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JOIN THE SHORTEST QUEUE: STABILITY AND
EXACT ASYMPTOTICS

By R. D. Foley and D. R. McDonald1

Georgia Institute of Technology and University of Ottawa

We consider the stability of a network serving a patchwork of over-
lapping regions where customers from a local region are assigned to a col-
lection of local servers. These customers join the queue of the local server
with the shortest queue of waiting customers. We then describe how the
backlog in the network overloads. We do this in the simple case of two
servers each of which receives a dedicated stream of customers in addition
to customers from a stream of smart customers who join the shorter queue.
There are three distinct ways the backlog can overload. If one server is very
fast, then that server takes all the smart customers along with its dedi-
cated customers and keeps its queue small while the dedicated customers
at the other server cause the overload. We call this the unpooled case. If
the proportion of smart customers is large, then the two servers overload in
tandem. We call this the strongly pooled case. Finally, there is the weakly
pooled case where both queues overload but in different proportions. The
fact that strong pooling can be attained based on a local protocol for over-
lapping regions may have engineering significance. In addition, this paper
extends the methodology developed in McDonald (to appear The Annals of
Applied Probability) to cover periodicities.

The emphasis here is on sharp asymptotics, not rough asymptotics as
in large deviation theory. Moreover, the limiting distributions are for the
unscaled process, not for the fluid limit as in large deviation theory. In the
strongly pooled case, for instance, we give the limiting distribution of the
difference between the two queues as the backlog grows. We also give the
exact asymptotics of the mean time until overload.

1. Introduction. We will be analyzing the following generalization of the
classical problem of joining the shortest queue. Consider m < ∞ exponential
servers numbered 1� � � � �m, each having an infinite-capacity waiting area. The
service times at the ith server form a sequence of independent, exponentially
distributed random variables with rate µi > 0. Each nonempty set of servers
A ⊂ M ≡ �1� � � � �m� has an associated Poisson arrival process of customers
with rate λA ≥ 0 that join the shortest queue in A with ties broken randomly.
We assume that the m sequences of exponential service times and the 2m − 1
Poisson arrival processes are mutually independent. To eliminate degenera-
cies, we assume that it is possible for customers to arrive to each of the servers;
i.e., for every server i ∈M, there exists A ⊂M such that i ∈ A and λA > 0.

In particular, we will be analyzing the stability conditions and the asymp-
totic behavior of this system. We determine the stability conditions for the
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general system, but our asymptotic results are for the case of m = 2 queues.
In the case m = 2, we will use the notation λi ≡ λ�i� for i ∈ �1�2� for the
arrival rates of customers dedicated to a single queue and γ ≡ λ�1�2� for the
arrival rate of smart customers who join the shorter queue. It is possible to
extrapolate from the analysis of the two-queue system and develop some gen-
eral principles for the design of more complicated systems.

As a by-product of analyzing the asymptotics of joining the shortest queue,
we hope that the methodology developed in [14] and this paper will be consid-
ered a viable alternative for analyzing the exact asymptotics of other systems.
This approach is limited in the sense that, unlike in the more general theory
of large deviations [9], it does not handle systems in which the most likely
(fluid limit) path to the rare event of interest is nonlinear. However, in sys-
tems where the most likely path is linear, this approach may be easier and
yield stronger results.

2. Results. Our results for the join the shortest queue system are divided
into two groups: stability and exact asymptotics. In this paper, determining
the exact asymptotics of some function f
�� will mean determining not only
the rate α, but also the constant c such that f
�� ∼ cα�; that is,

lim
�→∞

f
��
cα�

= 1�

In some cases, we must deal with periodicities. We extend the above notation
to cover this situation and write f
�� k� ∼ c
�modp�α�χ�k ≡ � modp�, where
χ is the indicator function, by making the convention that 0/0 is 1, and that
the asymptotics must hold in � for every k. We are primarily interested in
asymptotic behavior of the join the shortest queue, but in order to analyze the
asymptotics, we need to know the stability conditions, which we now state.

For each nonempty subset A ⊂M, define the traffic intensity on A as

ρA =
∑
B⊂A λB
µA

�(1)

where µA = ∑
i∈A µi. The numerator of (1) represents the total arrival rate

of customers that must be serviced by the servers in A, and the denominator
represents the total service rate of the servers in A. Note that the total rate
at which customers are accepted to the servers in A may be greater than the
numerator of (1) since other customers may be allowed to be served by some
or all of the servers in A. Also, note that this total load represented by the
numerator of (1) is not necessarily spread equally over the servers in A since
some or all of the customers may be restricted to a subset of A. Let ρmax
represent the most heavily loaded subset; that is, ρmax ≡ maxA⊂M�ρA�.

LetQ
t� = 
Q1
t�� � � � �Qm
t�� be the queue lengths at time t. Since we have
assumed that, for every server i ∈ M, there exists A ⊂ M such that i ∈ A
and λA > 0, it is easy to see that Q
·� is an irreducible Markov process on the
state space �m+ , where �+ ≡ �0�1�2� � � ��.



JOIN THE SHORTEST QUEUE 571

Theorem 1. Consider the generalized join the shortest queue system.

(i) If ρmax > 1, then the Markov process Q
·� is transient.
(ii) If ρmax = 1, then the Markov process Q
·� is either transient or null

recurrent.
(iii) If ρmax < 1, then the Markov process is positive recurrent and has a

stationary probability distribution π. Furthermore, the expected number in the
system in equilibrium is bounded above by −m+µM/c, where c is given in 
7�.

Remark 1. When ρmax = 1, there are examples of both transience and
null recurrence. Consider a system with only dedicated customers such that
λi = µi = 1/
2m� for i = 1�2� � � � �m. The queue-length process behaves like
the absolute value of anm-dimensional simple symmetric random walk which
is null recurrent if m is 1 or 2 and transient for m ≥ 3.

Let Prπ�·� denote the probability measure corresponding to the stationary
distribution of Q
t�. Assume that there are m = 2 queues and a unique set
A ⊂M such that ρmax = ρA < 1. (For technical reasons, we can only analyze
the asymptotics when there is a unique set A with ρA = ρmax.) Note that with
m = 2, ρ1 = λ1/µ1, ρ2 = λ2/µ2, and ρ ≡ ρM = 
λ1 + λ2 + γ�/
µ1 + µ2�. Let T�
denote the first time that there are � or more customers in the system. The
following three theorems summarize the results in Theorems 9–14.

Theorem 2 (Strongly pooled servers). If ρ > max�ρ1� ρ2� and γ > �ρ2
µ2−
µ1� + 
λ1 − λ2��, then

E�T� � Q
0� = 
0�0�� ∼ g−1ρ−�/
λ1 + λ2 + γ + µ1 + µ2��
where the constant g is defined in (36). Moreover, for nonnegative integers k
and �,

Prπ�Q1
t� +Q2
t� = ��Q1
t� −Q2
t� = k� ∼ 2
f
0�
d̃1

ρ�ϕ
k�χ�k = � mod2��

where d̃1 = µ1 + µ2 − 
λ1 + λ2 + γ�, f
0� is defined in (36), and

ϕ
k�=



ϕ
0�ρ
−1
λ1+γ/2�+ρµ2

ρ−1
λ2+γ�+ρµ1

(
ρ−1λ1+ρµ2

ρ−1
λ2+γ�+ρµ1

)k−1
� if k>0,

ϕ
0�ρ
−1
λ2+γ/2�+ρµ1

ρ−1
λ1+γ�+ρµ2

(
ρ−1λ2+ρµ1

ρ−1
λ1+γ�+ρµ2

)�k�−1
� if k<0,(

ρ−1
λ1+γ/2�+ρµ2

ρ−1
λ2+γ�+ρµ1−
ρ−1λ1+ρµ2�
+ ρ−1
λ2+γ/2�+ρµ1

ρ−1
λ1+γ�+ρµ2−
ρ−1λ2+ρµ1�
+1

)−1
� if k=0.

(2)

Finally,

Pr�Q1
T�� −Q2
T�� = k � Q
0� = 
0�0�� ∼ 2ϕ
k�χ�k = �mod2��
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Remark 2. In Theorem 2, the 2 and the indicator function χ are a conse-
quence of periodicity p = 2. In particular, note that Q1
t� + Q2
t� = � and
Q1
t� −Q2
t� are either both odd or both even.

Theorem 3 (Weakly pooled servers). If ρ > max�ρ1� ρ2� and γ ≤ �ρ2
µ2 −
µ1� + 
λ1 − λ2��, then

E�T� � Q
0� = 
0�0�� ∼ g−1ρ−�/
λ1 + λ2 + γ + µ1 + µ2��
where g is given in 
36�. Moreover,

Prπ�Q1
t� +Q2
t� = �� ∼ f
0�
d̃1

ρ��

where d̃1 is the same as in Theorem 2 and f
0� is given in 
36�.
If ρ2
µ2 − µ1� + 
λ1 − λ2� > γ, then

lim
�→∞

(
Q1
T��
�

�
Q2
T��
�

)
=

(
λ1ρ

−1 − µ1ρ

d̃1

�

λ2 + γ�ρ−1 − ρµ2

d̃1

)
�(3)

If ρ2
µ2 − µ1� + 
λ1 − λ2� < −γ, then

lim
�→∞

(
Q1
T��
�

�
Q2
T��
�

)
=

( 
λ1 + γ�ρ−1 − µ1ρ

d̃1

�
λ2ρ

−1 − ρµ2

d̃1

)
�(4)

If �ρ2
µ2 − µ1� + 
λ1 − λ2�� = γ, then

lim
�→∞

(
Q1
T��
�

�
Q2
T��
�

)
=

(
1
2
�
1
2

)
�(5)

Theorem 4 (Unpooled servers). If ρ ≡ ρM < max�ρ1� ρ2� and, without loss
of generality, we assume ρ1 > ρ2, then

E�T� � Q
0� = 
0�0�� ∼ g−1ρ−�1 /
λ1 + λ2 + γ + µ1 + µ2��
where g is defined in 
41�,

Prπ�Q1
t� +Q2
t� = ��Q2
t� = k� ∼ f

µ1 − λ1
ρ�−k1

(
1− λ2 + γ

µ2

)(
λ2 + γ
µ2

)k
�

and f is given in 
40�. Finally,
Pr�Q2
T�� = k � Q
0� = 
0�0�� ∼ c−1ρk1µ
0� k��(6)

where c = ∑∞
k=0 ρ

k
1µ
0� k� and µ is a probability measure defined near 
21�

and specifically for the unpooled case in Theorem 13.

In addition, our analysis shows that there are basically four different ways
in which the total number of customers in the system increases to some large
level �, depending on system parameters. Initially we guessed that there were
only three ways depending on which was largest, ρ1� ρ2 or ρ� (Thus far, we have
not analyzed the case of ties.) If ρ1 were the largest, then we guessed that the



JOIN THE SHORTEST QUEUE 573

system would be unpooled, and the most likely approach would bounce along
the horizontal axis. Similarly, if ρ2 were the largest, then we guessed that
the most likely approach was along the y axis. If ρ were the largest, we first
guessed that the servers would pool and the most likely approach would be up
the diagonal. However, this conjectured approach when ρ is largest was false.
This pooled case splits into two subcases, weak and strong, depending upon
system parameters. If ρ is the largest and γ > �ρ2
µ2 − µ1� + 
λ1 − λ2��, then
the most likely approach does hug the diagonal, and we call this the strongly
pooled case. However, if ρ is the largest and γ < �ρ2
µ2−µ1�+ 
λ1−λ2��, then
the boundary is approached by drifting in a direction with slope given by (3) if
Q2 lags behind Q1 and by (4) if Q1 lags behind Q2. In these cases, we say the
servers are weakly pooled. Note that this fourth way actually contains a whole
spectrum of possible drift directions. Furthermore, in the strongly pooled and
unpooled cases, there is a restoring force which keeps the process close to
the (fluid limit) approach path; i.e., one of the axes or the diagonal. However,
when the servers are weakly pooled, there will be no restoring force towards
the drift direction. Interestingly, the approach can be along the diagonal and
not be strongly pooled. If γ = �ρ2
µ2 − µ1� + 
λ1 − λ2�� in the pooled case,
the boundary is approached with slope 1, but the difference between the two
queues behaves like a null recurrent Markov chain.

The weakly pooled case is in fact predicted by large deviation theory. A large
deviation path whereQ2 lags behindQ1 corresponds to the simultaneous large
deviation of two independentM�M�1 queues whereQ1 has arrival rate λ1 and
service rate µ1 whileQ2 has arrival rate λ2+γ and service rate µ2. During this
large deviation, there will be some time t when Q1
t� exceeds a� while Q2
t�
exceeds 
1 − a��, where 0 < a < 1. By [18], Section 11.2, the cost or action
associated with a trajectory of the first queue from 0 to a� in time t plus the
action associated with a trajectory of the second queue from 0 to 
1 − a�� in
time t is t�L1
a�/t� +L2

1− a��/t��, where

L1
c� =
(
c log

(
c+

√
c2 + 4λ1µ1

2λ1

)
+ λ1 + µ1 −

√
c2 + 4λ1µ1

)
�

L2
c� =
(
c log

(
c+√

c2 + 4
λ2 + γ�µ2

2
λ2 + γ�
)
+ 
λ2 + γ� + µ2

−
√
c2 + 4
λ2 + γ�µ2

)
�

If we first minimize this action on t and then on a, we find 
a�1 − a� is
precisely the pair given by expression (3) (see [19] for more details). However,
large deviation theory seems to be unable to distinguish between weak pooling
when (5) holds and strong pooling.

We believe this trichotomy among the weakly pooled, strongly pooled and
unpooled cases has engineering implications for properly balancing the load
in a network. A priori, protocols like joining the shortest queue are imple-
mented in order to keep all the servers busy rather than let some idle while
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others overload. Consider a system with only dedicated customers; e.g., two
call centers, one serving the western half of a region and the other the east-
ern. Typically, the system would be unbalanced and one of the operators would
overload more frequently, which corresponds to the unpooled case with a rate
parameter max�ρ1� ρ2� > ρ. To equalize the load, the operators could be moved
to one location, creating anM/M/2 queue with the best possible rate param-
eter ρ. An alternative solution that might be less costly and still obtain this
best possible rate parameter ρ would be to leave the operators at their current
locations and route all calls to the shorter queue. A third solution that might
be the least costly is to leave the operators in their current locations and have
most of the customers remain dedicated to their current operator, but only
route the customers in a small portion of the region to the shorter queue. The
size of the region allowing rerouting should be large enough to achieve pooling
and the best rate ρ. If it is also desired that the queues be roughly equal when
overloading occurs, the region allowing rerouting should be large enough to
achieve strong pooling. Note that even though several alternatives achieve
this best rate ρ and have the same rough asymptotics, the exact asymptotics
may differ since the coefficient may differ.

There is a huge literature. Flatto and McKean [10] investigated this system
when λ1 = λ2 = 0 and µ1 = µ2. Using analyticity arguments, they obtained
an exact solution for the generating function of the stationary distribution
π
x�y�. Adan, Wessels and Zijm [1] used a compensation procedure to repre-
sent the stationary distribution as an infinite sum of product measures in the
asymmetric case when µ1 �= µ2 but λ1 = λ2 = 0. γ < µ1 + µ2 was required for
stability. Knessl, Matkowsky, Schuss and Tier [12] used a heuristic technique
to give the stationary distribution for the model in this paper. The paper by
van Houtum, Adan, Wessels and Zijm [20] studies the problem of assigning
component types to the production/assembly of printed circuit boards on par-
allel insertion machines, which is naturally modelled as the join the shortest
queue model with dedicated customers.

Shwartz and Weiss [18] developed a large deviation theory for Markov jump
processes with a boundary and applied it to deviations of the number of cus-
tomers in a join the shortest queue network like the one studied here. Shwartz
and Weiss [17] also gave the first results on the exact asymptotics of backlogs
in a network (describing the bathroom problem) using time reversal meth-
ods. The existence of a large deviation principle for this system is given in
Dupuis and Ellis [9] and in Atar and Dupuis [2]. Turner [19] has used this
large deviation principle to analyze overloads of the backlog in the system
(without repacking) studied here and the system where the waiting room for
each queue is of size C. A similar analysis of a system ofM�M�∞ servers can
be found in Alanyali and Hajek [3], [4]. In [13], large deviations of a chosen
queue in the join the shortest queue network are analyzed, but the key steps
(C.10 and C.12) are not given as they are here.

Turner’s work is motivated in part by his circle problem associated with
alternate routing in a service network. In such a network, a customer might
be routed to the least busy node available to him. In order to balance the load
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on the network, the best solution is to make every node available to every
customer, but this may not be practical. The question is whether resource
pooling can be obtained by allowing each customer a small number of available
servers. Brown [6] has studied Turner’s circle model for three servers and has
found conditions for such strong pooling. Brown also gives ranges of parameter
values where one obtains weak pooling or no pooling.

3. Analysis of stability. We break up the analysis of stability into a
series of lemmas. In proving stability, we use an approach motivated by results
in Markov decision processes. The fluid limit approach taken in [8] is more
general, but does not yield bounds. First, we determine conditions for tran-
sience and null recurrence.

Lemma 1. Consider the generalized join the shortest queue system. If
ρmax > 1, then the Markov process Q
·� is transient. If ρmax ≥ 1, then the
Markov process Q
·� is either transient or null recurrent.

Proof. For the proof of transience, note that the number of customers in
A is stochastically larger than the number of customers in anM/M/1 queue
with arrival rate

∑
B⊂A λB and service rate µA. If ρmax > 1, then there exists

A ⊂ M with ρA > 1. Thus, the number of customers in A is stochastically
larger than the number in anM/M/1 queue with traffic intensity greater than
1; i.e., the number of customers in A diverges, andQ
·� is transient. Note that
this argument with a slight modification also shows that if ρmax = 1, thenQ
·�
is either transient or null recurrent. ✷

In determining recurrence, we construct a related system with the same
m servers, but a different arrival process. In the new system, which only has
dedicated arrivals, the arrival process to server i will be a Poisson process with
rate αi. To differentiate between the two systems, call the original system the
λ-system and the new system the α-system. The α-system will have the same
service rates µi, but each server has a dedicated stream of Poisson arrivals
with rate αi = µi − c, where c is given by

c ≡ min
A⊂M

�
1− ρA�µA/�A��(7)

= min
A⊂M

{(
µA − ∑

B⊂A
λB

)/
�A�

}
(8)

and �A� denotes the number of servers in A. Thus, c measures the average
unused capacity per server of the most heavily loaded subset. The reason for
selecting the αi’s so that µi−αi = c is that it will be needed in Lemma 3. Note
that c > 0 and

µA − ∑
B⊂A

λB − c�A� ≥ 0�(9)
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We construct this related system in two steps. First, the arrival streams of
customers that choose the shortest queue among sets of queues are decom-
posed into independent Poisson processes and assigned to particular servers.
More precisely, the Poisson arrival process with rate λA is decomposed into �A�
independent Poisson processes with rates λA
i� ≥ 0 and assigned to server i
for i ∈ A. Clearly, we need λA = ∑

i∈A λA
i�. The arrival process to server i is
the superposition of independent Poisson processes and has rate

∑
A⊂M λA
i�.

The first part of the following lemma shows that, for every i ∈ M, we have∑
A⊂M λA
i� ≤ µi− c. The second step in constructing the related system is to

note that the arrival rate to each of the queues can be increased as necessary
so that αi = µi − c for i ∈ M. Note that we can think of the α-system as
removing the customer’s ability to choose the shortest queue in the λ-system
and possibly adding additional customers.

Lemma 2. If ρmax < 1, then there exists λA
i� ≥ 0 for i ∈ A ⊂M satisfying
the following:

λA = ∑
i∈A
λA
i� for A ⊂M�(10)

∑
A⊂M

λA
i� ≤ µi − c > 0 for i ∈M�(11)

where c as defined in 
7� is positive. Furthermore, the αi satisfy the following:
αi ≥

∑
A⊂M

λA
i� for i ∈M�(12)

where

αi = µi − c� i ∈M�(13)

Proof. To prove that the λA
i�’s exist, we reformulate the problem as
the network flow problem depicted in Figure 1. There is a source node s, a
first column consisting of 2m − 1 nodes corresponding to and labelled by each
nonempty subset of M, a second column of m nodes corresponding to each of
the servers and labelled 1� � � � �m and a sink node t. Note that �i� and i are
different nodes. There is an arc from the source s to each nodeA, with capacity
λA for every nonempty A ⊂M, which corresponds to the constraint (10). For
each nonempty A ⊂ M, there is an infinite-capacity arc to node i for every
i ∈ A. For each i ∈M, there is an arc from node i to the sink t with capacity
µi − c, which corresponds to the constraint (11). We claim the maximum flow
through this network is

∑
A⊂M λA, and that this clearly implies the existence

of the λA
i�’s satisfying (10) and (11).
The Max-Flow Min-Cut Theorem states that the maximum flow from s

to t is equal to the minimum capacity of all cuts separating the source and
destination. A cut is a set of arcs which, when removed, partitions the nodes
into two sets L and R, where L is the set of nodes accessible from the source
and R is the set of nodes accessible to the sink. Since we are looking for the
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Fig. 1. Network flow problem.

minimum capacity on a cut set, we do not need to include any of the infinite-
capacity arcs in a cut set. For such a cut set C, let A ≡ �i/
i� t� � 
i� t� ∈ C�.
For C to be a cut set, D must be a subset of C, where D ≡ �
s�B� � B �⊂ A�.
Hence, the capacity of this cut C is at least∑

i∈A

µi − c� +

∑
B �⊂A

λB = ∑
i∈A


µi − c� +
∑
B⊂M

λB − ∑
B⊂A

λB

= µA − c�A� − ∑
B⊂A

λB + ∑
B⊂M

λB

≥ ∑
B⊂M

λB�

where the inequality follows from (9). Since the minimum-capacity cut is nec-
essarily of this form, we conclude the maximum flow is

∑
B⊂M λB.

Let λA
i� ≥ 0 denote the flow from A in the first column of Figure 1 to i
in the second column for some solution attaining the maximum flow. By con-
struction, the λA
i�’s satisfy (10) and (11) and (12) follows from the definition
of αi’s. ✷

Note that the α-system is positive recurrent if ρmax < 1. The remainder of
the stability argument basically shows that the λ-system behaves no worse
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than the α-system. Define

V
x� = ∑
i∈M

xi
xi + 1�
2
µi − αi�

for x ∈ �m+ �

Let �Q�n�� n ≥ 0� denote the discrete-time Markov chain obtained by uni-
formizing �Q
t�� t ≥ 0� [7, Theorem 4.31]. Thus, consider the Markov decision
problem of minimizing the average number of customers in the system. Two
actions α and λ are allowed in each state and correspond to the transition
probabilities of the α-system and the λ-system, resp. The equation in the next
lemma states that V is the bias or relative value function for the α-policy
which uses action α in all states.

Lemma 3. If ρmax < 1, then

V
x� = ∑
i∈M

xi −
∑
i∈M

αi/
µi − αi� + Eα�V
Q�n+ 1�� � Q�n� = x��(14)

V
x� ≥ ∑
i∈M

xi −
∑
i∈M

αi/
µi − αi� + Eλ�V
Q�n+ 1�� � Q�n� = x��(15)

where the superscript λ or α denotes whether the conditional expectations use
the transition probabilities from the λ-system or the α-system.

Proof. It is straightforward to show that V satisfies the given discrete-
time Poisson equation (or even to find V by recursively solving for V in the
single server situation). To obtain the inequality, we perform one step of the
policy iteration algorithm as described in [16] or most texts on Markov decision
processes. That is, for each state, we choose the action which minimizes the
right hand side (r.h.s.) of (14). In every state, action λ is at least as good as
action α since action λ corresponds to allowing some of the customers to choose
the shortest among several queues and possibly rejecting some customers.
This follows from V being a symmetric, increasing function of x. Note that it
is essential that µi−αi = c in V; otherwise, it would be better in some states
for a customer to join the longer queue. ✷

Proof of Theorem 1. The first two parts of Theorem 1 follow directly
from Lemma 1. Positive recurrence for ρmax < 1 follows by rewriting (15)
as

Eλ�V
Q�n+ 1�� � Q�n� = x� −V
x� ≤ ∑
i∈M

αi/
µi − αi� −
∑
i∈M

xi�

and noticing thatV is a Foster–Lyapunov drift function forQ�·� since the right
hand side is less than or equal to −1 for all but a finite number of states. The
average queue length in the α-system is

∑
i∈M αi/
µi−αi� = −m+µM/c. Policy

iteration decreases the average cost, that is, average number of customers in
the system; cf. [16], Theorem 4.3(iii). ✷
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4. Exact asymptotics for rare events. In this section, we develop
asymptotic expressions for a Markov chain �W�n�� n ∈ �+� satisfying certain
assumptions. In Section 5, we will show that �Q
t�� t ≥ 0� can be transformed
into such a Markov chain. The results in this section are similar to, and when-
ever possible we will use results and notation from, [14]. However, there are
differences in the assumptions between the two papers, and we describe the
differences in this section.

Let W ≡ �W�n�� n ∈ �+� be an irreducible Markov chain on a countable
state space S with transition kernel K and stationary distribution π. The
process W needs to satisfy certain additional assumptions, which are most
easily described by positing the existence of two other Markov chains, the free
chain W∞ ≡ �W∞�n�� n ∈ �+� and the twisted free chain � ∞ ≡ �� ∞�n��
n ∈ �+� satisfying certain conditions. First, we give notation related to each
of the three chains, and then we describe the conditions that the chains must
satisfy. Note that the superscript ∞ is not being, and will not be, used in this
paper to denote an infinite cross product.

Assume S ⊆ �+ × �r−1 × Ŝ, where Ŝ is some countable set. If x ∈ S, then
x = 
x̃� x̂� with x̃ ∈ �r, x̃1 ≥ 0 and x̂ ∈ Ŝ. Let F� ≡ �x ∈ S � x̃1 ≥ �� �= �
for � ∈ �+. For each n�W�n� = 
W̃�n�� Ŵ�n��, where W̃�n� ∈ �r, W̃1�n� ≥ 0
and Ŵ�n� ∈ Ŝ. The state space S will be partitioned into two regions � and
-, which will be referred to as the boundary and interior, respectively. Define
T� ≡ inf�n > 0 �W�n� ∈ �� and T� ≡ inf�n ≥ 0 �W�n� ∈ F��.

The free chain W∞�n� = 
W̃∞�n�� Ŵ∞�n��� n ∈ �+, has state space S∞ ≡
�r × Ŝ and transition kernel K∞. For x ∈ S∞, we have x = 
x̃� x̂� with x̃ ∈ �r

and x̂ ∈ Ŝ, and F∞
� ≡ �x ∈ S � x̃1 ≥ �� �= � for � ∈ �+. The state space

S∞ is partitioned into - and �. Define T∞
�

≡ inf�n > 0 � W∞�n� ∈ �� and
T∞
� ≡ inf�n ≥ 0 �W∞�n� ∈ F∞

� �. The chain � ∞�n� = 
�̃ ∞�n�� �̂ �n��� n ∈ �+,
has the same state space S∞ ≡ �r × Ŝ, but the transition kernel is � ∞, the
twisted kernel defined below. Similarly, � ∞

�
≡ inf�n > 0 � � �n� ∈ �� and

� ∞
� ≡ inf�n ≥ 0 � � ∞�n� ∈ F∞

� �. Let H
x� = Prx�� ∞
�

= ∞�. Note that
S ⊂ S∞, F� ⊂ F∞

� , � ⊂ �, and that F� and � may overlap.
The conditions that we need on the three processes are the following:

C.1. The marginal process 
W̃∞
1 �n�� Ŵ∞�n�� is a Markov additive process

with

Pr
{
W̃∞

1 �n+ 1� − W̃∞
1 �n� = x̃1� Ŵ∞�n+ 1� = ŷ �W∞�n�

}
= Pr

{
W̃∞

1 �n+ 1� − W̃∞
1 �n� = x̃1� Ŵ∞�n+ 1� = ŷ � Ŵ∞�n�

}
�

(16)

We let � denote the transition kernel of 
W̃∞
1 �n�� Ŵ∞�n��, and K̂∞ the tran-

sition kernel of Ŵ∞�n�. In most applications, the stronger condition that W∞

is a Markov additive process with

K∞(
x̃� x̂�� 
ỹ� ŷ�) = P∞
x̂� (ỹ− x̃� ŷ�)�(17)
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where for each x̂, P∞
x̂� 
·� ·�� is a probability measure, holds. However, the
weaker condition will prove useful in this paper when analyzing weak pooling,
and the stronger condition will only prove useful in the joint bottleneck result.
C.2. The transition probabilities ofW andW∞ agree between states in the

interior, that is,

K∞
x�y� =K
x�y� for x and y in -�(18)

C.3. The transition probabilities of W and W∞ agree from states on the
boundary to states in the interior, that is,

K∞
x�y� =K
x�y� for x ∈ � and y in -�(19)

This simplifying assumption could be omitted as in [14], but then one needs
additional assumptions on the tail of the distribution of the first step from the
boundary.
C.4. The function h is a positive function on S∞ of the form h
x�=αx̃1/ĥ
x̂�

with α > 1, and h is harmonic for the free process; that is, K∞h = h.
C.5. The process � ∞ is the twist or h-transform of the free process W∞;

that is,

� ∞
x�y� =K∞
x�y�h
y�/h
x��(20)

C.6. The marginal Markov chain ��̂ ∞�n�� n ∈ �+�, with transition kernel
�̂ ∞ has a stationary probability distribution ϕ
·�.
C.7. The first coordinate of the drift vector of the stationary version of � ∞

has a finite, strictly positive drift. That is, 0 < d̃1 <∞, where

d̃ = ∑
x̂∈Ŝ
ϕ
x̂�E��̃ ∞�1� � � ∞�0� = 
0� x̂���

C.8. The twisted free process starting from � has a positive probability of
never hitting �; that is, ∑

x∈�
π
x�H
x� > 0�

C.9.
∑
x̂∈Ŝ ϕ
x̂�ĥ
x̂� <∞.

C.10. Define the measure λ
x� ≡ π
x�h
x�χ�x ∈ �� and the marginal mea-
sure λ̂
ŷ� ≡ ∑

ỹ λ
ỹ� ŷ�. We need
∑
x λ
x�χ�K
x�-� > 0� <∞.

C.11. Let Y�
ŷ� ≡ �x ∈ S∞ � x̃1 = �� x̂ = ŷ�. For each ŷ, there is an
associated integer L
ŷ� such that Y�
ŷ� ∩ � = � if � ≥ L
ŷ�.
C.12. Either ĥ is bounded or, there must exist a function V̂ � Ŝ→ �1�∞�, a

finite set C ⊂ Ŝ and a positive constant b <∞ such that∑
ŷ∈Ŝ

�̂ ∞
x̂� ŷ�
V̂
ŷ� − V̂
x̂�� ≤ −ĥ
x̂� + bχ�x̂ ∈ C��

which is Condition (V3) of [15]. Moreover, we assume that
∑
ŷ V̂
ŷ�λ̂
ŷ� <∞.
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Note that C.12 implies λ
�� <∞ and this implies C.10; however, C.12 will
not be needed in Theorem 5.

Now we need to determine the periodicity of the twisted free process. Let T
be the first time when �̂ ∞ returns to a fixed state. Define p to be the largest
integer such that the support of �̃ ∞

1 �T� − �̃ ∞
1 �0� is a multiple of p. By the

argument in [7], Corollary 10.2.24, this period p is independent of the state
chosen, and we say that � ∞ has period p.

Fix some reference state δ = 
δ̃� δ̂� ∈ �. Define
Aj = �ẑ � � n

δ̃1� δ̂�� 
δ̃1 + s� ẑ�� > 0 for some n� where s

p= j��
and a = p b means a = bmodp. In Section 4.1, we show that A0� � � � �Ap−1
partitions Ŝ. It will be convenient to know the location of any state; hence, for
ẑ ∈ Ŝ, define A
ẑ� = j iff ẑ ∈ Aj. Notice that A
δ̂� = 0.

Let µ denote the stationary distribution of 
�̃ ∞
1 �� ∞

� � − �� �̃ ∞�� ∞
� ��� � =

0�1� � � � . The stationary overshoot distribution µ is obtainable by fast sim-
ulation since �̃ ∞

1 drifts to infinity. Note that even when the overshoot is
always zero, µ
0� ŷ� and ϕ
ŷ� are quite different. In the two-server join the
shortest queue system without dedicated customers, ϕ
·� is given in (2) while
µ
0�0� = 1/2, and µ
0�1� = µ
0�−1� = 1/4. This can be seen by noting that
the first time � is reached with � even, the two queue lengths will be equal.
However, for � odd, there is an equal chance of either queue having the extra
customer. The distribution µ may also be expressed as in [14], Proposition 2.4:

µ
s� ŷ� = d̃−1
1 f

∞
s� ŷ�ϕ
ŷ��(21)

where f∞
s� ŷ� is the probability the time reversal of � ∞ with respect to
mr × ϕ (m is counting measure) jumps from 
s� ·� ŷ� and the first additive
component drifts away to minus infinity without ever becoming nonnegative
again.

The following constants will be used in the statement of the theorems. Let

f
m� ≡ ∑
x∈�

A
x̂�−x̃1
p=m

π
x�h
x�H
x� for m = 0� � � � � p− 1�(22)

g
m� ≡ f
m�p ∑

s�ŷ�∈�+×Ŝ
A
ŷ�−s p=m

α−sĥ
ŷ�µ
s� ŷ��

g ≡ g
0� + · · · + g
p− 1��(23)

The constants f
m� for m = 0� � � � � p − 1 and g are generally unknown, but
can be obtained by fast simulation. Note that in the special case when the
overshoot is always zero and ĥ
ŷ� = 1 for ŷ ∈ Ŝ, then f
m� = g
m� for
m = 0� � � � � p− 1.

The following theorem provides an exact asymptotic description of the
steady-state distribution of the system. The proof in this paper eliminates
the need for C.12 (Condition 7 in [14]), the uniform integrability condition.
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Theorem 5 (Steady state). Under C.1–C.11 and as �→ ∞,

π
(
Y�
ŷ�

) ∼ α−�ĥ
ŷ�pϕ
ŷ�f(
A
ŷ� − �)modp
)

d̃1

�

where d̃1 is given in C.7 and f is given at (22).

Theorem 6 (Mean hitting time). Let σ ∈ � with H
σ� > 0. Under C.1–
C.12 and as �→ ∞,

EσT� ∼ α�/g as �→ ∞�
where the constant g is defined in 
23�.

Theorem 7 (Hitting distribution). Let σ ∈ � with H
σ� > 0. Under C.1–
C.12 and as �→ ∞,

Prσ
{
W̃1�T�� − � = s� Ŵ�T�� = ŷ � T� < Tσ

}
∼ χ�A
ŷ� − s p= ��c−1α−sĥ
ŷ�pµ
s� ŷ��

with the normalization constant

c = p ∑

t� ẑ�∈�+×Ŝ
A
ẑ�−t p= �

α−tĥ
ẑ�µ
t� ẑ��

where Tσ is the return time to state σ .

It is easy to describe a sequence of “tubes” Cc� that contain the most likely
approach to F� with high probability.

Theorem 8. Let C� ∈ σ
Ws� 0 ≤ s ≤ T�� be a sequence of sets of trajectories
ofW and let �� be sets of trajectories for �

∞ such thatC� ⊆ �� and Prx���� → 0
for χ ∈ � as �→ ∞. Let σ ∈ � withH
σ� > 0. Under C.1–C.12 and as �→ ∞,

lim
�→∞

Prσ�C��T� < Tσ� = 0�

Corollary 1 (Large deviation tube). Let σ ∈ � with H
σ� > 0. Assume
C.1–C.12 and that the stronger Markov additive property (17) holds (or at
least that limn→∞ W̃∞�n�/n = d̃); then, as �→ ∞,

lim
�→∞

Prσ

{
sup

0≤s≤T�
�W̃�s� − d̃s� > ε� �T� < Tσ

}
= 0�

This result means the nodes driven into overload by the first grow linearly
with the length of the queue at the first node. The joint bottlenecks result in
[14] follows immediately.
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Corollary 2 (Joint Bottlenecks). Let σ ∈ � with H
σ� > 0. Assume C.1–
C.12 and the stronger Markov additive structure (17) (or at least that
limn→∞ W̃∞�n�/n = d̃ a.s.) hold. Then the conditional distribution of W̃�T��/�,
given T� < Tσ , converges to a unit point measure at d̃/d̃1.

Corollary 3. Let f be a function on Ŝ such that
∑
ŷ f
ŷ�ϕ
ŷ� < ∞. Let

σ ∈ � with H
σ� > 0. Then, as �→ ∞,

lim
�→∞

Prσ

{∣∣∣∣ 1T�
T�∑
k=0
f
Ŵ�k�� −∑

ŷ

f
ŷ�ϕ
ŷ�� > ε
∣∣∣∣T� < Tσ} = 0�

If we are interested in a starting point σ �∈ �, it is straightforward in most
applications to show that C.1–C.12 still hold if � is enlarged to include σ .

4.1. Proofs of exact asymptotic results. The purpose of this section is to
extend the results of [14] for countable state Markov chains to cover the join
the shortest queue system. The results in [14] explicitly assume aperiodic-
ity and tacitly assume � ∩ F� = � for � sufficiently large. Lemma 7 shows
that the uniform integrability condition C.12 (Condition 7 of [14]) implies that
π
�∩F�� is asymptotically negligible. But first, we discuss some basic aspects
of periodicity.

We now show that
p∼ is an equivalence relation, where ŷ

p∼ x̂ if there exists
n and s with � n

0� x̂�� 
s� ŷ�� > 0 and s

p= 0. (� was defined in C.1.) The

reflexive property is obvious. To show symmetry, assume that ŷ
p∼ x̂ and note

that C.6 implies the existence of m and t such that �m

0� ŷ�� 
t� x̂�� > 0.
Hence, � n+m

0� x̂�� 
s+ t� x̂�� > 0. Since s+ t p= 0, it follows that t

p= 0, imply-

ing x̂
p∼ ŷ. Transitivity follows similarly. We now show that the equivalence

classes generated by
p∼ are the nonempty sets among A0� � � � �Ap−1. Clearly,

every point ŷ ∈ Ŝ is in some Aj for j = 0� � � � � p− 1, and δ̂ ∈ A0 by construc-
tion. Assume that x̂ ∈ Aj and ŷ ∈ Ai. Then there exists n, m, s and t such
that

� n
(
0� δ̂�� 
s� x̂�) > 0 where s

p= j
and

�m
(
0� δ̂�� 
t� ŷ�) > 0 where t

p= i�
Again, by C.6, there must exist a k such that � k

0� ŷ�� 
u� δ̂�� > 0 for some
u, and by periodicity u

p= − i. Similarly, there exists an � such that � �

0� x̂��

v� ŷ�� > 0 for some v. Hence � n+�+k

0� δ̂�� 
s+ v+u� δ̂�� > 0, and by period-

icity s+ v+ u p= 0. Thus, ŷ
p∼ x̂ iff v

p= 0 iff i = j.
Let the kernel of the chain 
�∞���� �̂ ∞�� ∞

� �� indexed by �, where �∞��� ≡
�̃ ∞

1 �� ∞
� �−�, be denoted by R. Note that if s > 0, then R

s� ŷ�� 
s−1� ŷ�� = 1.

This along with C.6 implies that there is a single closed, irreducible set of
recurrent states. Hence, R possesses an invariant measure which is unique
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up to rescaling. By the same argument as in [11], Section 3, µ as given by
(21) is the unique invariant probability measure for R. This Markov chain
has period p since the first return to state 
0� δ̂� will occur at a time �, where
�̃ ∞

1 �n� = � and �̂ ∞�n� = δ̂, and n is the first return time to δ̂ such that �̃ ∞
1 �n�

is positive. Since � ∞ has period p, it follows that � must be a multiple of p.
We partition the state space �+ × Ŝ into B0� � � � �Bp−1 by assigning 
s� ŷ� to
Bi iff A
ŷ� − s p= i. Note that 
0� δ̂� ∈ B0. We leave it to the reader to prove
the following lemma.

Lemma 4. For k = 0� � � � � p− 1:

(i) If 
�∞���� Ŵ∞�� ∞
� �� is initially in Bk, then after � steps, it is in

Bk+�modp.
(ii) Bk is a closed set for the marginal twisted free Markov chain


�̃ ∞
1 �n�� �̂ �n��.
(iii) µ
Bk� = 1/p.
(iv) If ŵ ∈ Ai and w̃1 = u, then 
u� ŵ� ∈ Bk, where k p= i−u. After � = np+m

transitions, Rnp+m takes Bk into Bk+m. By [7], Theorem 6.3.10, we have

lim
n→∞R

np+m

u� ŵ�
s� ŷ�� = pµ
s� ŷ�χ�A
ŷ� − s p= k+m��(24)

Prx��∞��� = s� �̂ ∞�� ∞
� � = ŷ� ∼ pµ
s� ŷ�χ�A
x̂� − x̃1 p= A
ŷ� − �− s��

Lemma 5. Fix ŷ ∈ Aj. Define m̃∞
Y 
u� ŵ� as the expected number of visits to

Y0
ŷ� by � ∞ starting from a statew = 
w̃� ŵ� with w̃1 = u. Under C.5 and C.7,

∑
u� ŵ

m̃∞
Y 
u� ŵ�µ
u� ŵ� = ϕ
ŷ�/d̃1�(25)

Proof. In [14], a stationary process � # is defined and µ is the hitting dis-
tribution of � #��0�, that is, when �̃ #

1 first reaches or exceeds 0. Consequently,∑
u� ŵ m̃

∞
Y 
u� ŵ�µ
u� ŵ� is just the expected number of visits to Y0
ŷ� by � #.

By stationarity, this is just ϕ
ŷ�/d̃1. ✷

The following useful change of measure property follows from C.4 and C.5
and will be used in many of the remaining proofs. For x0� x1� � � � � xn ∈ S∞,

Prx�W∞�1� = x1� � � � �W∞�n� = xn�

= h
x0�
h
xn�

Prx�� ∞�1� = x1� � � � �� ∞�n� = xn��
(26)
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Proof of Theorem 5. For � > L
ŷ�, the steady-state probability of
Y�
ŷ� is given by

π
Y�
ŷ�� = π
��E�

(
T�−1∑
n=0

χ�W�n� ∈ Y�
ŷ��
)

= ∑
z∈�
π
z�Ez

(
T∞
�
−1∑

n=0
χ�W∞�n� ∈ Y�
ŷ��

)
= ∑
z∈�
π
z� ∑


u� ŵ�
m�

Y
�� u� ŵ�

× Prz�Ŵ∞�T∞
� � = ŵ�R∞�T∞

� � = u�T∞
� < T

∞
�
��

(27)

where we have conditioned on the point where W∞ overshoots �, that is, at
w = 
w̃� ŵ�, where R∞��� ≡ W̃∞

1 �T�� − � = u = w̃1 − �, and m�

Y
�� u� ŵ� =
Ew

(∑T�−1
n=0 χ�W∞�n� ∈ Y�
ŷ��

)
is the expected number of visits to Y�
ŷ�

obtained byW∞ (orW) after hitting ��� �+1� � � ��×�r−1×Ŝ, but before return-
ing to �.

Let N�

Y
�� denote the number of visits and T∞
Y �k� the time of the kth visit

to Y�
ŷ� before T�
. Hence,

m�

Y
�� u� ŵ� =
∞∑
k=1

∑
z∈Y�
ŷ�

Prw�N�

Y
�� ≥ k�W∞[
T∞
Y �k�] = z�

=
∞∑
k=1

∑
z∈Y�
ŷ�

h
w�
h
z� Prw��

�

Y 
�� ≥ k�� ∞[
� ∞
Y �k�] = z�

(28)

= α−�h
w�ĥ
ŷ�Ew
(

� ∞
�

−1∑
n=0

χ�� ∞�n� ∈ Y�
ŷ��
)

= α−�h
w�ĥ
ŷ�m̃�

Y
�� u� ŵ��
(29)

where m̃�

Y
�� u� ŵ� is the expected value of � �

Y 
�� conditioned on the first
overshoot of � occurring at some state w = 
w̃� ŵ� with w̃1 = �+ u and u ≥ 0.
The line (28) holds because the eventN�

Y ≥ k only depends on the trajectory up
to the kth visit to Y�
ŷ�, which occurs at some state z ∈ Y�
ŷ�. The likelihood
ratio for this event for W∞ versus � �

Y 
�� ≥ k for � ∞ is precisely h
w�/h
z�.
We see this by using 
26� on transitions from w until the kth visit to Y�
ŷ�.
Fortunately, h
z� = α�/ĥ
ŷ� for all states in Y�
ŷ�.

Substituting (29) into (27), doing a change of measure on the trajectory
reaching F, and multiplying by α�, yields

α�π
Y�
ŷ�� = ĥ
ŷ�
∑
x∈�

λ
x� ∑
u� ŵ

m̃�

Y
�� u� ŵ�

× Prx
{
�∞��� = u� �̂ ∞�� ∞

� � = ŵ�� ∞
� < � ∞

�

}
�
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Let � = np+m, and let n→ ∞. From (24) and since the event �� ∞
� < � ∞

�
� is

asymptotically independent of the tail σ-field generated by 
�∞���� �̂ ∞�� ∞
� ��,

it follows that

Prx��∞��� = u� �̂ ∞�� ∞
� � = ŵ�� ∞

� < � ∞
�

�
→H
x�pµ
u� ŵ�χ�A
x̂� − x̃1 p= A
ŵ� −m− u��(30)

Also, m̃�

Y
�� u� ŵ� → m̃∞
Y 
u� ŵ� ≤ m̃∞

Y 
0� ŷ�, where m̃∞
Y 
u� ŵ� denotes the

expected number of visits to Y0
ŷ� starting from a point w with w̃1 = u.
From the last inequality, C.10, and dominated convergence, it follows that, as
�→ ∞,

α�π
Y�
ŷ�� → ĥ
ŷ� ∑
x∈�

A
x̂�−x̃1 p=A
ŷ�−�

λ
x�H
x� ∑
u� ŵ

m̃∞
Y 
u� ŵ�pµ
u� ŵ��

Note that we can only include states 
x̃1� x̂�, 
� + u� ŵ� and 
�� ŷ� which lie
in the same closed set; that is, with A
x̂� − x̃1 p= A
ŵ� − � − u p= A
ŷ� − �.
This follows from the restricted region over which x is summed and since
m̃∞
Y 
u� ŵ� can only be nonzero if A
ŵ�−u p= A
ŷ�−0, which occurs iff A
ŵ�−

�− u p= A
ŷ� − �. To complete the argument, use Lemma 5 and (22) to obtain

π
Y�
ŷ�� ∼ α−�ĥ
ŷ�f

A
ŷ� − �� mod p�pϕ
ŷ�
d̃1

� ✷

We will use the following uniform integrability repeatedly.

Lemma 6. Under C.1–C.12, the sequence of functions E�ĥ
�̂ ∞�� ∞
� ��

� � ∞�0� = x� indexed by � are uniformly integrable with respect to the ini-
tial measure λ.

Proof. We review the somewhat concise arguments in [14] and make
adjustments for periodicity. As in [14, Lemma 2.8], to prove uniform inte-
grability, it suffices to show ĥ
�̃ ∞����� converges in L1
Prλ�. Let α̂ ∈ Ŝ and
let �α̂ be the first time �̂ ∞ hits α̂. We can break ĥ
�̂ ∞����� into

ĥ
�̂ ∞�����χ��α̂ > ��� and ĥ
�̂ ∞�����χ��α̂ ≤ ����
To bound the first term, remark that

ĥ
�̂ ∞�����χ��α̂ > ��� ≤
�α̂∑
k=0
ĥ
�̂ ∞�k��χ��α̂ > ����

However, the event ��α̂ > ��� tends to the empty set as �→ ∞. Moreover,

Eλ
�α̂∑
k=0
ĥ
�̂ ∞�k�� = Eλ̂

�α̂∑
k=0
ĥ
�̂ ∞�k��
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by the Markov additive structure. This is bounded by C.12 using [15],
Theorem 14.2.2. Consequently, Eλ�ĥ
�̂ ∞�����χ��α̂ > ���� → 0 by dominated
convergence.

The expected value of the second term with respect to λmay be expressed as∑
x1<�

Prλ�� ∞
1 ��α̂� = x1�E
0̃�α̂�ĥ
�̂ ∞��
�−x1�+���(31)

Moreover, E
0̃� α̂�ĥ
�̂ ∞��u�� is uniformly bounded. This follows by time rever-
sal, since

ϕ
α̂�E0̃�α̂ĥ
�̂ ∞��u��
= ∑

ŷ

ϕ
ŷ�ĥ
ŷ�

× Pr
� ∗�t� < u� t > 0� �̂ ∗�t� = α̂ for some t > 0��̂ ∗�0� = ŷ�
≤ ∑

ŷ

ϕ
ŷ�ĥ
ŷ� <∞

by C.9, where � ∗ is the time reversal of � ∞.
In the aperiodic case, [15], Theorem 2.5, shows that, for any initial point x,

Exĥ
� ∞����� converges to
∑
ĥ
ŷ�µ
ŷ�, where µ is the limiting distribution of

� ∞���� as �→ ∞. In the periodic case, using Lemma 4 part 4, and assuming
without loss of generality that α̂ ∈ A0, we know that

E
0̃�α̂�ĥ
� ∞��np+m�� → p
∑
ŷ

∑
s≥0
ĥ
ŷ�µ
s� ŷ�χ�A
ŷ� − s p=m��

Hence, by dominated convergence, E
0̃�α̂�ĥ
� ∞���−x1�� converges in L1 relative
to the measure Prλ�� ∞

1 ��α̂� = ·�. This gives our result. ✷

Lemma 7. Under C.4, C.12, π
� ∩ F�� is asymptotically negligible since
α�π
� ∩F�� → 0.

Proof. Note that

α�π
� ∩F�� ≤
∑

x∈�∩F�
π
x�αx̃1 since x̃1 > �

= ∑
x∈�∩F�

π
x�h
x�ĥ
x̂� by C�4

= ∑
x∈�∩F�

λ
x�ĥ
x̂�

= ∑
x∈�∩F�

λ
x�E[
ĥ
�̂ ∞�� ∞

� ��χ�� ∞
� = 0� � � ∞�0� = x]

≤ ∑
x∈�

λ
x�E[
ĥ
�̂ ∞�� ∞

� �� � � ∞�0� = x]
<∞ by C�12�

(32)



588 R. D. FOLEY AND D. R. McDONALD

Since the r.h.s. of (32) is finite for fixed �, the r.h.s. of (32) must go to zero as
�→ ∞. ✷

In the proofs of Theorems 5–7, we will need the Comparison Lemma of
[14], which changes only slightly to account for � ∩ F� �= �. The difficulties
are resolved using Lemma 7 and the following corollary.

Corollary 4. Under C.4, C.12,

lim
�→∞

α�
∑
z∈S
π
z�Prz�T� = T�� = 0�

Proof. Use the time reversal W∗ of W, so∑
z∈Fc�

π
z�Prz�T� = T�� = ∑
x∈�∩F�

π
x�Prx�W∗�1� ∈ Fc�� ≤ π
� ∩F���

The result now follows from Lemma 7. ✷

As in [14], define f
x� = Prx�Tσ < T�� if x �= σ and f
σ� = 1. Similarly,
define ρ
x� = Prx�T� < T�� if x /∈ � and ρ
x� = 1 if x ∈ � ∩ Fc�. Note that
f
x� = ρ
y� = 0 for y ∈ F�. As in [14], pσ = Prσ�T� < Tσ� and

π
σ�pσ = π
σ� ∑
y �=σ


1− f
y�� = ; ≡ ∑
y∈F�

π
y� ∑
x∈Fc�

K
y�x�f
x��

The Comparison Lemma in [14] shows lim�→∞
b− ;�/b = 0, where

b ≡ ∑
y∈F�

π
y� ∑
x∈Fc�

K
y�x�ρ
x�(33)

= ∑
z∈�∩Fc�

π
z� ∑
x∈S
K
z� x�
1− ρ
x��

= ∑
z∈�∩Fc�

π
z�Prz�T� ≤ T��

∼ ∑
z∈�∩Fc�

π
z�Prz�T� < T�� by Corollary 4

= α−� ∑
x∈�\F�

λ
x�Ex
[
χ�� ∞

� < � ∞
�

�ĥ
�̂ ∞�� ∞
� ��α−�∞���]�(34)

Note that (34) times α� tends to a positive limit if � = np+k as n→ ∞ by (30).
The key idea is to represent

b− ; = ∑
y∈F�

π
y� ∑
x∈Fc�

K
y�x�
ρ
x� − f
x��

= ∑
z∈�∩Fc�\σ

π
z�U∗
z�V
z��
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where U∗
z� is the probability the time reversal of W hits F� before σ (this
probability tends to 0 as � → ∞) and where V
z� = Prz�T� ≤ T��. Conse-
quently,

b− ; = ∑
z∈�∩Fc�\σ

π
z�U∗
z�Prz�T� ≤ T��

∼ ∑
z∈�∩Fc�\σ

π
z�U∗
z�Prz�T� < T�� using Corollary 4

= α−� ∑
z∈�∩Fc�\σ

λ
z�U∗
z�Ez
[
χ�� ∞

� < � ∞
�

�ĥ
�̂ ∞�� ∞
� ��α−�∞���]�

(35)

Using (34) and the fact that U∗
z� → 0 as �→ ∞, we can use condition C.12
to show lim�→∞
b− ;�/b = 0.

Proof of Theorem 6. We just follow the steps in [14]. There are no other
changes other than to modify the asymptotics of [14], (1.19), as above to take
periodicity into account. Hence,

α−�
(
EσT�

) → g�

where g = g
0� + · · · + g
p− 1�. ✷

Let p� = Pr��T� < T��. Note that

b = π
��p� − ∑
z∈�∩F�

π
z� ∑
x∈S
K
z� x�(1− ρ
x�)

by (33). Hence, by Lemma 7, 
EσT��−1 ∼ π
��p�.

Proof of Theorem 7. We modify the proof in [14]. Let Pr��·� denote the
probability conditioned on the process starting in � with respect to π.
For � ≥ L
ŷ�,
Pr�

{
T� < T��W�T�� ∈ Y�+s
ŷ�

}
= ∑
x∈�

π
x�
π
��Prx

{
T� < T�� W�T�� ∈ Y�+s
ŷ�

}
= ∑
x∈�

π
x�
π
��Prx

{
T∞
� < T

∞
�
� W∞�T∞

� � ∈ Y�+s
ŷ�
}

by C�2� C�3 and C�11

= α−
�+s� ∑
x∈�

λ
x�
π
�� ĥ
ŷ�Prx

{
� ∞
� < � ∞

�
� � ∞�� ∞

� � ∈ Y�+s
ŷ�
}

by 
26��

By the argument in [14] and using Lemma 4, part 4, we have

Prσ�W̃1�T�� − � = s� Ŵ�T�� = ŷ � T� < Tσ�
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is asymptotic to the limit of [14], (1.22). Using the above asymptotic result for
� = np+m as n→ ∞, the numerator of [14], (1.22), tends to∑

z∈�
A
ẑ�−z̃1

p=A
ŷ�−s−�

π
z�h
z�H
z�α−sǎ
ŷ�pµ
s� ŷ��

To see that the parity is correct, note that 
W̃1�T��� Ŵ�T��� must reach 
s +
�� ŷ� ∈ Bk, where k

p= A
ŷ�−s− �. Since Bk is closed for the marginal twisted
free process, z must have been in Bk also. The denominator of (1.22) in [14]
tends to g
A
ŷ� − s− �modp� defined at (23). The ratio of these limits gives
Theorem 7. ✷

Proof of Theorem 8. The proof is an extension of [14], Theorem 2.10,
which in turn uses the ideas in [5]. Note that the proof does not need to
require that all the components of d̃ be positive as was assumed in [14]. Let
Hσ
� be the event �T� < Tσ�. We first remark that

Pr��H� ∩C�� ∼ Prσ�Hσ
� ∩C���

where H� = �T� < T�� as � → ∞. This follows from the proof of the Com-
parison Lemma 1.8 in [14]. Similarly, Pr�H� ∼ Prσ �Hσ

� �. Consequently, it
suffices to show

lim
�→∞

Pr� �C� � T∞
� < T

∞
� � = 0�

since W never hits � during trajectories in H�.
Next,

Pr��C��T∞
� < T

∞
� �

Pr��T∞
� < T

∞
� � =

∑
x∈� λ
x�Ex
χ��� ∩	��â−1
�̂ ∞�� ∞

� ���∑
x∈� λ
x�Ex
χ�	��â−1
�̂ ∞�� ∞

� ���
�

where 	� = �� ∞
� < � ∞

� �.
By hypothesis, Prx ���� → 0 as �→ ∞. The result follows since Ex
χ�	��×

â−1
�̂ ∞�� ∞
� ��� converges to a nonzero limit as �→ ∞ by [14], Lemma 1.4. ✷

Proof of Corollary 1. Let C� = χ�sup0≤s≤T� �W̃�s� − d̃s� > ε��. If the
stronger Markov additive property (17) holds, then by the law of large num-
bers, �̃ ∞���/� → d̃. This limit could also hold even if the stronger Markov
additive property does not. Either way, Prx ���� → 0, so we can apply
Theorem 8. ✷

Proof of Corollary 2. Since � ∞
� /� → 1/d̃1, we have �̃ ∞�� ∞

� �/� ∞
� →

d̃/d̃1. Let

C� = χ��
W̃�T��/T�� − d̃/d̃1� > ε��
Again, Prx ���� → 0 so we can apply Theorem 8. ✷
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Proof of Corollary 3. Since ϕ is the stationary distribution of �̂ ∞, it
follows that

n∑
k=0
f
�̂ ∞�k��/n→ ∑

ŷ

f
ŷ�ϕ
ŷ� almost surely.

Let

C� = χ
{
� 1
T�

T�∑
k=0
f
W�k�� −∑

ŷ

f
ŷ�ϕ
ŷ�� > ε
}
�

Again, Prx ���� → 0, so we can apply Theorem 8. ✷

5. Analysis of asymptotics of join the shortest queue. Now we apply
the results of Section 4 to the two-server join the shorter queue system. To
ensure irreducibility, assume λ1 + γ > 0, λ2 + γ > 0, µ1 > 0 and µ2 > 0.

Our first step is to uniformize Q
t�, and let Q�n� = 
Q1�n��Q2�n�� denote
the state at the nth step of the discrete-time Markov chain. For convenience,
measure time in units such that λ1+λ2+γ+µ1+µ2 = 1. Thus, these param-
eters can be interpreted both as rates and as transition probabilities, as shown
in Figure 2.

The second step is to make a guess as to the direction taken when the total
number of customers reaches some large level �� We originally guessed that if
ρ were strictly larger than ρ1 and ρ2, sample paths reaching the rare event of
interest would hug the diagonal. We refer to this case as a pooled network and
analyze it in Section 5.1. The actual behavior turned out to be more subtle.

If ρ1 were strictly larger than ρ and ρ2, then we guessed the most likely
approach to a large number of customers would bounce along the horizontal
axis, and similarly, for ρ2 along the vertical axis. These cases are referred to
as the unpooled cases and we analyze them in Section 5.5.

Fig. 2. Transition probabilities of Q.
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The remaining steps for each of the cases are as follows:

Step 3. DefineW�n�, which will be a relabelling of Q�n�. Of course, W̃1�n� =
Q1�n� + Q2�n�. The remaining components depend upon the conjectured
behavior.
Step 4. Specify � and � such that the resulting free chain W∞, defined

by C.2, satisfies C.3 and C.1 and such that there exists L
ŷ� satisfying C.11.
We will not mention L
·� since it is easy to define L
·� in all of the cases we
analyze.
Step 5. Find a harmonic function satisfying C.4 and use it to construct the

twisted free process in C.5. Choose a reference state δ and determine the
periodicity. Verify C.6 and compute ϕ
·�.
Step 6. Verify C.7–C.10 and C.12.
Step 7. Write down the results.

5.1. Pooled servers. If ρ were the largest, we initially guessed that the
servers would pool, and the most likely way to reach a large number � of
customers in the system would be along the diagonal so that both queues
become large, but their difference should remain small. Even though this guess
turned out to be naive, we briefly describe the evolution of the steps.

Step 3. One alternative for defining is W̃2�n� = Q1�n� and Ŵ�n� to be degen-
erate. However, a better alternative would be to define Ŵ�n� as 
Q1�n� −
Q2�n��. The alternative is better in the sense that the more information in
Ŵ�n�, the stronger the results, provided all of the conditions can be verified.
Hence, let W�n� = 
W̃�n�� Ŵ�n�� = 
Q1�n� +Q2�n��Q1�n� −Q2�n��. Note that
S = �
w̃1� ŵ� = 
x+y�x−y��x�y ≥ 0�, which implies S is a subset of �+ ×�.
Step 4. The free chain is easily constructed by using the transition probabil-

ities of W corresponding to when both queues are busy. Thus, � corresponds
to at least one of the queues being idle, and - corresponds to the states in
which both servers are busy. Let � = �2\-. The state space of the free pro-
cess (and twisted processes) is �2. Some of the states around the origin are
shown in Figure 3. The states in � are labelled in the obvious way. The left-
most point labelled � is the origin. The states in �\� are labelled with �. The
points labelled with ◦ belong to - (and also to B0). The W-chain lives on S;
that is, the points labelled with either � or ◦. Column (a) shows the transi-
tion probabilities for the free process used from any point in �2 depending on
whether the state is above, on or below the x axis. At first, the points labelled
� interspersed among S \ �, for example, (1, 0), would appear to be useless
since neither the W-chain nor the free chain starting on � would ever visit
these points. However, they play a useful role in Lemma 5 and Theorem 7.
Step 5. A harmonic function is h
x� = ρ−x1 , where x1 is the total number

of customers in the system. Note that ĥ
x̂� ≡ 1 in this case. Column (b) of
Figure 3 shows the transition probabilities for the twisted free process. Choose
δ = 
0�0�. To be in state 
s�0�, s must be even. Clearly, �̂ ∞ is 2-periodic!
To verify C.6, we would need to show that �̂ ∞, the difference in the queue
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lengths for the twisted process, is positive recurrent. If the difference between
the lengths of queue 1 and queue 2 is positive, it is clear from Figure 3 that
the expected drift of �̂ ∞ is ρµ2 + λ1/ρ − ρµ1 − 
λ2 + γ�/ρ� If the difference
between the lengths of queue 1 and queue 2 is negative, the expected drift
of �̂ ∞ is ρµ2 + 
λ1 + γ�/ρ − ρµ1 − λ2/ρ. For �̂ ∞ to be recurrent, we need
both drifts to be towards zero; that is, we need γ > �ρ2
µ2 − µ1� + 
λ1 − λ2��.
However, it is possible to construct examples in which ρ > ρ1 ∨ ρ2, but γ ≤
�ρ2
µ2 − µ1� + 
λ1 − λ2��. Thus, C.6 did not hold; and, we realized that our
guess about the way that the rare event would be approached when ρ was the
largest needed to be refined.

Thus, we need to split this case into two cases. If the difference in the queue
lengths of the twisted free process is positive recurrent, we will refer to it as
strongly pooled and analyze it in Section 5.2. If the difference is not positive
recurrent, we refer to it as weakly pooled and analyze it in Section 5.3.

5.2. Strongly pooled servers. For the strongly pooled network, we are
assuming in addition that γ > �ρ2
µ2 − µ1� + 
λ1 − λ2��. Steps 3, 4, 5 and
verifying C.6 are identical to the arguments of the pooled section except that

Fig. 3. The transitions of (a) K∞ and (b) � ∞ under pooling.
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C.6 now holds due to the added condition. Not only is �̂ ∞ positive recurrent,
it is simple to show that the stationary distribution ϕ of �̂ ∞ is given by (2).
Step 6. The remaining properties that need to be verified are:

C.7. �̃ ∞ increases by 1 with probability µ1 + µ2 and decreases by 1 with
probability λ1 + λ2 + γ, so

d̃1 = µ1 + µ2 − 
λ1 + λ2 + γ�
and 0 < d̃1 <∞.

C.8. This condition is automatic since d̃1 is positive and �̂ ∞ drifts toward
0. There is some probability � ∞ can reach a point 
L�0� for L arbitrarily
large. It follows that if � ∞ were to hit � from 
L�0�, then the law of large
numbers would apply. Given that �̂ ∞ drifts toward 0, it is therefore impossible
that � ∞ hit � with probability 1.

C.9. This condition is automatic since ĥ ≡ 1.
C.10. The boundary � that was removed to transform the W-chain into

the free chain corresponds to the states of the form 
x�0� and 
0� y� in the
Q-chain. Thus, the analog to C.10 for the Q-chain is that∑

x>0

πQ
x�0�ρ−x +
∑
y>0

πQ
0� y�ρ−y <∞�

Thus, we need to find a Lyapunov function V such that KQV − V < −f
for “most” states 
x�y� ∈ �+

2 and f
x�y� = ρ−
x+y�χ�x = 0 or y = 0�. By
“most” states, we mean for all but a finite number of states. We leave this to
Section 5.4.

C.12. This follows from C.10 since ĥ ≡ 1.

Step 7. We may now draw our conclusions.

Theorem 9. If ρ > max�ρ1� ρ2� and γ > �ρ2
µ2−µ1�+ 
λ1−λ2��, we have

πg

�� ŷ�� ∼ 2f
0�ρ� 1
d̃1

ϕ
ŷ�χ�ŷ = �mod2��

where ϕ is given at (2), where

f
0�=g=g
0�≡
∞∑
x=1

[
πg
x�x�ρ−xH
x�x�+πg
x�−x�ρ−xH
x�−x�]�(36)

and where H
z� is the probability � ∞, starting at z = 
z̃� ẑ�, never visits �.

Remark 3. We are in the special case mentioned after (23), so f
m� =
g
m� for m = 0�1. Also f
1� = g
1� = 0 since B1 is not accessible from �.

This means the stationary measure is a product for large �. The constant f
0�
can only be obtained by simulation. This is not too onerous because we only
need πg near the origin.
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Since we are taking δ = 
0�0�, we note that the setsA0 andA1 are the even
and odd integers, respectively. The chain ��̂ ∞�� ∞

� �� � = 0�1� � � �� is a periodic
Markov chain with steady state µ which jumps back and forth between A0
and A1. It follows that µ
0�A0� = µ
0�A1� = 1/2. Now applying Theorem 7,
we get:

Theorem 10. Under the conditions of Theorem 9, as �→ ∞,
Prσ

{
Ŵ�T�� = ŷ � T� < Tσ

}
∼ 2µ
0� ŷ�χ�ŷ = �mod 2�

for any initial point σ .

Theorem 11. Under the conditions of Theorem 9,

EσT� ∼ g−1ρ−� as �→ ∞�
where σ is any initial point in � and g = f
0� was given in Theorem 9.

5.3. Weakly pooled servers. In addition to stability, for the weakly pooled
case we also assume that ρ is the largest and that γ ≤ �ρ2
µ2−µ1�+
λ1−λ2��.

Step 3. Since we are guessing that Q1�T��, Q2�T��, and their difference
all become large with �, we pick one of them, and let W̃�n� = 
Q1�n� +
Q2�n��Q1�n� −Q2�n�� and Ŵ be trivial.
Step 4. Since Ŵ is trivial, to obtain the stronger Markov additive structure

(17), we need to choose the transition structure either above, on or below the
x axis for the free process. Initially we labelled the queues so that queue 1
grew faster and chose the transition structure above the axis, i.e., the topmost
transition structure in column (a) of Figure 3. Consequently, all the points
labelled “◦” on or below the axis would become part of �� When we did this,
not only were we unable to verify C.10 in Step 6, we suspect that it does not
hold. Instead, we resorted to leaving the transition structure in column (a)
intact, which satisfies the weaker Markov additive structure (16). The set �
remains the same as in the strongly pooled case, and we were able to verify
C.10 for this process. However, to obtain a joint bottlenecks result, we need
an additional argument.
Step 5. The harmonic function is the same as for the strongly pooled case.

Since Ŝ has only one state, Ŵ is positive recurrent and aperiodic.
Step 6. To verify the remaining conditions:

C.7. This is the same as in the strongly pooled case.
C.8. If ρ2
µ2−µ1�+
λ1−λ2� ≥ γ, then necessarily �̃ ∞

2 has a nonnegative
drift. On the other hand, �̃ ∞

2 hits � with probability strictly less than 1. This
follows from the law of large numbers and the fact that the slope of the drift
is less than 1. Above the x axis, this slope is


ρµ2 + ρ−1λ1 − 
ρµ1 + ρ−1
λ2 + γ���/
µ1 + µ2 − 
λ1 + λ2 + γ���
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and this is less than 1 if ρ2 < 
λ2+γ�/µ2. This is true because ρ < 
λ2+γ�/µ2
since

ρ = µ1

µ1 + µ2

λ1
µ1

+ µ2

µ1 + µ2

λ2 + γ
µ2

and ρ > ρ1 in the pooling case.
If ρ2
µ2 − µ1� + 
λ1 − λ2� ≤ −γ, then necessarily �̃ ∞

2 has a nonpositive
drift. On the other hand, �̃ ∞

2 hits � with probability strictly less than 1. This
follows from the law of large numbers and the fact that the slope of the drift
is greater than −1. The slope below the x axis is


ρµ2 + ρ−1
λ1 + γ� − 
ρµ1 + ρ−1λ2��/
µ1 + µ2 − 
λ1 + λ2 + γ���
and this is greater than −1 if ρ2 < 
λ1 + γ�/µ1. Again, this is true because
ρ < 
λ1 + γ�/µ1 since

ρ = µ1

µ1 + µ2

λ1 + γ
µ1

+ µ2

µ1 + µ2

λ2
µ2

and ρ > ρ2.
C.9, C.10 and C.12. These are identical to those in the strong pooling case.

Step 7.We can now draw our conclusions. The asymptotics of the stationary
distribution given in Theorem 3 follow because ϕ is a trivial measure. EδT� is
the same as in Theorem 11.

If ρ2
µ2−µ1�+ 
λ1−λ2� ≥ γ, then necessarily �̃ ∞
2 has a nonnegative drift,

so using the argument from C.8, we get

lim
�→∞

(
Q1�T�� +Q2�T��

�
�
Q1�T�� −Q2�T��

�

)
=

(
1�
λ1/ρ− 
λ2 + γ�/ρ− ρµ1 + ρµ2

λ1/ρ− ρµ1 + 
λ2 + γ�/ρ− ρµ2

)
�

When �̃ ∞
2 has a nonpositive drift, we get a similar result. Rewriting these

gives the rest of Theorem 3.

5.4. Checking C�10� As a special case of the following proposition, we have∑
x≥0
ρ−xπQ
x�0� <∞ and

∑
y≥0
ρ−yπQ
0� y� <∞�

which establishes C.10 for the strongly and weakly pooled cases.

Proposition 1. If ρ > max�ρ1� ρ2� and ρ < 1, then∑
x≥0� y≥0

ρ−
√
x2+y2πQ
x�y� <∞�(37)
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Proof. To establish (37), consider the Lyapunov function V
x�y� =
ρ−

√
x2+y2 . We now calculate KQV
x�y� − V
x�y� for x�y ≥ 0 and we will

show

KQV
x�y� −V
x�y� ≤ −cV
x�y� for x�y large enough�

where c is some positive constant. By rescaling V, it follows that in the region
x�y ≥ 0, we will have found a function V′ such that

KQV
′
x�y� −V′
x�y� ≤ −ρ−

√
x2+y2 + s
x�y� where s has finite support.

Consequently, by [15], Theorem 14.3.7,∑
x≥0� y≥0

ρ−
√
x2+y2πQ
x�y� ≤

∑
x≥0� y≥0

s
x�y�πQ
x�y� <∞�

Except at the origin, KQV
x�y� −V
x�y� can be expressed as

�KQV−V�
x�y�

=



λ1=xV
x�0� − µ1=xV
x− 1�0� + 
λ2 + γ�=yV
x�0�� if 0 = y < x,

λ1 + γ�=xV
0� y� + λ2=yV
0� y� − µ2=yV
0� y− 1�� if 0 = x < y,

λ1 + γ/2�=xV
x�y� − µ1=xV
x− 1� y�

+ 
λ2 + γ/2�=yV
x�y� − µ2=yV
x�y− 1�� if 0 < x = y,
λ1=xV
x�y� − µ1=xV
x− 1� y� + 
λ2 + γ�=yV
x�y�

−µ2=yV
x�y− 1�� if 0 < y < x,


λ1 + γ�=xV
x�y� − µ1=xV
x− 1� y� + λ2=yV
x�y�
−µ2=yV
x�y− 1�� if 0 < x < y,

where =xV
x�y� ≡ V
x+1� y�−V
x�y� and =yV
x�y� ≡ V
x�y+1�−V
x�y�.
Now we have to show that in each of the five cases, KQV
x�y� −V
x�y� <
−cV
x�y� for x or y sufficiently large.

In the first case, when 0 = y < x,
KQV
x�0� −V
x�0� = ρ−x

(
λ1
ρ−1 − 1� + µ1
ρ− 1�

+
λ2 + γ�
ρ−
√x2+1−x� − 1�
)
�

Note that

ρ−
√x2+1−x� − 1 = ρ−x

√

1+1/x2−1� − 1

≤ ρ−x
1+1/
2x2�−1� − 1

= ρ−1/
2x� − 1�

Hence, for x large enough, this term is arbitrarily small. It therefore suffices
to show λ1
ρ−1 − 1� +µ1
ρ− 1� < 0. This follows by noting that, for s > 0, the
function λ1s+µ1s

−1 − 
λ1 +µ1� is strictly convex and has zeros at 1 and ρ−11 .
Since 1 < ρ−1 < ρ−11 in the pooled case, we have completed Case 1.
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The second case, when 0 = x < y, follows similarly since the problem
is completely symmetric in x and y; the analogous condition needed is 1 <
ρ−1 < ρ−12 , which also holds by hypothesis. In the last three cases, we find it
more convenient to use polar coordinates. If x = r cos
θ�, y = r sin
θ�, then

=xV
x�y� = ρ−
√


x+1�2+y2 − ρ−
√
x2+y2

= ρ
−
√
1+r2+2r cos θ� − ρ−r

≤ ρ−r
ρ−
cos θ+1/2r� − 1��
=yV
x�y� = ρ−

√
x2+
y+1�2 − ρ−

√
x2+y2

= ρ
−
√
1+r2+2r sin θ� − ρ−r

≤ ρ−r
ρ−
sin θ+1/2r� − 1��
−=xV
x− 1� y� = ρ−

√

x−1�2+y2 − ρ−

√
x2+y2

= ρ
−
√
1+r2−2r cos θ� − ρ−r

≤ ρ−r
ρcos θ−1/2r − 1��
−=yV
x�y− 1� = ρ−

√
x2+
y−1�2 − ρ−

√
x2+y2

= ρ
−
√
1+r2−2r sin θ� − ρ−r

≤ ρ−r
ρsin θ−1/2r − 1��
where we have repeatedly factored out r and used

√
1+ x ≤ 1+x/2 for x > −1.

Using these inequalities in the third case, when 0 < x = y, yields
KQV
x�y� −V
x�y� ≤ ρ−r

[
ρ−1/
2r�

(

λ1 + γ/2�ρ− cos θ + µ1ρ

cos θ

+ 
λ2 + γ/2�ρ− sin θ + µ2ρ
− sin θ

)
− 1

]
�

where θ = π/4. Since ρ−1/
2r� ↘ 1, it suffices to check that


λ1 + λ2 + γ�ρ−1/
√
2 + 
µ1 + µ2�ρ1/

√
2 − 1 < 0�

But this follows since 
λ1 + λ2 + γ�s + 
µ1 + µ2�s−1 − 1 for s > 0 is strictly
convex with zeros at 1 and ρ−1 and ρ−1/

√
2 lies between the two zeros.

Now consider the fourth case, when 0 < y < x. Again after converting to
polar coordinates and bounding, we have

KQV
x�y� −V
x�y�
≤ ρ−r

[
ρ−1/
2r�

[
λ1ρ

− cos θ + µ1ρ
cos θ + 
λ2 + γ�ρ− sin θ + µ2ρ

sin θ]− 1
]
�

Similar to Case 3, it is enough to check that the function

f
θ� ≡ 
λ1ρ−cosθ + µ1ρ
cos θ + 
λ2 + γ�ρ− sin θ + µ2ρ

sin θ� − 1

is always negative for 0 ≤ θ ≤ π/4 radians.
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First, rewrite f as

f
θ� = f1
ρ− cos
θ�� + f2
ρ− sin
θ���(38)

where

f1
x� ≡ λ1x+ µ1x
−1 − 
λ1 + µ1��

f2
x� ≡ 
λ2 + γ�x+ µ2x
−1 − 
λ2 + γ + µ2��

We will find functions �1
x� and �2
x� which are upper bounds for f1
x� and
f2
x� over the regions of interest. Then the last step will be to show that the
last inequality in the following holds:

f
θ� ≤ �1
ρ− cos
θ�� + �2
ρ− sin
θ�� ≡ �
θ� < 0 for 0 ≤ θ ≤ π/4�
To find the upper bounds, note that f1
x� and f2
x� are strictly convex on
x > 0 since the second derivatives are strictly positive. The zeros of f1
x� occur
at x = 1 and x = ρ−11 ; the zeros of f2
x� occur at x = µ2/
λ2+γ� and x = 1. We
are interested in f1
x� for x ∈ �ρ−1/

√
2� ρ−1�, and f2
x� for x ∈ �1� ρ−1/

√
2�. Let

�1
x� be the line that agrees with f1
x� at the endpoints of its region of interest
�ρ−1/

√
2� ρ−1�; similarly, define �2
x� to be the line that agrees with f2
x� at

the endpoints of �1� ρ−1/
√
2�. By convexity, each line �i
x� is an upper bound

for fi
x� over its region of interest. Note that �1
x� < 0 for x ∈ �ρ−1/
√
2� ρ−1�

since the endpoints of the region fall between the zeros of f1
x�; that is, 1 <
ρ−1/

√
2 < ρ−1 < ρ−11 . Now we consider two subcases. The easier case occurs

when ρ−1/
√
2 ≤ µ2/
λ2+γ�, since then �2
x� ≤ 0 for x ∈ �1� ρ−1/

√
2�. To see that

�2
x� ≤ 0 over this region, note that the left endpoint of the region is a zero of
f2
x�; that is, �2
1� = f2
1� = 0. Hence, the line �2
x� ≤ 0 for x ∈ �1� ρ−1/

√
2�

if it is less than or equal to zero at its right endpoint; that is, if the right
endpoint lies between the zeros of f2
x�; that is, if ρ−1/

√
2 ≤ µ2/
λ2+γ�. Since

�1 < 0 and �2 ≤ 0 over their regions of interest, it follows that �
θ� < 0 for
0 ≤ θ ≤ π/4, which completes the easier case. The more difficult case occurs
when �2
x� > 0 for x ∈ 
1� ρ−1/

√
2�; that is, �2
x� has a positive slope. First

note that �
0� = f
0� = f1
ρ−1� < 0, and �
π/4� = f
π/4� < 0, where the first
inequality follows from Case 1 and the second inequality follows from Case 3.
Hence, if �
θ� is ever nonnegative, there must exist a local maximum at some
point θ0 between 0 and π/4 with �
θ0� ≥ 0. Since θ0 is a local maximum,

�′
θ0� =
d

dθ
�1
ρ− cos
θ���θ=θ0 +

d

dθ
�2
ρ− sin
θ���θ=θ0

= s1 ln
ρ� sin
θ0�ρ− cos
θ0� − s2 ln
ρ� cos
θ0�ρ− sin
θ0�

= 0�

where si is the slope of �i
x�, and in this subcase s2 > 0. It follows that

0 <
sin
θ0�
cos
θ0�

ρsin
θ0�−cos
θ0� = s2
s1
�

and since s2 > 0, it follows that s1 > 0.
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This leads to a contradiction since

�′′
θ0� =
d2

dθ2
�1
ρ− cos
θ���θ=θ0 +

d2

dθ2
�2
ρ− sin
θ���θ=θ0

= s1
ln
ρ� sin
θ0��2ρ− cos
θ0� + s2
− ln
ρ� cos
θ0��2ρ− sin
θ0�

+ s1 ln
ρ� cos
θ0�ρ− cos
θ0� + s2 ln
ρ� sin
θ0�ρ− sin
θ0�

> 0�

which implies that θ0 is a local minimum. Consequently, both �
θ� and f
θ�
are strictly negative on the interval 0 ≤ θ ≤ π/4.

Case 5, when 0 < y < x, follows from Case 4 by symmetry since the problem
is symmetric in x and y. In Case 4, we used ρ > ρ1 to show that �1
x� < 0
over its region of interest. In Case 5, the analogous condition is ρ > ρ2 and
both of these conditions hold by hypothesis. ✷

5.5. Unpooled servers. In this section we suppose ρ < max�ρ1� ρ2� and we
assume ρ2 < ρ1. (We avoid the case of exactly equal loads since this leads to
additional subtleties.) In such a model, the first queue overloads but the ser-
vice rate of the second queue is so fast that even though the smart customers
all join the second queue, it still remains in steady state.

5.6. Steps for the unpooled case.

Step 3. Define W�n� = 
W̃�n�� Ŵ�n�� = 
Q1�n� + Q2�n��Q2�n�� ∈ �+ × Ŝ,
since we expect Q2�n� ∈ Ŝ ≡ �+ to be stable when the backlog overloads.
Step 4. Define the set � = �
x1� ŷ� ∈ � × Ŝ� x1 ≤ 2ŷ + 1�. Note that �

includes all states of the W-chain corresponding to states in which queue 1
has at most one more customer than queue 2. The set � = �
x1� ŷ� ∈ �� x1 ≥ 0,
x1 ≤ 2ŷ+ 1, ŷ ≤ x1�. Consider a Markov kernel K∞ defined in Figure 4. This
transition structure can be thought of as changing the smart customers into
customers dedicated to queue 2 and allowing negative customers at queue 1.
Denote the chain with kernel K∞ by W∞ and remark that, away from �, W
agrees with W∞. Moreover, W∞, can be viewed as a Markov additive process
where the total number of customers W̃∞ will be the additive process and Ŵ∞,
the queue length at two, is the Markovian component.
Step 5. It is easy to check that h
x1� ŷ� = ρ−x11 ρ

ŷ
1 is a harmonic function for

the kernel of the free process K∞. The kernel by � ∞ of the twisted random
walk � ∞ is given in Figure 4. In fact, this twist reverses the service rate µ1
and the arrival rate λ1 of the first queue. The additive increments between
the times when �̂ ∞ returns to 0 is obviously aperiodic since it is possible to
return in one transition.

First, note that

ρ = λ2 + γ
µ2

µ2

µ1 + µ2
+ λ1
µ1

µ1

µ1 + µ2
�
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Fig. 4. Transition probabilities of W∞ and � ∞.

Since ρ1 > ρ, it follows that ρ2⊕γ ≡ 
λ2+γ�/µ2 < ρ < ρ1. Consequently, �̂ ∞

is stable and

ϕ
ŷ� =
(
1− λ2 + γ

µ2

)(
λ2 + γ
µ2

)ŷ
�(39)

Step 6. We verify the remaining conditions:

C.7. It is easy to check that d̃1 = �1 − ϕ
0���
λ2 + γ + µ1� − 
λ1 + µ2�� +
ϕ
0��
λ2 + γ + µ1� − λ1� = µ1 − λ1 > 0.

C.8. This condition follows from C.7 and the law of large numbers.
C.9. Notice that ĥ
ŷ� = ρ−ŷ1 . Moreover, we showed above that 
λ2+γ�/µ2 <

ρ1, so ρ
−1
1 
λ2 + γ�/µ2 < 1. This means

∑
ϕ
ŷ�ĥ
ŷ� <∞.

C.10. The support of the measure λ is �
x1� ŷ� ∈ �2
+ � x1 ≤ 2ŷ+ 1� x1 ≥ ŷ�.

So it suffices to show that∑
ŷ≥0
πW
2ŷ+ 1� ŷ�ρ−
2ŷ+1�

1 ρ
ŷ
1 = ∑

y≥0
πQ
y+ 1� y�ρ−
y+1�

1 <∞�

In fact, to check C.12, we will have to prove more.
C.12. First note that λ̂
ŷ� = ∑2ŷ+1

x1=ŷ λ
x1� ŷ�. According to the discussion

earlier and in [14] following Lemma 1.1, we need to find a V̂
ŷ� such that

�̂ ∞V̂
ŷ� − V̂
ŷ� ≤ −ĥ
ŷ� + bχC
ŷ��
and

∑
ŷ≥0 V̂
ŷ�λ̂
ŷ� <∞, where C is a finite set and finite b ≥ 0. Set C = �0�

and V̂
ŷ� = ρ
−ŷ
1 /�ψ2⊕γ
ρ−11 ��, where ψ2⊕γ
s� = 
λ2 + γ�
s − 1� + µ2
s−1 − 1�.
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This works since

�̂ ∞V̂
ŷ� − V̂
ŷ�
=

(

λ2 + γ�
ρ−
ŷ+1�

1 − ρ−ŷ1 � + µ2χ�ŷ > 0�
ρ−
ŷ−1�
1 − ρ−ŷ1 �

)
/ �ψ2⊕γ
ρ−11 ��

=
(
ρ
−ŷ
1 
λ2 + γ�
ρ−11 − 1� + µ2
ρ1 − 1� + µ2
1− ρ1�χ�ŷ = 0�

)
/ �ψ2⊕γ
ρ−11 ��

= −ĥ
ŷ� + µ2
1− ρ1�/�ψ2⊕γ
ρ−11 ��χ�ŷ = 0��

since ψ2⊕γ
ρ−11 � < 0.
It now suffices to check that∑

ŷ≥0
V̂
ŷ�λ̂
ŷ� <∞�

or, equivalently, ∑
ŷ≥0
ρ
−ŷ
1

∑
ŷ≤x1≤2ŷ+1

h
x1� ŷ�πW
x1� ŷ� <∞�

or equivalently, ∑
y≥0

∑
0≤x≤y+1

ρ
−
x+y�
1 πQ
x�y� <∞�

We leave this to Section 5.7.

Step 7. We may now draw our conclusions.

Theorem 12. If ρ < max�ρ1� ρ2� = ρ1, we have

πW

�� ŷ�� ∼ fρ−�1
1

d̃1

ρ
−ŷ
1 ϕ
ŷ��

where

f ≡ ∑
ŷ≥0
πW
2ŷ+ 1� ŷ�ρ−
ŷ+1�

1 H
2ŷ+ 1� ŷ��(40)

ϕ is given in (39), andH
2ŷ+1� ŷ� is the probability � ∞ starting at 
2ŷ+1� ŷ�
never hits �.

This means the stationary measure is a product for large �. The constant
f can only be obtained by simulation.

Theorem 13. If ρ < max�ρ1� ρ2� = ρ1, then, as �→ ∞,

Prσ
{
Ŵ�T�� = ŷ � T� < Tσ

} →T ρ
−ŷ
1 µ
0� ŷ�

/(∑
ŷ

ρ
−ŷ
1 µ
0� ŷ�

)
�
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where σ is some initial state and Tσ is the return time σ , where →T denotes
convergence in total variation and where µ
0� ·� denotes the stationary distri-
bution of �̂ ∞�� ∞

� �, � = 1�2� � � �, where � ∞
� is the time first component of the

twisted process first reaches �.

Finally, we have:

Theorem 14. If ρ < max�ρ1� ρ2� = ρ1, then
EσT� ∼ ρ−�1 g−1 as �→ ∞�

where

g ≡ f∑
z≥0
ρ−z1 µ
0� z��(41)

5.7. Checking C�12 for the unpooled network. In this section we establish
the following proposition which establishes C.12 for the unpooled case.

Proposition 2. If ρ < ρ1 < 1, then

∞∑
y=0

y+1∑
x=0
ρ
−
x+y�
1 πQ
x�y� <∞�

Before proving the proposition, we introduce some notation and a lemma.
Recall that ρ2⊕γ ≡ 
λ2 + γ�/µ2. Since ρ = ρ1µ1/
µ1 + µ2� + ρ2⊕γµ2/
µ1 + µ2�,
we know that if ρ < ρ1 < 1, then ρ2⊕γ < ρ. Hence, if ρ < ρ1 < 1, we have

1 < ρ−11 < ρ−1 < ρ−12⊕γ < ρ
−1
2 �(42)

Now define the following functions:

ψM
s� = 
λ1 + λ2 + γ�
s− 1� + 
µ1 + µ2�
s−1 − 1��
ψi
s� = λi
s− 1� + µi
s−1 − 1� for i = 1�2�

ψ2⊕γ
s� = λ2⊕γ
s− 1� + µ2
s−1 − 1��
which are strictly convex for s > 0. Furthermore,

ψM
s� < 0 for s ∈ 
1� ρ−1��(43)

ψi
s� < 0 for s ∈ 
1� ρ−1i ��(44)

ψ2⊕γ
s� < 0 for s ∈ 
1� ρ−12⊕γ��(45)

In particular, if ρ < ρ1 < 1, then ψM
ρ−11 �, ψ2
ρ−11 � and ψ2⊕γ
ρ−11 � are all
strictly negative and ψ1
ρ−11 � = 0.

Lemma 8. If ρ < ρ1 < 1, then∑
x�y

ρ
−y
1 πQ
x� y� <∞�
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Proof. Let f
x�y� = ρ
−y
1 > 0, c = −ψ2⊕γ
ρ−11 � > 0, V
x�y� = ρ

−y
1 /c >

0 and s
x�y� = 1 + 
λ2 + γ�
ρ−11 − 1�/c > 0. To complete the proof, we
need only show that KQV
x�y� − V
x�y� ≤ −f
x�y� + s
x�y�, since by
[15], Theorem 14.3.7, we have πQf < πQs� and the latter is finite since s
is bounded. Now,

KQV
x�y� −V
x�y� =



ψ2
ρ−11 �ρ−y1 /c� for y > x ≥ 0,


λ2 + γ/2�
ρ−11 − 1�

+µ2
ρ1 − 1��ρ−y1 /c� for y = x > 0,
ψ2⊕γ
ρ−11 �ρ−y1 /c� for x > y > 0,

λ2 + γ�
ρ−11 − 1�/c� for x > y = 0,

λ2 + γ/2�
ρ−11 − 1�/c� for x = y = 0.

(46)

In the first case, when y > x ≥ 0, the r.h.s. of (46) simplifies to −f
x�y�×
ψ2
ρ−11 �/ψ2⊕γ
ρ−11 �, which is less than −f
x�y� + s
x�y� since ψ2
ρ−11 �/
ψ2⊕γ
ρ−11 � ≥ 1 and s > 0. In the second case, when y = x > 0, use the
inequality 

λ2 + γ/2�
ρ−11 − 1� + µ2
ρ1 − 1�� < ψ2⊕γ
ρ−11 � < 0 to reduce the
problem to considering the third case on the slightly larger region y ≥ x > 0.
However, in this third case, the r.h.s. of (46) simplifies to −f
x�y�. In the
fourth case, when x > y = 0, the r.h.s. is −f
x�0� + s
x�0�. The r.h.s. in the
last case at the origin is smaller than the r.h.s. in the fourth case. Hence,
KQV
x�y� −V
x�y� ≤ −f
x�y� + s
x�y�. ✷

Proof of Proposition 2. Fix ε such that 1 + ε = ln
ρ−12⊕γ�/ ln
ρ−11 � and
note ε > 0. Let c = −ψM
ρ−11 � > 0. Define

f
x�y� = ρ−
x+y�
1 χ�x ≤ y+ 1�/c�

V
x�y� =
{
ρ
−
x+y�
1 /c� for 0 ≤ x� x− 1 ≤ y,
ρ
−x
1+u
y/x��
1 /c� for 0 ≤ y < x− 1,

s
x�y� = �
λ1 + λ2 + γ�
ρ−11 − 1� + µ2
ρ1 − 1��ρ−y1 /c+ b�
where b is a positive constant whose value will be specified later, and u is a
continuous, differentiable function with the following properties: there exists
a δ > 0 such that

u
s� ≥ 0�

u
s� = 0 for 0 ≤ s ≤ δ/2�
u
s� = 1 for 1− δ/2 ≤ s ≤ 1�

0 ≤ u′
s� ≤ 1+ ε�
u
s� − su′
s� ≤ 0�

At the end of the proof, we give a function u with these properties. Other than
showing that such a u exists, we need only show that KQV
x�y� −V
x�y� ≤
−f
x�y� + s
x�y�, since by [15], Theorem 14.3.7, we have πQf < πQs, and
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the latter is finite. To see that πQs < ∞, use Lemma 8. Now we show that
KQV
x�y� −V
x�y� ≤ −f
x�y� + s
x�y� in all cases except for the difficult
region when 0 < y < x− 1, which we analyze later. Outside of 0 < y < x− 1,

KQV
x�y� −V
x�y� =


ψM
ρ−11 �V
x�y�/c� for y ≥ x− 1 > 0,
ψ1
ρ−11 �V
x�y�/c� for x ≥ y = 0,

λ1 + λ2 + γ�ρ−11 /c� for y = x = 0,


λ1 + λ2 + γ�
ρ−11 − 1�

+µ2
ρ1 − 1��ρ−y1 /c� for y > x = 0.

(47)

In the first region, y ≥ x − 1 > 0, the r.h.s. of (47) simplifies to −V
x�y� ≤
−f
x�y� ≤ −f
x�y�+s
x�y�, since s
x�y� ≥ 0. In the second region, the r.h.s.
is zero since ψ1
ρ−11 � = 0. Fortunately, f
x�y� = 0 in this region also. In the
third region, that is, at the origin, the desired inequality will hold if we select
b ≥ f
0�0�+
λ1+λ2+γ�ρ−11 /c� In the fourth region, when y > x = 0, we again
have f
x�y� = 0, so we only need to show that the r.h.s. of (47) is smaller than
s
x�y�, but this is straightforward.

Now we need to handle the difficult region 0 < y < x − 1. Let h
x�y� =
x
1 + u
y/x��. Since u
s� = s for s in a neighborhood of 1, it follows that
v
x� x − 1� = ρ

h
x�x−1�
1 except on the finite set C = �x� 
x − 1�/x < 1 − δ/2�.

Therefore, for 
x�y� such that 0 < y < x− 1 and x ∈ Cc,
KQv
x�y� − v
x�y�

= λ1
(
ρ
−h
x+1� y�
1 − ρ−h
x�y�1

)
+ 
λ2 + γ�

(
ρ
−h
x�y+1�
1 − ρ−h
x�y�1

)
+µ1

(
ρ
−h
x−1� y�
1 − ρ−h
x�y�1

)
+ µ2

(
ρ
−h
x�y−1�
1 − ρ−h
x�y�1

)
= ρ−h
x�y�1

(
λ1ρ

−
h
x+1� y�−h
x�y��
1 + 
λ2 + γ�ρ−
h
x�y+1�−h
x�y��

1(48)

+ µ1ρ
−
h
x−1� y�−h
x�y��
1 + µ2ρ

−
h
x�y−1�−h
x�y��
1 − 1

)
= ρ−h
x�y�1

(
λ1

(
ρ
−
∂/∂x�h
x+� y�
1 − 1

)
+ 
λ2 + γ�

(
ρ
−
∂/∂y�h
x�y+�
1 − 1

)
+ µ1

(
ρ

∂/∂x�h
x−� y�
1 − 1

)
+ µ2

(
ρ

∂/∂y�h
x�y−�
1 − 1

))
�

where x ≤ x+ ≤ x + 1 and x − 1 ≤ x− ≤ x and where y+ and y− are defined
similarly.

Now we show that we can replace x+ and x− by x and y+ and y− by y in (48)
and the change is negligible for x sufficiently large. Note that 
∂/∂x�h
x�y� =
1+ u
y/x� − 
y/x�u′
y/x�. Hence,

ρ
−
∂/∂x�h
x+� y�
1 − ρ−
∂/∂x�h
x�y�

1 and ρ
∂/∂x�h
x−� y�1 − ρ
∂/∂y�h
x�y�1

are arbitrarily small for x large enough uniformly in y with 0 ≤ x/y ≤ 1 using
the the continuity of u′. Similarly, 
∂/∂y�h
x�y� = u′
y/x�. Hence,

ρ
−
∂/∂y�h
x�y+�
1 − ρ−
∂/∂y�h
x�y�

1 and ρ

∂/∂y�h
x�y−�
1 − ρ
∂/∂y�h
x�y�1
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are arbitrarily small for x large enough uniformly in y with 0 ≤ x/y ≤ 1 using
the continuity of u′. Hence, it suffices to show that the following is negative:(

λ1
ρ−
∂/∂x�h
x�y�
1 − 1� + µ1
ρ
∂/∂x�h
x�y�1 − 1�

)
+

(

λ2 + γ�
ρ−
∂/∂y�h
x�y�

1 − 1� + µ2
ρ
∂/∂y�h
x�y�1 − 1�
)

= ψ1
ρ−
∂/∂x�h
x�y�
1 � + ψ2⊕γ
ρ−
∂/∂y�h
x�y�

1 � ≤ 0�

since f is zero in this region and b > 0. First,

ψ2⊕γ
ρ−
∂/∂y�h
x�y�
1 � = ψ2⊕γ
ρ−u

′
y/x�
1 �

= ψ2⊕γ
ρ−u
′
y/x�/
1+ε�

2⊕γ � by the definition of 1+ ε
≤ ψ2⊕γ
ρ−12⊕γ� since 0 ≤ u′ ≤ 1+ ε
= 0�

Next,

ψ1
ρ−
∂/∂x�h
x�y�
1 � = ψ1
ρ−
1+u
x/y�−
y/x�u′
x/y��

1 �
≤ ψ1
ρ−11 � since u
s� − su′
s� ≤ 0

= 0�

Thus, b can be chosen to be the larger of f
0�0� + 
λ1 + λ2 + γ�ρ−11 /c and
max0<y<x−1�f
x�y� +KQV
x�y� −V
x�y��, both of which are finite. Hence,
KQV
x�y� −V
x�y� ≤ −f
x�y� + s
x�y�.

The only remaining step is to show that there exists a function u with the
desired properties. Define 2δ = min�1/2� ε/
1+ ε��. Now define

u
s� =



0� for s ≤ δ/2,
1− δ

2δ
1− 2δ�
s− δ/2�
2� for δ/2 < s ≤ 3δ/2,


1− δ�
s− δ�
1− 2δ

� for 3δ/2 < s ≤ 1− 3δ/2,

s− 1
2
1− 2δ�
s− 
1− δ/2��2� for 1− 3δ/2 < s ≤ 1− δ/2,

s� for s > 1− δ/2.
We have chosen δ ≤ 1/4 to ensure that 3δ/2 < 1/2. The other constraint on δ
ensures that 1/
1− 2δ� ≤ 1+ ε. We leave it to the reader to verify that u has
the properties claimed. ✷
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