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ON STATIONARY STOCHASTIC FLOWS AND PALM
PROBABILITIES OF SURFACE PROCESSES

BY G. LAST AND R. SCHASSBERGER

Technical University of Braunschweig

We consider a random surface ® in R? tessellating the space into cells
and a random vector field z which is smooth on each cell but may jump on
®. Assuming the pair (P, u) stationary we prove a relationship between
the stationary probability measure P and the Palm probability measure
Py of P with respect to the random surface measure associated with &.
This result involves the flow of © induced on the individual cells and gen-
eralizes a well-known inversion formula for stationary point processes on
the line. An immediate consequence of this result is a formula for certain
generalized contact distribution functions of ®, and as first application we
prove a result on the spherical contact distribution in stochastic geome-
try. As another application we prove an invariance property for Pq which
again generalizes a corresponding property in dimension d = 1. Under the
assumption that the flow can be defined for all time points, we consider the
point process N of sucessive crossing times starting in the origin 0. If the
flow is volume preserving, then N is stationary and we express its Palm
probability in terms of Pg,.

1. Introduction. The framework within which we work in this paper is a
probability space ({2, 7, P) and a pair (®, u), where ® is a random surface of
R? defined on Q and u: Q x R¢ — R? is a random vector field. The pair (®, ©)
is assumed to be stationary, that is, distributionally translation invariant, un-
der P. For any given w € () the surface ®(w) is supposed to be such that its
complement, that is, R? \ ®(w), is a union of at most countably many open
connected sets (cells), the boundary of this union being ®(w). Any bounded
subset of R? is supposed to intersect with only a finite number of cells, and the
corresponding intersection with ®(w), if not empty, is assumed to be, essen-
tially, a union of finitely many (d — 1)-dimensional smooth manifolds. Typical
examples are shown in Figures 1 and 2 for the case d = 2.

The vector field u is assumed to be smooth on R? \ ® but will typically
be discontinuous on ®. Suppressing dependence on w in the notation, let G
denote a given open cell generated by ® as described above. Then we assume
that the restriction ug of u to G is divergence free on G and is obtained
from a flow on G as follows. There is a G-valued function a4(t, x), x € G,
where ¢ runs through some finite “time interval” (og(x), T7¢(x)) containing
the time ¢ = 0, such that ag(0, x) = x, ag(t + s, x) = ag(t, ag(s, x)) for all
possible values of s, t and (9/dt)ag(t, x) = ug(ag(t, x)). We assume, moreover,
that ag(¢, x) is smooth in (¢, x) and that the limits lim,_, , ) aq(¢, x) and
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FIG. 1. A tessellation of a part of R2.

N

O

Fic. 2. Window showing part of R2 consisting of one “void” cell and “solid” cells.
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FiG. 3.  Cells of Figure 1 endowed with directed flow lines.

lim,_, . ) @g(Z, x) exist and are boundary points of the cell containing x. Thus
we may speak of the flow traversing the cell in finite time, and of flow lines,
one exactly through each x € G, directed in the sense of increasing time. An
illustration is given in Figure 3 for the tessellation depicted in Figure 1. It
will be convenient to view ay as restriction of a certain measurable function
a(w, t,x), weQ, xR, teR.

Although we will have nothing new for the case d = 1 it is instructive to
look at it briefly. If d = 1, then ® is a stationary point process (on the real line),
the cells G are the open intervals between successive points, u is identically
equal to a constant, and, if G is the interval (a, b), then ag(¢, x) = ugt + x,
x € G, where ¢ runs through all values such that a < ugt + x < b. For this
case, a fundamental relationship is the so-called Palm inversion formula [see,
e.g., Baccelli and Brémaud (1994)]. In its standard form it does not involve u
and is given by

7+(0)
(1.1) E[R(0)] = ApEq [ /0 h(s) ds} :
where h: ) x R — R is jointly stationary with ®, E (E4) denote expectation
with respect to P (Pg), Ag is the intensity of the point process ®, and 7(0)
is the first point of ® strictly to the right of the origin. Note that the origin,
under Pg, is itself a point of ®. Involving u, we may slightly generalize this
formula. Define u*(0) := lim, o, u(x). If «*(0) > 0, then we let 77(0) now
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denote the time it takes to travel at the speed |u™(0)| from the point 0 to its
nearest neighbor to the right. If u*(0) < 0, we define 77(0) := 0. Then

(0) 7(0)
E[R(0)] = ApEq [|u+(0)| /O h(a*(s, 0)) ds + [u=(0)| /0 h(a (s, 0))ds},

where a(s, 0) = lim,_, o, a(s, x) = u*(0)s, v~ (0) :=lim, o_ u(x), 7(0) is
the time it takes to travel at the speed |u~(0)| from the point O to its nearest
neighbor to the left (taken 0 if ©=(0) > 0) and & (s,0) = lim,_ ,_ a(s, x) =
u~(0)s. If u = 1, then this formula simplifies to (1.1).

The purpose of the present paper is a generalization of the latter formula
to the case d > 1, and to give some applications of this new inversion formula.
Generally speaking, such an inversion formula relates a quantity as seen from
a point in space which is “typical” under P to a quantity as seen from a “ran-
domly chosen” point of ®, that is, a “typical point” of ®. In practical situations
it may be possible to take random samples of observations at typical points
in space but not at typical points on ®, or vice versa. In such situations the
inversion formula helps to do statistics for the unobservable part. For exam-
ple, for transport phenomena modelled in porous media [see, e.g., Bear and
Bachmut (1990)], a structure such as depicted in Figure 2 is common. There
are solid objects (e.g., clay lentils) strewn about the “void” (e.g., a soil of sand).
There is a flow throughout all or part of it, not necessarily of a material na-
ture but, for instance, of a physical quantity such as momentum or energy.
Smoothness of the flow is violated at the boundaries between the void and
the solid objects. It may be possible to take measurements in the “void,” but
not on the boundaries between void and solid objects. In such a situation, an
inversion formula may be a valuable tool for doing statistics. Indeed, material
science is an obvious field for the application of our inversion formula, but
our program does not aim at this. Other potential applications of our results
are in stochastic geometry. In fact, our model for ® comprises random tessel-
lations of R¢ or random surface processes in R?. The monograph by Stoyan,
Kendall and Mecke (1995) does not only contain some fundamental results
about these concepts but also numerous applications. Palm probabilities play
an important role in this theory.

An important feature of our formula is its generality, allowing, apart from
joint stationarity, for quite arbitrary relationships between ®, « and the quan-
tity of interest. Another aspect of our model is that some of the cells generated
by ® might actually represent “empty” space or “holes” carrying no flow. The
union of all such holes will be denoted by =. For an illustration, see Figure 4.
Our formula is related to a general inversion formula due to Mecke (1967),
but does not seem to be a consequence of Mecke’s result.

After describing, in Section 2, our basic model in all detail and present-
ing the inversion formula in Theorem 2.1, we turn to a first application in
Section 3, concerning the so-called spherical contact distribution in a germ-
grain model. This may be viewed as an application within the field of stochastic
geometry, but the latter has, of course, other real applications. In Section 4
it is assumed that at most one flow line starts from a given point x € ® (up
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FiG. 4. This figure shows the tessellation of Figure 1, each cell containing a kernel and a flow
directed towards the kernel. The union of the kernels is E.

to a negligible set of points). This allows following the flow across cell bound-
aries either ad infinitum or until getting stopped by a flow parallel to the
boundary or by empty space (see Figures 7 and 8). The section is devoted to
establishing a version of Theorem 2.1 (Theorem 4.1) in which the successive
times of such crossings are prominent. Using this theorem, we extend a result
in Neveu (1977) and Pitman (1987) from d = 1 to general d. In Section 5 we
use Theorem 4.1 to generalize an important invariance property of Palm prob-
abilites of stationary point processes on the line [see, e.g., (3.2.3), Chapter 1,
in Baccelli and Brémaud (1994)] to our present more general situation. In
Section 6 it is assumed that these successive times (starting in the origin 0,
say) form a point process N “unbounded at both ends,” that is, the flow can
be followed into past and future ad infinitum. If the flow is volume preserv-
ing, then N becomes stationary and we express its Palm probability P in
terms of Pg. Volume preserving flows are, for example, important in many
models of material science [see, e.g., Bear and Bachmut (1990)] or in statis-
tical fluid mechanics [see, e.g., Monin and Yaglom (1971)]. The paper closes
with an Appendix summarizing facts about the Palm calculus.

2. Framework and main result. We consider a random closed surface
® in R? defined on the probability space (2, 7, P). This is a random closed
set in R? [see Matheron (1975) and the Appendix], enjoying some additional
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features [see Last and Schassberger (1996)] which we now describe. First we
assume that ® = J(R? \ @) and H?1(® N B) < oo, for bounded measur-
able B € R?, where JG denotes the boundary of a set G € R? and H? ! is
the (d — 1)-dimensional Hausdorff measure on R?. [If S ¢ R? is a smooth
(d — 1)-dimensional surface, then H%"1(S) is the surface content of S.] Let
#(®) denote the system of connected components of R? \ ®. The elements
of (®) are mutually disjoint, open and connected subsets of R? \ ® and

(2.1) RI\d= |J G.
Geg(D)

Each connected subset of R? \ ® is contained in one element of £(®) and we
assume that each compact B € R? is hit by only a finite number of the cells
G € Z(®). Together with (2.1) this implies that

(2.2) o= |J 4G.

Ged (D)
With the definition
(2.3) ®(B) := H"Y(® N B),

we may look at ® as a random measure on R? [see Zihle (1982)]. We let
R(®) denote the set of all regular boundary points of R? \ ®, that is, the set
of all points x € ® which have an open neighborhood U, such that ®NU is a
smooth (i.e., of class C!) (d — 1)-dimensional manifold. Then R(®) is a smooth
(d — 1)-dimensional manifold while the set S(®) := &\ R(®P) of all sin-
gular boundary points of R? \ @ is closed and is assumed to satisfy
HY1(S(®)) = 0 and to depend measurably on @ € . We further as-
sume that v = {v(x): x € R?} is a normal field of ®, that is, a random vector
field of unit vectors such that v(x) is normal to ® whenever x € R(P). We
can and will assume that both » and S(®) are measurable with respect to the
o-field o(P) generated by &.

To equip our model with additional structure, we let #'(®) denote a subset
of £(®) and assume that u = {u(x): x € R?} is a random field of R%-vectors
such that its restriction ug to any given G € &'(®) is the velocity field of a
uniquely defined flow o on G (see below) and that u(x) = 0 for x € E, where
E is the random closed set,

== U Gcl
Ged(DP)\g'(D)

and G denotes the closure of G.

Now, before going into details about the flow «g, let us state our ba-
sic assumption, namely that the quintuple (®,v, S(®),u,E) be station-
ary. Stationarity is expressed in terms of an abstract measurable flow
{6,: x € R?} of isomorphisms on the basic probability space ({2, 7, P) such
that Po#, = P for all x € R? (see Appendix for more details). For instance we
have ®o 6, = {x — y: x € ®}, y € R, and u(w,x) = u(6,,0) for all
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(w, x) € QO x R?. Without risk of ambiguity we shall henceforth use ® as a
shorthand for the triple (®, v, S(P)).

We now introduce the flow generated by u in detail. Suppressing depen-
dence on w we assume that for each G € £'(®), there is an open subset A,
of R x G and a flow ag: Ag — G. This is to say that, for x € G, the set
Ag(x) :=={¢t: (t,x) € Ag} is an open finite interval (og(x), 7¢(x)) containing
0 and that

(2.4) ag(0,x) =x and ag(s, ag(t, x)) = ag(s+¢, x),

for all arguments where both sides are defined. The flow g is assumed to be
continuously differentiable in both ¢ and x. Furthermore, we assume that the
corresponding velocity field is independent of ¢ and given as the restriction ug
of u to G. Hence

(2.5) %aG(t, x) = ug(ag(t, x)), (¢, x) € Ag.

Moreover, ug is assumed to be smooth on G and divergence-free. For a pos-
sible generalization of the latter condition of incompressibility we refer to
Remark 2.4. We assume that the limits

ag(og(x), x) = . lin}x) ag(t, x), ag(rg(x), x) := t lin(lx) ag(t, x)
—0g —>7q

exist for all x € G and pertain to the boundary /G of G. We assume that the
vector field ug can be smoothly extended to G U R(G), where R(G) is the set
of all regular boundary points of G. This means that one can find, for any
x € R(G), an open neighborhood U and a smooth function #: U — R? such
that © and @ coincide on U N G. The continuous (and smooth) extension of u to
GUR(GQG) is still denoted by u . Henceforth, we refer to the set {a(¢, x): og(x) <
t < 7q(x)} as the flow line through x and view this line as directed in the
sense of increasing “time” ¢. The points a(og(x), x) and a(7g(x), x) are the
corresponding starting and end points. If x € J@G is a starting point of a unique
flow line, then we extend the definitions of 74(x) and ag(t, x), 0 < ¢ < 7q(x),
in the natural way. For all other x € G we let 7q(x) = 0. If x € JG is
the endpoint of a unique flow line, then we can define og(x) and ag(%, x),
og <t <0, in the natural way. Our final assumption on « is that the union
of all flow lines starting in regular boundary points covers G up to a set of
Lebesgue measure 0. That is to say that

(2.6) HYG\G,)=0,
where H? denotes Lebesgue measure on R?, and
G, ={ag(t,x): x € R(G), 0 <t < 1q(x)}.

Note that this assumption excludes fields where all flow lines start from a
single point, but allows fields where all flow lines end in a single point. We
make use of this second case in the proof of Theorem 3.5.

Still suppressing the dependence on w € (), we now define, for x €
G € Z(D), a(t,x) = ag(t,x) if gg(x) < t < 7¢(x) and (o(x), 7(x)) =
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(og(x), 7g(x)). All these mappings are of course assumed to be measurable in
all their arguments. In the next section we will extend the definition of o(x)
(7(x)) also to such x € ® which are endpoints (starting points) of a unique
flow line. Note that, for x ¢ (E U ®),

7(x) = inf{¢ > 0: a(t, x) € O},

that is, 7(x) is the time (assumed to be finite) it takes a particle starting in
x ¢ (® U E) to reach ® when traveling on the flow.

If x € R(®P), that is, if x is a regular boundary point, then we may use
the normal field to distinguish between the two parts separated by R(®) in a
neighborhood of x. Hence we define, for x € R,

u(x) :=lim,_ o_ u(x + tv(x)), ut(x) :=1lim, o u(x + tv(x)),
7 (x) :=lim,_, o_ 7(x + tv(x)), 7H(x) = lim,_ ¢, 7(x + tr(x)),
a (s, x) :=lim,_,_a(s, x + tv(x)), at(s, x):=lim, o, a(s, x + tv(x)),
seR,

whenever these limits exist. Otherwise we define these expressions as 0. For-
mally, the last two definitions require a measurable extension of the flow «
and of 7. However, the results of this section do not depend on the way this
extension is actually performed.

The main result of this paper provides a relationship between the station-
ary probability measure P and the Palm probability P4 associated with the
random surface measure generated by ®:

Py(A) = Azt // 1{0,0 € A, x €[0,1]9}0(0)(dx)P(dw), AcZ,

where the intensity
Ag = E®([0, 1]%)

is assumed to satisfy 0 < Ay < 0o. The number Pg(A) can be interpreted as
the probability of A given that 0 is a “randomly chosen” point on the surface ®.
Throughout the paper we use the notation

Z_ (x):= (ut(x), v(x)), Z (x):= (u" (%), v(x)), x € RY,

Since u = 0 on the interior of E, we have Z (x) = 0 if x € R(P) satisfies
x + tv(x) € E for all sufficiently small ¢ > 0.

THEOREM 2.1. Let (®, E, u) be as described above and let h = {h(x): x €
R?} be a nonnegative random field which is stationary jointly with ® and
vanishes on E. Then

Eh(0) = X Eq [1Z,(0)] f; * h(a* (s, 0)) ds
2.7) .
+1Z_ )1 f; @ h(a~(s,0))ds],

where Eg, denotes expectation with respect to Pyg,.
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ProoF. Let G € £'(®). We will see below that the set G’ := {x €
G: 05(x) € R(G)} is open. From assumption (2.6) we have HY(G \ G') = 0.
Let x, € G’ and let be V an open neighborhhood of ag(og(xy), xo) such that
R(G)N 'V admits a smooth parametrization (vq,...,v4_1) = 2(V1, ..., V4_1),
where (vy,...,vy 1) varies in an open subset W of R?. We claim that
there is an open and bounded neighborhood U < G’ of x, such that
ag(og(x),x) € R(G)NV, x € U. To show this we take a smooth func-
tion : GUV — R? such that © = & on G. Let & be the maximal flow
associated with & and let A € R x (G U V) denote its open domain [see Lang
(1995)]. We have A € A and ag = @ on Ag. Since (0, zy) € A and A is open
it is clear that (¢y, xy) € A, where t, := 05(x,). By continuity of @ we find an
e > 0 as well as an open and bounded neighborhood U, € G of x, such that
(to— &, tg+&)x Uy C A and

(2.8) a(t,x) eV, (t,x) € (tg — &, ty + &) x Uy,

where V is an open neighborhood of z, with V¢! € V. A point x € R(G) is
called a one-sided boundary point of G if it admits arbitrarily small neighbor-
hoods whose intersection with G is connected. Otherwise it is called a two-
sided boundary point. We may assume that the points in R(G) NV are either
all one-sided or all two-sided boundary points. For simplicity we consider only
the first case. The second case can be treated similarly. Since z, is the start-
ing point of an unique flow line in G, we can conclude that a(¢~, zy) ¢ GY,
where ty — ¢ < t~ < t, and (¢, 2,) € A. Hence we find a nonempty open
interval I~ C (¢, — ¢, t;) and an open neigborhood U~ C U, of x, such that
a(t, x) ¢ G for all (¢, x) € I~ x U~. Similarly we can find a nonempty open
interval (¢4, t5) C (¢y, £y +¢) and an open neighborhood U € U~ of x( such that
a(t, x) € G for all (¢, x) € (¢4, t3) x U. Since, by definition of ¢,, each point in
the compact set {a(t, xy): t3 <t < 0} pertains to G we may even assume that
a(t,x) e Gforallt, <t <0andx e U. Any x € U hence satisfies a(¢, x) ¢ G
for t € I~ and a(t, x) € G for t; < ¢t < 0. Combining this with (2.8) shows that
the flow line &(-, x) crosses the boundary dG for the first time in the interval
[to — &, ty + €] and that the limit

lim  ag(t,x)= lim a(t, x)
t—og(x)+ t—>og(x)+

belongs to R(G) NV, as desired.

For (vy,...,v4_1) € W and s > 0 such that ag(s, z(vy,...,v4_1)) € U, we
define

(vy, ..., 0q-1,8) = a(s, z(vy,...,V4_1))

to obtain a smooth parametrization of U. We denote by d;z the partial deriva-
tive of z with respect to v;,, i =1,...,d — 1, and use a similar notation for .
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It is a well-known algebraic fact that the Jacobian J of this transformation
satisfies

|J¢/(vl7 cee5 Vg1, S)|

= (9491, ..., 041, 8), m(vy, ..., vd,1)>\/H(s, Ugsovr Ug_1),

where m(vq, ..., vgz_1) is one of the two unit vectors orthogonal to d;¢(v4, ...,
Vg-1-8), 1 = 1,...,d — 1, and H(:) is the determinant of the matrix
((9;4,3¢))i j=1,..da-1- Since the flow a; is incompressible, it is easy to
show that J¢ does not depend on s. Letting s — 0 on the right-hand side of
the above formula, we obtain that

|J¢(U1’ -++5> Vg1, S)|

(2.9)
= (u’G(Z(vlv tee Udfl))7 VG(Z(UI’ e Udfl)»\/HO(vl’ tee Udfl)a

where H(-) is the determinant of the matrix ({92, ;2)); j_1,. 41 and vg(x),
x € R(G), denotes a unit normal of R(G) at x satisfying (vq(x), ug(x)) > 0.
Let h: R? — [0,00) be a measurable function vanishing outside U. Since

VHy(vi,...,v4_1)dvy . -+ . dvg_q is the surface element of R(G) NV in the
coordinates (vy, ..., Ug_1), we obtain from 2.9 that
/ h(x)H?(dx)
U

= /l/rl(U> h(p(vy, ..o vg-1, DT P(U1, ..., Vg1, 8)|dvy - -+ - dvg_y ds

= [[1ac(s, 2) € Ubh(ag(s, 2)){ua(2), vo(2)) H "} (d2) ds.

Since x, € G’ was arbitrarily chosen, it follows by a standard covering argu-
ment that

[, k) H () = [ [ {ag(s. 2) € G h(ag(s, ) ua(2). vo(2) H' ' (dz)ds

for all measurable A: R — [0, o). Since a(s, 2) € G’ iff z€ R(G)and 0 < s <
7g(2) we obtain that

| mx)HA(dx) = [ [1{z € R(G),0 <5 < 76(2)Hh(ag(s, 2){ug(2),
(2.10) Yo

ve(2))H Y (dz)ds.

In the sequel we replace the (deterministic) function 4 by a nonnegative, ran-
dom and stationary vector field 2 = {h(x)}. Let B ¢ R? be a measurable set
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with H%(B) = 1. Assuming that A(x) = 0 for x € E and applying (2.10) with
1{x € B}h(x) instead of h(x) we obtain

/ h(x)H%(dx)
B

(2.11) = ¥ //<uG(z), va(2)1{z € R(G),0 < s < 75(2)}

Geg' (D)
x H{ag(s, z) € BYh(ag(s, 2))H Y (dz) ds.

If z € R(®), then either z € R(G) N R(G’) for two different G, G' € £(P) or
z € R(G) for exactly one G € £(®) [see Lemma 5.4 in Last and Schassberger
(1996)]. (In the latter case, z is a two-sided boundary point of G.) Assume for
instance that z € R(G) for some G € &'(®). Then z can be a starting point
of a flow line in G, an endpoint of a flow line, or the flow could be parallel to
the boundary (see also Figure 3). In the second case we have 74(z) = 0 while
in the third case 74(2) = 0 and (ug(2), vg(2)) = 0. Taking into account all
possible cases, and using (2.2) as well as our assumption H¢ " 1(S(®)) = 0,
(2.11) leads to

(2.12) /B h(x)H?(dx) = / f (Y, (2,5)+ Y (2, 8)P(dz)ds,
where

Y (2,8):=1Z,(2)|1{0 < s < 77(2)}1{a" (s, 2) € B}h(a™ (s, 2)),
and Y _(z, s) is defined similarly. Below we will show that
(2.13) ™ (w,2) =17(6,0,0), z € ®(w),
(2.14) at(w,s,2)=a"(0,0,s,0)+ z, 0<s<1H(w,2).
Since 4 is stationary this implies

Mo, a(w,s,2)) =h0,0w,a (w,s,0)), 0<s<1H(w,?2).
Applying the refined Campbell formula (A.2) we obtain that

E [// Y (2, 8)®P(dz) ds]

= XoEo [ [[12.(0)1{0 = 5 = 7(0)}

x 1{a*(s, 0) + z € B}h(a't (s, 0))H(d2) ds]

— Ao Eq [|z+(0)| /0 " bt (s, 0)) ds] .

Inserting this into (2.12) and using a similar relationship involving Y _, gives
the assertion (2.7).
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It remains to check (2.13) and (2.14). To this end we prove
(2.15) 7(60,0,0) = 7(w, x), x ¢ (BE(w)Ud(w))
and

a(0,0,t,0)=a(w,t, x) — x,

(2.16)
x ¢ (B(w)U P(w)), o(w,x) <t <71(w,x).

To prove this we fix v and x ¢ (E(w) U ®(w)), where we note that the latter
holds if and only if 0 ¢ (E(6,0) U ®(6,0)). Denoting B(t) := a(w, t, x) — x,
v(t) == a(6,w,t,0) we have B(0) = y(0) =0 and

%B(t} =u(w,a(w, t,x)) =u(0,0, B(2)), o(w,x) <t < 7w, x),

d
ay(t) =u(0,w, y(t)), 0(0,0,0) <t <7(6,0,0),

where we have used stationarity of the vector field u to get the first rela-
tionship. Assume now that x € G € &'(®). Then G — x € ' (P(0,(w)) and
v(t) € G—x for 0(0,w,0) < t < 7(6;w, 0). Since B is a maximal flow [see Lang
(1995)], we see that (¢(6,w,0), 7(0,0,0)) C (0(w, x), 7(w, x)) and B = vy on
the smaller interval. Since vy is also a maximal flow, we obtain also the other
conclusion and (2.16), (2.15) follow. Using this and stationarity of the normal
field, yields (2.13) and (2.14). O

Theorem 2.1 generalizes the inversion formula for Palm probabilities on
the line [see Mecke (1975), Franken, Konig, Arndt and Schmidt (1981),
Baccelli and Brémaud (1994)]. Clearly, of particular interest will be the dis-
tribution of the time a particle situated in a typical point of R? \ E will have
to ride on the flow in order to reach the boundary ®, that is, the distribution
P(7(0) € dr|0 ¢ E). Theorem 2.1 allows expressing this hitting time distribu-
tion in terms of Pg. Denoting by p the volume fraction of E, that is, letting
p:= P(0 e E) = EHY(ENJ0,1]%) and assuming that p < 1, an expression
for the density of this distribution is obtained.

COROLLARY 2.2. We have
(1-p)P(7(0) e dr|0 ¢ E)
= Ao Eq [H{r < 77(0)}Z,.(0)| + 1{r < 77(0)}|Z_(0)[] dr.

ProoF. We apply Theorem 2.1 with i(x) = g(7(x)), where g: [0,00) — R
is measurable and nonnegative. Because t(a'(s,x)) = 77(x) — s and
(a (s,x)) = 7 (x) —s for x ¢ (® UE), the result is a straightforward
consequence of Fubini’s theorem. O

For a special case of the formula just derived, take E = & and u(x) = w,
where w is a constant unit vector. Choose v in such a way that (v(x), w) > 0.
Then one can interpret 7(0) as the distance of 0 from ® in the direction of
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w and, in the terminology of stochastic geometry, may call the distribution
of 7(0), a linear contact distribution. This special case of Corollary 2.2 was
derived in Last and Schassberger (1996). Another special case of a geometrical
nature will be discussed in Section 3. In the case d = 1, ® is a stationary point
process, and letting v = 1,2 = &, u = 1, the formula of Corollary 2.2 is, of
course, the well-known formula for the distribution of the forward recurrence
time in a stationary point process on the real line.

REMARK 2.3. For stationary point processes on the line, the inversion for-
mula provides the possibility of constructing the stationary probability mea-
sure P from Py [see, e.g., Remark 4.4.1, Chapter 1, in Baccelli and Brémaud
(1994)]. Likewise, Theorem 2.1 provides such an algorithm in the case of our
more general model. Consider the probability space (0, 7, Py) and let U™
(U™) be a random variable uniformly distributed on [0, 7+ (0)] ([0, 7~(0)]) and
being independent from “everything else.” Let -2 be a nonnegative random
variable and A(x) := h o 6,. Then (2.7) can be written as

Eh = A\Eg [|Z,(0)|7(0)h o 95 +|Z_(0)|7(0)ho 0y ],

where, for ¢t € R, the mapping (shift) 4;: Q@ — Q is defined by 9/ (w) =
Ou+(w,5,0(@) and ¥ is defined analogously. If p™ := A, E[|Z_(0)[77(0)] > O,
then we let Pt denote the probability measure which is absolutely continuous
with respect to P with density |Z_(0)|7"(0)/p*. Defining p~ and P~ similarly,
we obtain

Eh=p*Et[hod}. 1+ p E[hody ],

where E* (E~) denotes expectation with respect to Pt (P~).

REMARK 2.4. Theorem 2.1 can also be formulated for a field » which is
not divergence free if there exist a stationary scalar field K = {K(x): x € R?}
such that div Ku = 0 on R? \ ® and such that our model assumptions are
satisfied with Ku instead of u (see Section 3 for an example). Still defining 7
and « in terms of u, the result (2.7) takes the following form:

7(0)
EIHOK ()] = Ao || O Z,O)] [ he (5,0) ds
(2.17)
(0)
HEOIZ- ) hla (s o) ds |.

REMARK 2.5. Our analytic assumptions on the flow ag, G € £'(P), can
be weakened. For example, it is not necessary that the vector field u; be
continuous on the two-sided regular boundary points of G. To keep things
simple, we have tried to avoid additional technicalities.



476 G. LAST AND R. SCHASSBERGER

3. An application to the spherical contact distribution in a germ-
grain model. In this section we specify our model in such a way that the
flow (which is defined outside E) is directed towards Z (see Figure 4). We
formulate a version of Theorem 2.1 and then apply it to a germ-grain model.
This results in an inversion formula between the basic probability measure P
and its Palm probability measure P4, with respect to the so-called exoskeleton
@’ of the germ-grain model (Theorem 3.2). From a position outside the grains
one can ask for the distance to the nearest grain. Under the basic probability
measure P its distribution, the so-called spherical contact distribution, is the
one which governs the distance as seen from a typical point in space (outside
the grains). In Corollary 3.3 we specialize the result of Theorem 3.2 to obtain
a formula which expresses the spherical contact distribution in terms of Py,
that is, in terms of quantities as they are seen from a typical point on the
exoskeleton. Finally, we consider a point process = and its Voronoi tessellation
d’ [see, e.g., Stoyan, Kendall and Mecke (1995)] and express the spherical
contact distribution in terms of Pg .

The model (¥, E, ©) is as in the previous section. We let @’ be the stationary
random closed set defined as the closure of ® \ /= and assume that

(3.1) H¥ Y@ NnE)=0, P-as.

Furthermore we assume that, outside S(®), no point of /5 is a starting point
of a flow line and each point of @’ is a starting point of exactly two flow lines
ending on J=E.

In the theorem below, Py and Ay denote the Palm probability and the
intensity of the random measure H¢ 1(®' N -). In this section we need only
assume Ay < 00 but not Ag < oo.

THEOREM 3.1. Let (®, E, u) be as described above and let h = {h(x): x €
R} be a nonnegative and stationary random field. Then

77(0)
Eh(0) = Ay oy [|z+<0>| [ et (s 0 ds
(3.2) o
HZ- O e (s,0) ds] ,

where Eg, denotes expectation with respect to Py, .

PrROOF. The proof of Theorem 2.1 yields in fact that
7(0)
Eh(0) = / [|z+(0)| /0 h(at(s, 0))ds

+1Z_ ()l f; © k(o (5.0))ds| dQa»

where @ is the Palm measure of the random measure H¢~(®N.). The bound-
ary of E does not contribute to the right-hand side because either 7+(0) and
77(0) are both equal to 0 or else, if 77(0) (77(0)) is positive, then Z  (0) (Z_(0))
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equals 0. Using (3.1) and the definition of Palm probability the assertion easily
follows. O

Now we turn to our example of a stationary germ-grain model [see, e.g.,
Stoyan, Kendall and Mecke (1995) and the Appendix]. In this case, specifying
(®, E, u) begins with specifying E rather than ®. Our E is assumed to be of
the form

E = U(El + gi)’

i=1

where the point process {&;: i € N} of germs is assumed to have a positive
and finite intensity while the primary grains E; are assumed to be convex
with boundary ¢=; being a (d — 1)-dimensional manifold of class C2. This is
our germ-grain model. The volume fraction p = P(0 € E) of E is positive and
we assume that p < 1. For the sake of simplicity we exclude the possibility
that the boundaries of two different grains E; + £; coincide on a set of positive
(d — 1)-dimensional Hausdorff measure. For the purpose of specifying ® we
introduce r(x), x € R?, as the Euclidean distance from x € R? to = and, letting

II(x) := {y € E: |ly — x[| = r(x)},
where || - || denotes Euclidean norm, we put
(3.3) ® = 9= U{x € R\ E: card II(x) > 2}.

This implies that @, as defined above, is the exoskeleton of = [see Serra (1982)].
Figure 5 illustrates this important notion. Note that S(®) contains the points
of the set {x € ®’: card Il(x) > 2}.

For x ¢ (E U ®') the convexity of the grains implies I1(x) = {p(x)} for a
unique p(x) € JE satisfying p(x) € R(E) (the set of regular boundary points
of E). We proceed to specify our flow «. We want it to have the velocity field

K , if Eud),
(5.4) u(x) = (x)v(x), if x ¢ ( )
0, otherwise,

where v(x) = (p(x) — x)/r(x) and K(x) is positive and chosen in such a way
as to render u divergence free (see below).

Regarding the function K(x) let, for z € R(E) and d > 2, c(z) =
(c1(2),...,¢4-1(2)) denote the vector of the principal curvatures of R(E)
at z defined with respect to the orientation induced by the outer normal to

ot

E at z. The components of this vector are nonnegative and unique up to
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Fic. 5. A germ-grain model and its exoskeleton.

their order. We can assume that the process (1{x € R(E)}, c(x)), x € R?, is
stationary jointly with 2. Let g denote the function given by

d-1
q(r,cq,...,cq_1):=[](1+rc), r,Ciy...,Cq_1 € R,
i=1

if d > 2, and by ¢(r) := 1 if d = 1. Now define

(q(r(x), e(p(x))~t,  if x ¢ (EUD),

, otherwise.

K(x):= {

Well-known facts about the distance function r(x) [see, e.g., Gilbarg and
Trudinger (1977)] can be used to show that indeed div Kv = 0 on R?\ (EU®d).
If x € @'\ S(®), then p*(x), p~(x) € R(E), where

(at(tt(x), x), a (77 (x), x)), ifx e d\S(D),

+ — -
(P (x), p~(x)) == { (0,0), otherwise.

We let B(x) denote half of the angle between the vectors vt(x) and v~ (x),
where v™(x) := (pT(x) — x)/r(x) and v~ (x) is defined similarly. These defini-
tions are illustrated in Figure 6. We now use Theorem 3.1 to derive an appar-
ently new relationship between the Palm probability Pg and the stationary
probability measure P.
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FiG. 6. A detail of Figure 5 illustrating Theorem 3.2.

THEOREM 3.2. Consider the above described germ-grain model for d > 2.
Let {h(x): x € R?} be a nonnegative stationary field, vanishing on =. Then

a(r(0) — 5. e(p*(0)))

2(r(0). e(p*(0)))

a(r(0) — 5. e(p~(0)))
2(r(0). <(p (0))) >d}

r(0)
Eh(0) = Ay Eq |:sin B(0) /0 (h(sv+(0))
(3.5)

+ h(sv=(0))

PrOOF. Theorem 3.1 yields the formula

7+(0)
Eh(0) = Ay Eq [(v+(0), 2(0)) K+(0) /0 h(at(s, 0)) ds

7(0)
—{(v7(0), V(O))K*(O)/O h(a (s, 0))ds] .
We need to do some computations. It is easy to check that

a(t,x) =x+ f(¢t, x)v(x),

where

f(t,x
[ atr@) s cpomds =1, 0=tz
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and where a(7(x), x) = x + f(7(x), x)v(x), that is, in view of the definition of
v, r(x) = f(7(x), x) or, equivalently,

r(x)
[ atr) — t.e(p(x)) dt = 7(x).
This yields, for 0 ¢ (EU @),

7(0) r(0)
/0 h(a(s, 0)) ds = /0 h(tv(0))g(r(0) — t, ¢( p(0))) dt.

Next we turn to the scalar products (v*(0), »(0)) and (v~(0),»(0)). A sim-
ple geometric argument shows that one of the two possible choices for v(x),
x € (P'\ S(P)), is given by

() = [[o™ () = v* ()| (0™ (x) = v* ()
With this choice we obtain, by definition of B(0), (v*(0),»(0)) = —(v=(0),
v(0)) = sin B(0). Noting that ||p*(0)|| = ||p~(0)|| for 0 € &'\ S(P), formula
(3.5) follows directly. O

Choosing h(x) = g(r(x)) in (3.5) we obtain the corollary.

COROLLARY 3.3.  For all nonnegative, measurable functions g on [0, 00),

(1- P)E[g(r(0))]0 ¢ ]
. r(0) q(s, c(p*(0)))
(3.6) =t Fo [Sm BO) [ ) <q<r(0>, «(p(0)))
a(s. e(p(0))
2(r(0), c(p—(om) ds]‘

We illustrate the preceding results by an example with spherical grains.

EXAMPLE 3.4. Assume that all the grains 5,,, n € N, are balls. If z € R(E),
then q(r, c(2)) = (14 r/R(2))%"!, where R(z) is the radius of the unique ball
E, with z € 9=,,. Formula (3.5) can be written as
Eh(0)

: r© (R(p*(0)) +r(0) —s)*!
- A /E / +
o B sn £00) [ (ko 00 G o
(R(p~(0)) +(0) - s)dl) )

(R(p=(0)) + r(0))¢-1 ’
and (3.6) can be simplified accordingly. If, moreover, all balls have the same
deterministic radius R, then (3.7) becomes

7(0)
Eh(0) = Ay Eqg [sin B(0) /0 (h(sv*(0))

(R + r(0) — 5)d-1 }
(R + r(0))d1

(3.7

+ h(sv(0))

(3.8)
+ h(sv™(0)))
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The results in Theorem 3.2 and Corollary 3.3 are new. In Last and
Schassberger (1998) a result is obtained expressing the distribution of the
spherical contact vector p(0) in terms of quantities as seen from a typical
point on the grain surface, rather than on the exoskeleton as above. This
result is valid for general convex, not necessarily smoothly bounded, grains,
and the derivation is by means of integral geometric arguments. For smoothly
bounded grains, as assumed in the present section, this result has a particu-
larly appealing look and can be derived from the formula (3.5) by employing
a purely analytic relationship between the surface elements of ® and JE.
In fact, rather than dealing with p(x) — x, one can consider an arbitrary
nonnegative and stationary field {A(x): x € R%}. We skip the details of the
proof and just state the formula. For this purpose we let P,z denote the
Palm probability of the random measure H"1(JZ N -) whose intensity A,z is
assumed to be finite. Then

- o (0)
3.9 (1= B[RO0 ¢ Z) = hzBuz | [ hsv(0)a(s. o(0)ds]

where E = denotes expectation with respect to Pz, v(2) is chosen as the outer
normal to E at a regular boundary point z € R(E) and o(z) := r(x) if there
is a unique x € @’ with z € Il(x).

In the remainder of this section we assume that E = {¢;: i € N} is a
stationary point process. The distances r(x) and the sets II(x), x € R?, as well
as the exoskeleton @’ are defined exactly as before. The latter is the Voronoi
tessellation generated by ®. If x € @\ S(®), then II(x) = {p*(x), p~(x)}
for exactly two p*(x), p~(x) € E. For such x we define v*(x), v™(x) and
B(x) exactly as before. The following result is another interesting example for
Theorem 3.1.

THEOREM 3.5. Consider a stationary point process E and its Voronoi tes-
sellation @' as described above and assume that Agy < 0o. Let {h(x): x € R%}
be a nonnegative stationary field. Then

) r(0)
Eh(0) = Ay Eq [sm B(0) /0 (h(sv™(0))

(3.10) d-1
+ h(sv™(0))) (M) ds} :

r(0)

In particular,

(3.11) P(r(0) edr)=2Ap Ey |:1{r < r(0)}sin B(O)%] dr.

PROOF. An informal proof can be obtained from (3.7) by letting there
R — 0. A formal proof proceeds as the proof of Theorem 3.2, using a vec-
tor field u defined by (3.4), where v(x),x ¢ @ is defined as above and
K(x) := r(x)"@D, It can be easily shown that u is divergence free and
m(x) =d r(x)? O
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4. Excursions. In the present section we continue to work within the
model of Section 2. The aim is to establish a fairly straightforward modifica-
tion of Theorem 2.1, formulated as Theorem 4.1. It will be used to extend a
result in Neveu (1977) and Pitman (1987) (Theorem 4.2) and will be the basis
of the developments in Sections 5 and 6. The idea is to follow the flow across
boundaries between adjacent cells G € &'(®). For this purpose we define suc-
cessive crossing times and crossing points as follows.

Let ®* (®) denote the set of all x € ®, which are starting points (endpoints)
of exactly one flow line. First we extend the definitions of o, 7 and «. For
x € ®T, we set

7(x) == sup{r(y): y ¢ (PUE), x = a(a(y), )}
a(0,x) :=x, and, for 0 < ¢ < 7(x), a(¢, x) := y if —o(y) = ¢ and a(—¢, y) = x.
For x € ®~ we define

o(x) :=inf{o(y): y ¢ (PUE), x = a(7(¥), y)}»

a(0, x) := x, and, for o(x) <t <0, a(t,x) =y if —7(y) =t and a(—¢, y) = «x.
For x € R? we now inductively define a sequence (7,(x), m,(x)), n € Z, as
follows. First we let

(t1(x), m(x)) == {( (%), a(7(x), x)), ifx¢g(PUE)orxed

(0, x), otherwise.

For n > 1 we define

(T (%) + 7(m, (%)),
(Tr41(2), Moy 1(2)) =1 a(r(m, (%)), m (%)), if m,(x) € OF,
(Tn(x), m,(x)), otherwise.
Further, we define
(0, x), if x e (PUE),

(7o(x), mo(x)) 1=

(o(x), a(o(x), x)), otherwise

and for n <0,

(Tn(x) + o(m,(x)),
(Tn-1(x), mp_1(x)) := {07, (%), %), my(2))),  if m,(x) € @7,
(Tn(x)’ Wn(x))a otherwise.

Figure 7 is an illustration of these definitions.

Note that we adopt here the convention to keep stepping on place whenever
the flow cannot be followed any further. In particular we start stepping on
place whenever we get to a point of ® where two flow lines start or two flow
lines end. We want to exclude this by imposing in addition the condition that

4.1) D\ S(P) C {x: Z,(x) >0, Z_(x) > 0}
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FiGc. 7. An illustration of the crossing points m,(x) = a(t,(x), x) as defined in Section 4.

In fact, it can be directly checked that this is equivalent to requiring that
(4.2) D\ S(P) C(PTU{Z, =0} N(P U{Z_=0})
and
4.3) Z,(x)>0 if x e (P"\ S(D)), Z_(x)>0 if x € (™ \ S(P)).
We further extend the definition of the flow « to satisfy
(4.4) at, ) = alt — 7y (x), (%), Tu(%) = £ < T (2).
This determines «a(:, x) on the interval (7_,,(x), 7, ,(x)), where
Tioo() == sup{r,(x): n > 1}, T_oo(x) :=inf{7,(x): n < 0}.

Ift>r7, (x)ort<r7_,(x)then we set a(t, x) := x. Hence a is a measurable
function of all its arguments.

THEOREM 4.1. Let (®, Z, u) be as described above and let h ={h(x): x € R?}
be a nonnegative stationary random field which vanishes on =. Then

(4.5) ER(0) = Ao Eq [z+(0) ]0 " h(a(s, 0)) ds] ,
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where 7, := 7,(0), n € Z. Assume, in addition, that the union of all flow lines
ending in regular boundary points of G € &'(®) covers G up to a set of Lebesgue
measure 0. Then

ER(0) = Ay Eq [Z_(O) / " h(ags, 0))ds:| .
Moreover, in this case we have for all n € 7 that
4.6)  Eh(0) = \pEq [Z+(0) /0 " h(a(s, 0))ds — Z_(0) /0 " h(as, O))ds] :

provided that Eo[Z.(0) [7" h(a(s,0))ds] < oo for n > 1 or E¢[Z,(0)[°
h(a(s,0))ds] < oo for n < 0.

PROOF. In analogy to (2.15) and (2.16) one can prove by induction that
7,(x)=7,(0)0 6, and

(4.7) a(0,0,t,0) = a(w, t,x)—x, (w,x,t) e A x R x R,

if 7_(x) < t < 7,,(x). Since 7 (x) = 7,,(0) 0 0, and 7__(x) = 7_(0) o
6., (4.7) even holds for all (w, x,¢). The assumptions of this section imply
that Pg(Z,(0) > 0) = 1. Therefore the first assertion is a special case of
Theorem 2.1, while the proof of the second equality requires only a slight
modification of the proof given there. To avoid repetition we will prove the
more general equation (4.6) as an application of Theorem 5.1 in the next
section. O

The Q-valued process {0,s,): 0 < s < 7} describes an excursion of a particle
starting in the typical point 0. Adapting the terminology of Pitman (1987), we
could call @4 = Ay, Py the equilibrium excursion law. We now extend a formula
for point processes on the line [see Neveu (1977), Pitman (1987)] to our model.
For simplicity we assume that & = &.

THEOREM 4.2. Let (®, u) be as described above and assume that B =
Then

P(—7y €ds, 04(1,0) € dw) = 1 Z (0)(@)1{s < 7(®)} dsPy(dw).

a7y,
PROOF. We employ (4.5) with h(x) = A(—7, 6:,)00,, x € R?, where &: R, x

) — R, is measurable. For 0 € ¥ and 0 < s < 7; we have 7y0 6,y = —s and
O(70,0) © Oa(s,0) = 0o Hence

a(Ty,
Eil(—To, 070) = )L(I)Eq) |:Z+(0) /oo 77,(8, 00)1{8 < Tl}ds] B
0

implying the result. O
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5. An invariance property of Palm probabilities. An important prop-
erty of the Palm probability P of a stationary point process ® = {T,,: n € N}
on R is its invariance under the shifts 07 [see, e.g., Chapter 1, Section 3.2 in
Baccelli and Brémaud (1994)]. It is the aim of the present section to formulate
and prove a corresponding property for general dimension d. We let (¥, E, u)
be as described in Section 2 and assume that (4.1) is satisfied. In addition
we assume that the union of all flow lines ending in regular boundary points
of G € £'(P) covers G up to a set of Lebesgue measure 0. We introduce the
mapping J: Q — Q by

1(}((1)) = Ga(w,Tl(w),O)w'

If 0 € @ is a starting point of a unique flow line, then ¢ shifts the origin to
the “next” point 7;(0) of ®. The next theorem shows how the Palm probability
measure Py, is affected by this shift.

THEOREM 5.1. Let h be a nonnegative random variable satisfying h = 0
on the event {0 € E}. Under the assumptions made above we have

(5.1) E4Z (0)hod =E4Z_(0)h.

PrOOF. It is convenient to introduce for all ¢ € R the mapping ¥,: O — Q
by
(52) ﬁtw = Oa(w,t,O)wa w e .

From Theorem 4.1 we obtain that
T 0

(5.3)  Eh(0) = ApEq [z+(0) / hod, ds] — Ao Eq [Z_(O) / hod, ds} ,
0 T

where we recall from (4.2) and (4.3) that Z_(0) > 0, Z_(0) > 0 Pg-almost
surely. In particular we may choose here h(x) = h;(71(x))g(x), where h;: R —
[0, ) is measurable and g(x) = hy(7(x)) for a nonnegative and stationary
process {hy(x): x € R?}. [Using (4.7), it is easy to check that {A(x): x € R?} is
stationary.] Therefore,

Eq[Z.(0) [ hy(r1 0 9,)g(0) 0 9, ds]
= Eq|Z_(0) ], hi(r109,)8(0) 0 9, ds].

For 0 < s < 7; we have g(0) o 9, = hy(0) o ¥ and for 7_; < s < 0 we have
2(0)o V4 = hy(0). Furthermore, 7,09, = —sfor7_; <s<Oand rjo¥,=7,—s
for 0 < s < 7,. Choosing hy(x) := ho 6,, x € R?, we obtain

Eq [Z+(O)h o9 /0 Ry(s) ds] — E, [Z_(O)h /701 hy(—s) ds] .
Hence

Ep[1{0 <s<7}Z, (0)ho 9] =E4[1{0 <s < —7_1}Z_(0)A],
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for H'-a.e. s € R, where H! is Lebesgue measure. Letting s — 0 gives
E@[I{Tl > O}Z+(O)h (e] 13] = Eq)[l{T,]_ < O}Z,(O)h]

However, by (4.3) we have Pg-almost surely that {Z,(0) > 0} € {r; > 0} and
{Z_(0) > 0} € {7_; < 0} and the theorem is proved. O

As a first application we prove (4.6) of Theorem 4.1. Let n € N and {A(x)}
be a stationary nonnegative field. Using (4.7) (see also Lemma 6.1 in the next
section) it is easy to see that

/:nﬁ h(a(s,0))ds = [/:nl h(a(s, 0))ds} 9.

n n

Hence we obtain from Theorem 5.1 that
By [z+(0) [ h(ats, 0)) ds] — E, [Z_(O) [" has, 0))ds} .

Using induction starting with (4.5), we obtain (4.6), provided that the random
variable Z (0) [, h(a(s, 0)) ds is integrable. The proof for n < 0 is similar.

REMARK 5.2. Assuming, for simplicity, that Z_(0) o & # 0, (5.1) can be
rewritten as

Eyh = Eg [%hoﬁ]

In heuristic terms we can express this as follows. If 0 is a typical point of P,
then a(7y, 0) is a typical point under the probability measure Z_ (0)/(Z_(0)o
9)dPyg.

EXAMPLE 5.3. Assume that u(x) = w for some unit vector w € R? and
choose v such that (v(x), w) > 0 for all x. This defines a parallel deterministic
flow a(s,x) = x + sw and 7;(x) is the distance from x to the next point
a(71(x), x) of @ in the direction of w. The mapping ¥ shifts the (typical) point
0 € R? to the next point a(7,(0), 0) and (5.1) reads as

(5.4) Eo[(w, v(0))h o 9] = Eq[(w, v(0)A].

Assume, in addition, that ® is a process of parallel hyperplanes with normal
v satisfying (w, v) # 0. Then (5.4) simplifies to

(5.5) Eyho® = Egh,

which is “almost” the classical invariance property for Palm probability mea-
sures of point processes on the real line.
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S/
> N =

/\\\\ AN d

FiG. 8. This figure shows a regular cell pattern. Starting at an (inner) point of a cell one can
follow the flow ad infinitum but returns to the same point infinitely often.

N

~

\\

6. Volume-preserving flows. In this section we consider the model of
Section 5; that is, we let (®, E, u) be as described in Section 2, assume (4.1)
and that the union of all flow lines ending in regular boundary points of
G € £'(®P) covers G up to a set of Lebesgue measure 0. For simplicity we
also assume that E = &. We study the point process

N() = 1{7700 =0, T = OO} Z 1{Tn € '}>
neZ

assuming that
(6.1) T

where (7_., T,o) = (7_(0), 7.o(0)). Note that models with loops are not
excluded (see Figure 8). Under a natural assumption on «, the point process
N becomes stationary and, using Theorem 4.1, we then will express its Palm
probability Py in terms of Pg.

The flow « is called volume preserving if, for all ¢ € R, P-almost all @ and
all measurable g: R? — R,

/g(a(w, t, x))He(dx) = /g(x)Hd(dx).

Because u is divergence free on R? \ ®, it is well known that « is volume
preserving if the velocity field u is smooth everywhere on R?. In our more
general case it is easy to prove that « is volume preserving if and only if

(6.2) Z,.(0)=Z_(0), Pgy-as.

This could be proved with the help of Theorem 4.1. However, this is a purely
analytic fact which has nothing to do with stationarity. A short proof can

= —00, Tioo =00, P-as.,
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be based on Gauss’s divergence theorem [cf. also Bear and Bachmut (1990)].
The results in Geman and Horowitz (1975) and Mecke (1975) show that the
volume-preserving property is also equivalent to the invariance of P under the
shifts 9,: Q — Q, ¢ € R, defined by (5.2). Indeed, we may apply Theorem 10(i)
in Geman and Horowitz (1975) with Z(w) := a(w, ¢, 0) for a fixed ¢ € R. Since
by (4.7),

x+Z(0,0)=x+a(0,0,¢,0) = a(w, t, x),

this theorem yields that a(w, ¢, -) is P-almost surely volume preserving iff P
is invariant under U,.

We first need to prove that the family {J,: t € R} is a flow on (£, %) and
that the point process N is adapted to this flow.

LEMMA 6.1. Forall s,t eR, 9,09, =7, and N(¥,w, )= N(w, -+35).

PrOOF. From (4.7),
6.3) a(d0,t,0)=0a(o,t,a(o,s,0))—a(o,s,0) =aw,s+t,0)—a(w, s, 0).
Using this equation we obtain
B0V 5(@) = Oa(0,0,£,0)(F @) = Ou(r,54£,0)(0—a(w,5,0)(Ts@))
= On(w,s11.0)@ = Ty 0.
We define
(6.4) A ={71_, =—00, T o =00}

and note that, for any ¢t € R, w € A iff 9,0 € A. The second assertion is
then equivalent to

(6.5) 7,00, =T,(s)—s, neZ onA,,

where 7(s) := inf{r,: 7, > s}, 7,41(s) = inf{r,: 7, > 7,(s)},n > 1, and
T,,h < 0, is defined analogously. Equation (6.5) follows by induction, using
(6.3). For instance, if 7, (w) = oo,

71(¥,0) = inf{t > 0: a(F,w,¢,0) € P(J,0)}
(6.6) =inf{t > 0: a(w, t +5,0) — a(w, s,0) € D(O,, 50)@)}
=inf{t > 0: a(w,t+5,0) € P(w)} = 71(s) — s. O
The preceding lemma justifies the definition of the Palm probability P, of

N with respect to the family of shifts {},}, provided that P is invariant under
these shifts and the intensity Ay := E(N(0, 1]) is finite. By (4.1) the numbers

W= EeZ.(0),  p = EgZ_(0)

are nonnegative and we assume in the remainder of the section that u* < oo
and = < oo.
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THEOREM 6.2. Let (P, u) be as described above and assume that « is vol-
ume preserving. Then

and the Palm probability Py of P with respect to N satisfies
(6.8) Py(A)=p ' Ey [1,Z ,(0)], Ac7,

where u = ut.

PrROOF. We have already seen that P is stationary under 9,. By (6.1) and
the inversion formula [see Mecke (1967)],

Eh=/[/{:1hoﬁsds] dQy,

where @ is the Palm measure of N (see Appendix). By Theorem 4.1,

/[/O hoﬁsds] dQy = Eq [z+(0)/0” hom‘}sds}
and similarly as in the proof of (5.1) it follows that
(6.9) [ hdQy = ApEyZ . (0)h.
Taking h =1 yields (6.7) such that (6.8) follows from (6.9). O
We illustrate with a simple example on the intersection of ® with a line.

EXAMPLE 6.3. Let u and « be as in Example 5.3. Theorem 6.2 implies for
all measurable A: Q — [0, co) and all measurable B ¢ R? that

(6.10) A En[R1{p(0) € B}] = Ap Eo[((0), w)h1{1(0) € B}].

In particular we obtain a relationship between the (directed) rose of directions
Pn(v(0) € -) of N and the rose of directions Pg(v(0) € -) of ®:

(6.11) AnPr(#(0) € dv) = Ag (v, w) Py (»(0) € dv).

For d = 2 this is equation (9.3.5) in Stoyan, Kendall and Mecke (1995) and for
d = 3 we refer to (9.5.10) in this book. Assume for instance that ® is the union

of m jointly stationary processes ®;,i = 1,...,m, of parallel hyperplanes
with pairwise distinct unit normals v, ..., v,, satisfying (v;, w) > 0. Choosing
B ={v;} in (6.10) yields

(6.12) An.Enh = Ag (v;, w)Eg h, i=1,...,m,

where

N,()=1{r_ =—00,7, o, =00, »(0)=v;} > 1{r, € -}.

neZ
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The result of this section can be generalized to the case where E # & and
where the divergence of u does not vanish on R?\ (ZU®), provided that there
is a scalar field K such that div Ku = 0 on R? \ (Z U ®) (cf. Remark 2.4). We
can skip the details here.

APPENDIX

Palm calculus. All random elements are defined on the probability space
(Q, 7, P). Assume that 6,: Q — Q, x € R?, is a family of measurable isomor-
phisms such that (w, x) — 6,0 is measurable,

0,00,=0,,,, xyeR
and
Po#,=P, xeR%
A random measure ® on R? [see Kallenberg (1983)] is called stationary if
T,P(w)=P(0,0), weQ,yeR?,
where T',® is the random measure defined by
T,D(A):=d({x+y: xecA}), Aecz,

and %% is the Borel o-field on R?. The distribution of a stationary random
measure P is invariant under the shifts 7', y € R<. In particular the intensity

measure A(A) ;= ED(A), A € #?, is given by
A(dx) = A\ HY(dx),

where Ay, := E®(]0, 1]9) is the intensity of ® and H¢ is the Lebesgue measure
on R%. The measure

(A1) Qu(F):= // 1{0,0 € F, x € [0, 1]}d(w)(dx)P(dw), FeF

is called the Palm measure of ®. It is o-finite and satisfies the refined Campbell
formula

(A.2) / / £(8,0, 2)®(0)(dx)P(dw) = / / f(w, )Qq(dw)H(dx)
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for all measurable f: QxR? — R*.If0 < Ay < oo, then we can define the Palm
probability Py, := A\3' Qg of ®. We refer to Mecke (1967) for the definition of
Q4o and Py in a canonical framework. We may interpret P, as the conditional
probability given that 0 is a “¢ypical” point of ®. An example of a random
measure is ®(-) := card {i: &; € -}, where {&;: i € N} is a (simple) point process
of pairwise distinct points in R? [see Kallenberg (1983)] that are not allowed to
accumulate in bounded sets. Here and in the main text we tacitly assume that
a point process has an infinite number of points. We will make no difference
between a point process and its associated random measure.

A process Z = {Z(x): x € R?} with values in some arbitrary measurable
space is called stationary if Z(0) is measurable and Z(w, x) = Z(0, w, 0) for all
w € Q and x € R%, where 0 is the zero vector. If, in addition, ® is a stationary
random measure then we refer to {Z(x)} as being stationary jointly with ®
because both objects are adapted to the same “flow” {6,: x € R?}. In this case
it might be helpful to think in terms of the marked (or weighted) random
measure [ 1{(x, Z(x)) € -}P(dx); see Stoyan, Kendall and Mecke (1995). If
the intensity Ay is finite then

E [/ 1{(x, Z(x)) € ~}<D(dx)] = Ao // 1{(x, 2) € YH(dx)M(d>2),

where M := P4(Z(0) € -) is the mark distribution of the marked random
measure. The Palm probability P, itself is an example of a mark distribution:
take Z(w, x) = 6, w. If ® is defined by a point process as above then we can
define the mark Z, := Z(¢,) of the point &,. The set {(¢,, Z,): n € N} is
called a marked point process. It is stationary in the sense that

card {i: (£,(w), Z;(w)) € (A+y) x B}
= card {i: (§;(0,0), Z;(0,0)) € A x B}.

If, conversely, {(£,, Z,): n € N} is a stationary marked point process we can
define Z(x) := Z,, if x = £, for some n € N and give Z(x) an arbitrary fixed
value otherwise. Then {Z(x): x € R%} is a stationary process and the mark
distribution M = P4(Z(0) € ) is the distribution of the mark of a typical
point of ®.

A random closed set E [see Matheron (1975)] is called stationary if

T,E(w)=E(0,0), weQ,yeR?,

where T'\ = := {x — y: x € E}. A special case is a stationary germ-grain model

E= U(Ei + &),

where {(¢;,E;): i € N} is a stationary marked point process with marks in
the set of all nonempty compact subsets of R? and where each bounded set is
intersected by only a finite number of the grains E + £;. The points £, and the
marks =, are called germs and primary grains, respectively.
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