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In the context of a general multivariate financial market with trans-
action costs, we consider the problem of maximizing expected utility from
terminal wealth. In contrast with the existing literature, where only the
liquidation value of the terminal portfolio is relevant, we consider general
utility functions which are only required to be consistent with the struc-
ture of the transaction costs. An important feature of our analysis is that
the utility function is not required to be C1. Such nonsmoothness is sug-
gested by major natural examples. Our main result is an extension of the
well-known dual formulation of the utility maximization problem to this
context.

1. Introduction. We consider a general multivariate financial market
with transaction costs as in Kabanov (1999), and we analyze the stochastic
control problem of maximizing expected utility from terminal wealth.
The existing literature in this framework only considers an utility func-

tion defined on the liquidation value of the terminal portfolio; see for exam-
ple, Davis, Panas and Zariphopoulou (1993), Cvitanić and Karatzas (1996),
Kabanov (1999), Cvitanić and Wang (1999). This is of course not consistent
with economic intuition which suggests that agents prefer holding the portfolio
to its liquidation value. Indeed, once the portfolio is liquidated, its liquidation
value does not allow financing it because of the presence of transaction costs.
Instead, we introduce an utility function U defined on �d+1, where d + 1

is the number of tradable assets in the financial market. For the sake of con-
sistency with the structure of transaction costs, the function U is required to
be increasing in the sense of the partial ordering induced by the transaction
costs. This natural economic condition turns out to be crucial. Also by exam-
ining some natural examples of such utility functions, it turns out that the
usual smoothness condition fails to hold.
The main result of this paper is to obtain a dual formulation of the utility

maximization problem as it was established in the frictionless markets litera-
ture by Cox and Huang (1989), Karatzas, Lehoczky and Shreve (1987) and the
recent paper by Kramkov and Schachermayer (1999). In particular, we require
a natural extension, to our multivariate framework, of the important condition
on the asymptotic elasticity introduced by Kramkov and Schachermayer.
In the presence of transaction costs, such a dual formulation has been

derived by Cvitanić and Karatzas (1996) and Kabanov (1999) under the assum-
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ption of existence for the dual problem. Recently, Cvitanić and Wang (1999)
proved the dual formulation, without appealing to such existence assumption.
This was achieved by suitably enlarging the set of controls of the dual prob-
lem, as in Kramkov and Schachermayer (1999). However, as mentioned above,
Cvitanić and Wang only considered the one-dimensional (d = 1) problem of
maximizing expected utility of the liquidation value of the terminal wealth,
with smooth utility function defined on �+.
An important feature of our analysis is that neither the utility function U,

nor the Legendre–Fenchel transform Ũ of −U�−·� are required to be smooth.
We then use different arguments from those of Kramkov and Schachermayer
(1999). In particular, we introduce an approximation of function Ũ by quad-
ratic inf -convolution, and then pass to the limit.
Let us mention that Cvitanić (1998) dealt with a nonsmooth utility max-

imization problem of the form inf x∈C F�x� for some convex subset C of a
Banach space, and lower semicontinuous convex function F. In this case, it
was possible to apply directly the classical Kuhn–Tucker conditions in Banach
spaces established in the context of nonsmooth convex problems [see, e.g.,
Aubin and Ekeland (1984)]. Our dual optimization problem is naturally set
in the Banach space L1. However, the classical result of this theory requires
that 0 lie in the interior of the set dom�F�−C, which fails to hold for our dual
optimization problem.
The paper is organized as follows. Section 2 contains the exact formula-

tion of the utility maximization problem. Section 3 introduces the main polar
transformations of the variables and functions involved in the problem. It
also contains some preliminary results on these transformations. The main
duality result together with the precise assumptions are stated in Section 4.
Section 5 contains three natural examples of utility functions consistent with
the structure of transaction costs, which are naturally nonsmooth. The proof of
the main theorem is reported in Section 9 after some preparation in Sections
6, 7 and 8. Finally, we report some useful results concerning the notion of
asymptotic elasticity in the Appendix.

2. The utility maximization problem. In this section, we formulate the
utility maximization problem under proportional transaction costs. In contrast
with the usual literature in this area [see, e.g., Cvitanić and Karatzas (1996),
Kabanov (1999)], the utility function will be defined on the vector terminal
wealth and not on the liquidation value of the terminal wealth.

2.1. The financial market. Let T be a finite time horizon and let ��	� 	
� = ��t�t≤T	P� be a stochastic basis with the trivial σ-algebra �0. Let S 	=
�S0	 � � � 	 Sd� be a continuous semimartingale with strictly positive compo-
nents; the first component is assumed to be constant over time S0�·� = 1.
With the interpretation of S as a price process, this means that the first secu-
rity (“cash”) is taken as the numéraire.
A trading strategy is an adapted, right-continuous, (componentwise) nonde-

creasing process L taking values in �d+1
+ , the set of �d+1�× �d+1�-matrices
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with nonnegative entries; Lijt is the cumulative net amount of funds trans-
ferred from the asset i to the asset j up to the date t; this process may have
a jump at the origin �Lij0 = Lij0 corresponding to the initial transfer. Constant
proportional transaction costs are described by a matrix �λij� ∈ �d+1

+ with
zero diagonal and which satisfy

�1+ λij� ≤ �1+ λik��1+ λkj� ∀ i	 j	 k ∈ �0	 � � � 	 d�(2.1)

The above condition says that no transaction costs can be saved by any arti-
ficial transit through another account, and is only needed in order to obtain
the interesting characterization of Remark 4.3 below.
Given an initial holdings vector x ∈ �d and a strategy L, the portfolio

holdings X =Xx	L are defined by the dynamics,

Xi
t = x+ X̂i

− ·Sit +
d∑
j=0

(
L
ji
t − �1+ λij�Lijt

)
	(2.2)

where X̂i 	=Xi/Si (i.e., X̂ is the process X divided by the process S compo-
nentwise), and Xi

− ·Sit is the stochastic integral of Xi
− with respect to S

i.
Alternatively, the wealth process X can be defined by

X̂i
t = x̂+

d∑
j=0

∫ t
0

(
dLjis − �1+ λij�dLijs

)
/Sis�

This equivalent definition shows that the stochastic integration with respect
of S is not essential for the definition of the wealth process. In particular, the
condition that S is a semimartingale is not needed. However, we shall need to
apply a duality result due to Kabanov and Last (1998), which requires S to be
a continuous semimartingale. This is the only reason why our price process is
assumed to be a continuous semimartingale.

2.2. Admissible strategies. Following Kabanov (1999), we define the sol-
vency region,

K 	=
{
x ∈ �d+1	 ∃a ∈�d+1

+ 	 xi +
d∑
j=0
�aji − �1+ λij�aij� ≥ 0� i = 0	 � � � 	 d

}
�

The elements of K can be interpreted as the vectors of portfolio holdings
such that the no-bankruptcy condition is satisfied: the liquidation value of the
portfolio holdings x, through some convenient transfers, is nonnegative. In
particular, K contains the positive orthant �d+1+ = �0	∞�d+1.
Clearly, the set K is a closed convex cone containing the origin. We can

then define the partial ordering � induced by K:

x1 � x2 if and only if x1 − x2 ∈K�
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Let κ ≥ 0 be some given constant. A trading strategy L is said to be
κ-admissible for the initial holdings x ∈K if the no-bankruptcy condition

Xx	L�·� � −κS�·�(2.3)

holds. We shall denote by �κ�x� the set of all κ-admissible trading strategies
for the initial holdings x ∈K, and we introduce the set

� �x� 	=
{
X ∈ L0��d+1	�T�	 X =Xx	L

T for some L ∈ ⋃
κ≥0

�κ�x�
}
�

2.3. The problem formulation. Throughout this paper, we consider a utility
function U mapping �d+1 into � with effective domain dom�U� ⊂ K, and
satisfying the conditions

U�0� = 0	 U is concave on K	

U�x1� ≥ U�x2� for all x1 � x2 � 0�
(2.4)

The third condition says that the agent preferences are monotonic in the sense
of the partial ordering �. The second condition is the concavity of the prefer-
ences of the agent. As will be clear from the definition of the utility maximiza-
tion problem, the first condition can be relaxed by only requiring U�0� > −∞.
The case U�0� = −∞ was solved by Kramkov and Schachermayer (1999) in
the one-dimensional frictionless framework. We leave this problem for future
research in order to simplify the (already complex) framework of this paper.
Notice that the utility function is neither required to be differentiable, nor

strictly concave and strictly increasing.
Our interest is on the stochastic control problem,

V�x� 	= sup
X∈� �x�

EU�X�

of maximizing expected utility from terminal wealth. Since dom�U� ⊂K, the
above maximization can be restricted to the �-nonnegative elements of � �x�,

V�x� 	= sup
X∈� �x�

EU�X� with � �x� 	= �X ∈ � �x�	 X � 0	 P-a.s.�

The chief goal of this paper is to derive a dual formulation of this problem
in the spirit of Cox and Huang (1989), Karatzas, Lehoczky and Shreve (1987)
and the recent paper of Kramkov and Schachermayer (1999), KS99 hereafter.

Remark 2.1. In the frictionless case, the above problem can be reduced to
the framework of a classical utility function defined on the positive real line.
Indeed, if λ = 0, the solvency regionK = �x ∈ �d+1	 x̄ 	=∑d

i=0 x
i ≥ 0. Clearly,

x � �x̄	0	 � � � 	0� and �x̄	0	 � � � 	0� � x. From the increase of U in the sense
of the partial ordering � in Condition (2.4), this proves that U�x� = u�x̄� 	=
U�x̄	0	 � � � 	0�.
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3. Preliminaries: polar transformations.

3.1. Solvency region. We shall frequently make use of the positive polar
cone associated to K defined as usual by K∗ = �y ∈ �d+1	 xy ≥ 0, for all
x ∈ K; here xy is the canonical scalar product of �d+1. It is easily checked
that K∗ is the polyhedral cone defined by

K∗ = �y ∈ �d+1+ 	 yj − �1+ λij�yi ≤ 0 for all 0 ≤ i	 j ≤ d(3.1)

[see Kabanov (1999)]. In particular, this shows that

K∗\�0 ⊂ �0	∞�d+1 ⊂K�
An alternative characterization of K relies on the function

l�x� 	= inf
y∈K∗

0

xy where K∗
0 	= �y ∈K∗	 y0 = 1�

Then, we have clearly,

x � 0 if and only if l�x� ≥ 0�

Remark 3.1. It follows from the definition of K∗
0 and (3.1) that, for all

y ∈K∗
0, we have

λ 	= min
0≤i≤d

�1+ λi0�−1 ≤ �1+ λj0�−1 ≤ yj ≤ �1+ λ0j� ≤ max
0≤i≤d

�1+ λ0i� =	 λ̄�

Let 10 be the vector of �d+1 with components 1
i
0 = 0 for all i = 1	 � � � 	 d and

100 = 1. It is proved in Bouchard (1999) that
l�x� = sup�w ∈ �	 x � w10�

that is, l�x� is the liquidation value (on the bank account) of the portfolio x.
We shall refer to l as the liquidation function.

Remark 3.2. Existence holds for the last formulation of the liquidation
function l�x�; that is, x � l�x�10 for all x ∈ �d+1. This follows from the fact
that the set �w ∈ �	 x � w10 = �w ∈ �	 �x − w10�y ≥ 0 for all y ∈ K∗ is
closed.

Another interesting property of the liquidation function is the following
characterization of the boundary ∂K of K.

Lemma 3.1. ∂K = �x ∈K	 l�x� = 0.

Proof. Let x be in int�K�. From Remark 3.1, there exists some positive
scalar ε > 0 such that x− εy ∈K for all y ∈K∗

0. Then, �x− εy�y ≥ 0. Using
again Remark 3.1, we see that xy ≥ ε�y�2 ≥ ε�d+1�λ2, and therefore l�x� > 0.
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Conversely assume that l�x� > 0 and set r 	= l�x�/��d+ 1�λ̄2�1/2. By defini-
tion of the liquidation function, it follows from the Cauchy–Schwarz inequality
that, for all z ∈ B�x	 r�,

zy = xy+ �z− x�y ≥ l�x� − �z− x� · �y� ≥ 0 for all y ∈K∗
0�

This proves that l�z� ≥ 0. Then B�x	 r� ⊂K and x ∈ int�K�. ✷

We shall also make use of the partial ordering �∗ induced byK∗ defined by

y1 �∗ y2 if and only if y1 − y2 ∈K∗�

Then, by introducing the function

l∗�y� 	= inf
x∈K	 �x�=1

xy	

we obtain an alternative characterization of the partial ordering �∗ (or equiv-
alently, of the polar cone K∗),

y �∗ 0 if and only if l∗�y� ≥ 0�
By similar arguments as in the proof of Lemma 3.1, we prove the following
characterization of the boundary ∂K∗ of K∗.

Lemma 3.2. ∂K∗ = �y ∈K∗	 l∗�y� = 0.

We shall need the following easy result on the function l∗.

Lemma 3.3. Let b > 0. Then, there exists y�b� ∈ int�K∗� such that
for all y ∈K∗	 l∗�y� ≥ b �⇒ y �∗ y�b��

Proof. Suppose the contrary. This means that for all z ∈ int�K∗�,
there exists y�z� ∈ K∗, with l∗�y�z�� ≥ b, such that y�z� − z /∈ K∗; that is,
l∗�y�z�−z� < 0. Now by definition of function l∗, we easily see that l∗�y�z�� ≤
l∗�y�z� − z� + �z�. We obtain therefore b < �z� for all z ∈ int�K∗�. Sending z
to 0 leads to a contradiction. ✷

3.2. Utility function. Define the Legendre–Fenchel transform

Ũ�y� 	= sup
x∈K

�U�x� − xy� for all y ∈ �d+1�

Then Ũ is a convex function from �d+1 into the extended real line � ∪ �+∞.
We shall denote by ∂Ũ the subgradient of Ũ.
From the definition of K∗, for all y ∈ �d+1\K∗, there exists some x0 ∈K

such that x0y < 0. Then, for all integer n, we have Ũ�y� ≥ −nx0y and
therefore,

dom�Ũ� ⊂K∗�(3.2)
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Moreover, whenever U is unbounded, we clearly have Ũ�0� = +∞. More infor-
mation on the domain of Ũ will be obtained later on (see Lemma 4.2).
We now state an important property of function Ũ which follows immedi-

ately from its definition as the Legendre–Fenchel transform of the �-increa-
sing function U.

Lemma 3.4. Function Ũ is decreasing in the sense of the partial order-
ing �∗, that is,

for all y1 �∗ y2 �∗ 0 we have Ũ�y2� ≥ Ũ�y1��

Proof. Let y1 �∗ y2 �∗ 0. Then y1−y2 ∈K∗ and U�x�−xy1 ≤ U�x�−xy2
for all x ∈K. The required result follows by taking supremum over x ∈K in
the last inequality. ✷

4. The main result.

4.1. Assumptions. For ease of exposition, we collect and comment the
assumptions of the main result of the paper in this subsection. Recall that
conditions (2.4) are assumed to hold throughout the paper. We first start by
the following technical condition which is needed for the proof of Lemma 8.3.

Assumption 4.1. For all convex subset C of K, the set ∂U�C� is convex.

Notice that Assumption 4.1 is always true for convex functions defined
on the real line. Example 5.3 provides an interesting utility function which
does not satisfy the last assumption. Unfortunately, we are not able to prove
whether this assumption is necessary for the main theorem of this paper to
hold.
We shall also appeal to the following stringent condition.

Assumption 4.2. supx∈KU�x� = +∞.

Under this assumption, Ũ�0� = +∞, and the solution of the dual problem
W�x� defined in (4.2) is guaranteed to be strictly positive P-a.s. We shall see
that, whenever Assumption 4.2 does not hold, our main duality result remains
valid provided that function Ũ satisfies the Inada condition.

Assumption 4.3. supx∈KU�x� <∞ and lim inf �y�→0 inf q∈−∂Ũ�y� l�q� = +∞.
Remark 4.1. In the one-dimensional smooth case with strictly concave

utility function U, the second requirement of Assumption 4.3 is equivalent
to the condition U′�∞� = 0 (assumed in KS99), and holds whenever U is
bounded. When U is not strictly concave, this is no longer true, as one can
check easily in the example U�x� = x ∧ a + χ�0	∞� for some a > 0, Ũ�y� =
a�1 − y�+ + χ�0	∞�, where χ is the indicator function in the sense of convex
analysis.
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Another technical condition needed for the proof of our main result (precisely
in Lemma 8.3) is the following.

Assumption 4.4. Function Ũ satisfies one of the following conditions:

(A1) Ũ�y� = ∞ for all y ∈ ∂K∗. In this case, set H 	=K∗.
(A2) Ũ can be extended to an open convex cone H of �d+1, with K∗\�0 ⊂

H ⊂ K, in such a way that the extended Ũ on H is convex, bounded from
below by 0 and decreasing in the sense of the partial ordering �∗.

Observe that the above condition (A2) is trivially satisfied in the one-dimen-
sional case d+1 = 1. Indeed, in this caseK =K∗ = �+, and the only possible
choice for H is �0	∞� = int�K�.
Unfortunately, we have not been able to remove this technical condition in

the general multidimensional case, and we leave this issue as another chal-
lenging open problem. In Section 5, we shall see that Examples 5.2 and 5.3
satisfy (A1), while Example 5.1 satisfies (A2).
Our last assumption is a natural extension to the multidimensional frame-

work of the asymptotic elasticity condition introduced by KS99. Consider the
function

δ−∂Ũ�y� 	= sup
q∈−∂Ũ�y�

�qy�

and define the asymptotic elasticity of the convex function Ũ by

AE�Ũ� = lim sup
l∗�y�→0

δ−∂Ũ�y�
Ũ�y�

�

Assumption 4.5. AE�Ũ� <∞.

We postpone the discussion of this assumption after the proof of Lemma 4.2
below, and we start by providing its relevant implications for the subsequent
analysis of the paper.

Lemma 4.1. AE�Ũ� <∞ if and only if there exist two parameters b	β > 0
such that

Ũ�µy� < µ−βŨ�y� for all µ ∈ �0	1� and y ∈K∗ with l∗�y� ≤ b�(4.1)

For the proof, see the Appendix.
Combining Lemmas 3.3 and 4.1, we obtain the following easy consequence.

Corollary 4.1. Let condition AE�Ũ� < ∞ hold. Then, there exist con-
stants C ≥ 0 and β > 0 such that, for all µ ∈ �0	1�,

Ũ�µy� ≤ µ−β�C+ Ũ�y�� for all y ∈K∗�
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Characterization (4.1) of Assumption 4.5 provides more specific information
about the domain of Ũ.

Lemma 4.2. Let Assumption 4.5 hold. Then:

(i) int�K∗� ⊂ dom�Ũ� and therefore int�dom�Ũ�� = int�K∗�,
(ii) For all y ∈ int�K∗�, we have ∂Ũ�y� ⊂ −K.

Proof. (i) SinceU is a proper convex function, so is Ũ. Let y0 ∈K∗\�0 be
such that Ũ�y0� <∞. Consider an arbitrary y ∈ int�K∗�. For all ε > 0, observe
that l∗�y − εy0� ≥ l∗�y� + εl∗�−y0� so that lim inf ε↘0 l∗�y − εy0� ≥ l∗�y� > 0
by Lemma 3.2. This proves that y �∗ εy0 for sufficiently small ε > 0. Then,
from Lemma 3.4, we see that Ũ�y� ≤ Ũ�εy0�. Using Corollary 4.1, this proves
that Ũ�y� ≤ µ−β�C+ Ũ�y0�� <∞. Hence int�K∗� ⊂ dom�Ũ�. In view of (3.2),
this proves that int�dom�Ũ�� = int�K∗�.
(ii) Let p be any element in ∂Ũ�y� for some y ∈ int�dom�Ũ��. By definition,

this means that Ũ�z� ≥ Ũ�y� + p�z − y� for all z ∈ �d+1. Set z 	= y + h for
some h �∗ 0. Then, it follows from (i) that

0 ≥ Ũ�y+ h� − Ũ�y� ≥ ph for all h ∈K∗	

which ends the proof. ✷

We now turn to the discussion of Assumption 4.5. By analogy to Ũ, we
define the asymptotic elasticity of the concave function U by

AE�U� 	= lim sup
l�x�→∞

δ∂U�x�
U�x� where δ∂U�x� 	= sup

p∈∂U�x�
�px��

Remark 4.2. From Remark 2.1, it is clear that above notion of asymptotic
elasticity coincides with that of KS99 in the smooth case.

As in KS99, the following result states the equivalence between the condi-
tions AE�Ũ� <∞ and AE�U� < 1, under Inada-type conditions on U and Ũ.

Proposition 4.1. (i) Suppose that lim supl�x�→∞ supp∈∂U�x� �p� = 0. Then

AE�Ũ� <∞ �⇒ AE�U� < 1�
(ii) Suppose that lim inf �y�→0 inf q∈−∂Ũ�y� l�q� = ∞. Then

AE�U� < 1 �⇒ AE�Ũ� <∞�

For the proof, see the Appendix.



1362 G. DEELSTRA, H. PHAM AND N. TOUZI

In the smooth one-dimensional framework, we have

lim sup
l�x�→∞

sup
p∈∂U�x�

�p� = U′�∞� and lim inf
�y�→0

inf
q∈−∂Ũ�y�

l�q� = −Ũ′�0��

If in addition U is strictly concave, we have Ũ′ = −�U′�−1, and the conditions
U′�∞� = 0 and Ũ′�0� = −∞ are equivalent. Hence, Proposition 4.2 provides
the equivalence between AE�U� < 1 and AE�Ũ� < ∞ under the Inada con-
dition U′�∞� = 0.

4.2. Dual formulation. We first recall an important result on the prob-
lem of super-replication. Denoting by � �P� the set of all P-martingales, we
introduce the set

� 	= {
Z ∈� �P�	 Ẑt ∈K∗	0 ≤ t ≤ T P-a.s.}	

which plays the same role as the set of equivalent martingale measures
in frictionless financial markets. For some (positive) contingent claim C ∈
L0�K	�T�, let

4�C� 	= {
x ∈ �d+1	 X � C for some X ∈ � �x�}�

Theorem 4.1 [Kabanov and Last (1998)]. Let S be a continuous process in
� �Q� for some Q ∼ P. Suppose further that int�K∗� #= $, Then

4�C� = D�C� 	= {
x ∈ �d+1	 EẐTC− Ẑ0x ≤ 0 for all Z ∈ �

}
�

Remark 4.3. It is an easy exercise to check that, under condition (2.1),
int�K∗� #= $ if an only if λij + λji > 0 for all i	 j = 0	 � � � 	 d.

For the purpose of this paper, we need to define a suitable extension of the
set � and given some y ∈K∗, we define the set

	 �y� 	= {
Y ∈ L0�K∗	�T�	 EXY ≤ xy for all x ∈K and X ∈ � �x�}�

Remark 4.4. From the no-bankruptcy condition (2.3), it is easily checked
that �ẐT	 Z ∈ � and Ẑ0 = y ⊂ 	 �y�.

We can now define the candidate dual problem,

W�x� 	= inf
y∈K∗	Y∈	 �y�

�EŨ�Y� + xy��(4.2)

Since

Ũ�Y� ≥ U�X� −XY for all X ∈ � �x�	 y ∈K∗ and Y ∈ 	 �y�	
it follows from the definition of the dual control set 	 �y� that

V�x� ≤W�x��(4.3)

This proves in particular that the condition W�x� < ∞ guarantees that
V�x� <∞. The following is the main result of this paper.
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Theorem 4.2. Let U be a utility function satisfying (2.4) together with
Assumptions 4.1, 4.2, 4.4 and 4.5. Suppose further that the conditions of
Theorem 4.1 hold.
Let x be any initial wealth in int�K� with W�x� <∞. Then:
(i) Existence holds for the optimization problem (4.2), that is,

W�x� = EŨ�Y∗� + xy∗ for some y∗ ∈K∗ and Y∗ ∈ 	 �y∗�	

moreover, P�Y∗ = 0� = 0.
(ii) There exists some X∗ valued in −∂Ũ�Y∗� such that

X∗ ∈ � �x� and V�x� = EU�X∗�	

(iii) V�x� =W�x�.
(iv) Suppose that

	 �y+� ∩L0�K∗\�0	�T� #= $ for some y+ ∈K∗�(4.4)

Then the above claims (i)–(iii) are still valid if Assumption 4.3 is substituted
for Assumption 4.2.

Remark 4.5. The conditions of Theorem 4.1 are needed in Theorem 4.2
only in order to apply Theorem 4.1 directly. It is still a challenging open prob-
lem to derive Theorem 4.1 under weaker assumptions.

Remark 4.6. Consider the following stronger version of (ii):

(ii′) For all random variable X∗ valued in −∂Ũ�Y∗�,

X∗ ∈ � �x� and V�x� = EU�X∗��

It is again a challenging open problem to prove that (ii′) holds. We thank
D. Ocone for this interesting comment.

Remark 4.7. In the frictionless case, λ = 0, (4.4) is implied by the existence
of an equivalent local martingale measure for the price process S, that is,

S ∈�loc�Q� for some Q ∼ P�(4.5)

This condition is also sufficient in order for the result 4�C� = D�C� of Theorem
4.1 to hold; see Delbaen and Schachermayer (1998). Therefore, under (4.5),
Theorem 4.2 is valid without the conditions of Theorem 4.1. Finally, recall
that the utility function can be reduced to a function defined on the positive
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real line (see Remark 2.1), and therefore:

Assumptions 4.1 and 4.4 are trivially satisfied,
In the case of a strictly concave utility function, either Assumption 4.2 or

Assumption 4.3 is trivially satisfied.

In summary, when λ = 0	U is a strictly concave function satisfying (2.4),
and S satisfies (4.5), statements (i)–(iii) of Theorem 4.2 are valid under
Assumption 4.5 on the asymptotic elasticity of Ũ.

The details of the proof will be reported in the following sections. For the
convenience of the reader, we present here its main steps. The main diffi-
culty arises from the nonsmoothness of the utility function and its Legendre–
Fenchel transform. We then start in Section 6 by introducing a suitable
approximation Ũn of Ũ. By substituting Ũn with Ũ, we define a sequence
of approximate dual problems Wn. Let 
 �x� [resp. 
 n�x�] denote the set
of all possible solutions of the optimization problem W�x� [resp. Wn�x�]. We
proceed as follows.

(i) For each n, we prove in Section 7 that 
 n�x� #= $; that is, Wn�x� =
EŨn�Yn� + xyn for some yn ∈K∗ and Yn ∈ 	 �yn�.
(ii) By means of a calculus of variations technique, we find in Section 8

that the optimality of �yn	Yn� leads to the existence of a sequence �Zn�n, and
the r.v. Xn = −DŨn�Yn� ∈ �∂Ũ +N &H��Zn� such that Xn is “approximately”
in � �x�. After passing to appropriate convex combinations, we prove that the
sequence �Zn�n converges to some Y∗ ∈ 
 �x�, and Xn → X∗ ∈ −∂Ũ�Y∗�
P-a.s. We then show that X∗ lies in � �x� by using Theorem 4.1.
(iii) Now, the proof of Theorem 4.2 is easily completed in the last section.

Indeed, optimality of X∗ for the initial optimization problem V�x� is now a
direct consequence of the Kuhn–Tucker system. Thus equality between V�x�
and W�x� follows and duality holds.

5. Main examples. We now provide three natural examples of utility
functions consistent with the condition of �-increase. The first example is the
usual utility of the liquidation value of the terminal wealth process, in which
U is not smooth. The second one shows that the presence of constraints in
the definition of Ũ produces a lack of regularity even in the case where U
is smooth. In the third example, both U and Ũ are smooth. The first two
examples will be shown to satisfy all the conditions of Theorem 4.2, while the
last example does not satisfy Assumption 4.1.
We shall use the characterization of function Ũ by means of Lagrange multi-

pliers. Denoting by −∂U the subgradient of the convex function −U, it follows
from the classical Kuhn–Tucker theory that, for all y ∈ dom�Ũ�, the supre-
mum in the definition of Ũ�y� is attained at by some x∗y ∈K characterized by
the following system:

y− µ∗ ∈ ∂U�x∗y� for some µ∗ ∈K∗ with µ∗x∗y = 0�(5.1)
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Conversely, if x∗y ∈ K satisfies (5.1), then it is a point of maximum in the

definition of Ũ�y�, and
Ũ�y� = U�x∗y� − yx∗y�

For ease of exposition, we only work out these examples for the one-dimen-
sional case d = 1. Then, it is easily checked that the solvency region is the
closed convex cone generated by the �2 vectors

v1 	= α1
(
1	−�1+ λ10�−1) and v2 	= α2�−1	1+ λ01�	

where α1 	= �1−�1+λ10�−1�1+λ01�−1�−1 and α2 	= �−1+�1+λ10��1+λ01��−1.
We denote by �v∗1	 v∗2� the dual basis of �v1	 v2� in �2, that is, v∗ivj = δij. Direct
computation provides

v∗1 =
(
1	 �1+ λ01�−1) and v∗2 = �1	1+ λ10��

Clearly, the positive polar cone K∗ is generated by �v∗1	 v∗2�. We shall assume
that K∗ has nonempty interior or, equivalently, λ10 + λ01 > 0.

Example 5.1. Let u	 �+ → � be a C1 increasing and strictly concave func-
tion with u�0� = 0	 u�+∞� = +∞	 u′�0� = +∞ and u′�+∞� = 0. Following
Cvitanić and Karatzas (1996), Kabanov (1999) and Cvitanić and Wang (1999),
we consider the utility function,

U�x� 	=u�l�x��=u�min�xv∗1	xv∗2��=u
(
xv∗11�x1≥0+xv∗21�x1<0

)
for all x∈K�

Observe that U is not differentiable along the half line �x ∈ K	 x1 = 0 =
��x0	0�	 x0 ≥ 0. In order to compute explicitly the Legendre–Fenchel trans-
form Ũ, we solve the Kuhn–Tucker system (5.1), that is, find �x	µ1	 µ2� ∈
K× �2+ such that

y− µ1v∗1 − µ2v∗2 ∈ ∂U�x� and µ1xv
∗
1 + µ2xv∗2 = 0�

(i) Suppose that µ1 #= 0 and µ2 #= 0. Then, xv∗1 = xv∗2 = 0 and then x = 0,
which leads to a contradiction since l�0� = 0 and u′�0� = +∞.
(ii) Suppose that µ1 = 0 and µ2 #= 0. Then xv∗2 = 0 and therefore x ∈

cone�v1� ⊂ ∂K. It follows that l�x� = 0 and the Kuhn–Tucker system cannot
be satisfied because of the condition u′�0� = +∞.
(iii) The case µ2 = 0 and µ1 #= 0 is similar to the previous one and leads to

the same conclusion.
(iv) From the previous cases, we see that we must have µ1 = µ2 = 0 in

order for the pair �x	µ� to solve the Kuhn–Tucker system. We now consider
three cases depending on the sign of x1.

Suppose that x1 > 0. Then U is differentiable at the point x and the
Kuhn–Tucker system reduces to y = u′�l�x��v∗1. Then, direct calculation shows
that

y = y0v∗1 and Ũ�y� = ũ�y0� for all y0 > 0	



1366 G. DEELSTRA, H. PHAM AND N. TOUZI

where ũ is the one-dimensional Legendre–Fenchel transform as in the previ-
ous example.
The case x1 < 0 is treated by analogy with the previous one and provides

y = y0v∗2 and Ũ�y� = ũ�y0� for all y0 > 0	

where ũ is the one-dimensional Fenchel–Legendre transform as in the previ-
ous example.
Finally suppose that x1 = 0. Then ∂l�x� = ��1	 ρ�	 �1+λ10�−1 ≤ ρ ≤ 1+λ01.

By direct calculation, we see that

y = y0�1	 ρ� and Ũ�y� = ũ�y0� for all y0 > 0�

In conclusion, the function Ũ is finite on K∗\�0, and
Ũ�y� = ũ�y0� for all y ∈K∗\�0�

Clearly, Assumptions 4.1, 4.2 and 4.4(A2) are satisfied. To see that Assumption
4.5 holds, we compute that Ũ has a singular gradient given by

DŨ�y� = ũ′�y0�10�
This shows that AE�Ũ� is finite since AE�ũ� is finite or equivalently AE�u�
is strictly smaller than 1.
Let us conclude the discussion of this example by comparing our main

Theorem 4.2 to Theorem 2.1 in Cvitanić and Wang (1999), CW hereafter. CW
derived the dual formulation of the utility maximization problem under the
condition (∗) wu′�w� ≤ a + �1 − b�u�w� for all w > 0, for some a > 0 and
0 < b ≤ 1. From Lemmas 6.2 and 6.3 in KS99, observe that condition (∗)
implies that AE�u� = 1− b < 1. Hence Assumption 4.5 is weaker than condi-
tion (∗) in the one-dimensional case (d = 1) studied by CW.

Example 5.2. Let r be an arbitrary element of int�K∗� and let
ρi 	= �rvi�−1� i = 1	2 so that r = ρ−11 v∗1 + ρ−12 v∗2�

Consider the utility function

U�x� = u�rx� for all x ∈K	
where u	 �+ → � is a C1 increasing, strictly concave function satisfying
u′�0+� = +∞ and u′�+∞� = 0. Clearly, U is strictly concave and increas-
ing in the sense of the partial ordering �, and Assumption 4.1 holds. We
further impose the conditions u�0� = 0 and u�∞� = ∞ in order to satisfy the
requirement of (2.4) and Assumption 4.2.
It remains to check that Assumptions 4.4 and 4.5 hold. In order to com-

pute explicitly the Legendre–Fenchel transform Ũ, we solve the Kuhn–Tucker
system (5.1). Denote by ũ the one-dimensional Legendre–Fenchel transform
ũ�ζ� = supξ≥0�u�ξ� − ξζ�.
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(i) If µ1 and µ2 are both nonzero, then x∗yv
∗
1 = x∗yv

∗
2 = 0, which cannot

happen unless x∗y = 0, but this does not solve the first-order condition.
(ii) If µ1 = µ2 = 0, then y = λr for some λ > 0 and Ũ�y� = ũ�λ� =

ũ��r�−2yr�.
(iii) If µi = 0 and µi−1 > 0 for i = 1	2, then x∗y = ξvi for some ξ > 0,

and y = µi−1v∗i−1 + u′�rx∗y�r. This proves that y ∈ cone�r	 v∗i−1�, and provides
ξ = ρi�u′�−1�ρiyvi�, by taking scalar product with vi.
Hence,

Ũ�y� = ũ�ρiyvi� for all y ∈K∗\cone�r	 v∗i��

By continuity, this clearly defines function Ũ for all y ∈K∗\�0. In particular,
Ũ�λr� = ũ��r�−2yr� for all λ > 0. Observe that:

Ũ�y� = +∞ for all y ∈ ∂K∗ so that condition (A1) of Assumption 4.4 holds.
Ũ is not differentiable at any element of cone�r�, and

∂Ũ�y� =
{
ũ′�ρiyvi�ρivi	 for y ∈ int�K∗\cone�r	 v∗i��,
ũ′�λ��ρ1v1	 ρ2v2�	 for y = λr�λ > 0,

where �ρ1v1	 ρ2v2� = �µρ1v1 + �1− µ�ρ2v2	 0 ≤ µ ≤ 1. Since
sup

q∈−∂Ũ�λr�
qλr = sup

0≤µ≤1
−ũ′�λ��µρ1v1 + �1− µ�ρ2v2�λr = −ũ′�λ�λ for all λ > 0	

it follows that

AE�Ũ� = AE�ũ� = lim sup
ζ→0

−ζũ′�ζ�
ũ�ζ� �

Hence, from Lemma 6.3 in KS99, Assumption 4.5 is satisfied in this example
whenever AE�u� < 1.

Example 5.3. Consider the utility function

U�x� = u1�xv∗1� + u2�xv∗2� for all x ∈K	
where for j = 1	2	 uj	 �+ → � is a C1 increasing, strictly concave function
satisfying u′j�0+� = +∞	 u′j�+∞� = 0	 uj�0� = 0, and uj�∞� = ∞. Clearly, U
is strictly concave and increasing in the sense of the partial ordering �, and
conditions (2.4) together with Assumption 4.2 are satisfied.
We compute explicitly the Legendre–Fenchel transform Ũ by solving the

Kuhn–Tucker system (5.1). It turns out that the Lagrange multiplier is zero
so that the Kuhn–Tucker system reduces to

y = ∑
j=1	2

u′j�xv∗j�v∗j�
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Since �v∗∗1 	 v∗∗2 � = �v1	 v2�, it follows from uniqueness of the representation of
y in the basis �v∗1	 v∗2� of �2 that u′j�xv∗j� = yvj, and therefore

Ũ�y� = ũ1�yv1� + ũ2�yv2�	
where ũj is the one-dimensional Legendre–Fenchel transform of −uj�−·�.
Clearly, condition (A1) of Assumption 4.4 is satisfied. Moreover, Ũ is differ-

entiable and

Ũ′�y� = ∑
j=1	2

ũ′j�yvj�vj

so that Assumption 4.5 is satisfied whenever AE�uj� < 1 for j = 1	2. How-
ever, Assumption 4.1 is not satisfied. Indeed, take two arbitrary vectors x1
and x2 in int�K�, and compute for λ ∈ �0	1�,

λU′�x1� + �1− λ�U′�x2� =
∑
j=1	2

[
λu′j�x1v∗j� + �1− λ�u′j�x2v∗j�

]
v∗j�

Suppose to the contrary that Assumption 4.1 holds. Then∑
j=1	2

[
λu′j�x1v∗j� + �1− λ�u′j�x2v∗j�

]
v∗j = U′�µx1 + �1− µ�x2�

= ∑
j=1	2

u′j
(
µx1v

∗
j + �1− µ�x2v∗j

)
v∗j�

Setting ξij 	= v∗jxi, and recalling that xi = ξi1v1 + ξi2v2, this provides
λu′j�ξ1j� + �1− λ�u′j�ξ2j� = u′j�µξ1j + �1− µ�ξ2j� for j = 1	2�

Since µ does not depend on j, it is easy to build examples of functions uj so
that these equalities cannot hold simultaneously.

6. Approximation by quadratic inf-convolution. Let H be the open
convex cone introduced in Assumption 4.4; that is, H = int�K∗� under (A1)
and K∗ ⊂H under (A2).
Let n ≥ 1 be an arbitrary integer. Following Aubin (1984) or Clarke, Ledyaev,

Stern and Wolenski (1998), we define the quadratic inf-convolution approxi-
mation of Ũ by

Ũn�y� 	= inf
z∈ &H

(
Ũ�z� + n

2
�z− y�2

)
for all y ∈ �d+1	

where &H is the closure ofH in �d+1. For each n ≥ 1	 Ũn is finite on �d+1, and
strictly convex in there. Since Ũ is nonnegative, we have

0 ≤ Ũn�y� ≤ Ũ�y� for all y ∈ �d+1�(6.1)

In order to handle the nonsmoothness of the utility function U, we define
the approximate dual problems,

Wn�x� 	= inf
y∈K∗	Y∈	 �y�

(
EŨn�Y� + xy)�
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From (6.1), we have

Wn�x� ≤W�x� for all x ∈K�
In the remaining part of this section, we state several properties of Ũn which
are extremely important for the subsequent analysis.

Property 1. For all y ∈ �d+1, there exists a unique zn�y� ∈ &H such that

Ũn�y� = Ũ�zn�y�� + n
2
�zn�y� − y�2�

Proof. This follows by direct application of Theorem 2.2, page 21, in Aubin
(1984) to the function F�z� = Ũ�z� + χ &H�z� where χ &H�z� = 0 on &H and +∞
otherwise, is the characteristic function of &H in the sense of convex analysis. ✷

Property 2. (i) For all x ∈ K and y ∈ dom�Ũn�, we have �zn�y� − y�2 ≤
4
n
�Ũn�y� + xy+C�, for some constant C.
(ii) Let �yn�n be a sequence converging to y ∈ dom�Ũ�. Then

zn�yn� → y�

(iii) Let �yn�n be a sequence converging to y. Suppose further that zn�yn� →
y� Then

Ũn�yn� → Ũ�y��

For the proof, see the Appendix.

Property 3. Function Ũn is continuously differentiable on �d+1 and

DŨn�y� = n�y− zn�y�� ∈ (
∂Ũ+N &H

)�zn�y��	
where N &H�z� 	= �ξ ∈ �d+1	 ξz ≥ ξy for all y ∈ &H is the normal cone to &H at
point z.

Proof. Applying Theorem 5.2, page 66, of Aubin (1984) to the function
f�y� = Ũ�y� + χ &H�y�, it follows that

DŨn�y� = n�y− zn�y�� ∈ ∂(Ũ+ χ &H
)�zn�y���

The required result follows from Theorem 4.4, page 52 in Aubin (1984) and
the definition of normal cones. ✷

Property 4. Suppose that AE�Ũ� < ∞. Then, there exist positive con-
stants C ≥ 0 and β > 0 such that, for all n ≥ 1,

Ũn�µy� ≤ µ−β(C+ Ũn�y�) for all µ ∈ �0	1� and y ∈ �d+1�
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Proof. By a trivial change of variable, it follows from the cone property
of H that:

Ũn�µy� = µ2 inf
z∈ &H

(
µ−2Ũ�µz� + n

2
�z− y�2

)
�

Using Corollary 4.1, this provides

Ũn�µy� ≤ µ−βC+ µ−β inf
z∈ &H

(
Ũ�z� + µβ+2n

2
�z− y�2

)
and the required result from the fact that µβ+2 ≤ 1. ✷

7. Existence for the dual problems. We recall the notation 
 n�x� and

 �x� for the set of all possible solutions of the optimization problems Wn�x�
and W�x�. We first show in Lemma 7.1 that for all n ≥ 0, there exists a
solution to problem Wn�x�. We then show in Lemma 7.2 the existence for the
dual problemW�x�. In Corollary 7.2, we establish the convergence of the value
functions Wn�x� toward W�x�. We conclude this section by stating a stronger
technical convergence result that will be needed in the following section.

Lemma 7.1. Consider some initial wealth x in int�K� satisfyingW�x� <∞.
Then 
 n�x� #= $ for all n ≥ 1.

Proof. Let n ≥ 1 be a fixed integer. Let �yk	Yk�k be a minimizing sequ-
ence ofWn�x�. If the set �k ≥ 0	 yk = 0 is infinite, then �yk	Yk� → �ỹ	 Ỹ� = 0
along a subsequence, and the result of the lemma is trivial. We then specialize
the discussion to the nontrivial case where �k ≥ 0	 yk = 0 is finite. By passing
to a subsequence, we can assume this set to be empty.
Since Ũn ≥ 0, it follows from (6.1) that ∞ > W�x� ≥ Wn�x� ≥ xyk − 1 ≥

wkl�x� − 1, where wk 	= �yk�0 is the first component of the �d+1 vector yk.
Recall that x ∈ int�K�. Then it follows from Lemma 3.1 that l�x� > 0 and
therefore the sequence �wk�k is bounded. Now observe that �y ∈ K∗	 y0 =
1 is a compact subset of �d+1, which proves that the sequence �yk/wk�k is
bounded, and therefore the sequence �yk�k is bounded. By possibly passing to
a subsequence, this implies the existence of ỹ ∈K∗ such that

yk → ỹ as k→∞�
Next, since ST =XS0	0

T ∈ � �S0�, it follows from the definition of the set 	 �yk�
that E�YkST� = EYkST ≤ S0yk. Then, the sequence �YkST�k is bounded in
L1 norm. By Komlòs theorem [see, e.g., Hall and Heyde 1980], we deduce the
existence of a sequence Ỹk ∈ conv�Yj	 j ≥ k� such that

Ỹk → Ỹ P-a.s.�
recall that SiT > 0P-a.s. for all i = 1	 � � � 	 d. Clearly, Ỹ is valued in K∗ and
Ỹk ∈ 	 �ỹk�, where ỹk is the corresponding convex combination of �yj	 j ≥ 0�.
By Fatou’s lemma, we also have EXỸ ≤ xỹ for all X ∈ � �x�; recall that
X ∈ K and Ỹk ∈ K∗. Hence Ỹ ∈ 	 �ỹ�. Now, from the convexity of �y	Y� (→
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Ũn�Y� + xy, it follows that �ỹk	 Ỹk�k is also a minimizing sequence of Wn.
Since Ũ ≥ 0, we get by Fatou’s lemma,

Wn�x� ≤ EŨn�Ỹ� + xỹ ≤ lim inf
k→∞

EŨn�Ỹk� + xỹk =Wn�x��

This proves that �ỹ	 Ỹ� ∈ 
 n�x�. ✷

Lemma 7.2. Consider some initial wealth x in int�K� satisfyingW�x� <∞.
For each n ≥ 1, let �yn	Yn� be an arbitrary element of
 n�x�. Then, there exists
a sequence �ȳn	 &Yn� ∈ conv��yk	Yk�	 k ≥ n� such that

�ȳn	 &Yn� → �y∗	Y∗� ∈ 
 �x�	 P-a.s. and EŨn�&Yn� → EŨ�Y∗��
Proof. Since Ũn ≥ 0, it follows from (6.1) that ∞ > W�x� ≥ Wn�x� ≥

xyn ≥ wnl�x�, where wn 	= �yn�0 is the first component of the �d+1 vector
yn. By the same argument as in the previous proof, yn → y∗ ∈ K∗ along a
subsequence, and there exists a sequence &Yn ∈ conv�Yj	 j ≥ n� such that
&Yn → Y∗P-a.s. and Y∗ ∈ 	 �y∗�.
Let �λn	j�j≥n be the coefficients of the above convex combination. From the

convexity of Ũn and the increase of Ũn in n, we see that

Ũn�&Yn� ≤ ∑
j≥n
λn	jŨn�Yj� ≤ ∑

j≥n
λn	jŨj�Yj��

Taking expectations, and using Property 1 of the quadratic inf-convolution
approximation, as well as (6.1), we see that for &Yn and the corresponding
convex combination ȳn of �yj�j ≥ n�,

EŨ
(
zn�&Yn�)+ xȳn = EŨn�&Yn� − n

2
�zn�&Yn� − &Yn�2 + xȳn

≤ EŨn�&Yn� + xȳn
≤ ∑
j≥n
λn	j

[
EŨj�Yj� + xyj]

= ∑
j≥n
λn	jWj�x� ≤W�x��

(7.1)

Using Property 2(i) of the inf-convolution approximation, we see that

E�zn�&Yn� − &Yn�2 ≤ 4
n
�C+W�x��

for some constant C. Therefore, zn�&Yn� − &Yn → 0 in L2 norm. Since &Yn →
Y∗P-a.s. this proves that zn�&Yn� → Y∗P-a.s. along some subsequence. We
now take limits in (7.1). In view of Property 2(iii), it follows from Fatou’s
lemma that EŨ�Y∗�+xy∗ ≤W�x�. Since y∗ ∈K∗ and Y∗ ∈ 	 �y∗�, this proves
that �y∗	Y∗� ∈ 
 �x�. The previous inequalities also provide the convergence
of EŨn�&Yn� towards EŨ�Y∗�. ✷

Corollary 7.1. Let x in int�K� be such thatW�x� <∞. Then, the sequence
Wn�x� converges towards W�x�.
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Proof. Observe that the sequence �Wn�x��n is increasing. SinceWn�x� ≤
W�x� by (6.1), we have Wn�x� → W∞�x� for some W∞�x� ≤ W�x�. We now
use the same argument as in the previous proof to get

EŨn�&Yn� + xȳn ≤ ∑
k≥n
λn	kWk�x� ≤W�x��

Taking limits, it follows from the previous lemma thatW�x� ≤W∞�x� ≤W�x�.
Then W∞�x� =W�x�. ✷

Corollary 7.2. Consider some initial wealth x in int�K� satisfying
W�x� < ∞. For each n, let �yn	Yn� be an arbitrary element in 
 n�x�, and
let �y∗	Y∗� ∈ 
 �x� be the limit defined in Lemma 7.2. Set Jn 	= Ũn�Yn�.
Then there exists a sequence �yn∗ 	Yn∗ 	Jn∗ � ∈ conv��yk	Yk	Jk�	 k ≥ n� such

that

�yn∗ 	Yn∗ � → �y∗	Y∗�	 P-a.s. and Jn∗ → Ũ�Y∗� in L1�P��

Proof. From Lemma 7.2, there exists a sequence �ȳn	 &Yn� ∈ conv��yk	
Yk�	 k ≥ n� which converges P-a.s. to �y∗	Y∗� ∈ 
 �x�. Denote by �λn	k	 k ≥ n�
the coefficients defining the convex combination, and set &Jn 	=∑

k≥n λn	kJk.
First, observe that E &Jn + xȳn = ∑

k≥n λn	kWk�x� → W�x� by Corollary
7.1, and then E &Jn → EŨ�Y∗�. Since &Jn ≥ 0 for all n, this proves that the
sequence � &Jn�n is bounded in L1�P�. From Komlòs theorem, we can then
deduce the existence of a sequence Jn∗ ∈ conv� &Jk	 k ≥ n� = conv�Jk	 k ≥ n�
and an integrable r.v. J∗, such that

Jn∗ → J∗	 P-a.s. and EJn∗ → EŨ�Y∗�	
where we used again Corollary 7.1. We shall denote by �λn	k∗ 	 k ≥ n� the coeffi-
cients defining this new convex combination. Set �yn∗ 	Yn∗ � 	=

∑
k≥n λ

n	k
∗ �yk	Yk�.

Since �yn∗ 	Yn∗ � ∈ conv��ȳk	 &Yk�	 k ≥ n�, we have
�yn∗ 	Yn∗ � → �y∗	Y∗�	 P-a.s.

Next, it follows from the increase of Ũn in n, as well as the convexity of Ũn

that

Jn∗ =
∑
k≥n
λn	k∗ Ũk�Yk� ≥ ∑

k≥n
λn	k∗ Ũn�Yk� ≥ Ũn�Yn∗ ��

Using Property 2 of the quadratic inf-convolution (as in the end of the proof
of Lemma 7.2), this proves that J∗ ≥ Ũ�Y∗�P-a.s. On the other hand, it
follows from Fatou’s lemma that EŨ�Y∗� = limn EJn∗ ≥ EJ∗. This proves that
J∗ = Ũ�Y∗�P-a.s.
We have then established that Jn∗ → Ũ�Y∗�P-a.s. and EJn∗ → EŨ�Y∗�.

Since Jn∗ ≥ 0P-a.s., this proves that Jn∗ → Ũ�Y∗� in L1�P�; see, for example,
Shiryaev (1995).
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8. Attainability. We first start by characterizing the optimality of
�yn	Yn� ∈ 
 n�x� by the classical technique of calculus of variation.

Lemma 8.1. Let Assumption 4.5 hold, and consider some initial wealth
x ∈ int�K� satisfying W�x� < ∞. For each n, let �yn	Yn� be an arbitrary

element of 
 n�x�. Set Xn 	= −DŨn�Yn� = n�zn�Yn� − Yn�; see Property 3.
Then,

EXn�Y−Yn� ≤ x�y− yn� for all y ∈K∗ and Y ∈ 	 �y��

Proof. Let y ∈K∗ and Y ∈ 	 �y� be fixed. Set
�ζnε 	 ξnε � 	= �1− ε��yn	Yn� + ε�y	Y�	 Znε 	= zn�ξnε �

and

Xn
ε 	= −DŨn�ξnε � = n�Znε − ξnε ��

Clearly, as ε↘ 0	 ξnε → Yn	Znε → Zn 	= zn�Yn� and Xn
ε →XnP-a.s.

By the optimality of �yn	Yn� for the problem Wn�x� and the convexity of
Ũn, we have

0 ≥ E[
Ũn�Yn� − Ũn�ξnε �

]+ x�yn − ζnε � ≥ −EXn
ε �Yn − ξnε � + x�yn − ζnε ��

Dividing by ε, this provides

EXn
ε �Y−Yn� − x�y− yn� ≤ 0�

In order to prove the required result, it remains to check that

lim inf
ε↘0

EXn
ε �Y−Yn� ≥ EXn�Y−Yn��

To prove this, we intended to show that the sequence �Xn
ε �Y−Yn��ε is bounded

from below by some integrable random variable independent of ε, which allows
applying Fatou’s lemma.
Let α > 0 be a given parameter. By convexity of Ũn, we see that

Ũn
(�1− ε− α�Yn) ≥ Ũn(ξnε + α�Y−Yn�)− �ε+ α�YDŨn(ξnε + α�Y−Yn�)�

From Property 3 of the quadratic inf-convolution,

DŨn
(
ξnε + α�Y−Yn�) ∈ (

∂Ũ+N &H
)(
zn�ξnε + α�Y−Yn��) ⊂ −K	

since Ũ is decreasing in the sense of �∗ onH (see Lemma 3.4 and Assumption
4.4) and by the definition ofH. Then YDŨn�ξnε +α�Y−Yn�� ≤ 0. Using again
the convexity of Ũn, we get

Ũn
(�1− ε− α�Yn) ≥ Ũn(ξnε + α�Y−Yn�)

≥ Ũn�ξnε � + αDŨn�ξnε ��Y−Yn� ≥ −αXn
ε �Y−Yn�	
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where we used the non-negativity of Ũn. Now, let 4α ≤ 1 and ε ≤ 1−2α. Then,
from Property 4, which is inherited from Assumption 4.5, this provides

Xn
ε �Y−Yn� ≥ −1

α
Ũn

(�1− ε− α�Yn) ≥ −�1− ε− α�−β
α

�C+ Ũn�Yn��
≥ −α−β−1�C+ Ũn�Yn���

(8.1)

Now, observe that EŨn�Yn� + xyn = Wn�x� → W�x�, so that Ũn�Yn� is
integrable for large n, and the proof is complete. ✷

The following result is an easy consequence of Komlòs theorem. We report
it for completeness.

Lemma 8.2. Let �φn�n be a sequence of r.v. in L0��p	� �. Suppose that

sup
n
�φn� <∞	 P-a.s.

Then there exists a r.v. φ ∈ L0��p	� � such that, after possibly passing to a
subsequence,

1
n

n∑
j=1
φj → φ	 P-a.s.

Proof. Set ϕ 	= supn �φn� and define the probability measure P′ by the
density dP′/dP = e−ϕ/Ee−ϕ. Then, P′ ∼ P, and the sequence �φn�n is bounded
in L1�P′�. The required result follows from Komlòs theorem. ✷

Lemma 8.3. Let Assumptions 4.1, 4.2, 4.4 and 4.5 hold, and consider some
x ∈ int�K� with W�x� <∞.
Let �Xn�n be the sequence introduced in Lemma 8.1, and �y∗	Y∗� be the

solution in 
 �x� introduced in Lemma 7.2. Then P�Y∗ = 0� = 0, and there
exist a sequence Xn

∗ ∈ conv�Xj	j ≥ n� and X∗ such that

X∗ ∈ −∂Ũ�Y∗� and Xn
∗ →X∗	 P-a.s.

Moreover, under condition (4.4), the above statement still holds if Assumption
4.3 is substituted for Assumption 4.2.

Proof. (i) We first prove the required result when condition (A1) of
Assumption 4.4 is satisfied. We shall use the notation of Lemma 8.1.
Define the sequence Zn∗ =

∑
k≥n λn	kZk, where �λn	k	 k ≥ n�n are the coef-

ficients of the convex combination relating �Yn∗ �n to �Yn�n, and observe that
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EŨn�Yn� = EŨ�Zn� + n
2 �Zn −Yn�2 → EŨ�Y∗�, so that Zn −Yn → 0P-a.s.

after possibly passing to a subsequence. ThenZn∗ = Yn∗+
∑
k≥n λn	k�Zk−Yk� →

Y∗P-a.s. Since W�x� = EŨ�Y∗� + xy∗ is finite, it follows from condition (A1)
that Y∗ ∈ int�K∗�P-a.s and the sequence �Zn∗ �ω��n is valued in a compact
subset J�ω� of int�K∗� for a.e. ω ∈ �. In particular, we have NH�Zn∗ � = �0
for large n.
By definition, −Xn ∈ ∂Ũ�Zn�P-a.s., or equivalently, Zn ∈ ∂U�Xn�P-a.s.

From Assumption 4.1, there exists &Xn = ∑
k≥n µn	kXk ∈ conv�Xk	k ≥ n�

such that − &Xn ∈ ∂Ũ�Zn∗ �. Since the sequence �Zn∗ �ω��n is valued in a com-
pact subset of int�K∗�, it follows from the convexity of Ũ that the sequence
&Xn ∈ −∂Ũ�Zn∗ � is bounded P-a.s. We now use Lemma 8.2 to find a sequence&Xn
∗ ∈ conv� &Xk	k ≥ n� which converges P-a.s. to some random variable X∗.
It remains to prove that −X∗ ∈ ∂Ũ�Y∗�. Since &Xn ∈ −∂Ũ�Zn∗ �, the defini-

tion of the subgradient provides

Ũ�z� ≥ Ũ�Zn∗ � + &Xn�Zn∗ − z� for all z ∈K∗�

Let �λn	j�j≥n be the coefficients of the convex combination defining � &Xn
∗ � from

� &Xn�, and set &Zn∗ 	=
∑
j≥n λn	jZ

j
∗ . By convexity of Ũ, the previous inequality

implies that

Ũ�z� ≥ Ũ�&Zn∗ � +
∑
j≥n
λn	j &Xj�Zj∗ − z�

= Ũ�&Zn∗ � + &Xn
∗ �&Zn∗ − z� +

∑
j≥n
λn	j &Xj�Zj∗ − &Zn∗ ��

Now, recall that Zn∗ → Y∗P-a.s. Then, Z
j
∗ − &Zn∗ → 0P-a.s. Since the sequence

� &Xn� is P-a.s. bounded, it follows that &Xj�Zj∗ − &Zn∗ � → 0P-a.s. and the same
result prevails for the convex combination. Hence, by taking limits in the last
inequality, we get

Ũ�z� ≥ Ũ�Y∗� +X∗�Y∗ − z� for all z ∈K∗	

proving that −X∗ ∈ ∂Ũ�Y∗�.
(ii) Now suppose that condition (A2) of Assumption 4.4 is satisfied. As in

part (i) of this proof, Zn∗ → Y∗P-a.s. We first prove that

P�Y∗ = 0� = 0�(8.2)

Consider first the case where Assumption 4.2 is satisfied, that is, supx∈KU�x�
= +∞. Then, Ũ�0� = +∞, and we obtain immediately (8.2) from the fact
that W�x� < ∞. Next, suppose that condition (4.4) holds, and Assumption
4.3 is satisfied instead of Assumption 4.2. Let Y+ be an element in 	 �y+� ∩
L0�K∗\�0	�T�, and observe that Y0+ > 0 P-a.s. Define the event set A 	=
�Y∗ = 0. From Assumption 4.3, the sequence �l�Xn��n convergesP-a.s. to+∞
on A, since by definition Xn 	= −DŨn�Yn� ∈ �∂Ũ +N &H��zn�Yn��. But, from
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the first order condition of Lemma 8.1 together with the definition of the
liquidation function l, we have

x�y+ − yn� ≤ EXn�Y+ −Yn� ≥ E
[
Y0+l�Xn� −XnYn

]
�

Furthermore, since AE�Ũn� <∞ by Assumption 4.5, and Ũ is bounded (as a
consequence of the boundedness of U), we see that supn EX

nYn <∞. There-
fore, whenever P�A� > 0, the right-hand side of the last inequality explodes
to +∞, whereas the left-hand side remains bounded. This is the required con-
tradiction, and the proof of (8.2) is complete.
Then, for n sufficiently large, Zn∗ is valued in the open domain H, and

therefore N &H�Zn∗ � = �0. We then proceed as above to obtain the existence
of a sequence &Xn

∗ ∈ conv� &Xk	k ≥ n� = conv�Xk�k ≥ n� such that &Xn
∗ →

X∗P-a.s.
We now prove that −X∗ ∈ ∂Ũ�Y∗�. Let us be more specific, and call &U the

extension of Ũ to the open convex domain H. By the same argument as in (i),
we see that −X∗ ∈ ∂&U�Y∗�. By definition, Ũ = &U+χK∗ , where χK∗ = 0 on K∗

and +∞ otherwise. Then, ∂Ũ = ∂&U+NK∗ , and ∂&U�Y∗� ⊂ ∂Ũ�Y∗�. ✷

Proposition 8.1. Let Assumptions 4.1, 4.2, 4.4 and 4.5 hold, and consider
some x ∈ int�K� with W�x� < ∞. Let �y∗	Y∗� be the solution of W�x� intro-
duced in Lemma 7.2. Then P�Y∗ = 0� = 0 (Lemma 8.3), and there exists a r.v.
X∗ valued in −∂Ũ�Y∗� such that

EX∗�Y−Y∗� + x�y∗ − y� ≤ 0 for all y ∈K∗ and Y ∈ 	 �y��(8.3)

Moreover, under condition (4.4), the above statement still holds if Assumption
4.3 is substituted for Assumption 4.2.

Proof. Let �yn	Yn� ∈ 
 n�x�	Xn 	= −DŨn�Yn�	Jn 	= Ũn�Yn�, and
Zn 	= zn�Yn�. Let �yn∗ 	Yn∗ 	Xn

∗ 	J
n
∗ 	Z

n
∗ � ∈ conv��yk	Yk	Xk	Jk	Zk�	 k ≥ n�

be as in Lemmas 7.2 and 8.3 and Corollary 7.2: �yn∗ 	Yn∗ 	Xn
∗ � → �y∗	Y∗	X∗�

P-a.s. and Jn∗ → Ũ�Y∗� in L1�P�. We shall denote by �λn	k	 k ≥ n�n the coef-
ficients of the last convex combination. From Lemma 8.1, we have

lim inf
n→∞ E

∑
k≥n
λn	kXk�Y−Yk� ≤ x�y− y∗��(8.4)

By the sameargument as in theproof of Lemma8.1,weget the lower bound (8.1),∑
k≥n
λn	kXk�Y−Yk� ≥ Const�1+Jn∗ ��(8.5)

The sequence �Jn∗ �n is uniformly integrable as it converges in the L1�P� norm.
Then we can apply Fatou’s lemma in (8.4) and we get

E lim inf
n→∞

∑
k≥n
λn	kXk�Y−Yk� ≤ x�y− y∗��(8.6)
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Now observe that
∑
k≥n λn	kXkZk−Xn

∗Z
n
∗ =

∑
k≥n λn	kXk�Zk−Zn∗ � ≤ 0 since

Xk ∈ −∂Ũ�Zk� and Ũ is convex. Then, inequality (8.6) provides

x�y− y∗� ≥ E lim inf
n→∞

[
Xn

∗ �Y−Zn∗ � +
∑
k≥n
λn	kXk�Zk −Yk�

]
= E

[
X∗�Y−Y∗� + lim inf

n→∞
∑
k≥n
λn	kXk�Zk −Yk�

]
�

(8.7)

Notice that EŨn�Yn� = EŨ�Zn� + n
2 �Zn − Yn�2 → EŨ�Y∗�. Then, E�Zn −

Yn�2 → 0, and therefore Zn −Yn → 0P-a.s. after possibly passing to a sub-
sequence. Since∣∣∣∣ ∑

k≥n
λn	kXk�Zk −Yk�

∣∣∣∣ ≤ ∑
k≥n
λn	k�Xk� sup

k≥n
�Zk −Yk� = �Xn

∗ � sup
k≥n

�Zk −Yk�	

this implies that
∑
k≥n λn	kXk�Zk − Yk� → 0P-a.s. Reporting this in (8.7)

provides the result announced in the statement of the proposition. ✷

We now use Theorem 4.1 in order to derive a characterization of attainable
contingent claims.

Lemma 8.4. Let the conditions of Theorem 4.1 hold. Let C ∈ L0�K	�T� and
x ∈K be such that

sup
y∈K∗

sup
Y∈	 �y�

�ECY− xy� = ECY◦ − xy◦ = 0

for some y◦ ∈ K∗\�0 and Y◦ ∈ 	 �y◦� with P�Y◦ = 0� = 0. Then C ∈ � �x�;
that is, the contingent claim C is attainable from the initial wealth x.

Proof. From Remark 4.4, we have ECẐT − xẐ0 ≤ 0 for all Z ∈ � . This
proves that x ∈ D�C� = 4�C� by Theorem 4.1. Hence,X � C (i.e.,X−C ∈K�
P-a.s. for some X = Xx	L

T ∈ � �x�. Since Y◦ ∈ K∗P-a.s., it follows from the
definition of 	 �y◦� and the condition of the lemma that

0 ≤ E�X−C�Y◦ = EXY◦ − xy◦ ≤ 0�
This proves that �X−C�Y◦ = 0P-a.s. and thereforeX−C ∈ ∂KP-a.s. by the
fact that Y◦ #= 0P-a.s. Finally, from Lemma 3.1, we have l�X − C� = 0, and
by Remark 3.2, there exists some random transfer matrix a ∈ L0��d+1

+ 	�T�
such that

Ci =Xi +
d∑
j=0

[
aji − �1+ λij�aij] for all i = 0	 � � � 	 d�

Now set L̃ = L+ a1�T. Clearly, L̃ ∈ � �x� and C =Xx	 L̃
T ∈ � �x�. ✷
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Corollary 8.1. Let the conditions of Proposition 8.1 and Theorem 4.1
hold. Let �y∗	Y∗� be the solution of W�x� introduced in Lemma 7.2. Then
P�Y∗ = 0� = 0, and there exists a r.v. X∗ valued in −∂Ũ�Y∗� such that

X∗ ∈ � �x� and EX∗Y∗ = xy∗�

Proof. By Proposition 8.1, P�Y∗ = 0� = 0 and X∗ is valued in −∂Ũ�Y∗�.
Then, X∗ takes values in KP-a.s. by Lemma 4.2(ii). We now apply inequal-
ity (8.3) of Proposition 8.1 for y = 2y∗ and Y = 2Y∗ (resp. y = y∗/2 and
Y = Y∗/2). This provides immediately EX∗Y∗ = xy∗. Then, applying again
inequality (8.3) provides

EX∗Y− xy∗ ≤ 0 = EX∗Y∗ − xy∗ for all Y ∈ 	 �y∗��

Since X∗ ∈ L0�K	�T�, we are in the context Lemma 8.4, and the proof is
complete. ✷

9. Proof of Theorem 4.2. Part (i) of the theorem is proved in Lemma
7.2. Let X∗ be the contingent claim introduced in Corollary 8.1. We intend to
prove the optimality of X∗ for problem V�x�. Since X∗ is valued in −∂Ũ�Y∗�,
it follows from the definition of the subgradient of the convex function Ũ that

Ũ�Y∗� +X∗Y∗ ≤ Ũ�y� +X∗y for all y ∈K∗�

Then, from the duality relation betweenU and Ũ [see, e.g., Rockafellar (1970)],

U�x� = inf
y∈K∗

(
Ũ�y� + xy)	

we deduce that

Ũ�Y∗� +X∗Y∗ ≤ U�X∗��

We now take expectations, and use Corollary 8.1 to get

W�x� = EŨ�Y∗� + xy∗ = E�Ũ�Y∗� +X∗Y∗� ≤ EU�X∗� ≤ V�x��(9.1)

In view of (4.3), this provides

W�x� = V�x� = EU�X∗�	

as announced in parts (ii), (iii) and (iv) of the theorem.
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APPENDIX

A.1. Proof of Proposition 4.1. (i) Assume that AE�Ũ� <∞ and

lim sup
l�x�→∞

sup
p∈∂U�x�

�p� = 0	(A.1)

and let us prove that AE�U� < 1.
Let β be an arbitrary positive constant. Since AE�Ũ� < ∞, we have, for

some b > 0,

qy− βŨ�y� < 0 for all q ∈ −∂Ũ�y� and y ∈K∗ with l∗�y� ≤ b�(A.2)

From the positive homogeneity of l∗, there exists some y0 ∈ int �K∗� satisfying
l∗�y0� = b.
We now observe that there exists a constant c > 0 such that

for all x � c10 and p ∈ ∂U�x�	 we have y0 �∗ p�
Indeed, if such a positive constant does not exist, then

for all n	 there exist xn � n10 and pn ∈ ∂U�xn� such that y0 − pn #∈K∗�

Since y0 ∈ int �K∗�, this leads to a contradiction with (A.1).
Now, take x � c10, that is, l�x� ≥ c. Let p be an arbitrary element in ∂U�x�.

By the definition of Ũ, we have x ∈ ∂Ũ�p� and
U�x� = inf

y∈�d+1
(
Ũ�y� + xy) = Ũ�p� + xp�(A.3)

Then, applying (A.2) with y = p and q = x, we see that Ũ�p� > xp/β. Plugging
the last inequality in (A.3), we get

U�x� > �1+ β−1�xp for all x ∈K with l�x� ≥ c�
The required result follows from the arbitrariness of p in ∂U�x�.
(ii) The second part can be proved similarly. Assume that AE�U� < 1 and

lim inf
�y�→0

inf
q∈−∂Ũ�y�

l�q� = ∞	(A.4)

and let us prove that AE�Ũ� <∞.
Let β be an arbitrary positive constant. Since AE�U� < 1, we have, for

some c > 0,(
1+ 1

β

)
px < U�x� for all p ∈ ∂U�x� and x ∈K with l�x� ≥ c�(A.5)

Set x0 	= c10 so that l�x0� = c and x0 ∈ int �K�, and observe that there exists
a constant b > 0 such that

for all y *∗ b10 and q ∈ −∂Ũ�y�	 q � x0�



1380 G. DEELSTRA, H. PHAM AND N. TOUZI

Indeed, if such a positive constant does not exist, then

for all n	 there exist yn *∗
1
n
10 and qn ∈ −∂Ũ�yn� such that qn − x0 #∈K�

By definition of the liquidation function l, this means that l�qn − x0� =
l�qn� − c < 0. Since yn → 0, this leads to a contradiction with (A.4).
Now, take y *∗ b10, that is, l∗�y� ≤ b. Let q be an arbitrary element

in −∂Ũ�y�. By the definition of Ũ, we have y ∈ ∂U�q� and
Ũ�y� = U�q� − qy�(A.6)

Then, applying (A.5) with x = q and p = y, we see that U�q� > �1 + 1
β
�qy.

Plugging the last inequality in (A.6), we get

Ũ�y� > qy/β for all y ∈K∗ with l∗�y� ≤ b and all q ∈ −∂Ũ�y��
The required result follows from the arbitrariness of q in −∂Ũ�y�.

A.2. Proof of Lemma 4.1. (i) We first prove the necessary condition. The
condition AE�Ũ� <∞ means that there exist b	β > 0 such that

py− βŨ�y� < 0 for all y ∈ B and p ∈ −∂Ũ�y�	(A.7)

where B = �y ∈K∗	 l∗�y� ≤ b. Now fix some y ∈ B, and observe that µy ∈ B
for all µ ∈ �0	1�. Let F be the convex function defined on �0	1� by F�µ� 	=
Ũ�µy�. Then it follows from (A.7) that

− µq− βF�µ� < 0 for all µ ∈ �0	1� and q ∈ ∂F�µ��(A.8)

Set G�µ� 	= µ−βŨ�y�. In order to complete the proof, we have to check that
�F−G��µ� ≤ 0 for all µ ∈ �0	1��(A.9)

Clearly, function G satisfies the first-order differential equation,

− µG′�µ� − βG�µ� = 0 for all µ ∈ �0	1��(A.10)

Since F�1� = G�1�, it follows from (A.8) and (A.10) that q > G′�1� for all
q ∈ ∂F�1�. Then by closedness of the subgradient of the convex function F [see
Clarke, Ledyaev, Stern and Wolenski (1998)], there exists a small parameter
ε > 0 such that

q > G′�1� for all q ∈ ⋃
1−ε≤µ≤1

∂F�µ��

Now, by convexity of F, we see that for all µ ∈ �1− ε	1� and q ∈ ∂F�µ�,
F�µ� ≤ F�1� − q�1− µ� = G�1� − q�1− µ� < G�1� −G′�1��1− µ� ≤ G�µ�	

where the last inequality follows from the convexity of G. Hence

F < G on �1− ε	1��(A.11)
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Next, set µ0 	= sup�µ ∈ �0	1�	 �F − G��µ� = 0 with the usual convention
sup$ = −∞. In view of (A.11) and the continuity of F and G, the statement
(A.9) is equivalent to µ0 ≤ 0. We then argue by contradiction, and assume
that µ0 ∈ �0	1�. By definition of µ0 and (A.11), we have �F−G��µ0� = 0 and
F−G < 0 on �µ0	1�. This implies that ∂�F−G��µ0� ⊂ �− and therefore

q0 ≤ G′�µ0� for all q0 ∈ ∂F�µ0��

On the other hand, turning back to (A.8) and (A.10) for µ = µ0, we see that
q0 > G

′�µ0� which is the required contradiction.
(ii) We now prove sufficiency. Fix some y ∈K∗ such that l∗�y� ≤ b, and set

F�µ� 	= Ũ�µy�	G�µ� 	= µ−βŨ�y�. Let q be an arbitrary element in ∂F�1�.
Since F is convex, it follows from the definition of the subgradient and the
fact that F�1� = G�1� that

εq ≥ F�1� −F�1− ε� > G�1� −G�1− ε� for all ε ∈ �0	1��(A.12)

Dividing by ε and sending ε to zero provides G′�1� ≤ q for all q ∈ ∂F�1�. This
can be written equivalently in terms of Ũ as

−βŨ�y� ≤ −py ∀p ∈ −∂Ũ�y�	

which ends the proof. ✷

A.3. Proof of Property 2. This is an easy adaptation from Aubin (1984).
By definition of Ũn and Ũ, it follows that

Ũn�y� = Ũ�zn�y�� + n
2
�zn�y� − y�2

≥ U�x� − xy− x�zn�y� − y� + n
2
�zn�y� − y�2 for all x ∈K

≥ U�x� − xy− �x�2
n

+ n
4
�zn�y� − y�2	

where we used the trivial inequality ab ≤ n−1�a�2+ 4−1n�b�2. Collecting terms
and recalling that U is nonnegative, this provides

�zn�y� − y�2 ≤ 4
n

[
Ũn�y� + xy+ �x�2

n

]
�

This proves (i). The same inequality together with the observation that Ũn ≤ Ũ
provide (ii) by continuity of Ũ on its domain.
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It remains to prove (iii). To see this, observe that

Ũ�zn�yn�� = Ũn�yn� − n
2
�zn�yn� − yn�2 ≤ Ũn�yn�	

and therefore

Ũ�y� ≤ lim inf
n→∞ Ũn�yn��

On the other hand, since Ũn ≤ Ũ,
lim sup
n→∞

Ũn�yn� ≤ lim
n→∞ Ũ�y

n� = Ũ�y�

by continuity of Ũ. ✷
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