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STOCHASTIC WAVE EQUATIONS WITH
POLYNOMIAL NONLINEARITY1

BY PAO-LIU CHOW

Wayne State University

This paper is concerned with a class of nonlinear stochastic wave
equations in R

d with d ≤ 3, for which the nonlinear terms are polynomial of
degree m. As an example of the nonexistence of a global solution in general,
it is shown that there exists an explosive solution of some cubically nonlinear
wave equation with a noise term. Then the existence and uniqueness theorems
for local and global solutions in Sobolev spaceH1 are proven with the degree
of polynomial m≤ 3 for d = 3, and m≥ 2 for d = 1 or 2.

1. Introduction. Wave motion is one of the most commonly observed phys-
ical phenomena. The progression of water waves and the propagation characteris-
tics of light and sound are familiar everyday experiences. As mathematical models,
wave motions are usually described by partial differential equations of hyperbolic
type. In the deterministic case, they have been studied extensively for many years
due to their wide-spread applications to engineering and sciences. In recent years,
nonlinear wave or hyperbolic equations have attracted a great deal of attention,
spurred by modern problems such as sonic booms, bottleneck in traffic flows, non-
linear optics and quantum field theory (see, e.g., Whitham [13] and Reed [11]). For
many problems, such as wave propagation through the atmosphere or the ocean,
the properties of media fluctuate randomly due to the presence of turbulence. More
realistic models must take the random fluctuation into account. Such cosideration
led to the introduction of stochastic wave equations in 1960’s. Many problems in
linear stochastic wave propagation and applications can be found in [1]. However
there are relatively few papers dealing with nonlinear stochastic wave equations.

In the deterministic case, solutions to nonlinear wave equations with certain
polynomial nonlinearity tend to develop singularities in finite time, physically
manifested as shock waves or explosion (see, e.g., Reed [11] and John [3]). This
means that these solutions exist only locally. It is therefore of interest to study the
effects of random perturbation on the solution behavior of such equations. The
existence of explosive solutions, or lack of it, to some nonlinear stochastic wave
equation was first investigated by Mueller [7]. He considered the wave equation
perturbed by a power-law type of state-dependent white noise. Regarded as a
stochastic equation of Itô type, the existence of a long-time or global solution
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was proved under a nearly linear growth condition on the state dependence in the
noise term. For a stronger nonlinear noise term, though unproven, it is plausible
to anticipate an explosive solution. Motivated by Mueller [7], we raise a different
kind of question: For a wave equation with a polynomial nonlinearity, how does
a random perturbation affect the solution behavior. In general there exists only a
local solution. So it is of interest to find suitable conditions to ensure the existence
of a global solution, or no explosion in finite time.

To be specific, the paper is mainly concerned with the existence of local and
global solutions to a class of stochastic wave equations in R

d with dimension
d ≤ 3. In particular let us consider the stochastic equation of the form{

∂2
t u= ∇2u+ f (u)+ σ(u)∂tW(t, x), x ∈ R

d, t > 0,
u(0, x)= g(x), ∂tu(0, x)= h(x),

(1.1)

where ∂t denotes the partial derivative in t , ∇2 the Laplacian; W(t, ·) is a Wiener
random field, which will be defined precisely later, and the initial data g and
h are given functions. The nonlinear terms f (u) and σ(u) are assumed to be
polynomials in u. When σ ≡ 0, equation (1.1) reduces to a classical wave equation
with a polynomial nonlinearity

∂2
t u= ∇2u+ f (u),(1.2)

which is known to have an explosive solution when, for instance, f (u) is cubic
in u (see Reed and Simon [11], page 311). Under a mild random perturbation,
one can show the persistence of such an explosion in a probabilistic sense (see
Section 3). In the light of the above result for equation (1.2), we were led to the
consideration of the polynomially nonlinear equation (1.1). To avoid an explosive
solution, similar to the deterministic case (see Reed [10], page 9), it is necessary
for equation (1.1) to satisfy a certain energy inequality. The main results of the
paper are given in Theorems 4.1 and 4.2 concerning the existence and uniqueness
of local and global solutions, respectively, to a somewhat more general form of
equation (1.1). Instead of pointwise solutions as considered by Mueller [7], we
shall seek solutions in a Sobolev space.

The paper is organized as follows: In Section 2 we give some basic definitions
and a key lemma pertaining to the energy equation for a linear stochastic wave
equation, a proof of which is provided in the appendix. To exhibit the non-
existence, in general, of a global solution, we present a cubically nonlinear
stochastic wave equation in Section 3 and show that it has an explosive solution
in a probabilistic sense (see Theorem 3.1). In Section 4 we consider a class
of stochastic wave equations with a polynomial type of nonlinear terms. The
existence and uniqueness of local and global solutions are proved in Theorem 4.1
and Theorem 4.2, respectively. The proofs rely on a H1-Lipschitz truncation
technique and the aforementioned energy inequality.
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2. Preliminaries. For x ∈ R
d , g and h ∈ C∞(Rd), denote the gradient of g

by

(Dg)(x)=Dxg(x)= (∂x1g, . . . , ∂xdg)(x),

with ∂xi = ∂
∂xi

, and set

Jh= (h, ∂x1h, . . . , ∂xd h).

For any integer k ≥ 1, the Euclidean norm on R
k is denoted by | · |. In particular

we have

|Dg| =
{

d∑
i=1

|∂xig|2
}1/2

and

|Jh| = {|h|2 + |Dh|2}1/2
.

The Laplacian ∇2 is defined as usual by

∇2g =
d∑
i=1

∂2
xi
g.

Introduce H = L2(Rd) with inner product

(g,h)=
∫
g(x)h(x) dx

and norm ‖g‖ = (g, g)1/2. Let H1 = H1(R
d) be a Sobolev subspace of H with

norm

‖h‖1 =
{∫

|Jh|2 dx
}1/2

=
{∫ (|h|2 + |Dh|2)

dx

}1/2

,

which will also be written as ‖Jh‖. For g ∈ Lp(Rd) with p ≥ 2, the Lp-norm of g
will be denoted by |g|p with |g|2 = ‖g‖.

Let (�,F ,P ) be a complete probability space for which a filtration {Ft , t ∈
[0,∞)} of increasing sub σ -fields Ft is given. Let W(t, x), t ≥ 0, x ∈ R

d , be
a continuous Wiener random field defined in this space with mean zero and
covariance function r(x, y) defined by

EW(t, x)W(s, y)= (t ∧ s)r(x, y), t, s ≥ 0, x, y ∈ R
d,

where (t ∧ s)= min{t, s}, and conditions on r(x, y) will be given later. Let σ(t, x)
= σ(t, x,ω), for t ≥ 0, x ∈ R

d and ω ∈ �, be a continuous predictable random
field such that ∫ T

0
σ 2(t, x) dt <∞ for each x ∈ R

d a.s.
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Then the stochastic integral

M(t, x)=
∫ t

0
σ(s, x) dW(s, x), t > 0, x ∈ R

d,(2.1)

is well defined, in the sense of Kunita [4], as a continuous martingale with spatial
parameter x. Alternatively the above integral can be defined as in [12]. The mutual
variation of M(t, x) is given by

〈M(·, x),M(·, y)〉t =
∫ t

0
q(s, x, y) ds, t > 0, x, y ∈ R

d,(2.2)

where q will be called the covariation function given by

q(t, x, y)= r(x, y)σ (t, x)σ (t, y).(2.3)

Let Qt be the covariation operator with kernel q so that

(Qtg)(x)=
∫
q(t, x, y)g(y) dy.

Assume that the trace of Qt satisfies

TrQt =
∫
q(t, x, x) dx =

∫
r(x, x)σ 2(t, x) dx <∞.(2.4)

Then Mt =M(t, ·) can be regarded as a continuous H -valued martingale with its
covariation given by (see Metivier and Pellaumail [5], Chapter 6)

〈〈M〉〉t =
∫ t

0
Qs ds,(2.5)

or, for g,h ∈H ,

〈(M., g), (M.,h)〉t =
∫ t

0
(Qtg,h) ds.

Now consider the Cauchy problem for a linear stochastic wave equation{
∂2
t u= c2∇2u− γ 2u+ f (t, x)+ ∂tM(t, x),

u(0, x)= g(x), ∂tu(0, x)= h(x),
(2.6)

where c and γ are real parameters, f (t, x) = f (t, x,ω) is a predictable random
field; M(t, x) is defined by (2.1) and the initial functions g and h are given. In
a Hilbert space setting, let ut = u(t, ·), ft = f (t, ·) and so on, and rewrite the
equation (2.6) as a system of Itô equations:


dut = vt dt,

dvt = (c2∇2 − γ 2)ut dt + ft dt + dMt,

u0 = g, v0 = h.

(2.7)

As in the deterministic case, the energy equation and inequality will play an
important role for stochastic wave equations. Unlike the parabolic case, the general
Itô formula does not hold for equation (2.7). However the energy equation for
system (2.7) is known to be valid, as stated in the following lemma.
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LEMMA 2.1 (Energy equation). Suppose that ft is a continuous predictable
H-valued process, and Mt is a continuous H-valued martingale with covariation
operator Qt such that

E sup
t≤T

TrQt <∞.

If g ∈ H1, and h ∈ H , then the system (2.7) has a unique pair of solutions ut
and vt , which are continuous processes on [0, T ] with values in H1 and H ,
respectively. Moreover the following equation holds:

e(ut)= e(u0)+ 2
∫ t

0
(vs, fs) ds +

∫ t

0
TrQs ds

+ 2
∫ t

0
(vs, dMs), t ∈ [0, T ],

(2.8)

where

e(ut)= ‖vt‖2 + c2‖Dut‖2 + γ 2‖ut‖2.(2.9)

This lemma follows from a more general result first proved by Pardoux [8]. His
proof is based on a nonlinear regularization technique by regarding equation (2.7)
as the limiting case of a nonlinear stochastic wave equation with a monotone
dissipation. It seems of some technical interest to give a more direct proof based
on the method of smoothing. Such a proof will be provided in the Appendix.

3. Example of explosive solution. As an example of explosive solution,
consider the cubic nonlinear stochastic wave equation in R

d for d ≤ 3:{
∂2
t u= c2∇2u− γ 2u+ λu3 + σ(t, x)∂tW(t, x), t > 0,

u(x,0)= g(x), ∂tu(0, x)= h(x), x ∈ R
d,

(3.1)

where λ > 0 and the remaining parameters and functions are similar to that in
equation (2.6). Here the martingale M(t, x) is given by

M(t, x)=
∫ t

0
σ(s, x) dW(s, x)

with the covariation function

q(t, x, y)= r(x, y)σ (t, x)σ (t, y).

For simplicity, σ, r, g and h are all assumed to be sufficiently smooth nonrandom
functions (see the conditions to be given in Theorem 3.1). Rewrite equation (3.1)
as a system of Itô equations in H =H1 ×H :


dut = vt dt,

dvt = c2∇2ut dt − γ 2ut dt + λu3
t dt + dMt,

u0 = g, v0 = h.

(3.2)

As to be shown later on, the Cauchy problem (3.2) has a unique continuous (local)
solution ut ∈H1 and vt ∈H . The following lemma will be needed later on.
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LEMMA 3.1. Suppose that the system (3.2) has a regular solution for t < T

as mentioned above. Define

φ(t)= 1
2E‖ut‖2.(3.3)

Then φ is twice continuously differentiable and its first and second order
derivatives are given by

φ′(t)=E(ut, vt )

= (g,h)+E

∫ t

0

{‖vs‖2 − γ 2‖us‖2 − c2‖Dus‖2 + λ‖u2
s‖2}

ds
(3.4)

and

φ′′(t)= E
{‖vt‖2 − γ 2‖ut‖2 − c2‖Dut‖2 + λ‖u2

t ‖2}
.(3.5)

PROOF. From the equations in (3.2), we have

d‖ut‖2 = d(ut , ut )= 2(ut , vt ) dt

and

(ut , vt )= (g,h)+
∫ t

0
(us, dvs)+

∫ t

0
‖vs‖2ds,

which yield

φ′(t)=E(ut, vt )

= (g,h)+E

∫ t

0
‖vs‖2 ds +E

∫ t

0
(us, dvs).

(3.6)

The last integral can be written as

E

∫ t

0
(us, dvs)=E

∫ t

0

{
c2〈us,∇2us〉 − γ 2‖us‖2 + λ‖u2

s‖2}
ds

=E

∫ t

0

{−c2‖Dus‖2 − γ 2‖us‖2 + λ‖u2
s‖2}

ds,

(3.7)

where 〈·, ·〉 denotes the duality pairing between H1 and its dual H ∗
1 , and use was

made of an integration by parts, which can be justified as in the deterministic case
(see Mizohata [6], page 318). Upon substituting (3.7) into (3.6), formula (3.4)
follows. A simple differentiation of (3.4) yields equation (3.5). �

With the aid of this lemma, we will show that, under certain conditions, the
solution of the nonlinear problem (3.1) or (3.2) may become unbounded in finite
time in a probabilistic sense. To state the result as a theorem, let Ck0 denote the set
of Ck(Rd)-functions with compact support and let e(ut) be the linearized energy
function as defined in (2.9).
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THEOREM 3.1. For the Cauchy problem (3.1) in R
d with d ≤ 3, suppose that

the following conditions hold true:

(i) u0 = g ∈C1 ∩L4 and v0 = h ∈H such that (u0, v0) > 0.
(ii) The covariance function r(x, y) and the function σ(t, x), for t > 0,

x, y ∈ R
d , are given such that

q∞ :=
∫ ∞

0

∫
q(t, x, x) dx dt =

∫ ∞
0

∫
r(x, x)σ 2(t, x) dx dt <∞.

(iii) λ≥ 2[q∞ + e(u0)]/‖g2‖2, where e(u0)= ‖h‖2 + γ 2‖g‖2 + c2‖Dg‖2.

Then either the solution ut explodes in finite time with a positive probability or
else the mean-square solution E‖ut‖2 tends to infinity within a finite time interval.

PROOF. Introduce an increasing sequence of stopping times τn defined by

τn = inf{t > 0 :‖ut‖> n},
and let

τ∞ = lim
n→∞ τn

which may be infinite.
First consider the case P {τ∞ = ∞} = 1 or P {τ∞ ≤ T } = 0 for any T > 0.

Define the function

Fα(t)= φ−α(t) for α > 0.(3.8)

Compute its first two derivatives:

F ′
α(t)= −αφ−(α+1)(t)φ′(t)(3.9)

and

F ′′
α (t)= αφ−(α+1)(t)

{
(α+ 1)

[φ′(t)]2

φ(t)
− φ′′(t)

}
.(3.10)

By Lemma 3.1,

φ′(t)=E(ut, vt )≤ {
E‖ut‖2E‖vt‖2}1/2

or

[φ′(t)]2

φ(t)
≤ 2E‖vt‖2.(3.11)

In view of (3.5) and (3.11), equation (3.10) yields

F ′′
α (t)≤ αφ−(α+1)(t)Gα(t),(3.12)
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where

Gα(t)= (2α+ 1)E‖vt‖2 +E
{
γ 2‖ut‖2 + c2‖Dut‖2 − λ‖u2

t ‖2}
.(3.13)

By applying Lemma 2.1 to equation (3.2) with ft = λu3
t , we obtain

E‖vt‖2 = e(u0)− λ

2
‖u2

0‖2 +E

{
λ

2
‖u2

t ‖2 − c2‖Dut‖2 − γ 2‖ut‖2
}

+
∫ t

0
TrQs ds.

(3.14)

After substituting (3.14) into (3.13) and simplifying the resulting equation, it gives

Gα(t)= −(2α+ 1)
{
λ

2
‖u2

0‖2 − e(u0)−
∫ t

0
TrQs ds

}

− 2αE
(
c2‖Dut‖2 + γ 2‖ut‖2) − λ

(
1

2
− α

)
E‖u2

t ‖2.

Therefore, if we choose α ∈ (0, 1
2 ], then, by conditions (ii) and (iii) of the theorem,

the above equation and (3.12) imply that

F ′′
α (t)≤ 0 for t ≥ 0.(3.15)

Also, setting t = 0 in equations (3.8) and (3.9), and invoking condition (i), we see
that

Fα(0)= φ−α(0)= (1
2‖u0‖2)−α

> 0(3.16)

and

F ′
α(0)= −αφ−(α+1)(0)φ′(0)= −α(1

2‖u0‖2)−(α+1)
(u0, v0) < 0.(3.17)

The inequalities (3.15)–(3.17) show clearly that the function Fα(t) is monoton-
ically decreasing to zero at time T0 ≤ Tα , with Tα = −Fα(0)/F ′

α(0). Hence, by
definition (3.8), we conclude that

lim
t→T0

φ(t)= 1
2 lim
t→T0

E‖ut‖2 = ∞.

Now consider the case: P {τ∞ = ∞} < 1, this means, of course, that P {τ∞ <

∞} > 0 or the solution ut , as a process in H , becomes unbounded in finite time
with a positive probability as asserted. �

This example shows clearly that, for stochastic wave equations with a polyno-
mial nonlinearity, a global solution does not exist in general. It will be seen that,
as in the deterministic case, the energy inequality is the key to the existence of a
global solution.
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4. Local and global solutions. We consider the following initial-value
problem {

∂2
t u= c2∇2u− γ 2u+ f (x,u)+ σ(t, x, Ju)∂tW(t, x),

u(0, x)= g(x), ∂tu(0, x)= h(x),
(4.1)

where f (x, ·) and σ(t, x, ·) are some nonlinear functions of u and Ju= (u, ∂x1u,

. . . , ∂xd u), respectively.
As before, we rewrite equation (4.1) as a system in H =H1 ×H :


dut = vt dt,

dvt = (c2∇2 − γ 2)ut dt + f (ut ) dt + σt (Jut) dWt,

u0 = g, v0 = h,

(4.2)

in which we set f (·, u)= f (ut ) and σ(t, ·, Ju)= σt (Jut). To recast system (4.2)
as an Itô equation in H , let Zt = (ut , vt ), F(Zt ) = (0, f (ut)) and 2t(Zt ) =
(0, σt (Jut)), as column matrices, and set

A=
[

0 I

c2∇2 − γ 2I 0

]
(4.3)

which is a 2 × 2 matrix with I as an identity operator. Then system (4.2) can be
written as {

dZt =AZt dt +F(Zt ) dt +2t(Zt ) dWt,

Z0 = (g,h).
(4.4)

We know that A, with domain D(A) dense in H , generates a C0-semigroup of
operators etA on H (see Pazy [9], page 220). Zt is said to be a mild solution
of (4.2) or (4.3) in the sense of Da Prato and Zabczyk [2], if it is a continuous
H -valued process that satisfies the integral equation

Zt = etAZ0 +
∫ t

0
e(t−s)AF (Zs) ds +

∫ t

0
e(t−s)A2s(Zs) dWs a.s.(4.5)

Suppose that f (·): H1 → H and σt(·): Hd+1 → L(H), where Hd+1 =
H× (d+1)· · · ×H , and L(H) denotes the set of all bounded linear operators on H .
For Ju ∈Hd+1 and h ∈H , we define

[σt (Ju)h](x)= σ
(
t, x, Ju(x)

)
h(x), x ∈ R

d .

If f and σt are uniformly Lipschitz continuous and of linear growth, then
the following lemma follows from the standard existence theorem (Da Prato and
Zabczyk [2], Theorem 7.4) for a stochastic evolution equation. In what follows,
C and K with or without subscripts, denote some generic constants of which the
meaning may vary from line to line.



370 P.-L. CHOW

LEMMA 4.1. Suppose that the following conditions hold:

(i) Let f (·): H1 →H be such that

‖f (u)‖2 ≤ C1
(
1 + ‖u‖2

1
)

(4.6)

and

‖f (u)− f (u′)‖ ≤C2‖u− u′‖1 ∀u,u′ ∈H1,(4.7)

for some constants C1,C2 > 0.
(ii) For any Ju ∈Hd+1, the map σ.(Ju): [0, T ] → L(H) is continuous. There

exist positive constants C3 and C4 such that

Tr[σt(Ju)Rσ ∗
t (Ju)] ≤ C3

(
1 + ‖u‖2

1
)

(4.8)

and

Tr
{[σt(Ju)− σt(Ju

′)]R[σt (Ju)− σt (Ju
′)]∗} ≤ C4‖u− u′‖2

1,(4.9)

for any u,u′ ∈H1, t ∈ [0, T ], where ∗ denotes the adjoint.
(iii) Wt is a H -valued Wiener process with covariance operator R satisfying

TrR <∞.

Then for u0 ∈ H1 and v0 ∈ H , the system (4.2) has a unique (mild) solution
(ut , vt ) on [0, T ] with u· ∈ C([0, T ],H1) and v· ∈ C([0, T ],H). Moreover the
following energy equation holds:

e(ut)= e(u0)+ 2
∫ t

0

(
vs, fs(us)

)
ds + 2

∫ t

0

(
vs, σs(Jus) dWs

)
+

∫ t

0
Tr[σs(Jus)Rσ ∗

s (Jus)]ds.
(4.10)

PROOF. For Z = (u, v) ∈ H = H1 × H , without confusion, the norm of Z
will be denoted by

‖Z‖ = {‖u‖2
1 + ‖v‖2}1/2

.

In view of conditions (4.6)–(4.9), it is easy to verify that

‖F(Z)‖2 = ‖f (u)‖2 ≤ C1(1 + ‖u‖2)≤ C1(1 + ‖Z‖2),(4.11)

‖F(Z)− F(Z′)‖2 = ‖f (u)− f (u′)‖2 ≤ C2‖u− u′‖2
1 ≤ C2‖Z −Z′‖2,(4.12)

Tr[2t(Z)R2∗
t (Z)] = Tr[σt (Ju)Rσ ∗

t (Ju)]
≤ C3

(
1 + ‖u‖2

1

) ≤ C3(1 + ‖Z‖2)
(4.13)

and

Tr
{[2t(Z)−2t(Z

′)]R[2t(Z)−2t(Z
′)]∗}

= Tr
{[σt (Ju)− σt(Ju

′)]R[σt (Ju)− σt(Ju
′)]∗}

(4.14)

≤K2‖u− u′‖2
1 ≤ C4‖Z −Z′‖2.
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Therefore the conditions for the existence theorem (Da Prato and Zabcyzk [2],
Theorem 7.4), are satisfied for equation (4.5). So it has a unique solution Zt =
(ut , vt ) as claimed. Now the energy equation (4.10) can be obtained easily by
making use of Lemma 2.1. �

The next lemma quotes some well-known Sobolev inequalities (see Reed [10],
page 21), which will be needed later on. Recall that | · |p denotes the Lp-norm and
C∞

0 , the set of C∞-functions on R
d with compact support.

LEMMA 4.2. For u, v ∈ C∞
0 and 1 ≤ k ≤m, we have

|u|2k ≤ C1‖u‖1,

‖uk−1v‖2 ≤ C2‖u‖2(k−1)
1 ‖v‖2

1,

for some constants C1,C2 > 0, where m= 3 for d = 3, and m≥ 1 for d = 1 or 2.

In what follows, we shall state and prove the local existence theorem for
equation (4.1) with polynomial nonlinearities.

THEOREM 4.1. Consider the Cauchy problem for the stochastic wave
equation (4.1) in R

d with d ≤ 3. Assume that:

(i) f (x,u), x ∈ R
d , u ∈ R, is a polynomial of the form

f (x,u)=
m∑
j=1

aj (x)u
j ,(4.15)

where m ≤ 3 for d = 3 and m ≥ 1 for d = 1 or 2, and aj (x) is bounded and
continuous for j = 1, . . . ,m.

(ii) The function σ(t, x, s, y), for t ≥ 0, s ∈ R, x and y ∈ R
d , is continuous.

There exist positive constants C1 and C2 such that with p ≤m,

|σ(t, x, s, y)|2 ≤ C1(1 + |s|2p + |y|2) ∀t ∈ [0, T ], x, y ∈ R
d(4.16)

and

|σ(t, x, s, y)− σ(t, x, s′, y′)|2
≤ C2

{
(1 + |s|2(p−1) + |s′|2(p−1))|s − s′|2 + |y − y′|2}

(4.17)

∀t ∈ [0, T ], x ∈ R
d; s, s′ ∈ R; y, y′ ∈ R

d .

(iii) W(t, x), t ≥ 0, x ∈ R
d , is a continuous Wiener random field with

covariance function r(x, y) such that

TrR =
∫
r(x, x) dx <∞ and r0 = sup

x∈Rd

r(x, x) <∞.

Then, for u0 ∈ H1 and v0 ∈ H , the Cauchy problem has a unique continuous
local solution u(t, ·) ∈H1 with ∂tu(t, ·) ∈H .
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PROOF. The main idea of the proof is to show that conditions (4.6)–(4.9) for
Lemma 4.1 are satistified locally, where the constants Ci are replaced by some
H1-bounded functions of u and u′. Then the existence and uniqueness of a local
solution will be proved by the method of truncation. For clarity the proof will be
given in the several steps.

Step 1. f : H1 →H is bounded. First rewrite equation (4.1) as the system (4.2),
where

f (u)= f (·, u)=
m∑
j=1

aju
j .

Then, by Lemma 4.2, we get

‖f (u)‖ ≤ a0

m∑
j=1

‖uj‖ ≤ a0c1

m∑
j=1

‖u‖j1,

where a0 = supx∈Rd ,1≤j≤m |aj (x)|.
Hence f : H1 →H is bounded and, for u ∈H1,

‖f (u)‖2 ≤ b1(‖u‖1)‖u‖2
1 ≤ b1(‖u‖1)

(
1 + ‖u‖2

1
)
,(4.18)

where b1(‖u‖1)= (a0c1)
2(

∑m
j=1 ‖u‖j−1

1 )2.
Step 2. f : H1 →H is locally Lipschitz-continuous. Similar to Step 1, we can

show that, for u,u′ ∈H1,

‖f (u)− f (u′)‖2 ≤ b2(‖u‖1,‖u′‖1)‖u− u′‖2
1,(4.19)

where b2(r, s) is a polynomial of degree 2(m − 1) in r and s with positive
coefficients. For instance, consider the case d = 3 with m = 3. From (4.15) we
have

‖f (u)− f (u′)‖2 ≤
3∑

j=1

‖uj − u′j‖2.(4.20)

By invoking Lemma 4.2,

‖u2 − u′2‖2 ≤ C2‖u+ u′‖2
1‖u− u′‖2

1

≤ 2C2(‖u‖2
1 + ‖u′‖2

1)‖u− u′‖2
1

(4.21)

and

‖u3 − u′3‖2 ≤ ‖(u2 + uu′ + u′2)(u− u′)‖2

≤ 8
(‖u2(u− u′)‖2 + ‖u′2(u− u′)‖2)

≤ C3(‖u‖4
1 + ‖u′‖4

1)‖u− u′‖2
1.

(4.22)

In view of (4.20)–(4.22), inequality (4.19) holds for d = 3. For d = 1 or 2, it can
be verified in a similar fashion.
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Step 3. For Ju ∈ Hd+1 and t ∈ [0, T ], there exists a polynomial b3(r) with
positive coefficients such that

Tr[σt (Ju)Rσ ∗
t (Ju)] ≤ b3(‖u‖1)

(
1 + ‖u‖2

1
)
.(4.23)

By making use of conditions (ii) and (iii) together with Lemma 4.2, we get

Tr[σt (Ju)Rσ ∗
t (Ju)] =

∫
r(x, x)σ 2(t, x, u,Du)dx

≤ C1

∫
r(x, x)

{
1 + |u|2p + |Du|2}dx

≤ C1
{
TrR + r0|u|2p2p + r0‖u‖2

1
}

≤K1
[
1 + ‖u‖2(p−1)

1

](
1 + ‖u‖2

1
)

for p ≤m,

which yields (4.23) if we set b3(r)=K1[1 + r2(p−1)], for some constant K1 > 0.
Step 4. For t ∈ [0, T ], u and u′ ∈ H1, there exists a polynomial b4(r, s) with

positive coefficients such that

Tr[σt (Ju)− σt (Ju
′)]R[σt (Ju)− σt(Ju

′)∗]
≤ b4(‖u‖1,‖u′‖1)‖u− u′‖1.

(4.24)

Similar to Step 3, by means of conditions (ii) and (iii), and Lemma 4.2, we deduce
that

Tr
{
σt (Ju)− σt (Ju

′)]R[σt (Ju)− σt(Ju
′)]∗}

=
∫
r(x, x)[σ(t, x, u,Du)− σ(t, x, u′,Du′)]2 dx

≤ C2

∫
r(x, x)

{[
1 + |u|2(p−1) + |u′|2(p−1)]|u− u′|2 + |Du−Du′|2}

dx

≤ C2r0
{‖u− u′‖2

1 + ‖up−1(u− u′)‖2 + ‖u′p−1(u− u′)‖2}
≤K2

(
1 + ‖u‖2(p−1)

1 + ‖u′‖2(p−1)
1

)‖u− u′‖2
1,

for some constant K2>0. It yields (4.24) with b4(r, s)=K2(1 + r2(p−1) +
s2(p−1)).

Step 5. Existence of local solutions by H1-Lipschitz truncation.
For R > 0, let ηR(·): R

+ = [0,∞)→ R
+ be a C∞

0 -function such that

ηN(s)=
{

1, for 0 ≤ s ≤N/2,
0, for s > N ,

(4.25)

and 0 ≤ ηN(s) ≤ 1 for N/2 < s ≤ N . For u ∈ H1, define SNu = ηN(‖u‖1)u,
fN(u)= ηN(‖u‖1)f (SNu) and σNt (Ju)= ηN(‖u‖1)σt (JSNu). Instead of (4.2),
consider the truncated system


dut = vt dt,

dvt = (c2∇2 − γ 2)ut dt + fN(ut ) dt + σNt (Ju) dWt,

u0 = g, v0 = h.

(4.26)
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Then, by (4.18), we have

fN(u)= ηN(‖u‖1)f (SNu)≤ b1(‖SNu‖1)(1 + ‖SNu‖2
1)

≤ b1(N)
(
1 + ‖u‖2

1
)
.

(4.27)

It can also be shown that, by (4.19) and (4.25), there exists constant b2(N) > 0
such that

‖f N(Ju)− fN(Ju′)‖ ≤ b2(N)‖u− u′‖1 for u,u′ ∈H1.(4.28)

Similarly, by taking (4.23), (4.24) and (4.25) into account, we can deduce that

Tr[σNt (Ju)RσN∗
t (Ju)] ≤ b3(N)

[
1 + ‖u‖2

1
]

(4.29)

and

Tr
[
σNt (Ju)− σNt (Ju

′)
]
R

[
σNt (Ju)− σNt (Ju

′)
]∗ ≤ b4(N)‖u− u′‖2

1(4.30)

for some b4(N) > 0, u,u′ ∈H1.
In view of (4.27)–(4.30) and condition (iii), Lemma 4.1 is applicable to the

truncated system (4.26). Therefore there exists a unique continuous solution ZNt =
(uNt , v

N
t ) ∈ H =H1 ×H , for t ∈ [0, T ]. Introduce a stopping time τN defined by

τN = inf
{
t > 0 :‖uNt ‖1 >N/2

}
.

Then, for t < τN , ut = uNt is the solution of (4.1) with ∂tut = vNt . As τN is
increasing in N , let τ∞ = limN→∞ τN . Define ut , for t < τ∞ ∧ T , by ut = uNt
if t < τN ≤ T . Then ut is the unique local solution as claimed. �

To obtain a global solution, it is necessary to impose further conditions on f
and σ so that a certain energy bound can be established to prevent the unlimited
growth. To state the next theorem, it is convenient to introduce the functionG(x,u)
defined by

G(x,u)= −2
∫ u

0
f (x, s) ds = −

m∑
j=1

2

(j + 1)
aj (x)u

j+1.(4.31)

THEOREM 4.2. Suppose that conditions (i)–(iii) for Theorem 4.1 hold true.
In addition to conditions (i) and (ii), we assume that:

(i)′ Letm= (2k+1) be odd and there exist positive constants α ≥ 0 and λ > 0
such that

G(x, s)≥ (α + λs2k)s2 ∀x ∈ R
d, s ∈ R.(4.32)

(ii)′ Condition (ii) holds with p = (k + 1).

Then, for u0 ∈ H1, v0 ∈ H and for any T > 0, the Cauchy problem (4.1) or
(4.2) has a unique continuous solution ut = u(t, ·) ∈H1 with vt = ∂tu(t, ·) ∈H in
[0, T ] such that

E sup
t≤T

{
e(ut)+ |ut |m+1

m+1

}
<∞.(4.33)
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Before proving this theorem, we first establish the following technical lemma.

LEMMA 4.2. Suppose that the conditions for Theorems 4.1 and 4.2 hold true.
Then the following local energy inequality holds:

Eeλ(ut∧τN )+ αE‖ut∧τN‖2

≤ {e(u0)+ Ĝ(u0)+Ct} +K

∫ t

0
Eeλ(us∧τN ) ds,

(4.34)

for some constants C and K > 0, where

eλ(u)= e(u)+ λ|u|2(k+1)
2(k+1).(4.35)

PROOF. Recall that, for t < τN ≤ T , ut = uNt is a solution of the system (4.2).
By means of Lemma 4.1, the following energy equation holds:

e(ut∧τN )= e(u0)+ 2
∫ t∧τN

0

(
vs, f (us)

)
ds + 2

∫ t∧τN
0

(
vs, σs(Jus) dWs

)

+
∫ t∧τN

0
Tr[σs(Jus)Rσ ∗

s (Jus)]ds,
or, by noting definition (4.31),

e(ut∧τN )+ Ĝ(ut∧τN )= e(u0)+ Ĝ(u0)+ 2
∫ t∧τN

0

(
vs, σs(Jus) dWs

)
+

∫ t∧τN
0

Tr[σs(Jus)Rσ ∗
s (Jus)]ds

(4.36)

where, by condition (i)′, (4.31) and Lemma 4.2,

Ĝ(u)=
∫
G

(
x,u(x)

)
dx ≥

∫
(α + λu2k)u2 dx = α‖u‖2 + λ|u|2(k+1)

2(k+1)(4.37)

and

|Ĝ(u0)| ≤
m∑
j=1

2

j + 1

∫
|aj ||u0|j+1 dx ≤ a0

m∑
j=1

|u0|j+1
j+1 ≤ C0

m∑
j=1

‖u0‖j+1
1 <∞.

By taking the expectation of (4.36), we obtain

Ee(ut∧τN )= e(u0)+ Ĝ(u0)−EĜ(ut∧τN )
+E

∫ t∧τN
0

Tr[σs(Jus)Rσ ∗
s (Jus)]ds.

(4.38)

Now, in view of conditions (ii) and (ii)′, we have

Tr[σt (Ju)Rσ ∗
t (Ju)] =

∫
r(x, x)σ 2(t, x, u,Du)dx

≤ C1

∫
r(x, x)

{
1 + |u|2(k+1) + |Du|2}

dx

≤ {
TrR + r0|u|2(k+1)

2(k+1) + r0‖u‖2
1

} ≤ C +Keλ(u),

(4.39)
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for some constants C and K > 0. By taking (4.37)–(4.39) into account, we deduce
that

Eeλ(ut∧τN )+ αE‖ut∧τN‖2 ≤ Ee(ut∧τN )+EĜ(ut∧τN )

= e(u0)+ Ĝ(u0)+E

∫ t∧τN
0

Tr[σs(Jus)Rσ ∗
s (Jus)]ds

≤ {e(u0)+ Ĝ(u0)+Ct} +K

∫ t

0
Eeλ(us∧τN ) ds.

This completes the proof of the lemma. �

With the aid of this lemma, we are ready to prove the global existence
Theorem 4.2.

PROOF OF THEOREM 4.2. For any T > 0, we will show that ut∧τN → ut a.s.
as N → ∞ for any t ≤ T , so that the local solution becomes a global one. To this
end, it suffices to show that τN → ∞ as N → ∞ with probability one.

Recall that, for t < τN ≤ T , ut = uNt is a solution of the system (4.2). By
applying Lemma 4.2 with ρN(t)=Eeλ(ut∧τN ) and noting α ≥ 0, inequality (4.34)
yields

ρN(t)≤ {e(u0)+ Ĝ(u0)+Ct} +K

∫ t

0
ρN(s) ds

which, by the Gronwall inequality, implies that

ρN(T )≤ {e(u0)+ Ĝ(u0)+CT }eKT =CT .(4.40)

On the other hand, we have

ρN(T )=Eeλ(ut∧τN )≥ E{I(τN ≤ T )eλ(uτN )}

≥ CE{‖uτN‖2
1I(τN ≤ T )} ≥C

(
N

2

)2

P {τN ≤ T },

where I is the indicator function and C > 0 is a constant. In view of (4.40), the
above inequality gives

P {τN ≤ T } ≤ 4ρN(T )/CN
2 ≤ 4CT /CN

2

which, with the aid of the Borel–Cantelli lemma, implies that

P {τ∞ ≤ T } = 0,

or limN→∞ τN = ∞ a.s. Now we let uNt = ut∧τN and denote its limit: limN→∞ uNt
still by ut . Then ut is the global solution as announced. To verify the energy
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bound (4.33), we take the limit (as N → ∞) in (4.36) to get the energy equation:

e(ut)+ Ĝ(ut)= e(u0)+ Ĝ(u0)+
∫ t

0
Tr[σs(Jus)Rσ ∗

s (Jus)]ds

+ 2
∫ T

0

(
vs, σs(Jus) dWs

)
.

Similar to (4.38), the above equation yields

E sup
θ≤t

eλ(uθ)≤ {e(u0)+ Ĝ(u0)+Ct} +E

∫ t

0
Tr[σs(Jus)Rσ ∗

s (Jus)]ds

+ 2E sup
θ≤t

∫ θ

0

(
vs, σs(Jus) dWs

)
.

(4.41)

By means of the Birkholder–Davis–Gundy inequality (Kunita [4], page 66), we
have

E sup
θ≤t

∫ θ

0

(
vs, σs(Jus) dWs

)

≤ C1E

{∫ t

0

(
σs(Jus)Rσ

∗
s (Jus)vs, vs

)
ds

}1/2

≤ C1E

{
sup
θ≤t

‖vθ‖2
∫ t

0
Tr[σs(Jus)Rσ ∗

s (Jus)]ds
}1/2

≤ 1

4
E sup
θ≤t

‖vθ‖2 +C2E

∫ t

0
Tr[σs(Jus)Rσ ∗

s (Jus)]ds

(4.42)

for some constants C1,C2 > 0.
In view of (4.39), (4.41) and (4.42), there exist positive constants C3 and C4,

depending on λ,T , etc., such that

E sup
θ≤t

eλ(uθ)≤ C3 +C4

∫ t

0
E sup
θ≤s

eλ(uθ) ds.

By applying the Gronwall inequality, the above gives

E sup
t≤T

eλ(ut)≤ C3e
C4T ,

which implies the energy bound (4.33). �

REMARKS. (i) In contrast to the example given in Section 3 for an explosive
solution, suppose that f (x,u)= −(αu+ λu3) with α,λ > 0, and σ = α0 + α1u+
α2u

2. Then conditions (i)′ and (ii)′ of Theorem 4.2 are met. The corresponding
Cauchy problem with d ≤ 3 has a unique global solution as stated.

(ii) Throughout the paper, for simplicity, the noise consists of a simple term
σW . The theorems hold true for multiple noise terms

∑k
i=1 σiWi with independent

Wiener fields W ′
i s, provided that each σi satisfies the conditions imposed on σ .
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(iii) The existence theorems given here can be generalized to a class of second-
order stochastic hyperbolic equations with nonlinear terms of polynomial growth.
This type of problems will be treated in a separate paper. �

APPENDIX

PROOF OF LEMMA 2.1. We shall only prove the energy equation, which is
the key point of this lemma. The proof is based on smoothing equation (2.7) by
means of the Friedrichs’ mullifier ρε∗ defined as

gε(x)= (ρε∗g)(x)=
∫
ρε(x − y)g(y) dy

where ρε is a certain positive, even C∞-function with compact support in a
ε-neighborhood of the origin such that

∫
ρε dx = 1. We apply ρε∗ to equation (2.7)

to obtain the mullified system

duεt = vεt dt,

dvεt = (c2∇2 − γ 2)uεt + f εt + dMε
t ,

uε0 = g, vε0 = h.

(A.1)

Since the mullified functions uεt , v
ε
t , etc., are smooth (C∞) in x, we can apply the

Itô formula to (A.1) for each xεRd to get (Kunita [4], see page 92):

|vε(t, x)|2 = |vε0(x)|2 + 2
∫ t

0
vε(s, x)(c2∇2 − γ 2)uε(s, x) ds

+ 2
∫ t

0
vε(s, v)f ε(s, x) ds + 2

∫ t

0
vε(s, x) dMε

s +
∫ t

0
qε(s, x, x) ds,

where

qε(t, x, y)= [(ρε∗)⊗ (ρε∗)qt ](x, y)=
∫∫

ρε(x − ξ)ρε(y − η)q(t, ξ, η) dξ dη,

and ⊗ denotes the tensor product.
After intergrating the above equation over R

d , by parts if necessary, and
evaluating integrals over [0, t] when possible, we arrive at the following mullified
energy equation:

e(uεt )= e(u0)+ 2
∫ t

0
(vεs , f

ε
s ) ds + 2

∫ t

0
(vεs , dM

ε
s )

+
∫ t

0
TrQε

s ds,

(A.2)

where Qε
t is the covariation operator of Mε

t with kernel qε(t, x, y). By some well-
known properties of the mullifier (ρε∗) (see Chapter 1 of [6]), as ε → 0, we show
easily that Ee(uεt )→Ee(ut) for each t a.s. We can also prove that

E

∣∣∣∣
∫ t

0
(vεs , f

ε
s ) ds −

∫ t

0
(vs, fs) ds

∣∣∣∣ → 0(A.3)
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and

E

∣∣∣∣
∫ t

0
TrQε

s ds −
∫ t

0
TrQs ds

∣∣∣∣ → 0 as ε→ 0.(A.4)

To be brief, let us verify (A.4) only. Note that∫ t

0
TrQε

s ds −
∫ t

0
TrQs ds

=
∫ t

0

∫
[qε(s, x, x)− q(s, x, x)]dx ds

=
∫ t

0

∫ {∫∫
ρ̃ε(ξ, η)[q(s, x − ξ, x − η)− q(s, x, x)]dξ dη

}
dx ds,

(A.5)

where ρ̃ε(x, y) = ρε(x)ρε(y). Similar to the proof of Lemma 1.3 (d) in Mizo-
hata [6], we can show that

lim
ε→0

∫ {∫∫
ρ̃ε(ξ, η)|q(s, x − ξ, x − η)− q(s, x, x)|dξ dy

}
dx = 0(A.6)

for each s ∈ [0, t] a.s. In view of (A.5) and (A.6), with the aid of the bounded
convergence theorem, we deduce that (A.4) holds true.

Now it remains to show that

lim
ε→0

E

∣∣∣∣
∫ t

0
(vεs , dM

ε
s )−

∫ t

0
(vs, dMs)

∣∣∣∣ = 0.(A.7)

To this end, we start with

E

∣∣∣∣
∫ t

0
(vεs , dM

ε
s )−

∫ t

0
(vs, dMs)

∣∣∣∣
≤E

∣∣∣∣
∫ t

0
(vεs − vs, dMs)

∣∣∣∣ +E

∣∣∣∣
∫ t

0

(
vεt , d(M

ε
s −Ms)

)∣∣∣∣.
(A.8)

By means of Birkholder–Davis–Gundy inequality for martingales, we have

E

∣∣∣∣
∫ t

0
(vεs − vs, dMs)

∣∣∣∣ ≤
{
E

∣∣∣∣
∫ t

0
(vεs − vs, dMs)

∣∣∣∣
2}1/2

≤ √
2
{
E

∫ t

0

(
Qs(v

ε
s − vs), v

ε
s − vs

)
ds

}1/2

≤ 2
{
E sup
t≤T

TrQt

}1/2
{
E

∫ t

0
‖vεs − vs‖2 ds

}1/2

which implies that

E

∣∣∣∣
∫ t

0
(vεs − vs, dMs)

∣∣∣∣ → 0 as ε→ 0.(A.9)
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Similarly we have

E

∣∣∣∣
∫ t

0

(
vεs , d(M

ε
s −Ms)

)∣∣∣∣
≤ 2

{
E sup
t≤T

TrAQε
t

}1/2
{
E

∫ t

0
‖vεs ‖2 ds

}1/2

,

(A.10)

where AQε
t = d

dt
〈〈Mε −M〉〉t and

TrAQε
t =

∫
[(ρε ∗ −I )⊗ (ρε ∗ −I )qt ](x, x) dx,

where ⊗ denotes the tensor product and I is the identity operator.
Therefore,

E sup
t≤T

TrQε
t ≤ E sup

t≤T

∣∣∣∣
∫

[ρε ∗ ⊗(ρε ∗ −I )qt ](x, x) dx
∣∣∣∣

+E sup
t≤T

∣∣∣∣
∫

[I ⊗ (ρε ∗ −I )qt ](x, x) dx
∣∣∣∣(A.11)

= I1 + I2.

Explicitly we have

I1 =E sup
t≤T

∣∣∣∣
∫ {∫∫

ρ̃ε(ξ, η)[q(t, x − ξ, x − η)− q(t, x − ξ, x)]dξ dη
}
dx

∣∣∣∣
and

I2 =E sup
t≤T

∣∣∣∣
∫ {∫

ρ(η)[q(t, x, x − η)− q(t, x, x)]dη
}
dx

∣∣∣∣,
each of which can be shown, similar to (A.6), to go to zero as ε → 0. In view
of (A.10) and (A.11), we get

lim
ε→0

E

∣∣∣∣
∫ t

0

(
vεs , d(M

ε
s −Ms)

)∣∣∣∣ = 0,

which together with (A.8) and (A.9) verify (A.7). By taking (A.3), (A.4) and (A.7)
into account, we set ε → 0 in the truncated equation (A.2) to yield the energy
equation (2.8). �
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