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Consider a process in which information is transmitted from a given
root node on a noisy tree network T. We start with an unbiased random bit
R at the root of the tree and send it down the edges of T. On every edge the
bit can be reversed with probability ε, and these errors occur independently.
The goal is to reconstructR from the values which arrive at the nth level of
the tree. This model has been studied in information theory, genetics and
statistical mechanics. We bound the reconstruction probability from above,
using the maximum flow on T viewed as a capacitated network, and from
below using the electrical conductance of T. For general infinite trees, we
establish a sharp threshold: the probability of correct reconstruction tends
to 1/2 as n → ∞ if �1 − 2ε�2 < pc�T�, but the reconstruction probability
stays bounded away from 1/2 if the opposite inequality holds. Here pc�T�
is the critical probability for percolation on T; in particular pc�T� = 1/b
for the b + 1-regular tree. The asymptotic reconstruction problem is equi-
valent to purity of the “free boundary” Gibbs state for the Ising model
on a tree. The special case of regular trees was solved in 1995 by Bleher,
Ruiz and Zagrebnov; our extension to general trees depends on a coupling
argument and on a reconstruction algorithm that weights the input bits
by the electrical current flow from the root to the leaves.

1. Introduction. Consider the following broadcast process. At the root
ρ of a tree T a binary random variable is chosen uniformly at random. This
bit is then propagated, with error, throughout the tree as follows: for a fixed
ε ∈ �0�1/2	, each vertex receives the bit at its parent with probability 1−ε, and
the opposite bit with probability ε. These events at the vertices are statistically
independent. (In the language of communication theory, each edge of the tree
is functioning as a binary symmetric channel.) This model has been studied
in information theory, mathematical genetics and statistical physics; some of
the history is described in Section 2.
Suppose we are given the bits that arrived at some fixed set of vertices W

of the tree. Using the optimal reconstruction strategy (maximum likelihood),
the probability of correctly reconstructing the original bit at the root is clearly
at least 1/2; denote this probability by �1+�/2. Our main results are a lower
bound for  = �T�W�ε� in terms of the the effective electrical conductance
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from the root ρ to W (Theorem 1.2), and an upper bound for  which is the
maximum flow from ρ to W for certain edge capacities (Theorem 1.3.) When
T is an infinite tree, these bounds allow us to determine (in Theorem 1.1) the
critical parameter εc so that, denoting the nth level of T by Tn, we have

lim
n→∞�T�Tn� ε�

{
> 0� if ε < εc,
= 0� if ε > εc.

(1)

As we explain in the next section, vanishing of the above limit is equivalent to
extremality of the “free boundary” limiting Gibbs state for the ferromagnetic
Ising model. For the special case of regular trees, the problem of determining
εc was open for two decades, and was finally solved in 1995 by Bleher, Ruiz
and Zagrebnov [2]; see Section 2.2 for background.
Because of the Ising model interpretation, we will label the vertices of T

with ±1 valued random variables �σv�, called spins, instead of random bits.
These spins can be constructed from independent variables �ηe� labeling

the edges of T, as follows. For each edge e, let Pηe = −1	 = ε = 1−Pηe = 1	.
Let σρ be a uniformly chosen spin, and for any other vertex v let

σv �= σρ
∏
e

ηe�(2)

where the product is over all edges e on the path from ρ to v. Given σW =
�σv� v ∈W�, the strategy which maximizes the probability of correctly recon-
structing σρ, is to decide according to the sign of E�σρ � σW�; with this strategy,
the difference between the probabilities of correct and incorrect reconstruc-
tion is

�T�W�ε� = E
∣∣∣P�σρ = 1 � σW� −P�σρ = −1 � σW�

∣∣∣�(3)

Alternatively, �T�W�ε� can be interpreted as the total variation distance
between the conditional distributions of σW given σρ = 1 and given σρ = −1;
see Section 4.2. The dependence between σρ and σW is also captured by the
mutual information (discussed in Section 4.1),

I�σρ�σW� �= ∑
x�y

Pσρ = x�σW = y	 log Pσρ = x�σW = y	
Pσρ = x	PσW = y	 �

For an infinite tree T, a remarkably good summary of its behavior in prob-
abilistic contexts is provided by its branching number br�T�, introduced in
[24]. This is the supremum of the real numbers λ ≥ 1, such that T admits
a positive flow from the root to infinity, if on every edge e of T, the flow
is bounded by λ−�e�. Here �e� denotes the number of edges, (including e) on
the path from e to the root; br�T�−1 is the critical probability for Bernoulli
percolation on T. The equivalent definitions of br�T� in terms of percolation,
cutset sums and electrical conductance, are reviewed in Section 3.

Theorem 1.1. Let T be an infinite tree with root ρ, and suppose its vertices
are assigned random spins �σv�, using the flip probability ε < 1/2 as in (2).
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Consider the problem of reconstructing σρ from the spins at the nth level Tn
of T:

(i) If 1−2ε>br�T�−1/2 then infn≥1�T�Tn�ε�>0 and infn≥1I�σρ�σTn�>0.
(ii) If 1−2ε<br�T�−1/2 then infn≥1�T�Tn�ε�=0 and infn≥1I�σρ�σTn�=0.
The tail field of the random variables �σv�v∈T contains events with proba-

bility strictly between 0 and 1 in case (i), but not in case (ii).

Thus in the notation of (1), εc = �1 − br�T�−1/2�/2. As mentioned above,
this is already known when T is a b + 1-regular tree [for which br�T� = b].
Theorem 1.1 is considerably more general, as there are many other trees
(e.g., Galton-Watson trees, subperiodic trees) for which one can calculate br�T�
explicitly (see Section 3); and br�T� is well defined for any infinite tree. Sim-
ple examples show that at criticality, when 1 − 2ε = br�T�−1/2, asymptotic
solvability of the reconstruction problem is not determined by the branching
number; see Section 9. To see the relevance of the quantity 1 − 2ε appear-
ing in Theorem 1.1, note the following equivalent construction of the random
variables �σv�: perform independent bond percolation on T with parameter
θ = 1 − 2ε (the probability of open bonds), and independently assign to each
of the resulting percolation clusters a uniform random spin (the same spin is
assigned to all vertices in each cluster). This is a special case of the Fortuin–
Kasteleyn random cluster representation of the Ising model (see, e.g., [14]); on
a tree, it is elementary to verify the equivalence of this representation with
the construction (2).
The following two theorems contain estimates of reconstruction probabil-

ity and mutual information that imply Theorem 1.1. The notion of effective
resistance, used in the next theorem, is explained in [7] and [26]. On a tree,
effective resistance is easily calculated via the parallel and series laws.

Theorem 1.2. LetT be a tree with root ρ, and letW be a finite set of vertices
in T. Given ε ∈ �0�1/2	, denote θ �= 1−2ε, and consider the electrical network
obtained by assigning to each edge e of T the resistance �1− θ2�θ−2�e�. Then

�T�W�ε�
I�σρ�σW�

}
≥ 1
1+ �eff �ρ↔W� �(4)

where �eff denotes effective resistance.

Our proof of this theorem is based on reconstruction by weighted majority
vote, that is, reconstruction according to the sign of an unbiased linear esti-
mator of the root spin. We relate the variance of such an estimator to the
energy of a corresponding unit flow from ρ to W. The unit flow of minimal
energy is the electrical current flow, and its energy is the effective resistance
between ρ andW. The proof is completed by invoking a general lemma, which
bounds  and I�σρ�σW� from below by the reciprocal of the variance of any
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unbiased linear estimator for σρ. We find it quite surprising that on any infi-
nite tree, reconstruction using such linear estimators has the same threshold
as maximum-likelihood reconstruction.
Next, we present an upper bound on  and I�σρ�σW�. Say that a set of

vertices W1 separates ρ from W if any path from ρ to W intersects W1. For a
vertex v of T, denote by �v� the number of edges on the path from v to ρ.

Theorem 1.3. Let W be a finite set of vertices in the tree T. For any set of
vertices W1 that separates the root ρ from W, we have

�T�W�ε�2 ≤ 2
(
1− ∏

v∈W1

√
1− θ2�v�

)
≤ 2 ∑

v∈W1
θ2�v�(5)

and

I�σρ�σW� ≤ ∑
v∈W1

I�σρ�σv� ≤ ∑
v∈W1

θ2�v��(6)

In view of the mincut-maxflow theorem, (6) is an upper bound on mutual
information in terms of the maximum flow in a capacitated network. Theo-
rem 1.3 is proved by comparing the given tree T to a “stringy tree” T̂ which
has an isomorphic set of paths from the root to the vertices of W1, but these
paths are pairwise edge disjoint. We show that �T�W�ε� ≤ �T̂�W1� ε� by
constructing, in Theorem 6.1, a noisy channel that maps the spins on W1 in
T̂ to the spins on W in T.

Symmetric trees. A tree T is called spherically symmetric if for every n ≥ 1,
all vertices inTn have the same degree. For such a tree, the effective resistance
from the root to level n is easily computed, and we infer from Theorems 1.1–1.3
that (

2+ 2�1− θ2�
n∑
k=1

θ−2k

�Tk�
)−1

≤ I�σρ�σTn� ≤ inf
k≤n

�Tk�θ2k(7)

and �1− 2εc�−2 = lim infn �Tn�1/n.
Since reconstruction using majority vote is crucial to our proof of Theo-

rem 1.2 (at least in the spherically symmetric case), we examined closely the
distribution of the spin sum Sn �= ∑

v∈Tn σv given σρ. Two other motivations
for this are:

1. In some instances of the reconstruction problem, the sites where the given
spins are located are unknown, and Sn is the only data available.

2. For small ε, the partial sums of the spins on the leaves of a regular tree
define a stochastic process which is “less predictable than simple random
walk”; see [1] and [16] for precise formulations and applications.

The Harris–FKG inequality (see, e.g., [14]) implies that the events σρ = 1
and Sn > 0 are positively correlated. However, the following more delicate
inequality is required to conclude that when we are (only) given Sn, maximum-
likelihood reconstruction coincides with majority vote.
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Fig. 1. Tree with +�− spins at the vertices.

Theorem 1.4. Let T be a spherically symmetric tree of depth n, and denote
Sn �= ∑

v∈Tn σv. Then for any error probability ε ∈ �0�1/2	,
∀k > 0 PSn = k � σρ = 1	 ≥ PSn = k � σρ = −1	�(8)

This inequality also holds when the error probabilities vary, as long as they
too are spherically symmetric (fixed in each level of T).

The example in Figure 3 shows that even on a regular tree, majority vote
can disagree with maximum likelihood when the spin configuration σTn is
given.
Given the boundary data in Figure 3, the root spin σρ is more likely to be

−1 than +1 provided that ε is sufficiently small, since σρ = +1 requires four
spin flips, while σρ = −1 requires only three spin flips.

Organization. In Section 2.1–2.3 we describe how the model above arose in
computer science, statistical mechanics and genetics. In Section 3 we review

Fig. 2. A Tree T and the corresponding stringy tree T̂.
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Fig. 3. Majority vote can disagree with maximum likelihood.

the notion of branching number and infer Theorem 1.1 from Theorems 1.2–1.3.
In Section 4 we collect probabilistic and information-theoretic material that
we will use in the proofs of Theorems 1.2–1.3. The conductance lower bound
for reconstruction, Theorem 1.2, is generalized to allow edge-dependent error
probabilities and proved in Section 5. A similar generalization of the upper
bound, Theorem 1.3, is established in Section 6. The correlation inequality con-
cerning majority vote, Theorem 1.4, is proved in Section 7. Several reconstruc-
tion algorithms are compared in Section 8. Extensions and unsolved problems
are discussed in Section 9.

2. Background.

2.1. Noisy computation. A (computational) circuit is a directed acyclic
graph in which each internal node is labelled by a Boolean logic gate. If
Boolean values (“bits”) are “input” at the sources of the graph, each edge of
the graph carries the bit obtained by applying the gate at its starting node, to
the values entering that gate. The output of the circuit is the sequence of bits
reaching the sink nodes. The size of the circuit is the number of edges in the
graph; its depth is the length of a maximal path from a source to a sink. We will
focus on the case that the circuit has a single output bit. Von Neumann [38]
proposed a model of computation in noisy circuits where each gate computes
correctly with probability 1 − ε, independently of all other gates. He proved
that if ε is sufficiently small, then there exists p > 1/2 such that for any
Boolean function f there is such a noisy circuit �f, using gates of bounded
indegree, with the following property. For each input string x, the output of
�f equals f�x� with probability at least p. Von Neumann showed how such
a noisy circuit can be constructed from a noiseless circuit that computes f,
using gates of the same bounded indegree, at the cost of increasing the depth
of the circuit by a bounded factor. Pippenger [32] subsequently showed that
increase in depth by a factor greater than 1 is necessary for some circuits,
and furthermore, that such a simulation is impossible beyond a certain level
of noise.
Evans and Schulman [8, 10, 11] improved these results by a modification of

Pippenger’s method. The proof technique was to bound the mutual information
between a (random) input bit to the circuit, and the set of bits at the outputs
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of a set of gatesW in the circuit. (The output bits depend on both the random
input and the random noise in the circuit). Using a “quantified data processing
lemma,” Evans and Schulman proved that

I�σρ�σW� ≤ ∑
w∈W

∑
γ∈��ρ�w�

θ2�γ��(9)

where ��ρ�w� is the set of paths connecting the input gate ρ to the output
gate w, and �γ� is the length of the path γ (see Lemma 3.2.1 in [8]).
Note the similarity with Theorem 1.3 above. The noisy computation problem

considered in [8, 10, 11] is more general than the broadcasting problem studied
here; for the latter problem, the left-hand inequality in (6) gives a sharper
upper bound on mutual information.

2.2. The Ising model. Let G be a finite undirected graph with vertex set
V; let u ∼ v indicate that vertices u and v are adjacent. In the ferromagnetic
Ising model with no external field on G, the interaction strength J > 0 and the
temperature t > 0 determine a Gibbs distribution � = �J� t on �±1�V which
is defined by

� �σ� = Z�t�−1 exp

(∑
u∼v
Jσuσv/t

)
�(10)

where the normalizing factor Z�t� is called the partition function. If the graph
G is a tree, then this is equivalent to the Markovian propagation description
in Section 1 for an appropriate choice of the error parameter ε. Indeed, if u ∼ v
are adjacent vertices in a finite tree with σu = σv, then flipping all the spins
on one side of the edge connecting u and v will multiply the probability in (10)
by exp�−2J/t�. Thus if we define ε by

ε

1− ε = exp�−2J/t��(11)

then the distributions defined by (2) and (10) coincide. For an infinite graph
G, a weak limit point of the Gibbs distributions (10) on finite subgraphs �Gn�
exhausting G (possibly with boundary conditions imposed on σ∂Gn ), is called a
(limiting) Gibbs state on G. See [13] for more complete definitions, using the
notion of specification.
For any infinite graph with bounded degrees, the limiting Gibbs state is

unique at sufficiently high temperatures, that is, the limit from finite sub-
graphs exists and does not depend on boundary conditions. When G = T is a
tree, this means that

lim
n→∞E

[
σρ � σTn ≡ 1] = 0(12)

at high temperatures. Some graphs admit a phase transition: below a cer-
tain critical temperature, multiple Gibbs states appear and the limit in (12)
is strictly positive. The critical temperature t+c for this transition on a reg-
ular tree T was determined in 1974, [33]; this result was generalized in
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1989 [23], which showed that tanh�J/t+c � = br�T�−1; in the equivalent Marko-
vian description, the critical parameter ε+

c for an all + boundary to affect σρ
in the limit satisfies 1− 2ε+

c = br�T�−1.
In general, a Gibbs state is extremal (or “pure”) iff it has a trivial tail; see

[13], Theorem 7.7. The tree-indexed Markov chain (2) on an infinite tree T is
the limit of the Gibbs distributions (10) on finite subtrees, with no boundary
conditions imposed; hence it is called the free boundary Gibbs state on T. In
1975 Spitzer ([34], Theorem 4) claimed that on a b + 1-regular tree T�b�, the
free boundary Gibbs states are extremal at any temperature. A counterexam-
ple, due to T. Kamae, was published in 1977 (see [18]). Kamae showed that
the sum of spins on T�b�

n , normalized by its L2 norm, converges to a noncon-
stant tail-measurable function, provided that 1 − 2ε > b−1/2. In 1978, this
result was put in a broader context by Moore and Snell [27], who showed it
followed from the 1966 results, [21], on multitype branching processes. Moore
and Snell noted that it was open whether the free boundary Gibbs state on
T�b� is extremal when b−1 < 1 − 2ε ≤ b−1/2. Chayes, Chayes, Sethna and
Thouless [5] successfully analyzed a closely related spin-glass model on Tb;
by a gauge transformation, this is equivalent to the Ising model with i.i.d.
uniform �±1� boundary conditions. Although these boundary conditions are
quite different from a free boundary, they turn out to have the same critical
temperature. Bleher, Ruiz and Zagrebnov [2] adapted the recursive methods of
[5] to the extremality problem and showed that the free boundary Gibbs state
on T�b� is extremal whenever 1−2ε ≤ b−1/2. Shortly thereafter, an alternative
streamlined argument was found by Ioffe [19]. We remark that at noncritical
parameters, this extremality is implied by the inequality of [8], Lemma 3.2.1,
quoted in Section 2.1, but the connection was not realized at the time. The-
orem 1.1 was first established by the authors in [9]. After hearing a lecture
by one of us on [9], Ioffe [20] gave a completely different, and quite beautiful,
proof of the upper bound in Theorem 1.1.

2.3. Genetic reconstruction and parsimony. Tree-indexed Markov chains
as in the introduction have been studied in the mathematical biology litera-
ture, [4], [36] and others. In that literature the two “spins” are often called
“colors,” and correspond to traits of individuals, species, or DNA sequences.
The “broadcasting errors” (color changes along edges) represent mutations,
and one attempts to infer traits of ancestors from those of an observable pop-
ulation. The preferred method of reconstruction there is parsimony; given a
two-coloring of the leaves, the internal nodes are colored so as to minimize the
number of bicolored edges. (This particular meaning of “parsimony” is typi-
cal of its broader use as an inference criterion in the computational biology
literature; see [12] and [17].) Parsimony is discussed further in Section 8.

3. The branching number and proof of Theorem 1.1. Recall from the
introduction the definition of the branching number of an infinite tree. Lyons
[24] describes specific trees for which the branching number is strictly smaller
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than the exponential growth rate, and gives several equivalent characteriza-
tions of the branching number of an infinite tree T.

1. Percolation. Suppose that the edges of T are independently removed with
probability 1 − p and retained with probability p. If p < br�T�−1, then
all connected components of the resulting subgraph are finite a.s., while if
p > br�T�−1, then this subgraph has infinite components a.s.

2. Minimum cutset sums. br�T� is the supremum of the numbers λ ≥ 1 such
that inf'

∑
v∈' λ−�v� > 0, where the infimum is over all cutsets ' (a set

of vertices is called a cutset if it intersects every infinite path emanating
from ρ).

3. Electrical resistance. Assign each edge e of T conductance λ−�e�. Then br�T�
is the supremum of the numbers λ ≥ 1 such that supn≥1�eff �ρ↔ Tn� <∞.

As noted in Section 2.2, [23] characterized the critical temperature for
uniqueness of Gibbs states on T in terms of br�T�; our Theorem 1.1 gives
such a characterization for the critical temperature for extremality. Next, we
derive this theorem from Theorems 1.2 and 1.3.

Proof of Theorem 1.1. (i) From θ = 1− 2ε > br�T�−1/2 it follows that

�eff �ρ↔ ∞� �= sup
n

�eff �ρ↔ Tn� <∞

when each edge e is assigned conductance θ2�e�. By (4),

inf
n≥1
�T�Tn� ε� ≥ inf

n≥1
1

1+ �eff �ρ↔ Tn� ≥ 1
1+ �eff �ρ↔ ∞� > 0

and similarly infn≥1 I�σρ�σTn� > 0, as asserted. In particular, σρ is not inde-
pendent of the tail field of �σv�, so this tail field is not trivial.
(ii) If θ = 1 − 2ε < br�T�−1/2 then inf'

∑
v∈' θ2�v� = 0, so Theorem 1.3

implies that infn≥1 �T�Tn� ε� = 0 and infn≥1 I�σρ�σTn� = 0. Next, fix a finite
set of vertices W0. For each w ∈ W0 and n > �w�, denote by Tn�w� the set of
vertices in Tn which connect to ρ via w. Then Lemma 4.1(iii) implies that for
sufficiently large n,

I�σW0 �σTn� ≤ ∑
w∈W0

I�σW0� σTn�w�� = ∑
w∈W0

I�σw� σTn�w���(13)

since the conditional distribution of σTn�w� given σW0 is the same as its con-
ditional distribution given σw. For any finite W0, the right-hand side of (13)
tends to 0 as n→ ∞; It follows that the tail of �σv� is trivial. ✷
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4. Tools from information theory and statistics.

4.1. Mutual information.

Definition. LetX�Y be random variables defined on the same probability
space which take finitely many values. The entropy of X is defined by

H�X� �= −∑
x

PX = x	 logPX = x	

and the mutual information I�X�Y� between X and Y is defined to be

I�X�Y� �=H�X� +H�Y� −H�X�Y�

= ∑
x�y

PX = x�Y = y	 log PX = x�Y = y	
PX = x	PY = y	 �

We collect a few basic properties of mutual information in the following lemma.
See, for example, [6], Section 2.

Lemma 4.1. (i) I�X�Y� ≥ 0, with equality iff X and Y are independent.
(ii) Data processing inequality: if X �→ Y �→ Z form a Markov chain (i.e.,

X and Z are conditionally independent given Y), then I�X�Y� ≥ I�X�Z�.
(iii) Subadditivity: if Y1� � � � �Yn are conditionally independent given X,

then I�X� �Y1� � � � �Yn�� ≤ ∑n
j=1 I�X�Yj�.

The assumption of conditional independence in part (iii) cannot be omitted, as
is shown by standard examples of three dependent random variables which are
pairwise independent (e.g., Boolean variables satisfying X = Y1+Y2 mod 2).
Nevertheless, inequality (6) in Theorem 1.3 extends (iii) to a setting where
this conditional independence need not hold.

4.2. Distances between probability measures. Let ν+ and ν− be two proba-
bility measures on the same space -. (In our application - is finite, but it is
convenient to use notation that applies more generally.) Set ν �= �ν+ + ν−�/2
and denote f = dν+/dν�g = dν−/dν, so that f + g ≡ 2. Suppose that ξ is
uniform in �±1�, and X has distribution νξ. Inferring ξ from X is a basic
problem of Bayesian hypothesis testing. (In our application, ξ will be the root
spin σρ, and X will be some function of the spin configuration σW on a finite
vertex set W.)
There are several important notions of distance between ν+ and ν−, that

can be related to this inference problem.

1. Total variation distance. DV�ν+� ν−� �= 1
2

∫ �f− g�dν can be interpreted as
the difference between the probabilities of correct and erroneous inference.
Indeed, among all functions ξ̂ of the observations, the probability of error
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Pξ̂ �= ξ	 is minimized by taking ξ̂ = 1 if f�X� ≥ g�X�, and ξ̂ = −1
otherwise. We then have

 �=Pξ̂=ξ	−Pξ̂ �=ξ	= 1
2

(∫
ξ̂fdν−

∫
ξ̂gdν

)
= 1
2

∫
�f−g�dν�(14)

2. χ2 distance Dχ�ν+� ν−� �= 1
2�
∫ �f−g�2 dν�1/2 represents the L2 norm of the

conditional expectation E�ξ�X� = 1
2�f�X� − g�X��.

3. Mutual information between ξ and X,

DI�ν+� ν−� �= I�ξ�X� = 1
2

∫
�f log f+ g logg�dν(15)

is a symmetrized version of the Kullback–Leibler divergence (see [37]).

4. The Hellinger distance,

DH�ν+� ν−� �=
∫ (√

f− √
g
)2
dν = 2

(
1−

∫ √
fgdν

)
�(16)

derives its importance from the simple behavior of the Hellinger integrals

IntH�ν+� ν−� �=
∫ √

fgdν

for product measures

IntH�ν+ × µ+� ν− × µ−� = IntH�ν+� ν−�IntH�µ+� µ−��(17)

These distances appear in different sources under different names and with
different normalizations. We collect here some well-known inequalities
between them that will be useful below. For more on this topic, see, for exam-
ple, [22] or [39].

Lemma 4.2. With the notation above:

(i) D2χ ≤ DV ≤ Dχ ≤ √
DH.

(ii) D2χ ≤ DI ≤ 2D2χ.
(iii) If ν+ and ν− are measures on �, then{∫

xd�ν+ − ν−�
}2

=
{∫
xf�x� − g�x�	dν

}2
≤ 4

∫
x2 dνD2χ�

Proof. (i) The left-hand inequality follows from �f�x�−g�x�� ≤ 2, and the
middle inequality from Cauchy–Schwarz. The right-hand inequality follows
from the identity f − g = �√f − √

g��√f + √
g� and the concavity relation

(
√
f+ √

g�/2 ≤ √�f+ g�/2 = 1.
(ii) Setting ψ = �f−g�/2, the assertion follows from the pointwise inequal-

ities
ψ2

2
≤ 1+ ψ

2
log�1+ ψ� + 1− ψ

2
log�1− ψ� ≤ ψ2�(18)
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Here the left-hand inequality is verified for ψ ∈ 0�1� by comparing second
derivatives, and the right-hand inequality follows from log�1+ y� ≤ y.
(iii) This is just the Cauchy–Schwarz inequality. ✷

Finally, we interpret the data processing inequality in terms of distances.
Suppose that we are given transition probabilities on the state space, that is
a stochastic matrix M (the entries of M are nonnegative and the row sums
are all 1). WriteM∗µ�y� �= ∑

xM�x�y�µ�x�. Then Lemma 4.1(ii) implies that
DI�M∗ν+�M

∗ν−� ≤ DI�ν+� ν−��
An analogous inequality holds for total variation,

DV�M∗ν+�M
∗ν−� = 1

2

∑
y

∣∣M∗ν+�y� −M∗ν−�y�∣∣
≤ 1
2

∑
y

∑
x

M�x�y�∣∣ν+�x� − ν−�x�∣∣(19)

= 1
2

∑
x

∣∣ν+�x� − ν−�x�∣∣ = DV�ν+� ν−��

5. Conductance lower bounds: Proof of Theorem 1.2. We consider a
more general model, where the switching probabilities εe vary from edge to
edge. Let σρ be a uniform spin, and take independent random variables �ηe�
with Pηe = −1	 = εe = 1−Pηe = 1	. For any vertex v �= ρ, define

σv �= σρ
∏

e∈path �ρ� v�
ηe�(20)

where path�v� is the path from ρ to v. [More generally let path�u� v� be the
path from u to v.] In the language of the Ising model, this corresponds to
using varying interaction strengths �Je� as in [23], so that (10) is replaced by
� �σ� = Z�t�−1 exp�∑u∼v Juvσuσv/t�, and the conversion equation (11) holds
separately on each edge.
For each edge e, define θe �= Eηe	 = 1 − 2εe. As before, there is also an

equivalent construction of the random field �σv� based on percolation: perform
independent bond percolation on T where the edge e is open with probability
θe, and assign independent uniform spins to the open percolation clusters.
Next, assign to each edge e the resistance

R�e� �= �1− θ2e�
∏

f∈path �ρ� e�
θ−2
f �(21)

where path�ρ� e� is the path from ρ to e (inclusive). Also, for each vertex v in
T, let

6v �= ∏
e∈path �v�

θe�

Say that a set of verticesW is an antichain if no vertex inW is a descendant
of another.
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Lemma 5.1. Let W be a finite antichain in T. For any unit flow µ from ρ
to W, the weighted sum

Sµ �= ∑
v∈W

µ�v�σv
6v

(22)

satisfies ESµ�σρ	 = σρ and
E
[
S2µ
] = E

[
S2µ�σρ

] = 1+∑
e

R�e�µ�e�2�(23)

Consequently,

min
µ
E
[
S2µ
] = 1+ �eff �ρ↔W��(24)

and the minimum is attained precisely when µ is the unit current flow from
ρ to W.

Proof. From the product representation (20), we infer that

Eσv�σρ	 = σρ6v
for any vertex v. The formula for ESµ�σρ	 follows by linearity. Similarly, for
any two vertices v, w in T,

Eσvσw	 = ∏
e∈path �v�w�

θe = 6v6w

62v∧w
�(25)

where v∧w, the meeting point of v and w, is the vertex farthest from the root
ρ on path�v� ∩path�w�. The percolation representation can also be invoked to
justify (25).
It is now easy to determine the second moment of Sµ:

E
[
S2µ
] = ∑

v�w∈W

µ�v�µ�w�
6v6w

Eσvσw	 = ∑
v�w∈W

µ�v�µ�w�
62v∧w

�(26)

Next, insert the identity,

1
62u

= 1+ ∑
e∈path�u�

R�e�

with u = v ∧ w, into (26). Changing the order of summation, and using the
fact that W is an antichain, we obtain

E
[
S2µ
] = 1+∑

e

R�e� ∑
v�w∈W

1�e∈path�v∧w��µ�v�µ�w��(27)

Since path�v ∧w� = path�v� ∩ path�w� and∑
v�w∈W

1�e∈path�v∧w��µ�v�µ�w� =
(∑
v∈W

1�e∈path�v��µ�v�
)( ∑

w∈W
1�e∈path�w��µ�w�

)
= µ�e�2�
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(27) is equivalent to (23). Finally, (24) follows from Thompson’s principle; see
[7] or [26].
For convenience, we restate Theorem 1.2 in its extended form.

Theorem 1�2′. With the notation above,

�T�W� �εe��
I�σρ�σW�

}
≥ 1
1+ �eff �ρ↔W� �(28)

Proof. We may assume thatW is an antichain. (Otherwise, remove from
W all vertices which have an ancestor in W.) Let µ be the unit current flow
from ρ to W for the resistances R�e� as in the preceding lemma, and let
Sµ be the weighted sum (22). In order to apply Lemma 4.2, denote by ν+
the conditional distribution of Sµ given that σρ = 1; define ν− analogously
by conditioning that σρ = −1, so that ν = �ν+ + ν−�/2 is the unconditioned
distribution of Sµ. We then have by Lemma 4.2(iii) that

D2χ�ν+� ν−� ≥ �∫ xd�ν+ − ν−��2
4
∫
x2 dν

= �E[Sµ�σρ = 1]−E
[
Sµ�σρ = −1]�2

4E
[
S2µ
] �

Applying Lemma 5.1, we deduce that

D2χ�ν+� ν−� ≥ 1
1+ �eff �ρ↔W� �(29)

By Lemma 4.2, the difference  = �T�W� �εe�� between the probabilities of
correct and incorrect reconstruction, satisfies  = DV�ν+� ν−� ≥ D2χ�ν+� ν−�,
and the mutual information between σρ and σW also satisfies I�σρ�σW� =
DI�ν+� ν−� ≥ D2χ�ν+� ν−�. In conjunction with (29), this completes the proof.

✷

6. Mincut upper bound: Proof of Theorem 1.3. A (communication)
channel is a stochastic matrix describing the conditional distribution P�Y�X�
of the output variable Y given the inputX; see [6]. Often a channel is realized
by a relation of the formY = f�X�Z�, where f is a function andZ is a random
variable (representing the “noise”) which is independent of X. A noisy tree is
a tree with flip probabilities labeling the edges. The stringy tree T̂ associated
with a finite noisy tree T is the tree which has the same set of root-leaf paths
as T but in which these paths act as independent channels. More precisely, for
every root-leaf path in T, there corresponds an identical (in terms of length
and flip probabilities on the edges) root-leaf path in T̂, and furthermore, all
the root-leaf paths in T̂ are edge disjoint (see Figure 2 in the Introduction).

Theorem 6.1. Given a finite noisy tree T with leavesW, let T̂, with leaves

Ŵ and root ρ̂, be the stringy tree associated with T. There is a channel which,
for ξ ∈ �±1�, transforms the conditional distribution σŴ��σρ̂ = ξ� into the
conditional distribution σW��σρ = ξ�. Equivalently, we say that T̂ dominatesT.



424 EVANS, KENYON, PERES AND SCHULMAN

Fig. 4. ϒ is dominated by ϒ̂.

Proof. We start by establishing a key special case of the theorem: namely,
that the tree ϒ shown in Figure 4, is dominated by the corresponding stringy
tree ϒ̂. The root of ϒ has just one child u, and the edge leading to it has flip
probability �1 − θ�/2. The vertex u has two children: on the edge leading to
the left child the flip probability is �1− θ1�/2 ≤ 1/2, and on the edge leading
to the right child the flip probability is �1− θ2�/2 ≤ 1/2.
The degenerate case θ1 = θ2 = 0 is handled by the identity channel, and

excluded in the sequel. Assume w.l.o.g. that θ2 ≤ θ1 and let z be a ± 1 valued
random variable (independent of the spins on ϒ̂) with mean θ2/θ1. Given 0 ≤
α ≤ 1, to be specified below, we define the channel as follows:

σ∗
1 = σ1̂�

σ∗
2 =

{
σ2̂� with probability α,
σ1̂z� with probability 1− α.

To prove that �σρ̂� σ∗
1 � σ

∗
2� has the same distribution as �σρ� σ1� σ2�, it suffices

to show that the means of corresponding products are equal. (The sufficiency is
easy to establish directly and is a special case of the fact that the characters on

Fig. 5. Basic step in proof of Theorem 6.1.
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a finite Abelian group G form a basis for the vector space of complex functions
on G.) By symmetry,

E�σρ� = E�σ1� = E�σ2� = E�σρσ1σ2� = E�σρ̂�
= E�σ∗

1� = E�σ∗
2� = E�σρ̂σ∗

1σ
∗
2� = 0

and thus we only need to check pair correlations. First note that E�σρσ1� =
θθ1�E�σρσ2� = θθ2 and E�σ1σ2� = θ1θ2. Now clearly, E�σρ̂σ∗

1� = E�σρσ1�.
Our choice of z guarantees that E�σρ̂σ1̂z� = E�σρ̂σ1̂�θ2/θ1 = θθ2, whence
E�σρ̂σ∗

2� = θθ2 = E�σρσ2� for any choice of α. Finally, since E�σ∗
1σ2̂� = θ1θ2θ2 ≤

θ1θ2 = E�σ1σ2� and
E�σ∗

1σ1̂z� = E�z� = θ2/θ1 ≥ θ1θ2�
we can choose α ∈ 0�1	 so that E�σ∗

1σ
∗
2� = θ1θ2 = E�σ1σ2�; explicitly,

α = �1− θ21�/�1− θ2θ21��(30)

This proves that ϒ̂ dominates ϒ.
Now we consider the general case. Fix a finite noisy tree T with leaves W.

We construct a sequence of channels whose composition is the desired channel.
The intermediate stages in this composition, when applied to the law of σŴ,
yield the distributions of the spins on the leaves of the intermediate trees
(which are more “stringy” than T and less so than T̂). We describe the last
channel in the sequence; this channel transforms the conditional distribution
of the spins on the leaves of a slightly more stringy tree T′ (where T̂′ = T̂) to
the conditional distribution of the spins on the leaves of T. The theorem then
follows by induction.
Let u be a vertex with more than one child which is closest to the root in

T. Let A1 be the leaves of one child’s subtree and A2 the leaves of the other
children’s subtrees. Let T′ be the tree which is identical to T except that T′

replaces the path from the root to u with two independent paths from the root
to two copies of u: one the parent of the child whose subtree has leaves A1 and
the other the parent of the children whose subtrees have (collectively) leaves
A2. Let A

′
1 and A

′
2 represent these sets of leaves in T

′.
We describe a channel M which takes the distribution (given σρ′ = ξ) of

�σA′
1
� σA′

2
� and transforms it into the distribution (given σρ = ξ) of �σA1� σA2�

(the other leaf values are unchanged).
Let ε = �1 − θ�/2 denote the probability that σu �= ξ. Let ps (respectively

qs) denote the distribution of σA1 (respectively of σA2 ) given that σu = s. Since
σA1 and σA2 are independent given σu, we have

P�σA1 = a1� σA2 = a2 � σρ = −1� = �1− ε�p−�a1�q−�a2� + εp+ �a1�q+ �a2��

P�σA′
1

= a1� σA′
2

= a2 � σρ′ = −1� =
(
�1− ε�p−�a1� + εp+�a1�

)
×
(
�1− ε�q−�a2� + εq+�a2�

)
�
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Since these probabilities are typically not equal, the channel must change
the spins �a1� a2� obtained at the leaves of T′ into different spins with some
probability.
An important observation, easily verified, is that, for a given spin ξ and a

given spin configuration (a1� a2) at the leaves, the probability given σρ = ξ of
the event “σA1 ∈ �a1�−a1� and σA2 ∈ �a2�−a2�” is equal to the probability
given σρ′ = ξ of the event “σA′

1
∈ �a1�−a1� and σA′

2
∈ �a2�−a2�.” The channel

M will be composed of (typically many) channelsM�±a1�±a2�, one for each set of
four configurations ��±a1�±a2�� = ��a1� a2�� �a1�−a2�� �−a1� a2�� �−a1�−a2��.
The channelM�±a1�±a2� transforms the distribution given σρ′ = ξ of �σA′

1
� σA′

2
�

on ��±a1�±a2��, into the distribution given σρ = ξ of �σA1� σA2� on
��±a1�±a2��. It mimics the channel showing that ϒ̂ dominates the tree ϒ
(Figure 4).
For a pair a1� a2 define θ1 �= 1 − 2�p+�a1�/p+�a1� + p+�−a1�� and θ2 �=

1 − 2�q+�a2�/q+�a2� + q+�−a2��. We may assume that �1 − θ1�/2 ≤ 1/2� �1 −
θ2�/2 ≤ 1/2 and θ2 ≤ θ1 (renaming variables if necessary). With these values
of θ1 and θ2, let σ1̂� σ2̂� σ1, and σ2 be the spins at the leaves of the trees ϒ̂
and ϒ as shown in Figure 4. Now, given that σA′

1
� σA1 ∈ �±a1� and σA′

2
� σA2 ∈

�±a2�, the key is that �σρ′� σA′
1
� σA′

2
� and �σρ� σA1� σA2� have the same distribu-

tion as �σρ̂� σ1̂a1� σ2̂a2� and �σρ� σ1a1� σ2a2�. The channel constructed above,
which demonstrated domination of ϒ by ϒ̂, therefore serves as the channel
M�±a1�±a2� which converts the distribution on �σA′

1
� σA′

2
� into the distribution

on �σA1� σA2�, conditional on σA′
1
� σA1 ∈ �±a1� and σA′

2
� σA2 ∈ �±a2�. Com-

bining all such channels M�±a1�±a2� results in a channel which converts the
distribution on �σρ′� σA′

1
� σA′

2
� into the distribution on �σρ� σA1� σA2�.

(Note that the argument did not rely on u being closest to the root; the
same argument would work for any u, with the spin of u’s parent in the role
of σρ.) ✷

We will establish Theorem 1.3 in the more general setting described in the
previous section, and use the notation introduced there. In particular, recall
that 6v �= ∏

e∈path�v� θe. Thus, we will prove the following extension.

Theorem 1.3′. Let W be a finite set of vertices in the tree T. For any set of
verticesW1 in a tree T that separates the root ρ from a finite set of verticesW,
we have

�T�W�ε�2 ≤ 2
(
1− ∏

v∈W1

√
1−62v

)
≤ 2 ∑

v∈W1
62v(31)

and

I�σρ�σW� ≤ ∑
v∈W1

I�σρ�σv� ≤ ∑
v∈W1

62v�(32)

Proof. We first prove (32). Since W1 separates ρ from W, the data pro-
cessing inequality [Lemma 4.1(ii)] yields I�σρ�σW� ≤ I�σρ�σW1�. Let T1 be the
tree obtained from T by retaining only W1 and ancestors of nodes in W1. Let
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T̂1 be the stringy tree associated with T1. From Theorem 6.1 applied to T1
and the data processing inequality, we obtain I�σρ�σW1� ≤ I�σρ̂�σŴ1�. Since
the spins on leaves of T̂1 are conditionally independent given σρ̂, subadditivity
[Lemma 4.1(iii)] gives

I�σρ̂�σŴ1� ≤ ∑
v̂∈Ŵ1

I�σρ̂�σv̂��

However because of the definition of the stringy tree, the mutual information
between σρ̂ and σv̂ is identical to the mutual information between σρ and σv
in T1, hence the left inequality in (32).
Since E�σρσv� = 6v for each v, the right-hand inequality in (32) follows

from the right-hand inequality in (18).
We now turn to the total variation inequality (31). Recall that �T�W�ε�,

the difference between the probabilities of correct and incorrect reconstruction,
equals DV�νW+ � νW− �, the total variation distance between the two distributions
of the spins on W given σρ = ±1.
By (19), Theorem 6.1, and Lemma 4.2,

DV�νW+ � νW− � ≤ DV�νW1+ � ν
W1− � ≤ DV�νŴ1+ � ν

Ŵ1− � ≤
√
DH�νŴ1+ � νŴ1− ��

Now, DH�νŴ1+ � νŴ1− � on the stringy tree T̂1 is easily calculated using the
multiplicative property of Hellinger integrals: νŴ1+ is just the product over
w ∈ Ŵ1 of νw+ , the distribution of σw given σρ = 1, and similarly νŴ1− = 'wνw− .
Since IntH�νw+� νw−� = √

1−62w, the left-hand inequality in (31) follows; the
right-hand inequality there is a consequence of the standard inequality '�1−
xj� ≥ 1−∑

xj. ✷

7. The correlation inequality: Proof of Theorem 1.4. Define P+�·� �=
P�· � σρ = 1�. The statement we need to prove is

∀y > 0 P+�Sn = y� ≥ P+�Sn = −y��(33)

We show this by induction on n. The base case n = 0 is clear.
Rewriting the probabilities in (33) by conditioning on Sn−1, it suffices to

prove that for all x ≥ 0,
P�Sn = y � Sn−1 = x�P+�Sn−1 = x�

+P�Sn = y � Sn−1 = −x�P+�Sn−1 = −x�
≥ P�Sn = −y � Sn−1 = x�P+�Sn−1 = x�

+P�Sn = −y � Sn−1 = −x�P+�Sn−1 = −x��
[We used the spherical symmetry of T to replace P+�· � Sn−1 = x� by P�· �
Sn−1 = x�.] By symmetry, P�Sn = y � Sn−1 = z� = P�Sn = −y � Sn−1 = −z�
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for any y� z. Thus it suffices to prove that

P�Sn = y � Sn−1 = x� −P�Sn = −y � Sn−1 = −x�	
× P+�Sn−1 = x� −P+�Sn−1 = −x�	 ≥ 0�

For x ≥ 0, the first term in this product is nonnegative by Lemma 7.1 below,
and the second term is nonnegative by induction, hence the proof. ✷

Lemma 7.1. Define a coin to be a±1 valued random variable. Let m�n ≥ 0
and let S denote the sum of 2n+m random independent coins, of which n+m
have mean θ ≥ 0 and n have mean −θ. Then for any y ≥ 0, we have

P�S = y� ≥ P�S = −y��

Proof. Start by considering a random variable S∗
l� k = l + S∗

0� k where
l ≥ 0 and S∗

0� k is a sum of k independent fair coins. In this case the inequality
P�S∗

l� k = y� ≥ P�S∗
l� k = −y� for y ≥ 0 is immediate from unimodality of the

binomial coefficients. We will prove the lemma by showing the law of S is a
mixture (i.e., a convex combination) of laws of such variables S∗

l� k.
Write S =X+Y, where X =X1+ · · · +Xm is the sum of m coins of mean

θ, and Y = Y1+ · · · +Yn, with each Yj being the sum of a coin of mean θ and
a coin of mean −θ (all these coins are independent).
Each random variable Xi or Yi can be represented as follows:

Xi =
{
a fair coin, with prob. 1− θ,
+1� with prob. θ,

Yi =
{
sum of 2 fair coins, with prob. 1− θ2,
0� with prob. θ2.

The second identity in law follows from(
1− θ2
4

�
1+ θ2
2

�
1− θ2
4

)
= �1− θ2�

(
1
4
�
1
2
�
1
4

)
+ θ2

(
0�1�0

)
�

Consequently, the law of S (denoted � �S�� is a convex combination of laws of
variables S∗

l� k; explicitly,

� �S� =
m∑
a=0

n∑
b=0

(
m

a

)(
n

b

)
�1− θ�aθm−a�1− θ2�bθ2�n−b�� �S∗

m−a� a+2b��

This completes the proof. ✷

8. A comparison of reconstruction algorithms. Theorem 1.1 and our
proof of Theorem 1.2 imply that on infinite spherically symmetric trees, recon-
struction by global majority vote has the same threshold for success as maxi-
mum likelihood reconstruction. (On general trees, the same applies to
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weighted majority.) In this section we compare these methods to other meth-
ods currently in use: parsimony and certain recursive algorithms. Although
maximum-likelihood reconstruction has the smallest probability of error
among all reconstruction algorithms, alternative methods have certain advan-
tages, such as robustness (precise knowledge of the flip probability ε is not
required), lower complexity, and ease of analysis.
We start by reviewing parsimony. Given a bicoloring of the boundary of a

tree T, a Parsimonious coloring of the internal nodes is any assignment of
the two colors to these nodes that minimizes the total number of bicolored
edges. There may be several parsimonious colorings; the following recursive
procedure (equivalent to “Fitch’s algorithm,” cf. [12], [17]) determines whether
they all assign the same color to the root. Suppose that the boundary nodes
are colored �+1�−1�. Starting from the parents of the boundary nodes, assign
recursively to each internal node the color of the majority of its ±1-colored
children. In case of a tie, assign the noncolor “?.”
This procedure assigns the root a value in �+1�−1� if, and only if, all par-

simonious colorings assign the root that value.
On a fixed finite tree, parsimony coincides with maximum likelihood recon-

struction if the error probability ε is small enough. (Hence in this setting, it
is superior to majority vote.) However, for larger ε, parsimony can perform
significantly worse than maximum likelihood and majority vote.
To illustrate this, suppose that a binary tree of depth n is bicolored using

a mutation (≡ flip) probability ε. Denote by B�n� ε� the difference between
the probability that parsimony will reconstruct the correct root color and the
probability that the opposite color will be reconstructed, given the colors at
level n. Steel [35] showed that infn B�n� ε� > 0 if ε < 1/8, but B�n� ε� → 0 as
n → ∞ if ε ≥ 1/8. Thus, for flip rates ε such that 1− 2ε ∈ �2−1/2�3/4	 on the
binary tree, majority vote will detect the dependence between the boundary
and root colors, while parsimony will miss it.
On a tree where each vertex has k children with k odd, parsimony reduces

to recursive majority; [28] has shown that reconstruction via this method suc-
ceeds asymptotically if and only if

ε < βk �= 1
2

− 2
k

4k

(
k− 1
k−1
2

)−1
�

In fact, this result can be deduced from earlier arguments concerning noisy
computation, [16], (for k = 3) and [8], [Theorem 5.0.3] (for larger odd k). It is
shown in [16], [8] that βk is the noise threshold for reliable computation of
all Boolean functions by noisy formulas with k-input gates. This is a different
setting (in the formula case noise affects computation of the recursive major-
ity of the inputs, as contrasted with noiseless computation of the recursive
majority of bits generated by a noisy broadcast process), but the recursions
that occur in the proofs are precisely the same.
Mossel [28] also analyzed reconstruction algorithms on regular trees (and

more generally, on l-periodic trees) that in order to determine the color
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assigned to a node v, are allowed to examine the colors of its descendants
l generations down. (However, only a single bit can be stored at each node).
He showed that among these algorithms, recursively applying majority vote
of the descendants l generations down is optimal, yet it succeeds asymptot-
ically only for flip probabilities ε below a threshold which is strictly lower
than εc.
We stress that the comparisons above apply only to randomly bicolored

trees, where the colors propagate via binary symmetric channels. Mossel [29]
recently showed that the behavior of the algorithms discussed above may be
quite different when the number of colors exceeds two, as well as for asym-
metric binary channels.

9. Concluding remarks and unsolved problems. Thresholds for recur-
sive reconstruction algorithms. The results of Steel, Hajek and Weller, Evans
and Mossel quoted in Section 8, lead us to conjecture that on a randomly bicol-
ored regular b-tree, any recursive reconstruction algorithm A that
stores only a bounded number of bits at each node, must fail asymptotically
above a certain noise threshold εc�A� which is strictly lower than
εc = �1− b−1/2�/2.
Note that on a regular tree of depth n, global majority can be computed

recursively provided O�n� bits can be stored at each node. Bayesian recon-
struction can also be implemented recursively, but requires arithmetic over
the real numbers; it would be worth examining how roundoff error in this
recursive calculation would affect the reconstruction threshold.

Reconstruction at criticality. It is shown in [2] and [19] that on infinite reg-
ular trees, limn �T�Tn� εc� = 0. On general trees, Theorem 1.2 implies that
finite effective resistance from the root to infinity (when each edge at level
l is assigned the resistance �1−2ε�−2l) is sufficient for limn �T�Tn� ε� > 0. In
[31], a recursive method is used to show this condition is also
necessary.

Multicolored trees and the Potts model. The most natural generalization of
the two-state tree-indexed Markov chain model studied in this paper involves
multicolored trees, where the coloring propagates according to any finite state
tree-indexed Markov chain. For instance, if this Markov chain is defined by a
q× q stochastic matrix where all entries off the main diagonal equal ε, then
the q-state Potts model arises. Our proof of Theorem 1.2 extends to general
Markov chains, and shows that the tail of the tree-indexed chain is nontrivial
if br�T� > λ−2

2 , where λ2 is the second eigenvalue of the transition matrix
(e.g., for the q-state Potts model, λ2 = 1 − qε). However, calculations in [29]
indicate that this lower bound is not sharp in general. Furthermore, we do
not know a reasonable upper bound on mutual information between root and
boundary variables. In particular, it seems that the critical parameter for tail
triviality in the Potts model on a regular tree is not known. A detailed analysis
of tree-indexed Markov chains arising from Hardcore restrictions was recently
made in [3]; determining the critical parameters for tail triviality appears to
be open in that setting as well.
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An information inequality. Theorem 1.3 implies that the spins in the fer-
romagnetic Ising model on a tree satisfy

I�σv�σW� ≤ ∑
w∈W

I�σv�σw��

for any vertex v and any finite set of vertices W. Does this inequality hold in
other graphs as well?
More generally, are there natural assumptions on random variables X�

Y1� � � � �Yn that imply the inequality I�X� �Y1� � � � �Yn�� ≤ ∑n
j=1 I�X�Yj�?

Conditions for an intermediate phase. On which infinite graphs � is there
an interval of temperatures where the Ising model admits multiple Gibbs
states, yet the free-boundary limiting Gibbs state is extremal? (Perhaps
when � has a transitive automorphism group, the relevant property is
nonamenability.)

Domination. In the statement of Theorem 6.1 we defined a domination
relation between trees. A different notion of domination between trees was
analyzed in [30]. It would be quite interesting to determine the precise relation
of the two notions.
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