sum in (5.4) converges to
a definite integral of the form fé T.(s) ds; note that the control process 7', (-)
has not been specified yet. Using the Lipschitz continuity of T'(-) we also know
that T'(¢) exists almost everywhere, and that 7'(¢) can also be expressed in the
form T'(t) = fot T(s) ds. Hence, it must be that 7',(t) = T(¢) almost everywhere
on the real line, and thus, for our purposes, it suffices to characterize the limit
T.(t). Let

T jn. Fn( ; a7 ( 1) — ¥ jn. sn( ;
W30 _ pry g @D =V G)
n n
Fix n, and recall that from (C) we have that W(-; z) is continuous in z. It follows
that A"(z) is continuous in z for every n, and thus

rM(q"(J)) =

(5.9) lim h"(z) = R~IA— R MW(0;2) = R+ RM1W(0;2) = Ty(0;2).

To examine the limit of A"(q"(j)), we fix ¢ > 0 and let j vary with n such
that t; < nt < ¢;,;. In this case, we have that ¢"(j) = Q"(¢ — &(¢)/n) for
some &(¢) < [". From Theorem 4.1 of Dai (1995a), we have that for almost all
w, Q*(t — e(t)/n) - Q(t). Using the continuity of A" and (5.9), we have that
almost surely,

RYG(J) = RH(Q"(t — e(t)/n)) — Tu(0; Q(1)).
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This completes the proof of (d). [This is the only part where the specific prop-
erties of ¥, and in particular, assumption (C), are invoked.]

Since (a)—(d) are all true almost surely, we have proved that for almost all
o and any time ¢ > 0,

T"(t, w) — Ty(t; Q(0, w)).

By the Lipschitz continuity of the allocation processes it follows that all of the
above conditions are true for any s such that 0 < s < ¢, which implies that
the convergence is uniform on compact sets for all ¢ > 0. This completes the
proof of (5.2). Finally, asymptotic tracking follows directly from the definition
of this property together with (5.1) and (5.2). O

REMARK. The Chernoff bounds in (5.6)—(5.8) follow from the existence of
exponential moments for the interarrival and service time processes; this was
postulated as distributional assumption (ii) in Section 3. Also, from the deriva-
tion of these large deviations estimates, it appears that #(log(n)) is a lower
bound on the amount of safety stocks that will still guarantee the desired
asymptotic performance; this is certainly true in the context of DR policies,
but it has also been suggested by other researchers in the recent past in the
context of their work. This justifies the choice of review period lengths ac-
cording to (4.1). To avoid the use of safety stocks altogether one would have
to incorporate a “smarter” execution methodology. However, this appears to
come with a severe penalty in complexity that renders the implementation of
these policies unrealistic.

Finally, we include some remarks regarding the stability properties of these
tracking policies.

DEFINITION 5.1 [Dai (1995a)].

(a) An open multiclass queueing network is stable under a specified
scheduling policy if the underlying Markov chain is positive Harris recurrent.

(b) The fluid model associated with a scheduling policy is stable if there
exists a time 8 > 0 such that for any solution (Q(-), T(-)) with |Q(0)| =
1, Q(t) =0, for ¢ > 8.

The main result we use is due to Dai [(1995a), Theorem 4.2].

THEOREM 5.2. A multiclass open queueing network is stable under a
scheduling policy if the associated fluid model is stable.

Hence, stability of DR(V, [, B) can be deduced by examining the properties
of the fluid specification V. In the context of tracking policies this is natu-
ral: “a DR tracking policy is stable, if it is tracking a stable fluid trajectory
specification ¥.” The result follows directly from these definitions.

Note. To prove stability one needs to be able to consider initial conditions
where R, = R, # 0, for which V¥ is not defined yet. To fix this problem, we pick
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a time ¢, such that ¢, > R, and T(¢t) > R, for all ¢ > t,, and then strengthen
Proposition 5.1 to hold for all |z| < B, for some B that depends on ¢,.

PROPOSITION 5.1. An open multiclass queueing network with p < 1 is sta-
ble under DR(V, [, B), if there exists a & > 0, such that for all initial conditions
zwith |z| <1, ¥(¢2) =0, forall t > 6.

This result is important from a practical viewpoint, since practitioners can
freely design fluid trajectory specifications ¥ without any stringent stability
constraint, apart from that target trajectories should drain at some point in
the future; the latter is largely irrelevant when one is concerned with the
current actions of a tracking policy.

6. Fluid-scale asymptotic optimality. We now return to the problem
of optimal control of stochastic processing networks and the policy design
procedure outlined in the introduction. We will show that by choosing the
target trajectory specification ¥ as the solution of the associated fluid optimal
control problem, the results of the previous section can be extended to establish
fluid-scale asymptotic optimality of DR policies.

6.1. Fluid optimal control specifications. The family of network control
problems addressed in stage 1 of the policy design flowchart are defined as
follows. Let g: RX — R, be a C? convex cost rate function such that, for some
constants b, ¢, b,é > 0, where b < b and ¢ < ¢,

(6.1) blx|¢ < g(x) < blx|°.

Given the cost rate function g, the following stochastic network control prob-
lem is considered: choose an allocation process T'(¢), or equivalently, an ad-
missible policy 7, in order to minimize

T
6.2) 7(2) =EI [ g(@)d,

where E7 denotes the expectation operator with respect to the probability
measure P7 defined by any admissible policy 7 and initial condition z. The
use of T" with no time argument denotes a time horizon and should not be
confused with the cumulative allocation T'(¢). It is natural to think of T" as long
but finite. Note that if T' < oo, then the problem in (6.2) remains meaningful
even when p £ 1, where, for example, long run averages will not exist. This will
allow for an easy extension of our results to the heavy-traffic regime, where
p— 1.

In stage 2 of the flowchart, one proceeds to analyze an associated fluid
optimization problem which is defined by

6.3 Vi(z)=mi {/OT 2(Q(t))dt: Q(0) =2z and (Q,T) e FM} .

T()
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V%(2) denotes the value function of the fluid optimization problem starting
from the initial condition z and over a control horizon T, which is the same
as the one in (6.2), and the superscript g denotes the dependence on the cost
rate function.

Consider the set 2, of feasible fluid trajectories starting at z. It is easy to
show that 2, is compact. Consider the set J(2,) = {fOT g(Q(t)dt: @ € 2,}.
From the properties of g and the Lipschitz dynamics of fluid models it follows
that J(2,) will be a compact set of Lipschitz continuous and convex func-
tionals in z. Existence of V§(z) that is defined as the pointwise minimum
over the compact set J(2,) follows from the Weierstrass theorem. Moreover,
V4%(2) will itself be Lipschitz continuous and convex in z, and thus almost
everywhere differentiable. Its gradient will be denoted by VV 4. The optimal

instantaneous allocation, denoted Tg(Q(t), t), can be characterized by a di-
rect application of the dynamic programming principle; see, for example, Bert-
sekas [(1995), Section 3.2] for background information and a derivation based
on the Hamilton—Jacobi—Bellman equation and the maximum principle. It is
computed by the following linear program:

=g . _ _ ,
T (t) = argmin,ey g VV7(Q(?), 1) (A — Rv)

(6.4) A
= argmax,cy (g VVE(Q(¢),t) Ru,

where 7(Q(t)) = {v:v >0, Cv < 1, (Rv), < A, for all k& such that Q,(¢) = 0}

is the set of admissible controls when the state is Q(t).

Next, we analyze the fluid model under the policy (6.4), where we show
that optimality implies stability, provided that the control horizon of the fluid
optimization problem is sufficiently long. A related result for a linear holding
cost infinite horizon criterion is due to Meyn (1997a). Our result holds for
convex cost rate functions. The nature of the result is explained by the fact
that when the control horizon is small, the optimal trajectory can never reach
the origin, and as a result cost minimizing actions need not produce a stable
fluid trajectory. In passing, we show that if T is increased above a certain
threshold, then the solution of (6.3) coincides with that of the infinite horizon
problem. This is very useful in numerical computation of optimal controls,
where only finite horizon problems can be addressed.

PROPOSITION 6.1.  Assuming that p < 1, there exists a constant A, that
depends on the cost rate function g, such that if the control horizon T in (6.3)
is such that T > A,, then the fluid model (3.2), (3.3) and (6.4) is stable.

PROOF. Given an initial condition z, we use the minimum time control

described in Section 3 to move back to the origin. The corresponding cost
accrued will be denoted by V#4(z) and it is computed by

N t*(z)
Vi) = [ g(a(1-1/0(2) dt.
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This is an upper bound on the value function V$(z). [This upper bound is
valid even if t*(z) > T'.]

Let @*(-) be any fluid solution of (3.2), (3.3) and (6.4). By construction, @*(-)
achieves the minimum draining cost V%(z). Given the control horizon 7 in
(6.3), we have that min,_; g(Q*(¢)) < Vg(z)/T. Let 7 be the time that this
minimum is attained. Given the properties of g, we have that g(Q*(7)) >
b|Q*(7)|¢, which implies that |Q*(7)|¢ < V&(z)/(Tb). Next, we choose a suf-
ficiently long control horizon T', such that for any 0 < y < 1, we have that
|@*(7)| < v, independent of the initial condition z. Let

-1
(6.5) { = max max (CR™2); and &= max g(z) = b.
l2=1 ¢ 1-—p; |z]<1
For any initial condition such that |z| = 1, V&(z) < 6t*(z) < b{. Let A, =
b¢/(y4b). Then, for any T > A,, there exists a time 7 € (0,A,] such that
Q" (A)] < v.

The remainder of this proof imitates the arguments in Theorem 6.1 of Stol-
yar (1995). For m = 1,2,..., let 7,, = min{t > 0: |@Q*(¢)| < v, |Q*(0)| =
y™~1}. Modifying (6.5), we can define (™ = {y™! and 6" = b(y™ 1)¢. It fol-
lows that

Ty < Ag(,yc’Jrlfg)mfl'

Clearly, Y, 7,, < A, /(1 — y**17¢) 2 T. Continuity of |@*(¢)| in ¢ implies that
lim,, |Q*(X,, 7n)| = 0, and therefore, that sup{t > 0: |@*(¢t)| = 0, |@*(0)| =
1} < ¥, 7 < A,/(1 = y¥17¢). By observing that the fluid trajectories under
the optimal fluid control policy will remain empty once they drain for the first
time we complete the proof. O

COROLLARY 6.1. Consider (6.3) with an infinite control horizon T = oo and

let @(-) denote the corresponding optimal trajectory. For any initial condition
|z| <1and any vy €(0,1); °(¢) =0, for t > Ty(y), where

b ¢ 1
e 1— ;yEJrl*Q'

(6.6) To(y)2

IS

Minimizing over vy, one gets the smallest upper bound Ty = T(y*) at

. c 1/(¢+1-c)
LA '

When p = 1, the optimal fluid trajectory will be the cost minimizing path to
the state of least achievable cost, which is no longer the origin. In this case,
a similar bound can be derived for 7', by considering an augmented cost rate
function, where one has subtracted the cost of the terminal state. Hereafter, it
will be assumed that T' > T, and thus, that the optimal solution of the finite
horizon problem is equal to @>(-).
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An alternative characterization of the optimal control policy is based on the
optimal fluid trajectories starting at every initial condition. Let (@*, T*) be a
pair of optimal state and control trajectories for (6.3). Then, for all ¢ € [0, T'],

6.7) Q*(t) = z+ At — RT*(¢) and fo " a(@ (1) dt = TE(2).
Let 2¢ be the set of all such minimizers defined by
28 = {Q* € ACc[0, T]: Q*(0) = 2z, 3 T*(¢),
t € [0, T] s.t. (Q*, T*) satisfies (3.3), (6.7)}.

It has already been established that 2¢ is nonempty. Each of the (possibly
many) elements in this set is a pair of trajectories that is optimal for (6.3).
Define the fluid trajectory map ¥¢: RX — AC rx[0, 00) that maps an initial
condition z to a single target fluid trajectory {V4(¢;z), ¢ > 0}, by

WE([0,T];2) € 2§ forall z>0 and

(6.8)
VE(t;2) =VE(T;z) forallt>T.

The extension of the optimal fluid trajectory to times beyond the control hori-
zon T of the fluid control problem is justified by the fact that since T' > T,
VE(t;, WE(T;2)) =VE(T;2), for all t > 0.

The semigroup property (S) follows from the principle of optimality and the
fact that T > T,. Using the continuity of V7.(z) and the properties of g we
deduce that W4(-; z) is continuous in z. From the Lipschitz continuity of the
fluid trajectories it follows that ¥(0;z) exists a.e. Smoothness of g implies
that ¥¢(0; z) will also be a.e. continuous. Hence, assumption (C) holds.

These properties were established for linear cost functions in Pullan (1995),
where the optimal controls were shown to be piecewise constant with finitely
many discontinuities. For general cost rate functions, these properties follow
from classical results in optimal control theory.

6.2. The fluid-scale asymptotic optimality criterion. Fluid-scale asymptotic
optimality is a relaxed notion of optimality in comparison to the original cri-
terion in (6.2), consistent with the policy design procedure described in the
introduction. The following definition is adapted from Meyn (1997b).

DEFINITION 6.1. Consider any sequence of initial conditions {y"} C Y such
that ||y"|| — oo as n — oo and assume that for every converging subsequence
{y"} and some random variable Z,, @"/(0) - Z, and (R,’(0), R;’(0)) —
(0,0) almost surely. Then a policy 7* is said to be asymptotically optimal
under fluid scaling if for all admissible scheduling policies 7,

T T
(6.9) h,?l)iorolf [E;n/o g(Q”(t))dt—Egn/O 2(Q™(2)) dt} <0.
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Meyn (1997b) stated this definition for the case of linear costs, where he
considered the limit as T' — oo, and restricted attention to stable scheduling
policies. By focusing on a finite horizon cost, one need not impose this stability
restriction, which is difficult to check. Furthermore, the finite horizon criterion
remains meaningful even when the traffic intensity at every station is not
restricted to be strictly less than one. Moreover, for T' > T, we recover Meyn’s
criterion in this finite horizon setting. Finally, the assumption regarding the
a.s. convergence of the initial fluid scaled queue length vector appears to be a
mild one and it will be motivated shortly.

One would like to establish a criterion of fluid-scale asymptotic optimality
that depends on the fluid limit trajectories and not the prelimit of fluid scaled
sequences as in (6.9). Given that g is nonnegative and all processes @" are
defined in the same probability space, (Y, Xy ) equipped with the probability
measure P7 [see Section 2.2 in Dai (1995a) for a formal discussion], we have,
by Fatou’s lemma [see Royden (1963), page 86],

(6.10)  liminf EJ, [ /0 ! g(Qn(t))dt} >E" [limninf /0 ! g(Qn(t))dt] .

For almost every w by the definition of the liminf, there is a subsequence
{nj(®)} of {n} such that

T _ T _
lim inf / 2(Q"(¢)) dt = lim / 2(Qmi(¢)) dt.
n 0 J J0

From Theorem 4.1 in Dai (1995a), for a.e. w we have 1_;hat the_re is a subse-
quence {n; (o)} of {n;(»)} and a pair of solutions (Q(-, »), T'(-, w)) of the
fluid equations such that (@™ (-, ®), T" (-, »)) = (Q(-, »), T(-, ®)) uw.o.c. as
k — o0. Since g is continuous, it follows that

T B T _ T -
lim [ 2(@"(t, 0))dt =lim [ 2(@"(t, w))d = [ 2(Q(t, w))dr.

Now, by the definition of (6.3), the last integral is bounded below by
V2(Q(0, »)) and so combining the above we obtain

timinf [ g(Q"(1)dt = VHQ(0, ).

In order to take expectations, one needs that V7.(Q(0, w)) be a random vari-
able. This is postulated as an assumption in this set-up by assuming that
lim, @"(0) converges a.s. to some random variable Z . Alternatively, one could
assume that @"(0) converges to a random variable in distribution and pro-
ceed using some tightness arguments; see Theorems 3 and 4 in Puhalskii
and Reiman (1998). Given the assumption regarding the convergence to Z,,
one has that Q(0, w) = Zy(w) a.s. Second, V7.(-) is a continuous and convex
function of its argument and thus it is measurable with respect to the Borel
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measure on Rf . Hence, Vg}(Q(O, w)) is a properly defined random variable
and

T _
(6.11) lim inf E7, [/0 2(Q"(1)) dt] >E"[Vi(Zy)],

where the right member of (6.11) does not depend on 7 since Z, does not
depend on 7.

Given this set-up, the goal in establishing FSAO will be to exhibit a policy
7* such that for each sequence of initial conditions {y"} for which @"(0) — Z,

a.s. as n — oo, we have that lim,, E;Z [fOT g(Q”(t))dt] exists and

T _
(6.12) li’anEg,f |:/0 2(Q"(1)) dt} =E [Vi(Zo)].
From (6.11) and (6.12) we have that for any admissible policy ,
. * T =~ . . T ~
hrrln E7. [/0 2(Q™(t)) dt} < hmnmf E7. |:/0 2(Q"()) dt] ,

which is (6.9) from Definition 6.1. It remains, of course, to establish that such
a policy 7* exists, since otherwise condition (6.12) would be overly stringent.

In conclusion, FSAO can be checked by analyzing the fluid limits under a
candidate policy 7. For the sequence of initial conditions @”(0) = nz, where
lim, @"(0) = z a.s., FSAO is reduced to checking whether starting from an
arbitrary initial condition z, the fluid limit under a candidate policy achieves
the optimal cost V7(2); this was the check performed in Section 2.

6.3. The policy DR(¥#, [, B). We now use the trajectory mapping V¥, de-
rived from the solution of the fluid optimization problem (6.3), to define the
discrete-review policy DR(V#, [, B) in the usual way. Proceeding as in Sec-
tion 5, we get that the fluid model associated with DR(W¥#, [, B) is the set of
equations (3.2) and (3.3) together with the policy specific equation

(6.13) Q(-, w) = VE(;; Zo(w)).
Next, we follow the discussion above to show that this policy is FSAO.

PROPOSITION 6.2. An open multiclass queueing network under the policy
DR(VS, 1, B) is asymptotically optimal under fluid scaling.

PROOF. We have to show that condition (6.12) is satisfied, where the policy
7 is DR(W¥¢, [, B). By the definition of the liminf and from Theorem 4.1 in Dai
(1995a) for a.e. ® we have that there is a subsequence {njk(w)} of {n;(w)}
and a pair of solutions (Q(:, w), T(-, w)) of the fluid equations (3.2), (3.3) and
(6.13), such that (Q"(-, w), T"*(-, w)) = (Q(-, w), T(-, w)) w.0.c. as k — oo.
Since g is continuous, it follows that

T _ T _
lim [ g(Q")(t, w))dt = [ &(Q(t, w))dt.
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Equation (6.13) and the definition of the set ng(w) imply that

[ 8@ ) dt = Vi(Zo()).

By the continuity of g it follows that
T _ _
(6.14) li’{n/o g(Q'(t, ) dt = VE(Zo(w)).

It remains to show that lim, EJ.[ fOT g(Q™(t))dt] exists and in particular,
that the limit and the expectation operator can be interchanged, for which a
uniform integrability condition is needed. The following estimate on the queue
length process was given in Lemma 4.5 in Dai (1995a),

L 0 ys) = 3 L E(Iyle) + 1.

(6.15)
(BY her 171

Given that the cost rate function g is of polynomial growth [this follows from
(6.1)], and that the distributional assumption (ii) of Section 3 ensures the
integrability of any polynomial moment of E(t), it follows from (6.15) that
g(Q"(-)) is uniformly integrable. Hence, passing to the limit when taking
expectations in (6.14) one gets that

T _ T _ _
(6.16) limE7, [/0 g(Qn(t))dt} =E" [[0 g(Q(t))dt} =E([Vi(Zy)],
which establishes the desired result. O

Propositions 5.1 and 6.1 establish that the DR translation, as well as any
other mechanism, that leads to a FSAO policy will also be stable; this ad-
dresses a question raised in Meyn (1997b).

COROLLARY 6.2. An open multiclass queueing network with p < 1 is stable
under DR(WVE, [, B).

Returning to the Rybko—Stolyar example, a fluid-scale asymptotically opti-
mal discrete-review policy can be defined using the optimal control description
of Section 2. The choices of threshold values and planning horizon lengths can
be defined from any vector 8 and function I(-) that satisfy the appropriate
conditions. This policy can be further simplified by exploiting the structure of
the Rybko—Stolyar network in order to form a threshold or continuous-review
policy that achieves the same asymptotic performance. The desired threshold
policy will be one that gives priority to the exiting class at each server, unless
the exit class at the other server is below the associated threshold require-
ment, in which case the incoming class gets higher priority. This is LBFS with
priority reversal below the desired threshold and is denoted by CR(W¥#4, 6). Fig-
ure 2 illustrates the tracking behavior of these policies by overlaying simulated
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FI1G. 2. Trajectory tracking: optimal fluid trajectories versus state trajectories under CR(V8, 0);
®(0) =200[1,0,0.5,1], (n = 200).

trajectories for the continuous-review implementation with the optimal fluid
trajectories. [A general discussion of continuous-review policies can be found
in Maglaras (1998).]

7. Concluding remarks. We have described a general methodology
for dynamic control of stochastic processing networks based on fluid model
approximations. While their deterministic and continuous dynamics make
them simple to analyze, optimize and control, they still retain much of the
structure of the original systems under investigation, and as a result they
provide a very promising framework for synthesis of stochastic network
controllers.

The main result of this paper was to describe the first general mechanism
that can translate an almost arbitrary fluid control policy into a simple, im-
plementable discrete-review tracking rule for the stochastic system that is (a)
asymptotically tracking under fluid-scaling, and (b) stable, provided that the
fluid control policy one started with was itself stable. Each policy in this family
steps through time in discrete intervals, and during each of these intervals,
system status is reviewed and scheduling decisions are made in order to track
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what the fluid control policy would do starting at that point. Successful imple-
mentation involves the use of long review periods for accurate tracking, and
the enforcement of safety stocks that prevent the system from approaching
the boundaries, where the discrete and stochastic dynamics of the network
can be significantly different from their fluid idealization.

Many interesting future directions of research arise. The results on fluid
scale asymptotic analysis need to be refined in order to capture the speed of
convergence of the system dynamics to their fluid limit; this appears to be a
tractable undertaking due to the good structure of the proposed policies. Such
an extension will provide bounds on how close to the true optimal performance
these discrete-review policies are and give new insights on the inherent trade-
off of the proposed framework, where one has restricted attention to determin-
istic fluid model analysis. On a separate front, one should contrast our results
to those obtained using diffusion approximations and heavy-traffic analysis
and also explore the applicability of the techniques developed in this paper to
the translation of Brownian control policies.
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