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STRONG APPROXIMATIONS FOR MULTICLASS
FEEDFORWARD QUEUEING NETWORKS

By Hong Chen1 and Xinyang Shen2

University of British Columbia

This paper derives the strong approximation for a multiclass queue-
ing network, where jobs after service completion can only move to a down-
stream service station. Job classes are partitioned into groups. Within a
group, jobs are served in the order of arrival; that is, a first-in first-out
(FIFO) discipline is in force, and among groups, jobs are served under a
preassigned preemptive priority discipline. We obtain the strong approx-
imation for the network through an inductive application of an input–
output analysis for a single-station queue. Specifically, we show that if the
input data (i.e., the arrival and the service processes) satisfy an approxima-
tion (such as the functional law-of-iterated logarithm approximation or the
strong approximation), then the output data (i.e., the departure processes)
and the performance measures (such as the queue length, the workload
and the sojourn time processes) satisfy a similar approximation. Based
on the strong approximation, some procedures are proposed to approxi-
mate the stationary distribution of various performance measures of the
queueing network. Our work extends and complements the existing work of
Peterson and Harrison and Williams on the feedforward queueing network.
The numeric examples show that strong approximation provides a better
approximation than that suggested by a straightforward interpretation of
the heavy traffic limit theorem.

1. Introduction. We first consider a single-server station serving multi-
ple classes of jobs, where jobs of different classes may have different arrival
and service time distributions. Job classes are partitioned into groups. Within
a group, jobs are served in the order of arrival (i.e., a first-in first-out service
discipline is in force), and among groups, jobs are served under a preassigned
(static) preemptive priority discipline. Our key result is to establish that if the
input data (i.e., the arrival and the service processes) satisfy an approxima-
tion [such as the functional law-of-iterated logarithm (FLIL) approximation or
the strong approximation], then the output data (i.e., the departure processes)
and the performance measures (such as the queue length, the workload and
the sojourn time processes) satisfy a similar approximation. In an obvious
way, this result extends to a feedforward multiclass network, where jobs can
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only move from a lower numbered station to a higher numbered station. We
identify explicitly the strong approximation limit under the network setting.

This paper relates to, extends and complements, some existing works of
Peterson (1991), Harrison and Williams (1992) and Chen and Mandelbaum
(1994). Peterson (1991) first studied a multiclass feedforward queueing net-
work to derive a heavy traffic limit theorem or a diffusion approximation
theorem under a heavy traffic condition. It is shown that the limit can be
described by a J-dimensional reflected Brownian motion (RBM), where J
equals the number of service stations in the network. In particular, a state
space collapse phenomenon is observed for higher priority job classes; namely,
the limit of the workload or the queue length of high priority jobs is zero. Thus,
a direct application of this theorem would yield zero as an approximation to
the queue length or the workload of a higher priority class. Clearly this is
not satisfactory. Usually heuristics are offered in this case to provide a better
approximation. Harrison and Williams (1992) studied the reflected Brownian
motion suggested by the heavy traffic limit theorem and obtained a necessary
and sufficient for the existence of a product form stationary distribution of the
Brownian model. On the other hand, Chen and Mandelbaum (1994) derived
a strong approximation for a generalized Jackson network; it was explained
that the strong approximation refines the heavy traffic limit theorem in that
it provides the rate of convergence and it does not require the network to be
under a heavy traffic condition. This paper extends the strong approximation
analysis in Chen and Mandelbaum (1994) to the multiclass feedforward net-
work. Strong approximation yields appropriate approximations for the net-
work’s workload, queue length and sojourn time processes of all job classes
(not just the lowest job class). The numeric examples indicate that the strong
approximation does provide a much better approximation than the approxi-
mation suggested by the diffusion approximation, for both higher and lower
priority classes.

There is a large literature on diffusion approximations, and readers are
referred to survey papers by Whitt (1974), Lemoine (1978), Glynn (1990),
Harrison and Nguyen (1993) and Williams (1996). Strong approximation is
first used by Zhang, Hsu and Wang (1990) for approximating a queueing
system. Horváth (1990) and Chen and Mandelbaum (1994) obtain the strong
approximation for open generalized Jackson networks, and Zhang (1997) for
closed generalized Jackson networks. The strong approximation has also been
used to study time-dependent queues [see Mandelbaum and Massey (1995)
and Mandelbaum, Massey and Reiman (1998)] and state-dependent queues
[see Mandelbaum and Pats (1998)].

The paper is organized as follows. In the next section, we introduce the
functional law-of-iterated-logarithm (FLIL) and the functional strong approx-
imation theorem (FSAT) for two fundamental processes, which set a basis
for our analysis of the queue. In Section 3, we obtain the FLIL and the
FSAT for a single-station queue, which are the key results of the paper.
In Section 4, by viewing some of the results in the previous section as an
input–output theorem, we extend the strong approximation to the multiclass
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feedforward network. Section 5 provides a procedure to approximate by a
reflected Brownian motion (RBM) a feedforward queueing network with the
renewal (exogenous) arrival process, i.i.d. service times and Markovian rout-
ing. This section is almost self-contained to make it convenient for those read-
ers who would only need to obtain a strong approximation. Numeric examples
are given in Section 6 to compare the performance measure estimates given by
the simulation, the proposed approximations suggested by the strong approx-
imation, and the approximation suggested by the diffusion approximation. In
order to simplify the presentation, we assume that the traffic intensity is no
greater than 1 through Sections 3–6; this would include almost all cases of
practical interest. The more general case, where the traffic intensity may be
strictly greater than 1, is summarized in the Appendix for a single-station
queue.

We denote by �K the K-dimensional Euclidean space, and by �K
+ = �x ∈

�K:x ≥ 0� its nonnegative orthant. Let � = �1 and �+ = �1
+. All vectors

are assumed to be column vectors, and the prime (′) is used to denote the
transpose of a vector and a matrix. We denote ej the jth unit vector (whose
jth element equals 1 and all other elements equal zero) and e a vector of
1’s (whose elements all equal 1), both in an appropriate dimension from the
context. For x = �xk	Kk=1 ∈ �K, define the norm 
x
 = max1≤k≤K �xk�. Let �K

be the set of K-dimensional functions which are right-continuous and have
left limits (RCLL), and let �K

0 = �x ∈ �K:x�0	 ≥ 0�. For X = �Xk	 ∈ �K,
define the norm


X
T = sup
0≤t≤T


X�t	
 ≡ sup
0≤t≤T

max
1≤k≤K

�Xk�t	�


Sometimes for convenience, we write 
X�t	
T for 
X
T. The composition
�x�y�t		� t ≥ 0� of x:�+ → �K with y:�+ → �K

+ is the function from �+
to �K whose kth coordinate is the real-valued function �xk�yk�t		� t ≥ 0�,
k = 1� 
 
 
 �K.

2. Preliminaries. In this section, we consider two fundamental processes.
For ease of exposition, we present all results for one-dimensional processes.
Since all the results are pathwise on an appropriate probability space, they
have obvious generalizations to multidimensional cases, and without explic-
itly stating so, we shall quote these generalizations in the latter sections. Let
X ∈ � , and let Y = �Y�t	� t ≥ 0� denote its inverse, defined by

Y�t	 = sup�s ≥ 0:X�s	 ≤ t�� 0 ≤ t <∞
(1)
One important example of the above pair is that X is a partial sum of a
sequence ξ = �ξi� i = 1�2� 
 
 
� of nonnegative i.i.d. random variables, namely,

X�t	 �=
�t�∑
i=1

ξi� t ≥ 0�(2)

[with X�t	 = 0 for t < 1], and its corresponding Y [defined by (1)] is a renewal
process.

We have the following result of the functional law-of-iterated-logarithm for
the pair.
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Theorem 2.1. Consider the �X�Y	 pair as introduced above. Suppose that


X�t	 −X�t	
T ≡ sup
0≤t≤T

�X�t	 −X�t	� a
s
= O�
√
T log logT	(3)

with X�t	 =mt for m > 0. Then


Y�t	 −Y�t	
T ≡ sup
0≤t≤T

�Y�t	 −Y�t	� a
s
= O�
√
T log logT	(4)

and Y�t	 = µt with µ = 1/m. Furthermore, when X is a partial sum of
nonnegative i.i.d. random variables as given by �2	, if ξi has a finite second
moment, then �3	 and �4	 hold with m = E�ξi	.

The proof of this theorem follows almost the same lines of the proof for
Theorem 2.1.3 in Csörgő and Horváth (1993). For any stochastic process X
having a bound like (3), we say that X has a FLIL approximation X. We
note that the FLIL approximation (3) implies a functional strong-law-of-large
numbers (FSLLN) limit result. Namely, it implies that almost surely,

X
n�t	 �= 1

n
X�nt	 →X�t	 ≡mt�

as n→∞, and the convergence is uniform on any compact set (u.o.c.).
Next, we consider a refined approximation, namely, the functional strong

approximation, for processes X and Y.

Theorem 2.2 (FSAT). Consider the �X�Y	 pair as introduced above. Sup-
pose that for some r > 2,


X− X̃
T a
s
= ◦ �T1/r	�(5)

as T→∞, with

X̃�t	 =mt+ σB�t	� t ≥ 0�

where m and σ are positive constants, and B = �B�t	� t ≥ 0� is a standard
Brownian motion (i.e., a Wiener process). Then we have


Y− Ỹ
T a
s
= ◦ �T1/r′ 	�(6)

with r′ = r if r < 4 and arbitrary r′ < 4 if r ≥ 4, and with

Ỹ�t	 = µt− µσB�µt	� t ≥ 0�

where µ = 1/m. Furthermore, when X is a partial sum of nonnegative i.i.d.
random variables as given by �2	, if ξi has a finite rth moment with r > 2,
then we can assume that X and Y are defined on a probability space, on which
there exists a standard Brownian motion B = �B�t	� t ≥ 0� such that both �5	
and �6	 hold, with m = E�ξi	 and σ being the standard deviation of ξi.
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This theorem follows from Theorems 2.1.1 and 2.1.3 of Csörgő and Horváth
(1993), where they actually give a slightly better bound in (6) when (5) holds
with r > 4. We note that the strong approximation (5) leads to a functional
central limit theorem (FCLT) limit. Specifically, let

X̂n�t	 = 1√
n
�X�nt	 − nmt��

the approximation (5) implies that

X̂n d→ X̂ as n→∞�

where X̂ is a driftless Brownian motion with a standard deviation σ , and “→d ”
denotes the weak convergence in � [refer to, e.g., Billingsley (1968) and Whitt
(1980)].

Now we introduce the notion of r-strong continuity that will be used exten-
sively in this paper. A function x ∈ �K is said to be strong continuous with
degree r, or r-strong continuous, for some r ∈ �2�4	, if

sup
0≤u� v≤T
�u−v�≤h�T	


x�u	 − x�v	
 = ◦�T1/r	 as T→∞�(7)

where h�T	 ≡ √T log logT, and it is simply said to be strong continuous if it
is r-strong continuous for all r ∈ �2�4	. We note that an r-strong continuous
function may not be continuous. A stochastic process X = �X�t	� t ≥ 0� in
�K is said to be an r-strong continuous process for some r ∈ �2�4	, if with
probability 1, the sample path of this version is r-strong continuous. For sim-
plicity, we shall assume throughout this paper that all r-strong continuous
stochastic processes are defined on such a probability space. A stochastic pro-
cess is simply said to be strong continuous if it is r-strong continuous for all
r ∈ �2�4	. We say a stochastic process X has a strong approximation if for
some r ∈ �2�4	, there exists a probability space on which a version of X (for
simplicity we still write it asX) and an r-strong continuous stochastic process
X̂ are defined such that

sup
0≤t≤T

�X�t	 −mt− X̂�t	� a
s
= ◦ �T1/r	�

where m is a (deterministic) constant. When the above equality holds, we
also say that X has a strong approximation X̃ = �X̃�t	� t ≥ 0� with X̃�t	 =
mt+ X̂�t	.

Lemma 2.3.

(i) A Wiener process (i.e., a standard Brownian motion) is a strong contin-
uous process.

(ii) If a process has a strong approximation, then it must have a FLIL
approximation. Specifically, if the process X satisfies


X�t	 −mt− X̂�t	
T a
s
= ◦ �T1/r	
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with X̂ = �X̂�t	� t ≥ 0� begin r-strong continuous, then we have


X�t	 −mt
T a
s
= O
(√
T log logT

)



(iii) If process X = �X�t	� t ≥ 0� ∈ � has a FLIL approximation, then
there exist positive M and T such that with probability 1,


X�t	
 ≤Mt for t ≥ T


(iv) A linear combination of r-strong continuous functions is r-strong con-
tinuous, and a (deterministic) linear combination of r-strong continuous pro-
cesses is r-strong continuous.

(v) Let X = �X�t	� t ≥ 0� be an r-strong continuous process, and let τ =
�τ�t	� t ≥ 0� be a process with τ�t	 ∈ �0�∞	 for all t ≥ 0 having a FLIL
approximation:


τ�t	 − αt
T a
s
= O�
√
T log logT	


Then we have


X�τ�t		 −X�αt	
T a
s
= ◦ �T1/r	

(vi) Let ξ = �ξn� n ≥ 1� be a sequence of random variables and let

X�t	 =
�t�∑
n=1

ξn


Assume that X has a strong approximation,


X�t	 −mt− X̂�t	
T a
s
= ◦ �T1/r	

Suppose that process & has a strong approximation,


&�t	 − βt− &̂�t	
T a
s
= ◦ �T1/r	

Let Y�t	 ≡ X�&�t		� t ≥ 0. Then Y = �Y�t	� t ≥ 0� has the following strong
approximation:


Y�t	 −mβt−m&̂�t	 − X̂�βt	
T a
s
= ◦ �T1/r	


Proof. Part (i) of this lemma is a special case of Lemma 3.6.3 in Chen and
Mandelbaum (1994), and parts (ii)–(v) clearly follow from the definitions of the
strong continuity, the FLIL approximations and the strong approximations.
For (vi), we have


Y�t	 −mβt−m&̂�t	 − X̂�βt	
T
≤ 
X�&�t		 −m&�t	 − X̂�&�t		
T +m
&�t	 − βt− &̂�t	
T
+
X̂�&�t		 − X̂�βt	
T a
s
= ◦ �T1/r	�

where the last equality follows from the strong approximation assumptions
for X and &, part (iii) and (v) of the lemma and the strong continuity
of X̂. ✷
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We state an additional property of strong continuity, which relates to the
regulator of the one-dimensional reflected mapping. [Refer to Harrison (1985)
for the definition and the properties of the one-dimensional reflection map-
ping.] (The proof of the following proposition can be found in the Appendix,
Section A.1.)

Proposition 2.4. Suppose that x ∈ �0 be an r-strong continuous function
�2 < r < 4	. Let

f�t	 ≡ sup
0≤s≤t

�−θs− x�s	�+ − �−θ�+t�(8)

where θ is a real number. Then f is also an r-strong continuous function.

Finally, we state a bound for a special class of reflected Brownian motions
(which we shall show may arise as the strong approximation for the feed-
forward multiclass queueing network under study in this paper). Let X be
a K-dimensional Brownian motion starting at X�0	 = x ∈ �K

+ with drift
θ and covariance matrix ) (on an appropriate probability space). Let R be
a K ×K lower-triangular matrix with positive diagonal elements. Then by
inductively applying the one-dimensional reflection mapping, we can show
that there exists a unique pair (Y�Z) satisfying

Z =X+RY ≥ 0�

Y is nondecreasing with Y�0	 = 0�∫ ∞

0
Zk�t	dYk�t	 = 0� k = 1� 
 
 
 �K


The unique Z is called the reflected Brownian motion and Y the regulator of
the reflected Brownian motion, associated with data (x� θ� )�R).

Theorem 2.5. Let Z be a K-dimensional reflected Brownian motion associ-
ated with data �x� θ� )�R	, where R is a lower-triangular matrix with positive
diagonal elements. Suppose that R−1θ < 0. Then

sup
0≤t≤T


Z�t	
 a
s
= O�logT	�(9)

which in particular implies that for any r > 0,

sup
0≤t≤T


Z�t	
 a
s
= ◦ �T1/r	


The proof of this theorem is in the Appendix, Section A.1.

3. A multiclass single server station. We formally describe the queue-
ing model in Section 3.1, and then establish its FLIL theorem and its strong
approximation theorem in Sections 3.3 and 3.4, respectively. In Section 3.5, we
provide an improved strong approximation for the sojourn times. We provide
a packet queue application in Section 3.6.
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3.1. Queueing model. The queueing model under consideration is a single-
server station serving K classes of jobs. Let � = �1� 
 
 
 �K� denote the set
of job class indices. Jobs of all classes arrive exogenously, wait for service and
after service completion leave the system. To specify the service discipline, we
partition � into L groups, 1� 
 
 
 �L, and let g. denote the set of classes belong
to group .. For any . < .′, a job of a class in g. has a higher preemptive-resume
priority over any job of any class in g.′ ; as a result, the presence of the latter
job has no impact on the former job. In this sense, for . < .′, a job of a class in
g. does not see any job of any class in g.′ . Within each group, jobs are served
under FIFO discipline. Let π be a mapping from � (job class index set) to
� �= �1� 
 
 
 �L� (job group index set); specifically, k ∈ gπ�k	; that is, class k is
in group π�k	. A job of class k is referred to as a (group) . job or it is in g.,
if k ∈ g.. The station is assumed to have an infinite waiting room. We note
that with L = 1, the station models a multiclass queue under a (pure) FIFO
service discipline, and with L = K (implying each group . contains a single
class), the station models a multiclass queue under a (pure) priority service
discipline.

The queue is described by the following primitive data: K counting pro-
cesses Ak = �Ak�t	� t ≥ 0� �k ∈ � 	, and K sequences of nonnegative random
variables vk = �vk�n	� n ≥ 1� �k ∈ � 	, all defined on the same probability
space. The (integer-valued) quantity, Ak�t	, indicates the number of class k
jobs that have arrived (exogenously) to the system during [0� t]. The random
variable vk�n	 is the service time required for the nth class k job. We assume
that initially there are no jobs in the system.

We introduce some notation. Let uk�1	 be the arrival time of the first class
k job and uk�n	, n > 1, the interarrival time between the (n − 1)st and the
nth class k jobs (corresponding to jump points of Ak). We call u = �uk	 with
uk = �uk�n	� n ≥ 1� the interarrival time sequence, and call v = �vk	 the
service time sequence. We introduce the summation,

Vk�0	 = 0� Vk�n	 =
n∑

m=1

vk�m	� n ≥ 1� k ∈ � �

and define its associated counting processes,

Sk�t	 = sup�n ≥ 0:Vk�n	 ≤ t�� k ∈ � 


Let Vk�t	 = Vk��t�	 for any t ≥ 0. Let V = �Vk	� A = �Ak	 and S = �Sk	. We
call A an exogenous arrival process and S a service process.

The performance measures of interest are the L-dimensional aggregated
workload process Z = �Z.	 with Z. = �Z.�t	� t ≥ 0� �. = 1� 
 
 
 �L	, the K-
dimensional queue length process Q = �Qk	 with Qk = �Qk�t	� t ≥ 0� �k =
1� 
 
 
 �K	, and the L-dimensional cumulative idle time process Y = �Y.	 with
Y. = �Y.�t	� t ≥ 0� �. = 1� 
 
 
 �L	. All of these processes are nonnegative
processes. The quantity, Z.�t	, indicates the total amount of current work for
the station embodied in jobs that are in groups 1 to . and that are queued or
in service at the station at time t. The quantity, Qk�t	, is integer valued and
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indicates the number of class k jobs at the station at time t. The quantity,
Y.�t	, indicates the cumulative amount of time that the server does not serve
jobs in groups 1 to . during [0� t]. It is clear that Y must be nondecreasing
with Y�0	 = 0.

To describe the dynamics of the queue, we need some additional notation:

1. Dk�t	 counts the number of departures of class k jobs from the station
during [0� t] after their service completions.

2. Wk�t	 is the workload process of class k jobs.
3. Tk�t	 is the total amount of time that the server at the station has served

jobs of class k during [0� t].
4. τ.�t	 is the arrival time of the g. job which has most recently completed

service [τ.�t	 is zero if there have been no service completions for group .].
5. νk�t	 is the partial service time (if any) that has been performed on job of

type k during (τ.�t	� t], where k ∈ g..
6. �k�t	 is the sojourn time of class k jobs at time t, denoting the time which

will be spent in the queue by the first class k job to arrive at time greater
than or equal to t.

7. ηk�t	 is the time at which the first class k job arrives during [t�∞).
8. �k�t	 is the time that a class k job would spend at the station if it arrived

at time t.

From the above definitions, we have the following dynamic relations:

Qk�t	 = Ak�t	 −Dk�t	�(10)

Wk�t	 = Vk�Ak�t		 −Vk�Dk�t		 − νk�t	�(11)

Y.�t	 = t−
.∑
i=1

∑
j∈gi

Tj�t	�(12)

Z.�t	 =
.∑
i=1

∑
j∈gi

Wj�t	 =
.∑
i=1

∑
j∈gi

Vj�Aj�t		 − t+Y.�t	�(13)

Dk�t	 = Sk�Tk�t		 = Ak�τ.�t		 where . = π�k	�(14)

0 ≤ νk�t	 ≤ max
1≤n≤Ak�t	

vk�n	�(15)

0 ≤ ηk�t	 − t ≤ uk�Ak�t	 + 1	�(16)

�k�t	 = �k�ηk�t		
(17)

Relations (10) and (11) are flow-balance relations in terms of time and head
count of jobs, respectively. The second equality in (14) follows from the FIFO
service discipline within jobs in group .; namely, any group . jobs that arrived
before the time τ.�t	 must have finished service by time t.
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The dynamics of �k can be described by a recursive relationship,

�k�t	 = Zπ�k	�t	 +
π�k	−1∑
i=1

∑
j∈gi

�Vj�Aj��k�t	 + t		 −Vj�Aj�t		�

+Vk�Ak�t		 −Vk�Ak�t	 − 1	�
(18)

where Zπ�k	�t	 is the current workload at time t (contributed by those jobs
having priority no less than class k) just before this class k job arrives,
Vj�Aj��k�t	 + t		 −Vj�Aj�t		 is the workload of class j jobs that arrive after
time t and before the completion of this class k job, and Vk�Ak�t		−
Vk�Ak�t	 − 1	 is the service time required for this job. The summation term
in (18) is the total amount work embodied in the jobs which arrive during the
sojourn time of the concerned job and which have higher priority than the
concerned job (the class k job).

Define the “net-put” process N.�t	 by

N.�t	 ≡
.∑
i=1

∑
j∈gi

Vj�Aj�t		 − t
(19)

The quantity, N.�t	, represents the total workload input of all types of jobs in
g1 ∪ · · · ∪ g. during [0� t] minus the work that would be finished if the server
were never idle. The equality (13) can alternatively be written as

Z.�t	 =N.�t	 +Y.�t	 ≥ 0
(20)

Under the work-conserving (i.e., nonidling) condition, Y.�·	 can increase at
time t only when Z.�t	 = 0. Hence, the pair (Z.�Y.) jointly satisfies the one-
dimensional reflection mapping theorem in Harrison (1985), which yields

Y.�t	 = sup
0≤s≤t

�−N.�s	�
(21)

We assume that there exists a long-run average arrival rate and an average
service time; namely,

A�t	
t

→ λ as t→∞�

V�n	
n

→m as n→∞


We shall call λk, the kth coordinate of λ, the (exogenous) arrival rate of class
k job, and call mk, the kth coordinate of m, the average service time of class
k job [alternatively the mean service time of class k job when vk�n	 has the
same finite mean for all n ≥ 0]. We assume that for all k ∈ � � λk > 0 and
mk > 0. Call µk �= 1/mk the service rate of class k. Define

βi ≡
∑
j∈gi

λjmj� ρ. ≡
.∑
i=1

βi� ρ ≡ ρL�(22)
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where βi is the aggregated traffic intensity for job classes in gi� ρ. the aggre-
gated traffic intensity for all classes in g1∪· · ·∪g. �ρ0 ≡ 0	, and ρ is the traffic
intensity of the service station.

We shall assume that the traffic intensity ρ ≤ 1, through this section. The
discussion for the case when ρ > 1 is in the Appendix, Section A.2.

3.2. Preliminary lemmas. We state and prove three lemmas that will be
used in establishing the main results.

Lemma 3.1. Suppose that for k = 1� 
 
 
 �K, as T→∞,

sup
0≤t≤T

�Ak�t	 − λkt� a
s
= O�
√
T log logT	�

sup
0≤t≤T

�Vk�t	 −mkt� a
s
= O�
√
T log logT	


Then we have


νk�t	
T a
s
= O�
√
T log logT	� k = 1� 
 
 
 �K�

as T→∞. If we further assume that

sup
0≤t≤T

�Vk�t	 −mkt− V̂k�t	� a
s
= ◦ �T1/r	�

with r ∈ �2�4	 and V̂k being an r-strong continuous process, then we have


νk�t	
T a
s
= ◦ �T1/r	� k = 1� 
 
 
 �K�

as T→∞.

Proof. We only prove the second half of the lemma; the proof of the first
half is almost the same. Use the convention Vk�−1	 = 0 and vk�0	 = 0 in the
proof below. From (15), we have for k = 1� 
 
 
 �K,


νk�t	
T ≤ sup
0≤t≤T

� max
1≤n≤Ak�t	

vk�n	�

= sup
0≤t≤T

vk�Ak�t		

= sup
0≤t≤T

�Vk�Ak�t		 −Vk�Ak�t	 − 1	�

≤ sup
0≤t≤T

�Vk�Ak�t		 −mkAk�t	 + V̂k�Ak�t		�

+ sup
0≤t≤T

�Vk�Ak�t	 − 1	 −mk�Ak�t	 − 1	 + V̂k�Ak�t	 − 1	�

+ sup
0≤t≤T

�V̂k�Ak�t		 − V̂k�Ak�t	 − 1	� +mk

a
s
= ◦�T1/r	�
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where the last equality follows from the strong approximation assumption for
Vk, the strong continuity of V̂k, and Lemma 2.3(iii) and (v). ✷

In view of (16), we can use an argument similar to the one leading to
Lemma 3.1 to prove the following lemma.

Lemma 3.2. Suppose that for k = 1� 
 
 
 �K, as T→∞,

sup
0≤t≤T

�Ak�t	 − λkt� a
s
= O�
√
T log logT	


Then


ηk�t	 − t
T a
s
= O�
√
T log logT	� k = 1� 
 
 
 �K�

as T→∞. If we further assume that for k = 1� 
 
 
 �K, as T→∞,

sup
0≤t≤T

�Ak�t	 − λkt− Âk�t	� a
s
= ◦ �T1/r	�

with r ∈ �2�4	 and Âk being r-strong continuous, then


ηk�t	 − t
T a
s
= ◦ �T1/r	� k = 1� 
 
 
 �K�

as T→∞.

Lemma 3.3. Suppose that the FLIL approximations,

sup
0≤t≤T

�Ak�t	 − λkt� a
s
= O�
√
T log logT	�

sup
0≤t≤T

�Sk�t	 − µkt� a
s
= O�
√
T log logT	�

sup
0≤t≤T

�Vk�t	 −mkt� a
s
= O�
√
T log logT	�

as T → ∞. Then there exist M0 and T0 which are positive such that with
probability 1�

�k�t	 ≤M0t for t ≥ T0


Proof. It follows from the assumptions of the lemma that


Vk�Ak�t		 − λkmkt
T a
s
= O�
√
T log logT	


Therefore, there exist positive constants T1 and a such that with probability 1,

Vk�Ak�t		 ≤ λkmkt+ a
√
t log log t for t ≥ T1
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From (18), we deduce that, with probability 1,

�k�t	 ≤ Zπ�k	�t	 + ρπ�k	−1�k�t	 + ρπ�k	−1t+ a
π�k	−1∑
i=1

∑
j∈gi

√
t log log t

+Vk�Ak�t		 −Vk�Ak�t	 − 1	 −
π�k	−1∑
i=1

∑
j∈gi

Vj�Aj�t		�

for t ≥ T1. This implies that with probability 1,

�1− ρπ�k	−1	�k�t	 ≤ Zπ�k	�t	 + ρπ�k	−1t+ a
π�k	−1∑
i=1

∑
j∈gi

√
t log log t

+Vk�Ak�t		 −Vk�Ak�t	 − 1	 −
π�k	−1∑
i=1

∑
j∈gi

Vj�Aj�t		�

for t ≥ T1. Since we assume that ρ ≤ 1, we know that ρπ�k	−1 < 1. The above
inequality, together with Lemma 2.3(iii) and (26) in Theorem 3.4, yield the
desired result. Even though the proof of Theorem 3.4 (which is to be pro-
vided later) makes use of this lemma, the proof of (26) in that theorem does
not depend on this lemma and is under the same condition as this lemma.
Therefore, the proof is complete. ✷

3.3. Functional law-of-iterated-logarithm. The key result of this section is
to show that if the primitive data (the input process) have FLIL approxima-
tions, then the departure process (the output process) and the key performance
measures of the queue also have FLIL approximations.

To this end, assume that all the primitive data, the exogenous arrival pro-
cess and the service process, have FLIL approximations: as T→∞,

sup
0≤t≤T

�Ak�t	 − λkt� a
s
= O�
√
T log logT	�(23)

sup
0≤t≤T

�Sk�t	 − µkt� a
s
= O�
√
T log logT	�(24)

sup
0≤t≤T

�Vk�t	 −mkt� a
s
= O�
√
T log logT	
(25)

In fact, it follows from Theorem 2.1 that (25) implies (24). In addition, a suf-
ficient condition for the above approximations is that for each k ∈ � , the
(exogenous) interarrival time sequence uk and the service time sequence vk
are i.i.d. sequences with finite variances. The main results follow.
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Theorem 3.4. Suppose that the FLIL assumptions �23	–�25	 hold. Assume
that the traffic intensity ρ ≤ 1. Then as T→∞,

sup
0≤t≤T

�Z.�t	� a
s
= O�
√
T log logT	�(26)

sup
0≤t≤T

�Wk�t	� a
s
= O�
√
T log logT	�(27)

sup
0≤t≤T

�Qk�t	� a
s
= O�
√
T log logT	�(28)

sup
0≤t≤T

��k�t	� a
s
= O�
√
T log logT	�(29)

sup
0≤t≤T

�Dk�t	 − λkt� a
s
= O�
√
T log logT	�(30)

sup
0≤t≤T

�Y.�t	 − �1− ρ.	t� a
s
= O�
√
T log logT	�(31)

sup
0≤t≤T

�Tk�t	 − βkt� a
s
= O�
√
T log logT	�(32)

sup
0≤t≤T

�τ.�t	 − t� a
s
= O�
√
T log logT	�(33)

for all . ∈ � and k ∈ � .

Remark. We note that this theorem holds without assuming the renewal
arrival process and the i.i.d. service times. One simple example is to have a
compound arrival process (modeling batch arrivals). They hold even without
assuming that Ak and Sk are integer-valued, as long as the FLIL approxima-
tions (23)–(25) hold. Consider a specific example, where the arrival process Ak

takes the form

Ak�t	 =
∫ t
0
αk�s	ds

and service process Sk�t	 = µkt. This may represent an ATM communication
system, where αk�t	 models the rate at which cells (of class k) are generated
at time t and µk the rate at which cells (of class k) can be processed. [The
process �αk�t	� t ≥ 0� is often modeled by a sum of randomly on–off sources.]

Proof of Theorem 3.4. From the definition of N.�t	, we have

N.�t	 =
.∑
i=1

∑
k∈gi

��Vk�Ak�t		 −mkAk�t	� +mk�Ak�t	 − λkt�� + �ρ. − 1	t


By the FLIL assumptions (23) and (25) and Lemma 2.3(iii), we have

sup
0≤t≤T

�N.�t	 − �ρ. − 1	t� a
s
= O�
√
T log logT	
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Because the pair (Z.�Y.) satisfies the oblique reflection mapping [in view of
(20) and (21)], the Lipschitz continuity of the reflection mapping implies (26)
and (31).

In view of (11) and (14), we have∑
k∈g.

Wk�t	 =
∑
k∈g.

�Vk�Ak�t		 −Vk�Dk�t		 − νk�t	�

= ∑
k∈g.

��Vk�Ak�t		 −mkAk�t	� +mk�Ak�t	 − λkt��

− ∑
k∈g.

��Vk�Dk�t		 −mkDk�t	� +mk�Ak�τ.�t		 − λkτ.�t	��

+β.�t− τ.�t		 −
∑
k∈g.

νk�t	


Using Lemma 3.1 and the FLIL assumptions (23) and (25) yields

sup
0≤t≤T

∣∣∣∣∣ ∑
k∈g.

Wk�t	 − β.�t− τ.�t		
∣∣∣∣∣ a
s
= O�

√
T log logT	�

which can be rewritten as

sup
0≤t≤T

�Z.�t	 −Z.−1�t	 − β.�t− τ.�t		� a
s
= O�
√
T log logT	


This combined with (26) implies the FLIL approximation (33) for τ..
For k = 1� 
 
 
 �K, let . = π�k	; the FLIL approximation (30) for the depar-

ture process Dk follows from

sup
0≤t≤T

�Dk�t	 − λkt� = sup
0≤t≤T

�Ak�τ.�t		 − λkt�

= sup
0≤t≤T

��Ak�τ.�t		 − λkτ.�t	� + λk�τ.�t	 − t	�

a
s
= O�
√
T log logT	


From the relation (14), we can write

Dk�t	 − λkt = S�Tk�t		 − λkt = �Sk�Tk�t		 − µkTk�t	� + µk�Tk�t	 − λkmkt�


Therefore, the FLIL approximation (32) for Tk can be derived from (30), (24)
and the fact that 0 ≤ Tk�t	 ≤ t. Similarly, the FLIL approximation (28) for
the queue length process Qk can be proved by observing

Qk�t	 = �Ak�t	 − λkt� − �Dk�t	 − λkt�
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By noting Lemma 3.1, we have that for k = 1� 
 
 
 �K,

sup
0≤t≤T

�Wk�t	� = sup
0≤t≤T

��Vk�Ak�t		 −mkAk�t	� +mk�Ak�t	 − λkt�

−�Vk�Dk�t		 −mkDk�t	� +mk�Dk�t	 − λkt� − νk�t	�
a
s
= O�

√
T log logT	�

which is the FLIL approximation (27) for the workload process Wk.
Finally, we establish the FLIL approximation (29) for the sojourn time pro-

cess �k. It follows from (18) and Lemma 3.3 that


�k�t	 − ρπ�k	−1�k�t	
T

≤ 
Zπ�k	�t	
T +
π�k	−1∑
i=1

∑
j∈gi


Vj�Aj��k�t	 + t		 −mjAj��k�t	 + t	
T

+ 
Vk�Ak�t		 −Vk�Ak�t	 − 1	
T

+
π�k	−1∑
i=1

∑
j∈gi

mj
Aj��k�t	 + t	 − λj��k�t	 + t	
T

+
π�k	−1∑
i=1

∑
j∈gi


Vj�Aj�t		 −mjAj�t	
T +
π�k	−1∑
i=1

∑
j∈gi

mj
Aj�t	 − λjt
T

a
s
= O�
√
T log logT	


Therefore, we have


�k�t	
T a
s
= O
√
T log logT


Since �k�t	 = �k�ηk�t		, the above combined with Lemma 3.2 yields (29). ✷

3.4. Strong approximation. The key result of this section is to show that
if the primitive data of the queue have r-strong approximations [for some
r ∈ �2�4	], then the performance measures (such as the workload process, the
queue length process and the sojourn time process) and the output process
(namely, the departure process) also have r-strong approximations.

To this end, we assume that processes Ak�t	� Sk�t	�Vk�t	 are defined on
an appropriate probability space such that for some r ∈ �2�4	 and for k =
1� 
 
 
 �K,

sup
0≤t≤T

�Ak�t	 − λkt− Âk�t	� a
s
= ◦�T1/r	�(34)

sup
0≤t≤T

�Sk�t	 − µkt− Ŝk�t	� a
s
= ◦�T1/r	�(35)

sup
0≤t≤T

�Vk�t	 −mkt− V̂k�t	� a
s
= ◦�T1/r	�(36)
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where λk ≥ 0� µk > 0� mk = 1/µk, and V̂k�t	 = −mkŜk�mkt	. It follows from
Theorem 2.2 that (36) implies (35). We shall also assume that Âk and Ŝk are
r-strong continuous processes, k ∈ � . By Theorem 2.2, if we assume that the
sequence of service times vk and the sequence of interarrival times uk are
mutually independent nonnegative i.i.d. sequences having finite rth moment
with r ∈ �2�4	, then we can have (34)–(36), with

Âk�t	 = λ
1/2
k c0� kB0� k�t	�(37)

Ŝk�t	 = µ
1/2
k ckB1� k�t	�(38)

where

λk = 1/E�uk�n		�
µk = 1/E�vk�n		�
c0� k = coefficient of variation of uk�n	�
ck = coefficient of variation of vk�n	

andB0� k�t	 andB1� k�t	� k ∈ � , are mutually independent standard Brownian
motions. (The coefficient of variation of a random variable is its standard devi-
ation divided by its mean.)

Theorem 3.5. Suppose that the strong approximation assumptions
�34	–�36	 hold with Âk and Ŝk being r-strong continuous for some r ∈ �2�4	.
Assume that the traffic intensity ρ ≤ 1. Then for . ∈ � and k ∈K, as T→∞,

sup
0≤t≤T

�Z.�t	 − Z̃.�t	� a
s
= ◦�T1/r	�(39)

sup
0≤t≤T

��k�t	 − �̃ k�t	� a
s
= ◦�T1/r	�(40)

sup
0≤t≤T

�Dk�t	 − D̃k�t	� a
s
= ◦�T1/r	�(41)

sup
0≤t≤T

�Qk�t	 − Q̃k�t	� a
s
= ◦�T1/r	�(42)

sup
0≤t≤T

�Wk�t	 − W̃k�t	� a
s
= ◦�T1/r	�(43)

where

Z̃.�t	 = Ñ.�t	 + Ỹ.�t	�(44)

Ñ.�t	 = �ρ. − 1	t+
.∑
i=1

∑
j∈gi

�mjÂj�t	 − V̂j�λjt	��(45)

Ỹ.�t	 = sup
0≤s≤t

�−Ñ.�s	�+�(46)
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�̃ k�t	 =
Z̃π�k	�t	

1− ρπ�k	−1
�(47)

D̃k�t	 = λkt+ Âk�t	 −
λk
βπ�k	

�Z̃π�k	�t	 − Z̃π�k	−1�t	��(48)

Q̃k�t	 =
λk
βπ�k	

�Z̃π�k	�t	 − Z̃π�k	−1�t	��(49)

W̃k�t	 =
λkmk

βπ�k	
�Z̃π�k	�t	 − Z̃π�k	−1�t	� =mkQ̃k�t	
(50)

Remarks.

1. By Proposition 2.4, the process Z̃. is an r-strong continuous process; hence,
�̃ k� Q̃k and W̃k are r-strong continuous. In particular, let

D̂k�t	 = Âk�t	 −
λk
βπ�k	

�Z̃π�k	�t	 − Z̃π�k	−1�t	��

then D̂k is r-strong continuous, and the departure process Dk has the
strong approximation,


Dk�t	 − λkt− D̂k�t	
T a
s
= ◦ �T1/r	

This property is essential for the inductive use of the strong approximation
of the single-station queue to be extended to a feedforward network case.

2. In Peterson (1991), a state space collapse phenomenon is observed for pri-
ority job classes; namely, the workload of high priority group vanishes in
the usual heavy traffic normalization. The strong approximation theorem
enables us to identify more refined approximation; in this case, it sug-
gests approximating the workload processes of higher priority classes by
reflected Brownian motions instead of zero. Indeed, our numerical examples
in Section 6 show that the approximations suggested by the strong approx-
imation out performs a straightforward interpretation of the heavy traffic
approximation. On the other hand, we can recover the results of heavy
traffic limits from the strong approximation by assuming the equalities
(37) and (38), and we have

Z∗�t	 = Z̃L�t	�(51)

where Z∗�t	 is the diffusion approximation of the workload of the station in
Peterson (1991). We can also recover the corresponding weak convergence
results following a similar approach in Chen and Mandelbaum (1994) that
shows how to derive the diffusion limit theorem from the strong approxi-
mation theorem for a generalized Jackson network. We note that the strong
approximation limit is not unique; it could be any process that differs from
the limit in the theorem by an order of magnitude no more than ◦�T1/r	.
Finally, it follows from Theorem 2.5 that when the reflected Brownian
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motion with a negative drift (ρ < e case), any constant (including zero)
can be the strong approximation limit. Nevertheless, the proposed form of
the strong approximation limit is most natural (as can be seen from the
proof), and as we shall see through numerical examples, with some refine-
ment, its stationary distribution provides a very good approximation for
the stationary distribution of the corresponding quantity in the original
queueing network.

3. The second equality in (50) is Little’s law for the strong approximation
limits of the workload and the queue length process.

4. We would like to point out that, by assuming the equalities (37) and (38),
though our approximation for the workload process of the lowest priority
group is consistent with the result in Peterson (1991), we have a slightly
different approximation for the sojourn time process. For class k jobs which
are in the group gL, the diffusion approximation of its sojourn time �k in
Peterson (1991) is

� ∗
k �t	 =

Z∗�t	
ρL − ρL−1

�(52)

while in our paper, the strong approximation gives

�̃ k�t	 =
Z̃L�t	
1− ρL

= Z∗�t	
1− ρL


(53)

These two formulas are consistent when the traffic intensity at the station
is one which is the heavy traffic assumption in the diffusion approximation.

Proof of Theorem 3.5. First, by Lemma 2.3(ii), the strong approximation
assumptions (34)–(36) imply the FLIL assumptions (23)–(25); hence,
Theorem 3.4 prevails. In the remainder of the proof, we shall repeatedly use
Lemma 2.3 without explicitly referring to it.

Next, we rewrite the net-put process as

N.�t	 =
.∑
i=1

∑
k∈gi

Vk�Ak�t		 − t

=
.∑
i=1

∑
k∈gi

{
�Vk�Ak�t		 −mkAk�t	 + V̂k�Ak�t		�

+mk�Ak�t	 − λkt− Âk�t	� − �V̂k�Ak�t		 − V̂k�λkt	�
+ λkmkt+mkÂk�t	 − V̂k�λkt	

}
− t

=
.∑
i=1

∑
k∈gi

{
�Vk�Ak�t		 −mkAk�t	 + V̂k�Ak�t		�

+mk�Ak�t	 − λkt− Âk�t	� − �V̂k�Ak�t		 − V̂k�λkt	�
}
+ Ñ.�t	




STRONG APPROXIMATIONS FOR QUEUES 847

Thus, N.�t	 has a strong approximation as

sup
0≤t≤T

�N.�t	 − Ñ.�t	� a
s
= ◦ �T1/r	


Since the pair (Z.�Y.) satisfies the reflection mapping, by the Lipschitz
continuity of the reflection mapping, we have

sup
0≤t≤T

�Z.�t	 − Z̃.�t	� a
s
= ◦�T1/r	�

sup
0≤t≤T

�Y.�t	 − Ỹ.�t	� a
s
= ◦�T1/r	�

where Z̃. and Ỹ. are defined in (44) and (46), respectively. This proves the
strong approximation (39) for the workload process Z..

In view of (11) and (14), we have∑
k∈g.

Wk�t	 =
∑
k∈g.

{
�Vk�Ak�t		−mkAk�t	−V̂k�Ak�t		�+mk�Ak�t	−λkt−Âk�t	�

+�V̂k�Ak�t		−V̂k�λkt	�−�Vk�Dk�t		−mkDk�t	−V̂k�Dk�t		�
−mk�Ak�τ.�t		−λkτ.�t	−Âk�τ.�t		�−mk�Âk�τ.�t		−Âk�t	�
−�V̂k�Dk�t		−V̂k�λkt	�+λkmk�t−τ.�t	�−νk�t	

}



Thus, by Lemma 3.1, it follows that

sup
0≤t≤T

∣∣∣∣∣ ∑
k∈g.

Wk�t	 − β.�t− τ.�t	�
∣∣∣∣∣ a
s
= ◦ �T1/r	�

which, in view of (39), implies

sup
0≤t≤T

∣∣∣Z̃.�t	 − Z̃.−1�t	 − β.�t− τ.�t	�
∣∣∣ a
s
= ◦ �T1/r	
(54)

Now fix k ∈ � and . = π�k	. Rewrite Dk as

Dk�t	 = �Ak�τ.�t		 − λkτ.�t	 − Âk�τ.�t		� + �Âk�τ.�t		 − Âk�t	�
+λkt+ λk�τ.�t	 − t� + Âk�t	

= �Ak�τ.�t		 − λkτ.�t	 − Âk�τ.�t		� + �Âk�τ.�t		 − Âk�t	�

+λk
β.

{
β.�τ.�t	 − t	 + �Z̃.�t	 − Z̃.−1�t	�

}
−λk
β.

�Z̃.�t	 − Z̃.−1�t	� + Âk�t	 + λkt


This, together with (54), yields the strong approximation (41) for the departure
process Dk.
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Similarly, we prove the strong approximation (42) for the queue length pro-
cess Qk by observing

sup
0≤t≤T

�Qk�t	 − Q̃k�t	� = sup
0≤t≤T

��Ak�t	 − λkt = Âk�t	� − �Dk�t	 − D̃k�t	��

a
s
= ◦ �T1/r	 as T→∞�

and the strong approximation (43) for the workload process Wk by observing

Wk�t	 − W̃k�t	
= �Vk�Ak�t		 −mkAk�t	 − V̂k�Ak�t		� +mk�Ak�t	 − λkt− Ãk�t	�
+�V̂k�Ak�t		 − V̂k�λkt	� − �Vk�Dk�t		 −mkDk�t	 − V̂k�Dk�t		�
−mk�Dk�t	 − D̃k�t	� − �V̂k�Dk�t		 − V̂k�λkt	� − νk�t	


Finally, we establish the strong approximation (40) for the sojourn time
process �k. Note that �k�t	 = �k�ηk�t		; we first rewrite (18),

�k�t	 = Z̃π�k	�t	 + ρπ�k	−1�k�t	 + �Zπ�k	�t	 − Z̃π�k	�t	�

+
π�k	−1∑
i=1

∑
j∈�i

{
�Vj�Aj��k�t	 + t		

−mjAj��k�t	 + t	 − V̂j�Aj��k�t	 + t		�
+mj�Aj��k�t	 + t	 − λj��k�t	 + t	 − Âj��k�t	 + t	�
+mj�Âj��k�t	 + t	 − Âj�t	�
+�V̂j�Aj��k�t	 + t		 − V̂j�λjt	�

−�Vj�Aj�t		 − λjmjt−mjÂj�t	 − V̂j�λjt	�
}

+ �Vk�Ak�t		 − λkmkt−mkÂk�t	 − V̂k�λkt	�
− �Vk�Ak�t	 − 1	 − λkmkt−mkÂk�t	 − V̂k�λkt	�


Note that 
�k�t	
 = O�√T log logT	 a.s. as shown in the proof of Theorem 3.4;
in view of Lemma 2.3 and the strong approximations for Zπ�k	, Vj and Aj, we
obtain from the above equality,∥∥∥�k�t	 − ρπ�k	−1�k�t	 − Z̃π�k	�t	

∥∥∥
T

a
s
= ◦�T1/r	 as T→∞�

or equivalently,∥∥∥∥�k�t	 −
1

1− ρπ�k	−1
Z̃π�k	�t	

∥∥∥∥
T

a
s
= ◦�T1/r	 as T→∞


The latter, together with Lemmas 3.2 and (17), implies (40). ✷
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3.5. Fine tuning the strong approximation for sojourn time. Amore detailed
study reveals that the strong approximation of sojourn time that we obtained
in Theorem 3.5 should be better interpreted as the strong approximation to
the sojourn queue time which is the time between the arrival of the job and the
time that it just begins service. The reason is that, in the proof of FSAT approx-
imation for the sojourn time process we approximateVk�Ak�t		−Vk�Ak�t	−1	,
the service time, by zero. If we replace Vk�Ak�t		 −Vk�Ak�t	 − 1	 by zero in
(18), then the new �k is exactly the sojourn queue time.

Thus, the strong approximation for the sojourn queue time is same as that
for the sojourn time given by Theorem 3.5. As we know, the sojourn time
should be larger than the sojourn queue time. For a single-class single-station
queue, the sojourn time of a job equals its sojourn queue time plus its service
time. For preemptive priority queueing networks, even if a job is in service, it
may well be interrupted by another arriving job with higher priority. Hence,
in general, the sojourn time of a job should be longer than or equal to its
sojourn queue time plus its service time. Our numeric examples suggest that
approximating the service time by its mean would yield an improved strong
approximation for the sojourn time (47),

�̃ k�t	 =
1

1− ρπ�k	−1
�Z̃π�k	�t	 +mk�
(55)

[We note that we might obtain a better approximation by using a true service
time random variable in place of mk in the above; this will be discussed in
Shen (2000).]

Because of the nature of strong approximation, we could replace mk in (55)
by any constant and the strong approximation still holds. However, there is
strong reason to believe thatmk is the best constant to put in (55). Our numer-
ical examples in Section 6 show that (55) gives fairly good approximation to
the steady-state average sojourn time. For M/G/1 preemptive priority queue,
the approximated steady-state mean sojourn time is

E�k =
1

1− ρπ�k	−1

(∑π�k	
l=1

∑
i∈�l

m2
i

(
1+ b2i

)
2�1− ρπ�k		

+mk

)
�(56)

which is the same as the exact mean sojourn time; see (3.39) in Kleinrock
(1976).

3.6. A packet queue application. Our strong approximation in Theorem 3.5
provides a framework to evaluate the performance of single-station multiclass
queues. It holds without assuming renewal arrival processes or renewal ser-
vice times. Here, we provide as an example a batch renewal model which was
used by Fendick, Saksena and Whitt (1989) to study the dependence in packet
communication networks. As we know, a batch renewal process is a renewal
process if and only if it is a batch-Poisson process and the batch size is geomet-
rically distributed on the positive integers. Typically, the superposition process
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of batch renewal processes is not renewal. The strong approximation theorem
can be applied to them to get performance measures easily.

Let uk = �uk�n	� n ≥ 1� be i.i.d. batch interarrival times, with mean λk
and squared coefficient of variation (SCV) c20k; let vk = �vk�n	� n ≤ 1� be
i.i.d. service times, with mean mk and squared coefficient of variation c2k; let
ηk = �ηk�n	� n ≥ 1� be i.i.d. batch sizes with ηk�n	 being the nth batch size
of class k packets and with mean bk and squared coefficient of variation c2bk.
Furthermore, we assume that all three of them have finite rth moments with
r > 2 and are mutually independent. All classes belong to one priority group,
so service discipline is strictly FIFO.

Let Ak�t	 denote the arrival process of class k packets,

Xk�t	 =
�t�∑
i=1

uk�i	� t ≥ 0�

Yk�t	 = sup�s ≥ 0� Xk�s	 ≤ t�� 0 ≤ t <∞�

Uk�t	 =
�t�∑
i=1

vk�i	� t ≥ 0� Vk�t	 =
�t�∑
i=1

ηk�i	� t ≥ 0�

with X�T	 = 0�U�t	 = 0 and Vk�t	 = 0 for t < 1. Thus

A�t	 = U�Y�t		

By Theorem 2.2 and Lemma 2.3, there exist three independent standard

Brownian motions BX
k , BU

k and BV
k such that∥∥Uk�t	 − bkt− b

1/2
k cbkB

U
k �bkt	

∥∥
T

a
s
= ◦�T1/r′ 	�∥∥Vk�t	 −mkt−m
1/2
k ckB

V
k �mkt	

∥∥
T

a
s
= ◦�T1/r′ 	�∥∥Yk�t	 − λkt− λ
1/2
k c0kB

X
k �t	

∥∥
T

a
s
= ◦�T1/r′ 	�∥∥Ak�t	 − λkbkt− λ
1/2
k bkc0kB

X
k �t	 − b

1/2
k cbkB

U
k �λkbkt	

∥∥ a
s
= ◦�T1/r′ 	�
where r′ = r if r < 4, and r′ < 4 if r ≥ 4.

Therefore, by Theorem 3.5, the strong approximation for the total workload
process at the station is

Z̃�t	 = Ñ�t	 + Ỹ�t	�

Ñ�t	 = �ρ− 1	t+
K∑
k=1

{
mkλ

1/2
k bkc0kB

X
k �t	

+mkb
1/2
k cbkB

U
k �λkbkt	 −m

1/2
k ckB

V
k �mkλkbkt	�

}
�

Ỹ.�t	 = sup
0≤s≤t

{− Ñ.�s	
}+
�
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where ρ = @Kk=1λkbkmk. This is a one-dimensional reflected Brownian motion.
In particular, we can get approximated steady-state mean work load by

EZ =
∑K

k=1 λkm
2
k�bkc2k + b2k�c20k + c2bk	�

2�1− ρ	 


Fendick, Saksena and Whitt (1989) obtained the same result by using a heavy
traffic limit theorem.

4. Multiclass feedforward networks. In this section, we shall assume
the FLIL approximation without much discussion and focus on the strong
approximation. The reasons are that the derivation of the FLIL approximation
for the network case is quite similar to that for the single-station case and that
the strong approximation yields more useful approximation.

4.1. Queueing network model. We first describe the primitive data and
then the performance measures and their dynamics.

4.1.1. Primitive data and assumptions. The queueing network consists of
a set of J service stations, indexed by j = 1� 
 
 
 � J, serving K classes of
jobs, indexed by k = 1� 
 
 
 �K. There are L priority groups, indexed by .� . =
1� 
 
 
 �L, and g. is the set of all job classes belong to group .. Let π�·	 be a
many-to-one mapping from class indices to group indices; specifically, job class
k belongs to the priority group π�k	. Jobs from group . �. = 1� 
 
 
 �L	 are
served exclusively at station j = σ�.	, where σ�·	 is a many-to-one mapping
from group indices to station indices. While each group is served at one station
exclusively, each station may serve more than one group. For simplicity, we
define σ�0	 ≡ 0. Note that the composition σ ◦ π is a many-to-one mapping
from class indices to station indices. If . < m, then jobs in group . are assumed
to have a preemptive priority over jobs in group m�.�m = 1� 
 
 
 �L	. Within
a group, jobs of all classes are served in the order of arrival, that is, first-
in first-out (FIFO). The network is a feedforward queueing network in the
sense that any job at station i can turn into another class at station j only if
j > i �i� j = 1� 
 
 
 � J	. To illustrate our notation, consider the network given
by Figure 1, which has J = 2 stations serving K = 6 classes of jobs with
L = 4 priority groups. Job class 1 belongs to priority group 1; job classes 2
and 3 belong to priority group 2; job class 4 belongs to priority group 3 and
job classes 5 and 6 belong to priority group 4. Priority groups 1 and 2 reside
at station 1 and all the other groups reside at station 2. Then, π�g and σ
defined above can be written as

π�1	 = 1� π�2	 = π�3	 = 2�

π�4	 = 3� π�5	 = π�6	 = 4�
g1 = �1�� g2 = �2�3�� g3 = �4�� g4 = �5�6��
σ�1	 = σ�2	 = 1� σ�3	 = σ�4	 = 2
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Fig. 1. A multiclass feedforward queue network.

To facilitate our analysis, we make some assumptions on the way of indexing
priority groups and job classes. As we will see later, this is critical to obtaining
a compact presentation of the main results.

1. Every station has at least one priority group, and every priority group has
at least one job class; hence, necessarily, K ≥ L ≥ J.

2. For k� j = 1� 
 
 
 �K, π�k	 ≤ π�j	 if k < j. Therefore, jobs of class 1 must
be in group 1 and jobs of class K must be in group L.

3. For .�m = 1� 
 
 
 �L σ�.	 ≤ σ�m	 if . < m. Thus, jobs from group 1 must be
served in station 1, and jobs from group L must be served in station J.

The queueing network is described by the following primitive data: 2K
sequences of nonnegative random variables uk = �uk�n	� n ≥ 1� and vk =
�vk�n	� n ≥ 1��k = 1� 
 
 
 �K	, and K sequences of K-dimensional vector φk =
�φk�n	� n ≥ 1��k = 1� 
 
 
 �K	, all defined on the same probability space.

We assume that there are no jobs in the network at time t = 0. The random
variable uk�1	 is the time of the first exogenously arrived class k job, and
uk�n	� n > 1, is the time between the �n − 1	st and nth exogenous arrived
class k jobs. The random variable vk�n	 is the service time required for the
nth class k jobs. The random variable φk describes the routing mechanism
for class k jobs: the nth class k job after service completion turns into a class
j job if φk�n	 = ej and leave the network if φk�n	 = 0. By the feedforward
structure and our numbering convention, it follows that, for all n ≥ 1 and
k� i = 1� 
 
 
 �K, the class transitions must satisfy φk�n	 �= ei if σ�π�i		 ≤
σ�π�k		.

We introduce the summations,

Uk�0	 = 0� Uk�n	 =
n∑

m=1

uk�m	� n ≥ 1� k = 1� 
 
 
 �K�

Vk�0	 = 0� Vk�n	 =
n∑

m=1

vk�m	� n ≥ 1� k = 1� 
 
 
 �K�
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Bk�0	 = 0� Bk�n	 =
n∑

m=1

φk�m	� n ≥ 1� k = 1� 
 
 
 �K


Define their associated counting processes

Ek�t	 = sup�n ≥ 0� Uk�n	 ≤ t�� k = 1� 
 
 
 �K�

Sk�t	 = sup�n ≥ 0� Vk�n	 ≤ t�� k = 1� 
 
 
 �K


Let U = �Uk	, V = �Vk	, B = �B1� 
 
 
 � BK	, E = �Ek	 and S = �Sk	. We call E
an exogenous arrival process, S a service process, and B a routing sequence.
Note that we do not assume that the arrival process E, the service process S
and the routing processes are renewal processes.

Similar to the single-station queueing model above, we assume that there
exist a long-run average arrival rate, an average service time and a long-run
average transition (routing) rate; namely,

E�t	
t

→ α as t→∞�

V�n	
n

→m as n→∞�

Bk�n	
n

→ P′
k as n→∞�

where P′
k is the kth row of a K ×K matrix P = �pkj	. We shall call αk, the

kth coordinate of α, the (exogenous) arrival rate of class k job and call mk,
the kth coordinate of m, the average service time of class k job [alternatively
the mean service time of class k job when vk�n	 has the same finite mean for
all n ≥ 1]. Call pkj, the jth coordinate of P′

k [and the �k� j	th element of P],
the average transition rate that a class k job turns into a class j job after
completing its service. When BK is an i.i.d. summation, pkj is the probability
that a class k job turns into a class j job after its service completion. We
assume that for all 1 ≤ k ≤K, mk > 0 and call µk �= 1/mk the service rate of
class k. By our assumption on the routing sequence, it follows that matrix P
is a strictly upper triangular matrix. For the network shown in Figure 1, the
routing matrix takes the form

P =


0 0 0 0 0 0
0 0 0 0
5 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 �

where it is assumed that upon service completion, any class 3 job will turn
into a class 5 job, a class 2 job will either leave the network or turn into a
class 4 job with equal probability and jobs of all other classes will leave the
network.
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We assume that the primitive processes �V�E�B1� 
 
 
 � BK	 have strong
approximations; namely, we assume that they are defined on a probability
space such that there exist a K�K + 2	-dimensional r-continuous process
�V̂� Ê� B̂1� 
 
 
 � B̂K	 satisfying


V�t	 −mt− V̂�t	
T a
s
= ◦�T1/r	�(57)


E�t	 − αt− Ê�t	
T a
s
= ◦�T1/r	�(58)


Bk�t	 −P′
kt− B̂k�t	
T a
s
= ◦�T1/r	� k = 1� 
 
 
 �K�(59)

as T→∞, for some r ∈ �2�4	. We note, in particular, that we neither assume
that �V̂� Ê� B̂1� 
 
 
 � B̂K	 is a Brownian motion, nor assume its components V̂,
Ê and B̂1� 
 
 
 � B̂K are mutually independent.

However, if uk, vk and φk, k = 1� 
 
 
 �K, are mutually independent i.i.d.
sequences, and uk and vk have finite moments of order r ∈ �2�4	, then by
a multidimensional generalization of Theorem 2.2, the strong approximation
assumptions (57)–(59) hold with mk (the kth component of m), 1/αk (where
αk is the kth component of α) being the means of random variables vk�1	
and uk�1	, respectively, with pkj = P�φk�n	 = ej� (the jth component of P′

k)

and with V̂, Ê, B̂1� 
 
 
 � B̂K being mutually independent driftless Brownian
motions. The covariance matrices of these Brownian motions are, respectively,

�)E	i. = δi.α.c
2
0� .�

�)kB	i. = pki�δi. − pk.	� k = 1� 
 
 
 �K�

�)V	i. = δi.m
2
.c

2
. �

where c0� k and ck are the coefficients of variations, of random variables, uk�1	
and vk�1	, respectively, and δi. = 1 if i = . and δi. = 0 otherwise.

Our model has a slightly more general structure than the one described
in Peterson (1991). In particular, we allow the routing sequences to include
Markovian routing, while Peterson (1991) only considers the deterministic
routing.

4.1.2. Performance measures and their dynamics. The performance mea-
sures of interest are the L-dimensional (aggregated) workload process Z =
�Z.	withZ. = �Z.�t	� t ≥ 0� �. = 1� 
 
 
 �L	, theK-dimensional workload pro-
cess W = �Wk	 with Wk = �Wk�t	� t ≥ 0� �k = 1� 
 
 
 �K	, the K-dimensional
queue length process Q = �Qk	 with Qk = �Qk�t	� t ≥ 0� �k = 1� 
 
 
 �K	,
and the L-dimensional cumulative idle time process Y = �Y.	 with Y. =
�Y.�t	� t ≥ 0� �l = 1� 
 
 
 �L	. The process Z is nonnegative with Z.�t	 indi-
cating the total amount of immediate work for station σ�.	 embodied in jobs
that are in groups 1 to . and that are either queued or in service at station
σ�.	 at time t. The quantity Wk�t	 indicates the amount of work embodied in
all class k jobs that are either queued or in service at time t. The quantity
Qk�t	 indicates the number of class k jobs in the network at time t. We assume
thatQ�0	 = 0 and thus Z�0	 = 0. The quantity Y.�t	 indicates the cumulative
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amount of time that the server at station π�.	 does not process jobs in groups
1 to . during �0� t�. It is clear that Y must be nondecreasing and Y�0	 = 0.

We introduce some additional notation.

1. Ak�t	 is the total number of class k jobs arrived to station σ�π�k		 during
�0� t� either exogenously or from other stations.

2. Dk�t	 is the total number of service completions of class k jobs at station
σ�π�k		 during �0� t�.

3. Tk�t	 is the total amount of time that server σ�π�k		 has served jobs of
class k during �0� t�.

4. τ.�t	 is the arrival time of the g. job which has most recently completed
service at station σ�.	 �τ.�t	 is zero if there have been no service completions
for group .).

5. �k�t	 is the sojourn time of class k jobs at time t at station σ�π�k		, denot-
ing the time which will be spent at station σ�π�k		 by the first class k job
who arrives at time greater than or equal to t.

6. ηk�t	 is the time at which the first class k job arrives during �t�∞	.
7. �k�t	 is the time that a class k job would spend at station σ�π�k		, if it

arrived at time t.

Define two L ×K matrices: a higher priority group constituent matrix C
and a group constituent matrix C1. The �.� k	th component of C, C.k = 1 if
σ�.	 = σ�π�k		 and π�k	 ≤ ., and C.k = 0 otherwise. The �.� k	th component
of C1, C1.k = 1 if π�k	 = ., and C1.k = 0 otherwise. Define a K×K (strictly)
higher priority class constituent matrix C2 = �C2ij	 with C2ij = 1 if σ�π�i		 =
σ�π�j		 and π�i	 > π�j	, and C2ij = 0 otherwise. Consider the example shown
in Figure 1; under the priority group specification given earlier, the higher
priority group constituent matrix C, the group constituent matrix C1, and the
(strictly) higher priority class constituent matrix C2, respectively, take the
form

C =


1 0 0 0 0 0
1 1 1 0 0 0
0 0 0 1 0 0
0 0 0 1 1 1

 � C1 =


1 0 0 0 0 0
0 1 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 1

 �

C2 =


0 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0

 


Let λ = �I−P′	−1α and call its kth component, λk, the long-run average arrival
rate of class k jobs, k = 1� 
 
 
 �K. Let M = diag�m	 and H = diag�λ	 be K×K
diagonal matrices with kth diagonal elements mk and λk, respectively. Let
ρ = CMλ. Note that ρ is of dimension L; if g. is the lowest priority group
at its station σ�.	, then ρ. is the traffic intensity at that station. We shall
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assume that the traffic intensity at all stations are no greater than one and
hence, ρ ≤ e. Let δk = �1 − ρπ�k−1		−1 if σ�π�k − 1		 = σ�π�k		 and δk = 1 if
σ�π�k−1		 < σ�π�k		, and let I = diag�δ	 be a K×K diagonal matrix whose
kth diagonal element is δk.

It is from the above definitions that we have the following dynamic relations:

Q�t	 = A�t	 −D�t	�(60)

W�t	 = V�A�t		 −V�D�t		 − ν�t	�(61)

Y�t	 = et−CT�t	�(62)

Z�t	 = CW�t	�(63)

Z�t	 =N�t	 +Y�t	�(64)

N�t	 = CV�A�t		 − et�

D�t	 = A�C′
1τ�t		�(65)

A�t	 = E�t	 +
K∑
k=1

Bk�Dk�t		�(66)

� �t	 = � �η�t		�(67)

�k�t	 = Zπ�k	�t	 +C′
2k�V�A��k�t	 + t		 −V�A�t		�(68)

+Vk�Ak�t		 −Vk�Ak�t	 − 1	�

where νk�t	, the kth component of ν�t	, is the partial service time (if any) that
has been performed on the class k job during �τπ�k	� t�, which is dominated
by an inequality similar to (15). In (68), C′

2k is the kth row of matrix C2, and
from the context, we hope it will not be confused with the �2� k	th element
of matrix C. For understanding the above relations, it is helpful to compare
them with the relations (10)–(18) for the single-station case. In particular,
relation (64) is a workload flow balance relation (in terms of time) for service
stations, and relation (60) is a job flow balance relation (in terms of number of
jobs) for job classes. We shall assume that the work-conserving condition is in
force. Hence, the pair �Z�Y	 satisfies the reflection mapping relation, which
implies that

Y�t	 = sup
0≤s≤t

�−N�s	� = sup
0≤s≤t

�es−CV�A�s		�
(69)

4.2. Main result. For the queueing network model described in Section 4.1,
jobs can route from station i to station j only if j > i. Now we argue that
given the strong approximations (57)–(59) for the primitive data, we could
inductively apply Theorem 3.5 (the strong approximation theorem for a single
station) to the network from stations 1 to station J. First, by Theorem 3.5 and
Remark 1 after it, the departure process of each job class from station 1 has
a strong approximation; this, the assumption (59) (that the routing sequence
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has a strong approximation) and Lemma 2.3(vi) imply that the arrival pro-
cesses to station 2 from station 1 have strong approximations. Since jobs arrive
at station 2 either exogenously or from station 1, the total arrival process to
station 2 for each job class must have a strong approximation as well. Hence,
by applying Theorem 3.5 to station 2, we know in particular that the depar-
ture process of each job class from station 2 satisfies a strong approximation.
Inductively, we can show that the departure process and the arrival process for
each class in the network must have some strong approximations. Therefore,
we could apply Theorems 3.5 to each station to obtain the strong approxi-
mations for all the performance measures, especially the workload process of
each job class, the aggregated workload processes, the queue length processes
and the sojourn time processes. The following theorem presents the strong
approximations in a compact form.

Theorem 4.1. Suppose that the strong approximations �57	–�59	 hold. Let

H = HC′
1�CMHC′

1	−1�

G = CM�I−P′	−1P′H

and

R = �I+G	−1


Then, as T→∞,


Z�t	 − Z̃�t	
T a
s
= ◦�T1/r	�(70)


Y�t	 − Ỹ�t	
T a
s
= ◦�T1/r	�(71)


Q�t	 − Q̃�t	
T a
s
= ◦�T1/r	�(72)


W�t	 − W̃�t	
T a
s
= ◦�T1/r	�(73)


� �t	 −�̃ �t	
T a
s
= ◦�T1/r	�(74)

where

Q̃�t	 =HZ̃�t	 for t ≥ 0�(75)

W̃�t	 =MHZ̃�t	 =MQ̃�t	�(76)

�̃ �t	 = I
[
C′

1Z̃�t	 +m
]�(77)

and �Z̃� Ỹ	 are defined as follows:

Z̃�t	 = θt+ X̃�t	 +RỸ�t	 ≥ 0 for t ≥ 0�(78)

θ = R�ρ− e	�(79)

X̃�t	 = RC

[
V̂�λt	 +M�I−P′	−1[Ê�t	 + K∑

k=1

B̂k�λkt	
]]

(80)
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Ỹ�t	 is continuous and nondecreasing withỸ�0	 = 0�(81) ∫ ∞

0
Z̃.�t	dỸ.�t	 = 0 for l = 1� 
 
 
 �L�(82)

Remarks.
1. It is shown in the Appendix (Lemma A.1) that the matrixH is well defined.

In fact, let β = C1Mλ; then the �k� .	th element of the K×L matrix H is
given by

Hk. =


λk
βπ�k	

� if . = π�k	,

− λk
βπ�k	

� if . = π�k	 − 1 and σ�l	 = σ�π�k		,
0� otherwise.

[The .th component of β�β., is the traffic intensity of priority group . at
station σ�.	.] It is also shown in the Appendix that the matrix G is well
defined and is strictly lower triangular. Hence, matrixR is also well defined
and is lower triangular.

2. Since matrix R is triangular, by inductively applying the one-dimensional
reflection mapping, it is clear that for the given θ in (79) and X̃ in (80),
relations (78), (81) and (82) uniquely determine the process Z̃ and Ỹ. In
particular, when the interarrival sequences uk �k = 1� 
 
 
 �K	, the service
sequences vk �k = 1� 
 
 
 �K	 and the routing sequences φk �k = 1� 
 
 
 �K	
are mutually independent i.i.d. sequences, the process X̃ is a Brownian
motion and the process Z̃ is a reflected Brownian motion with reflection
mapping R. The covariance matrix of the Brownian motion X̃ in this case
is given by

) = RC

[
)VH+M�I−P′	−1

[
)E +

K∑
k=1

λk)
k
B

]
�I−P	−1M

]
C′R′�(83)

where )E, )V and )B are as given toward the end of Section 4.1.1. When
the sequences uk, vk and φk, k = 1� 
 
 
 �K, are i.i.d. but not mutually inde-
pendent, X̃ given in (80) is still a Brownian motion but with its covariance
matrix computed differently.

3. The second equality in (76) is Little’s law for strong approximation limits.

Proof of Theorem 4.1. In view of the previous discussion, we only need
to show that the strong approximation limits in (70)–(74) are given by (75)–
(82). Specifically, the starting points of our proof are the following results: first
the FLIL approximations hold, in particular,


A�t	 − λt
T a
s
= O�
√
T log logT	�(84)


D�t	 − λt
T a
s
= O�
√
T log logT	�(85)


τ�t	 − et
T a
s
= O�
√
T log logT	�(86)
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� �t	
T a
s
= O�
√
T log logT	
(87)

Second, the strong approximations (57)–(59), the strong approximations
(70)–(74) and


A�t	 − λt− Â�t	
T a
s
= ◦�T1/r	�(88)


ν�t	
T a
s
= ◦�T1/r	�(89)


η�t	 − et
T a
s
= ◦�T1/r	�(90)

hold. That the FLIL approximations (84)–(87) hold can be proved under the
FLIL approximation assumptions for the primitive data which are implied by
the strong approximation assumptions (57)–(59); the proof is similar to that
for Theorem 3.4 and will not be provided. That the strong approximations
(70)–(74) and (88) hold for some limits Z̃, Ỹ, Q̃, W̃, �̃ , and Â follows from
an induction proof as outlined before the theorem. That (89) and (90) hold is
an extension of Lemmas 3.1 and 3.2, respectively. What remains now is to
identify limits Z̃, Ỹ, Q̃, W̃, �̃ and Â and show that they satisfy (75)–(82).

For any two processes X and Y, if 
X−Y
T = ◦�T1/r	a
s
, we shall write
“X�t	 ≈ Y�t	” to simplify the presentation. With this notation, if Y�t	 ≈ X̃�t	,
thenY is a strong approximation forX implies that X̃ is also a strong approx-
imation for X. In the following proof, we shall repeatedly use without explic-
itly referring to the FLIL approximations (84)–(87), the strong approximations
(57)–(59) and Lemma 2.3.

First, note that λ = HC′
1e; from (61), (65) and (89), we have

W�t	 = V�A�t		 −V�D�t		 − ν�t	
≈ �MA�t	 + V̂�A�t		� − �MD�t	 + V̂�D�t		�
≈ �Mλt+MÂ�t	 + V̂�λt	� − �MA�C′

1τ�t		 + V̂�λt	�
≈ �Mλt+MÂ�t	� − �MHC′

1τ�t	 +MÂ�C′
1τ�t		�

≈MHC′
1�et− τ�t		�

this, combined with (73), yields

W̃�t	 ≈MHC′
1�et− τ�t		
(91)

From the above and (63), we have

Z̃�t	 = CW̃�t	 ≈ CMHC′
1�et− τ�t		�(92)

substituting the above into (91) leads to

W̃�t	 ≈MHC′
1�CMHC′

1	−1Z̃�t	 =MHZ̃�t	�
this establishes the first equality in (76). We also note that the above, together
with (91), implies

HC′
1�et− τ�t		 ≈M−1W̃�t	 ≈HZ̃�t	
(93)
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In view of (60), (65), (92) and (93), the relation (75) and the second equation
in (76) follow from

Q�t	 = A�t	 −D�t	
≈ �λt+ Â�t	� −A�C′

1τ�t		
≈ �λt+ Â�t	� − �HC′

1τ�t	 + Â�C′
1τ�t		�

≈ HC′
1�et− τ�t		

≈HZ̃�t	


Next, in view of (65) and (66), we have

A�t	 = E�t	 +
K∑
k=1

Bk�Dk�t		

≈ [αt+ Ê�t	]+ K∑
k=1

[
P′
kDk�t	 + B̂k�Dk�t		

]
≈ αt+ Ê�t	 +P′A�C′

1τ�t		 +
K∑
k=1

B̂k�λkt	

≈ αt+ Ê�t	 +
K∑
k=1

B̂k�λkt	 +P′HC′τ�t	 +P′Â�t	


Note that A�t	 ≈ λt+ Â�t	 and λ = α+P′λ = α+P′HC′e; the above leads to

Â�t	 ≈ �I−P′	−1
[
Ê�t	 +

K∑
k=1

B̂k�λkt	 −P′HC′
1�et− τ�t		

]

≈ �I−P′	−1
[
Ê�t	 +

K∑
k=1

B̂k�λkt	 −P′HZ̃�t	
]
�

where the last approximation follows from (93). Using the above approxima-
tion, we can rewrite (64) to obtain

Z�t	 = CV�A�t		 − et+Y�t	
≈ C

[
MA�t	 + V̂�A�t		]− et+ Ŷ�t	

≈ CMλt+CMÂ�t	 + V̂�λt	 − et+ Ŷ�t	

≈ �ρ− e	t+C

[
V̂�λt	 +M�I−P′	−1[Ê�t	 + K∑

k=1

B̂k�λkt	
]]

−CM�I−P′	−1P′HZ̃�t	 + Ỹ�t	�
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this, together with (70), implies that

Z̃�t	 ≈ θ�t	 + X̃�t	 +RỸ�t	�
with θ and X̃ as defined by (79) and (80), respectively. This establishes the
relation (78). The relations (81) and (82) follow from the corresponding prop-
erties for the original processes Y and Z and the Lipschitz continuity of
the reflection mapping; specifically; the first relation corresponds to the non-
decreasing property of Y and the second relation corresponds to the work-
conserving condition as stated by (69).

Finally, we establish (77). In view of (68) and (87), we have

�k�t	 = Zπ�k	�t	 +C′
2k

[
V�A��k�t	 + t		 −V�A�t		]

+Vk�Ak�t		 −Vk�Ak�t	 − 1	�
≈ Z̃π�k	�t	 +C′

2k

[
MA��k�t	 + t	

+V̂�A��k�t	 + t		 −MA�t	 − V̂�A�t		]+mk

≈ Z̃π�k	�t	 +C′
2k

[
Mλ��k�t	 + t	 +MÂ��k�t	 + t	 + V̂�λ��k�t	 + t		

−Mλt−MÂ�t	 − V̂�λt	]+mk

≈ Z̃π�k	�t	 +C′
2k

[
Mλ�k�t	 +MÂ�t	 + V̂�λt	 −MÂ�t	 − V̂�λt		]+mk

= Z̃π�k	�t	 +C′
2kMλ�k�t	 +mk�

this establishes the relation

� �t	 ≈ I�C′
1Z̃�t	 +m	


Therefore, combined with (67) and (90), we can conclude (77). ✷

5. Performance analysis procedure. Based on the strong approxima-
tion theorem in Section 4, we outline a procedure to approximate various per-
formance measures of queueing networks. Specifically, we consider the case
where the interarrival time, the service time and the routing sequences are
mutually independent i.i.d. sequences. In this case, we can approximate the
aggregated workload process Z by an RBM Z̃ with drift θ, covariance matrix
) and reflection matrix R, which are described by

R = �I+CM�I−P′	−1P′H	−1�

θ = −R�e− ρ	�

) = RC

[
)VH+M�I−P′	−1

[
TE +

K∑
k=1

λk)
k
B

]
�I−P	−1M

]
C′R′


Readers are referred to Section 4.1.1 for the definitions of the vectors and
matrices used in the above equalities. In particular, we note that all of them
are from the service disciplines, the routing probability, and the mean and the
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variance of the interarrival and service times. Following from Lemma A.1 in
the Appendix and Lemma 3.2 of Chen (1996), when ρ < 1� Z̃ has a unique
stationary distribution. Under certain conditions (which will be elaborated
below), the stationary distribution has an explicit product form. In the more
general case, the stationary distribution can be computed numerically. Dai
and Harrison (1992) first develop such an algorithm, known as QNET (which
approximates the stationary distribution by polynomial basis functions). Re-
cently, Shen (2000) developed a new numerical algorithm QNET+ (which
approximates the stationary distribution by finite element basis functions).
All numerical examples in this paper are calculated by this new algorithm.
Though this new algorithm can compute the stationary distribution func-
tion, we focus on approximating the mean of the stationary distribution only;
approximating the distribution function will be dealt with in Shen (2000).

Given the estimate for the stationary distribution of the aggregated work-
load process, we could obtain estimates for some other performance measures
of queueing networks. Let E�Z̃.	 �. = 1� 
 
 
 �L	 be the stationary mean for
the aggregated workload. We shall describe two alternative methods to obtain
the estimates of the stationary mean queue length and mean sojourn time.

The first method is to approximate the mean queue length by (75) in
Section 4, and we have

E�Q	 =HE�Z̃	
(94)

Then, we use Little’s law to obtain mean sojourn time as

E��k	 =
1
λk

E�Qk	
(95)

The second method is to approximate the mean sojourn time via (77) by

E��k	 = δk�E�Z̃π�k		 +mk��(96)

and then obtain the mean queue length by Little’s law

E�Qk	 = λkE��k	
(97)

Algorithm 1. Computing steady-state average queue length and sojourn
time:

E�Q	 =HE�Z̃	�

E��k	 =
1
λk

E�Qk	


Algorithm 2. Computing steady-state average queue length and sojourn
time:

E��k	 = δk�E�Z̃π�k		 +mk��
E�Qk	 = λkE��k	
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These two methods are summarized as Algorithms 1 and 2. They usually
give different approximations. From our numerical experiments in Section 6,
Algorithm 2 seems to providemuchmore accurate estimation thanAlgorithm 1.
Therefore, Algorithm 2 is recommended to obtain approximations for the mean
stationary queue length and the mean stationary sojourn time. The numeric
evidence also suggests that both algorithms are doing well and are asymptoti-
cally identical for a class k if βπ�k	 [the traffic intensity of priority group π�k	]
is close to 1. Intuitively, when βπ�k	 is close to 1 and ρπ�k	 < 1� δk is close to or
equal to 1 and the workload of all other priority groups at that station should
almost be zero. Thus, both algorithms give

E��k	 ≈ E�Z̃k	


5.1. Product form solution. Harrison and Williams (1992) showed that Z̃
has a product form stationary distribution if and only if

)ij = 1
2Rji)ii for all 1 ≤ i < j ≤ L�(98)

in which case the solution is

p�x	 =
L∏
.=1

κ. exp�−κ.x.	� x ≥ 0�(99)

where κ1� 
 
 
 � κL are the positive constants defined as

κ. =
2�1− ρ.	Rll

)..
for . = 1� 
 
 
 �L
(100)

The product form condition is rarely satisfied. Peterson (1991) pointed out a
special case where the product form condition is satisfied; this special case
requires Kelly network structures; namely, all jobs at each station have the
same service time distributions and are served under FIFO service disciplines,
and jobs follow deterministic routing.

6. Numeric examples. This section is devoted to analyzing two exam-
ples, both of which are feedforward queueing networks as described in Section 4.
We apply our strong approximation to these models to obtain RBM models.
Then, we compare the performance estimates from our RBM approximations
with the estimates obtained from the RBM approximations obtained by using
diffusion approximation in Peterson (1991) and with simulation results. To
calculate the steady-state performance measures from RBM models, we use a
newly developed numerical algorithm QNET+ from Shen (2000).

6.1. Single station with two job classes. Consider the single-station net-
work pictured in Figure 2. There are two job classes. Class 1 jobs have higher
preemptive priority over class 2 jobs. We consider four versions of systems:

1. All interarrival and service times are taken to be Erlang of order 4 (SCV =
0
25).
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Fig. 2. Single station with two job classes.

2. All interarrival and service times are taken to be exponential (SCV = 1).
3. All interarrival and service times are taken to be Gamma distributed with

SCV = 2.
4. All interarrival times are taken to be exponential and all service times are

taken to be Erlang of order 4.

The arrival rates of both classes are 1. For each system, we examine five cases
of the mean service times:

1. m1 = 0
7, m2 = 0
1;
2. m1 = 0
5, m2 = 0
3;
3. m1 = 0
3, m2 = 0
5;
4. m1 = 0
1, m2 = 0
7;
5. m1 = 0
2, m2 = 0
2.

Although there is no product form solution for the joint stationary distribu-
tion of �Z̃1� Z̃2	, the marginal distributions of Z̃1 and Z̃2 are exponentially
distributed with means

E�Z̃1	 =
m2

1�c201 + c21	
2�1− ρ1	

�

E�Z̃2	 =
∑2

i=1m
2
1�c20i + c2i 	

2�1− ρ2	
�

respectively �ρ2 = λ1m2+λ2m2 and ρ1 = λ1m1	. The following three analytical
methods are used to obtain approximations of the mean queue lengths and
mean sojourn times:

1. By Algorithm 1 in Section 5,

E��1	 = EQ1 =
m1�c201 + c21	
2�1− ρ1	

�

E��2	 = EQ2 =
1
m2

(∑2
i=1m

2
i �c20i + c2i 	

2�1− ρ2	
− m2

1�c201 + c21	
2�1− ρ1	

)
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2. By Algorithm 2 in Section 5,

E�1 = EQ1 =
m2

1�c201 + c21	
2�1− ρ1	

+m1�

E�2 = EQ2 =
1

1− ρ1

(∑2
i=1m

2
i �c20i + c2i 	

2�1− ρ2	
+m2

)



3. By the diffusion approximation in Peterson (1991),

E�1 = EQ1 =m1�

E�2 = EQ2 =
1
m2

∑2
i=1m

2
i �c20i + c2i 	

2�1− ρ2	



(Note that a straightforward interpretation of the diffusion approximation
would yield E�1 = EQ1 = 0; the suggested approximation above represents
a slight improvement.)

Table 1 summarizes the mean queue length estimates of each job class by
using strong approximations, diffusion approximations and simulation. The
columns “Strong (1)” and “Strong (2)” in Table 1 correspond to the approxi-
mations obtained by Algorithm 1 and Algorithm 2, respectively. The numbers
in parentheses after the simulation figures show 95% confidence intervals as
percentages of the simulation numbers. The numbers in parentheses follow-
ing other figures are the percentage errors (in absolute value) as compared
to simulation numbers. This convention will also be used in the subsequent
tables. First we note that as indicated in Section 3.5 [cf. (56)], Algorithm 2
gives the exact mean queue lengths for the cases (systems 1 and 2) of Poisson
arrivals. (In the corresponding rows, we could have reported the percentage
errors relative to the exact mean, but we report the percentage errors relative
to simulation results for consistency with other rows.) It seems that in almost
all other cases, Algorithm 2 of the strong approximation also gives the best
approximations and its estimates are quite close to simulation results. When
SCVs of interarrival and service times are 1, Algorithms 1 and 2 coincide. This
is true even when the arrival rates are not equal to 1. Note that the strong
approximation Algorithm (2) also performs well when the station is lightly
loaded (with ρ = 0
4). It should be expected that the diffusion approxima-
tion would not give a good estimate for the mean queue length of the higher
priority class, but it is quite surprising that it also does poorly in estimat-
ing the mean queue length of the lower priority class. However, we note that
the approximation for the mean queue length of the lower priority class does
improve as the traffic intensity for the lower priority class increases (relative
to the traffic intensity for the higher priority class); this corresponds to the
case when m2 increases from 0.1 to 0.7 and m1 decreases from 0.7 to 0.1 in
Table 1.

6.2. Two-station tandem queue. Pictured in Figure 3 is a two-station tan-
dem queueing network. Each station has two different job classes. We assume
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Table 1
Average queue length in a single-station network

System m1 m2 Class Strong (1) Strong (2) Diffusion Simulation

1 0.7 0.1 Q1 0.58 (42.6%) 1.11 (9.9%) 0.70 (30.7%) 1.01 (0.5%)
Q2 2.17 (10.0%) 2.42 (0.4%) 6.25 (159.3%) 2.41 (1.9%)

0.5 0.3 Q1 0.25 (56.1%) 0.63 (10.5%) 0.50 (12.3%) 0.57 (0.3%)
Q2 1.00 (27.0%) 1.45 (5.8%) 1.42 (3.6%) 1.37 (1.0%)

0.3 0.5 Q1 0.11 (65.5%) 0.33 (6.5%) 0.30 (3.2%) 0.31 (0.2%)
Q2 0.79 (35.1%) 1.32 (9.1%) 0.85 (29.8%) 1.21 (0.7%)

0.1 0.7 Q1 0.03 (72.0%) 0.10 (0.0%) 0.10 (0.0%) 0.10 (0.1%)
Q2 0.88 (34.8%) 1.47 (8.9%) 0.89 (34.1%) 1.35 (0.6%)

0.2 0.2 Q1 0.06 (70.0%) 0.21 (6.3%) 0.20 (0.0%) 0.20 (0.1%)
Q2 0.10 (64.3%) 0.29 (3.6%) 0.17 (39.3%) 0.28 (0.3%)

2 0.7 0.1 Q1 2.33 (1.7%) 2.33 (1.7%) 0.70 (70.5%) 2.37 (2.2%)
Q2 8.67 (2.9%) 8.67 (2.9%) 25.0 (180.0%) 8.93 (4.9%)

0.5 0.3 Q1 1.00 (0.0%) 1.00 (0.0%) 0.50 (50.0%) 1.00 (1.1%)
Q2 4.00 (2.6%) 4.00 (2.6%) 5.67 (45.4%) 3.90 (1.8%)

0.3 0.5 Q1 0.43 (0.0%) 0.43 (0.0%) 0.30 (30.2%) 0.43 (0.7%)
Q2 3.14 (0.6%) 3.14 (0.6%) 3.40 (7.6%) 3.16 (1.9%)

0.1 0.7 Q1 0.11 (0.0%) 0.11 (0.0%) 0.10 (9.1%) 0.11 (0.5%)
Q2 3.56 (0.8%) 3.56 (0.8%) 3.57 (1.1%) 3.53 (2.5%)

0.2 0.2 Q1 0.25 (0.0%) 0.25 (0.0%) 0.20 (20.0%) 0.25 (0.5%)
Q2 0.42 (6.8%) 0.42 (6.8%) 0.66 (70.9%) 0.39 (0.6%)

3 0.7 0.1 Q1 4.67 (13.3%) 3.97 (3.6%) 0.70 (83.0%) 4.12 (3.7%)
Q2 17.31 (0.1%) 17.00 (3.6%) 50.0 (190.2%) 17.23 (8.8%)

0.5 0.3 Q1 2.00 (25.0%) 1.50 (6.3%) 0.50 (68.8%) 1.60 (2.0%)
Q2 8.00 (4.3%) 7.40 (3.5%) 11.33 (47.7%) 7.67 (5.0%)

0.3 0.5 Q1 0.87 (42.6%) 0.56 (8.2%) 0.30 (50.8%) 0.61 (1.2%)
Q2 6.29 (10.7%) 5.57 (1.9%) 6.8 (19.7%) 5.68 (3.8%)

0.1 0.7 Q1 0.22 (70.8%) 0.12 (7.7%) 0.10 (23.1%) 0.13 (0.6%)
Q2 7.12 (7.7%) 6.34 (4.1%) 7.14 (8.0%) 6.61 (3.8%)

0.2 0.2 Q1 0.50 (51.0%) 0.30 (9.0%) 0.20 (39.4%) 0.33 (0.9%)
Q2 0.83 (57.2%) 0.58 (10.0%) 1.33 (151.6%) 0.53 (1.0%)

4 0.7 0.1 Q1 1.46 (15.1%) 1.72 (0.0%) 0.70 (59.3%) 1.72 (1.5%)
Q2 5.42 (2.9%) 5.54 (0.7%) 7.81 (40.0%) 5.58 (3.9%)

0.5 0.3 Q1 0.63 (22.2%) 0.81 (0.0%) 0.50 (38.3%) 0.81 (0.7%)
Q2 2.50(8.8%) 2.73 (0.4%) 3.54 (29.2%) 2.74 (2.2%)

0.3 0.5 Q1 0.27 (28.9%) 0.38 (0.0%) 0.30 (21.1%) 0.38 (0.4%)
Q2 1.96 (12.1%) 2.23 (0.0%) 2.13 (4.5%) 2.23 (2.0%)

0.1 0.7 Q1 0.07 (36.4%) 0.11 (0.0%) 0.10 (9.1%) 0.11 (0.3%)
Q2 2.22 (11.9%) 2.51 (0.4%) 2.23 (11.5%) 2.52 (2.0%)

0.2 0.2 Q1 0.16 (30.4%) 0.24 (4.3%) 0.20 (13.0%) 0.23 (0.3%)
Q2 0.26 (25.6%) 0.35 (0.0%) 0.42 (20.0%) 0.35 (0.5%)
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Fig. 3. Two-station tandem queue.

that all exogenous arrival processes and service processes are mutually inde-
pendent renewal processes.

We will estimate the performance of this network under two different ser-
vice disciplines:

1. The service discipline at station 1 is preemptive priority and the service
discipline at station 2 is FCFS. Class 1 jobs have a higher priority over
class 2 jobs at station 1.

2. The service discipline at station 1 is FCFS and the service discipline at
station 2 is preemptive priority. Class 3 jobs have a higher priority over
class 4 jobs at station 2.

For each different service discipline type, we will compute three versions
of systems with different service and interarrival time distributions. We list
parameters of three systems in Table 2. All service and interarrival time dis-
tributions are taken to be Erlang of order 4 (SCV = 0
25) in the first system,
all are taken to be exponential (SCV = 1) in the second system and all are
taken to be Gamma distribution with SCV = 2 in the third system.

Tables 3 and 4 present the simulation estimates and QNET+ estimates of
the mean queue length for each job class for each different queueing system
configuration. We use QNET+ to get the mean aggregated workload numeri-
cally and then use Algorithm 2 in Section 5 to obtain the mean queue lengths.
(In this case, both Algorithm 1 and the estimate based on the diffusion approx-
imation provide inferior estimates as well, so they are not presented.) The
QNET+ estimates of the mean queue lengths for this two-station network are
quite impressive compared with the simulation estimates, except the estimates
for the job class 4 in the queueing networks with first service discipline type,
in which the QNET+ significantly underestimates the queue length for job

Table 2
System specifications of two-station tandem queue

System Distribution �1 �2 m1 m2 m3 m4

1 E4 1.0 3.0 0.5 0.1 0.3 0.2
2 M 1.0 3.0 0.5 0.1 0.3 0.2
3 Gamma 1.0 3.0 0.5 0.1 0.3 0.2
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Table 3
Average queue length of network 1

System Approximation

No. Method Q1 Q2 Q3 Q4

1 Simulation 0.57 (0.3%) 2.71 (1.1%) 0.99 (1.3%) 4.00 (1.1%)
QNET+ 0.63 (10.5%) 2.70 (0.4%) 1.04 (5.1%) 2.83 (29.3%)

2 Simulation 1.00 (0.9%) 9.02 (2.6%) 3.32 (2.5%) 12.50 (1.9%)
QNET+ 1.01 (1.0%) 8.99 (3.3%) 3.2 (3.6%) 9.31 (25.5%)

3 Simulation 1.59 (1.6%) 17.54 (4.0%) 6.59 (4.6%) 24.41 (3.9%)
QNET+ 1.54 (3.1%) 17.15 (2.2%) 6.25 (5.2%) 18.45 (24.4%)

Table 4
Average queue length of network 2

System Approximation

No. Method Q1 Q2 Q3 Q4

1 Simulation 0.78 (0.6%) 1.51 (0.8%) 0.31 (0.2%) 3.79 (1.2%)
QNET+ 0.85 (9.0%) 1.34 (11.3%) 0.33 (6.5%) 3.58 (5.5%)

2 Simulation 1.90 (2.1%) 4.50 (2.2%) 0.40 (0.7%) 12.17 (2.9%)
QNET+ 1.89 (0.5%) 4.47 (0.6%) 0.41 (3.5%) 11.80 (3.0%)

3 Simulation 3.42 (3.1%) 8.53 (3.5%) 0.55 (1.0%) 23.86 (4.4%)
QNET+ 3.30 (3.5%) 8.69 (1.9%) 0.51 (7.3%) 22.65 (5.1%)

class 4. We have no theoretical explanation for it at the moment, though we
feel that the large errors might be due to the large variations in the interar-
rival times of this class (which correspond to the departure times of class 2,
the lower priority class at station 1).

APPENDIX

A.1. Proofs and an elementary lemma.

Proof of Proposition 2.4. Without loss of generality, we assume that
x�0	 = 0. If u ≥ v, we have

f�u	−f�v	 = sup
0≤s≤u

�−θs−x�s	�− sup
0≤s≤v

�−θs−x�s	�−�−θ�+�u−v	

=
[

sup
v≤s≤u

�−θs−x�s	�− sup
0≤s≤v

�−θs−x�s	�
]+

−�−θ�+�u−v	

=
[

sup
0≤s≤u−v

�−θ�v+s	−x�v+s	�− sup
0≤s≤v

�−θs−x�s	�
]+

−�−θ�+�u−v	

=
[

sup
0≤s≤u−v

�−θs−x�v+s	+x�v	�−θv−x�v	− sup
0≤s≤v

�−θs−x�s	�
]+

−�−θ�+�u−v	
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≤ sup
0≤s≤u−v

�−θs−x�v+s	+x�v	�−�−θ�+�u−v	

≤ sup
0≤s≤u−v

�−θs�+ sup
0≤s≤u−v

�−x�v+s	+x�v	�−�−θ�+�u−v	

≤ sup
0≤s≤u−v

�x�v+s	−x�v	�


If θ ≥ 0, we have

f�u	 − f�v	 = sup
0≤s≤u

�−θs− x�s	� − sup
0≤s≤v

�−θs− x�s	� ≥ 0


If θ < 0, we have

f�u	 − f�v	 = sup
0≤s≤u

�−θs− x�s	� − sup
0≤s≤v

�−θs− x�s	� + θ�u− v	

≥ sup
u−v≤s≤u

�−θs− x�s	� − sup
0≤s≤v

�−θs− x�s	� + θ�u− v	

= sup
0≤s≤v

�−θ�s+ u− v	 − x�s+ u− v	�

− sup
0≤s≤v

�−θs− x�s	� + θ�u− v	

= sup
0≤s≤v

�−θs− x�s+ u− v	� − sup
0≤s≤v

�−θs− x�s	�

≥ − sup
0≤s≤v

�x�s	 − x�s+ u− v	�

≥ − sup
0≤s≤u−v

�x�s+ u− v	 − x�s	�


Let h�T	 = √T log logT, for ∀θ, we have

sup
0≤u� v≤T
�u−v�≤h�T	

�f�u	 − f�v	�

≤ sup
0≤u� v≤T
�u−v�≤h�T	

{
sup
0≤s≤v

�x�s+ u− v	 − x�s	� ∨

sup
0≤s≤u−v

�x�v+ s	 − x�v	�
}

≤ sup
0≤u� v≤T
�u−v�≤h�T	

��x�u	 − x�v	��

= ◦�T1/r	 as T→∞

✷

Proof of Theorem 2.5. We provide an inductive proof on dimension K.
First, consider K = 1. Then R is a positive scalar. In this case, the one-
dimensional RBM Z can be expressed as

Z�t	 =X�t	 + sup
0≤s≤t

�−X�s	�+�
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whereX is a Brownian motion with a negative drift θ and a standard deviation
σ . If X�0	 = x = 0, then following from a standard argument for the reflected
Brownian motion and the maximum of the Brownian motion [see, for example,
Harrison (1985)], we have

P���Z��T ≥ z	 = P

(
sup

0≤t≤T
sup
0≤s≤t

�X�t	 −X�s	� ≥ z

)

= P

(
sup

0≤s≤T
X�s	 ≥ z

)

≤ P

(
sup

0≤s≤∞
X�s	 ≥ z

)
= e−vz

for any z ≥ 0, where ν = 2�θ�/σ2. Taking z = �2 log T	/ν in the above yields

P
(��Z��T/ log T ≥ 2/ν

) ≤ 1
T2

�

then by the Borel–Cantelli lemma, we establish (9). If X�0	 = x �= 0, define
X1�t	 = X�t	 −X�0	. Let B denote the one-dimensional reflection mapping;
that is, Z = B�X	. Define Z1 = B�X1	. Since X1 is a Brownian motion with
a negative drift starting from the origin, the above proof establishes that the
bound (9) holds for Z1; then the Lipschitz continuity of the reflection mapping
B establishes the bound (9) for Z.

Next, suppose that the theorem holds for dimension d− 1; we show it also
holds for dimension K = d. Since R is a lower triangular matrix, it follows
from the induction hypothesis that

sup
0≤t≤T

�Zk�t	� a
s
=O�log T	(101)

holds for all k = 1� 
 
 
 � d− 1. Note that R−1Z = R−1X+Y; we have

�R−1	ddZd�t	 =
d∑
k=1

�R−1	dkXk�t	 −
d−1∑
k=1

�R−1	dkZk�t	 +Yd�t	�

with �R−1	dd > 0. Let

Xd�t	 +
d∑
k=1

�R−1	dkXk�t	/�R−1	dd

and Zd = B�Xd	. Note that Xd is a one-dimensional process (actually a
Brownian motion), Zd is its reflected process. Then, in view of (101) and the
Lipschitz continuity of the one-dimensional reflection mapping B, we have

sup
0≤t≤T

�Zd�t	 −Zd�t	� a
s
= O�log T	
(102)
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Furthermore, note that Xd is a (one-dimensional) Brownian motion with a
negative drift,

d∑
k=1

�R−1	dkθk/�R−1	dd�

since R−1θ < 0 and �R−1	dd > 0. Applying the proved result for the one-
dimensional case yields

sup
0≤t≤T

�Zd�t	� a
s
= O�log T	�

this, together with the bound (102), implies

sup
0≤t≤T

�Zd�t	� a
s
= O�log T	


The above and (101) prove (9) for K = d
 ✷

Lemma A.1. Both matricesH = HC′
1�CMHC′

1	−1 andG = CM�I−P′	−1P′H
are well-defined, and matrix G is strictly lower triangular.

Proof. Let ki denote the number of job classes at station i, and .i denote
the number of priority groups at station i� i = 1� 
 
 
 � J. Because the queueing
network is feedforward, we can express the matrix P′ as

P′ =

∥∥∥∥∥∥∥
P11 0 0 
 
 
 0
P21 P22 0 
 
 
 0
· · · · · · · · · · · · · · ·
PJ1 PJ2 PJ3 
 
 
 PJJ

∥∥∥∥∥∥∥ �(103)

where Pij �1 ≤ i� j ≤ J	 is a ki×kj submatrix. Since there is no self-feedback,
all elements of Pii� i = 1� 
 
 
 � J, must be zero. Matrix �P2	′ has a structure
similar to (103) where the diagonal submatrices are zero. Since

�I−P′	−1 = �I+P+P2 + · · ·	′�
and M = diag�mi�, to prove the result of this lemma, it suffices to prove that
H is well defined and CP′H is a lower triangular matrix.

Matrix C can be represented by

C =

∥∥∥∥∥∥∥
C11 0 0 
 
 
 0
0 C22 0 
 
 
 0
· · · · · · · · · · · · · · ·
0 0 0 
 
 
 CJJ

∥∥∥∥∥∥∥ �
where Cii �1 ≤ i ≤ J	 is an .i × ki submatrix. This implies that D ≡ CMHC′

1
is lower triangular. Furthermore, D can be written as

D =

∥∥∥∥∥∥∥
D11 0 0 
 
 
 0
0 D22 0 
 
 
 0
· · · · · · · · · · · · · · ·
0 0 0 
 
 
 DJJ

∥∥∥∥∥∥∥ �
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where Dii �1 ≤ i ≤ J	 is an .i × .i submatrix and has the form of

Dii =
∥∥∥∥∥
β.+1 0 
 
 
 0
· · · · · · · · · · · ·
β.+1 β.+2 
 
 
 β.+.i

∥∥∥∥∥ �
where β = C1Mλ, and group . has the highest priority at station i. We know
that the inverse of Dii has the form

D−1
ii =

∥∥∥∥∥∥∥∥∥∥∥∥∥

1
β.+1

0 
 
 
 0

− 1
β.+2

1
β.+2


 
 
 0

· · · · · · · · · · · ·
0 
 
 
 − 1

β.+.i

1
β.+.i

∥∥∥∥∥∥∥∥∥∥∥∥∥



Thus, it can be verified easily that

Hkl =


λk
βπ�k	

� if . = π�k	,

− λk
βπ�k	

� if . = π�k	 − 1 and σ�.	 = σ�π�k		,
0� otherwise

It is obvious that H has the following representation:

H =

∥∥∥∥∥∥∥
H11 0 0 
 
 
 0
0 H22 0 
 
 
 0
· · · · · · · · · · · · · · ·
0 0 0 
 
 
 HJJ

∥∥∥∥∥∥∥ �
where Hii�1 ≤ i ≤ J	 is a ki × .i submatrix. By these representations, it is
clear that CP′H is lower triangular. This completes the proof. ✷

A.2. The general traffic intensity case. In this section, we show that
strong approximation can also be applied for approximation even if the traffic
intensity at a station is larger than 1. For simplicity, we only consider single-
station queueing networks. This is an extension of the discussion in Section 3.
We are satisfied not to provide a proof here since the proof is analogous to
that in Section 3.

Define a partition of � by
�n = �k ∈ � :ρπ�k	 ≤ 1��
�b = �k ∈ � :ρπ�k	−1 < 1 < ρπ�k	��
�s = �k ∈ � :ρπ�k	 > 1andρπ�k	−1 > 1�


Note that both �b and �s are empty sets, if ρ ≤ 1; also note that the set �b

would be an empty set if ρπ�k	 = 1 for some k ∈ �n. Also note that all classes
in �n have higher priorities than classes in �b and �s, and all classes in �b

have higher priorities than classes in �s. Hence, jobs of classes in �n do not
see jobs of classes in �b and �s, and jobs of classes in �b do not see jobs of
classes in �s. On the other hand, jobs of classes in �s see all jobs of classes
in �n and �b in front of them in the queue, and jobs of classes in �b see
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all jobs of classes in �n in front of them in the queue. Based on what they
see, jobs of classes in �n observe the queue with a traffic intensity less than
or equal to 1, or the queue is nonbottleneck or balanced bottleneck; jobs of
classes in �s observe the queue with a traffic intensity strictly greater than
1, or the queue is strictly bottleneck. When �b �= ", all jobs in �n see the
queue with a traffic intensity strictly less than 1. In this case, if a job in �b

were given the highest (preemptive) priority over the other jobs in �b, then
it would observe that the queue is nonbottleneck, and if a job in �b were
given the lowest (preemptive) priority to the other jobs in �b, then it would
observe that the queue is strictly bottleneck; hence, overall, jobs in �b hold a
balance or fall between nonbottlenecks and strict bottlenecks. Actually, when
�b �= ∅��b = g.b for some 1 ≤ .b ≤ L, and hence, all jobs in �b are served in
the order of their arrival (FIFO).

Theorem A.2. Suppose that the FLIL asumptions �23	–�25	 hold. Then as
T→∞,

sup
0≤t≤T

�Z.�t	 −Z.�t	� a
s
= O�
√
T log log T	�

sup
0≤t≤T

�Wk�t	 − �λk − λ∗k	mkt� a
s
= O�
√
T log log T	�

sup
0≤t≤T

�Qk�t	 − �λk − λ∗k	t� a
s
= O�
√
T log log T	�

sup
0≤t≤T

��k�t	 −� k�t	� a
s
= O�
√
T log log T	�

sup
0≤t≤T

�Dk�t	 − λ∗kt� a
s
= O�
√
T log log T	�

sup
0≤t≤T

�Y.�t	 − �1− ρ.	+t� a
s
= O�
√
T log log T	�

sup
0≤t≤T

�Tk�t	 − λ∗kmkt� a
s
= O�
√
T log log T	�

sup
0≤t≤T

�τ.�t	 − τ.t� a
s
= O�
√
T log log T	�

where . = 1� 
 
 
 �L� k� 
 
 
 �K and
Z.�t	 = �ρ. − 1	+t�

� k�t	 =


0� for π�k	 ∈ �n��ρπ�k	 − 1	
1− ρπ�k	−1

t� for k ∈ �n ∪�b
�

λ∗k =


λk� for k ∈ �n,
λk�1− ρπ�k	−1	

ρπ�k	
� for k ∈ �b,

0� for k ∈ �s,

τ. =


1� for . ⊂ �n,
1− ρ.−1

β.
� for . ⊂ �b,

0� for . ⊂ �s.
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Theorem A.3. Suppose that assumptions �34	–�36	 hold with Âk and Ŝk

being r-strong continuous for some r ∈ �2�4	. Then for . = 1� 
 
 
 �L,
k = 1� 
 
 
 �K, as T→∞,

sup
0≤t≤T

�Z.�t	 − Z̃.�t	� a
s
= ◦�T1/r	�

sup
0≤t≤T

��k�t	 −�̃ k�t	� a
s
= ◦�T1/r	�

sup
0≤t≤T

�Dk�t	 − λ∗kt− W̃k�t	� a
s
= ◦�T1/r	�

sup
0≤t≤T

�Qk�t	 − �λk − λ∗k	t− Âk�t	 + W̃k�t	� a
s
= ◦�T1/r	�

sup
0≤t≤T

�Wk�t	 − �λk − λ∗k	mkt− Ŵk�t	� a
s
= ◦�T1/r	�

where

Z̃.�t	 = Ñ.�t	 + Ỹ.�t	�

Ñ.�t	 = �ρ. − 1	t+
l∑

i=1

∑
j∈gi

�mjÂj�t	 − V̂j�λjt	��

Ỹ.�t	 = sup
0≤s≤t

�−Ñ.�s	�+�

�̃ k�t	 =
1

1− ρπ�k	−1

(
Z̃π�k	�t	 +

π�k	∑
i=1

∑
j∈gi

mj�Âj�t	 + V̂j�λjt	

−Âj�Zπ�k	�t	 + t	 − V̂j�λj�Zπ�k	�t	 + t		�
)
�

W̃k�t	 = Âk�τπ�k	t	 −
λk
βπ�k	

∑
j∈g.

�mjÂj�τπ�k	t	 − V̂j�λ∗jt	�

− λk
βπ�k	

�Ỹπ�k	�t	 − �1− ρπ�k		+t� +
λk
βπ�k	

�Ỹπ�k	−1�t	 − �1− ρπ�k	−1	+t��

Ŵk�t	 = −mkW̃k�t	 +mkÂk�t	 − V̂k�λkt	 + V̂k�λ∗kt	�

and W̃k is r-strong continuous.

In fact, we can get an equivalent but easier to understand strong approxi-
mation form for the workload and queue length of individual job classes.
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Corollary A.4. Suppose that the assumptions �34	–�36	 hold with 2 <
r < 4. Then for k = 1� 
 
 
 �K, as T→∞,

sup
0≤t≤T

�Qk�t	 − Q̃k�t	� a
s
= ◦�T1/r	�

sup
0≤t≤T

�Wk�t	 − W̃k�t	� a
s
= ◦�T1/r	�

where

W̃k�t	 =
λkmk

βπ�k	
�Z̃π�k	 − Z̃π�k	−1�t	 − Ŵπ�k	�t	� +mk�Âk�t	 − Âk�γπ�k	t	�

+�V̂k�λkt	 − V̂k�λ∗kt	��

Q̃k�t	 =
λk
βπ�k	

�Z̃π�k	�t	 − Z̃π�k	−1�t	 − Ŵπ�k	�t	� + �Âk�t	 − Âk�γπ�k	t	��

Ŵ.�t	 = ∑
i∈g.

�miÂi�t	 − V̂i�λit	 −miÂi�γ.t	 + V̂i�λ∗i t	�
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