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This paper introduces a new aspect of queueing theory, the study of
systems that service customers with specific timing requirements (e.g., due
dates or deadlines). Unlike standard queueing theory in which common
performance measures are customer delay, queue length and server uti-
lization, real-time queueing theory focuses on the ability of a queue disci-
pline to meet customer timing requirements, for example, the fraction of
customers who meet their requirements and the distribution of customer
lateness. It also focuses on queue control policies to reduce or minimize
lateness, although these control aspects are not explicitly addressed in this
paper.
To study these measures, we must keep track of the lead times (dead-

line minus current time) of each customer; hence, the system state is of
unbounded dimension. A heavy traffic analysis is presented for the earliest-
deadline-first scheduling policy. This analysis decomposes the behavior of
the real-time queue into two parts: the number in the system (which con-
verges weakly to a reflected Brownian motion with drift) and the set of lead
times given the queue length. The lead-time profile has a limit that is a
nonrandom function of the limit of the scaled queue length process. Hence,
in heavy traffic, the system can be characterized as a diffusion evolving on
a one-dimensional manifold of lead-time profiles. Simulation results are
presented that indicate that this characterization is surprisingly accurate.
A discussion of open research questions is also presented.

1. Introduction. This paper introduces a new aspect of queueing theory,
the study of systems that service customers with individual timing require-
ments (e.g., due dates or deadlines). Such systems arise naturally in manufac-
turing in which orders have due dates. A second category of examples arises in
real-time computer and communications systems. Such systems might involve
the transmission of digitized voice, video or images over a network. These
transmissions must reach their destination within specific deadlines to main-
tain the integrity of the communication (e.g., voice conversation, teleconference
or movie). Real-time computer systems also control much of modern technol-
ogy, for example, engines and braking systems in automobiles, all avionic sys-
tems (including air traffic control) and all aspects of modern manufacturing
facilities. Computerized control systems must receive and react to state infor-
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mation within a fixed, often stringent, time interval to maintain proper control
over the system. Failure to meet task timing requirements in safety-critical
applications can have serious consequences. Thus, the conditions for correct
performance of a real-time system include both the logical correctness of each
of the tasks that it executes and the timing correctness of those tasks. Over
the last decade, there have been significant strides made in the development
of a theory of hard real-time systems, systems in which tasks must be com-
pleted before their deadline elapses. The reader is referred to the handbook
by Klein, Ralya, Pollak, Obenza and Gonzalez-Harbour [15] for a description
of this theory that addresses many practical considerations encountered in
computer systems such as operating system overhead, hardware architecture
details, concurrency control and other sorts of blocking and task precedence
relationships.
The scheduling theory described in [15] assumes an essentially determinis-

tic environment. For example, task arrivals are modeled as the superposition
of periodic arrival processes, and task service times are deterministic and
given by the worst case execution of each task type. Two principal approaches
have been developed to assess the design of real-time systems with periodic
task arrivals: one is based on a fixed task priority structure (exemplified by
rate monotonic scheduling) and the other is based on dynamic priorities [exem-
plified by the earliest-deadline-first (EDF) approach to scheduling]. These two
scheduling algorithms were analyzed by Liu and Layland [20] and the EDF
scheduling algorithm was shown to be optimal for this scheduling problem. In
some systems, especially communications systems, only a small number of bits
are available in each packet to represent the task’s priority; thus EDF cannot
be fully implemented because it can require an unlimited number of distinct
priority categories. Nonetheless, we introduce real-time queueing theory in
the context of the EDF scheduling algorithm, since this algorithm is optimal
under some conditions. Panwar and Towsley [22] showed that EDF maximizes
the fraction of customers meeting their deadlines within the class of work con-
serving policies that allow preemption in GI/M/1 queues where customers have
general deadlines. Bounds on the performance of EDF for M/M/1 queues in
which customers have exponential deadlines were developed by Hong, Tan
and Towsley [10]. We also discuss the first-in–first-out (FIFO) queue discipline
in Section 5 of this paper.
There are major limitations to any theory that requires periodic arrivals

and assumes worst-case execution times. These assumptions are quite narrow
and limit the range of systems that can be studied. Multimedia applications or
real-time communications can exhibit substantial variability in the arrival of
tasks and their work requirements. For real-time systems for which the task
sets exhibit substantial variability, we would like to develop approaches based
on queueing theory, a theory that was designed to model and predict stochas-
tic system behavior with resource contention. This theory allows randomness
in the task arrivals and task execution times. The difficulty with queueing
theory is that it typically does not allow for explicit consideration of dynam-
ically changing task timing requirements. Instead, it only permits priorities
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that allow important tasks or tasks with initial short timing requirements
to receive preferential treatment. Much of queueing theory focuses on general
system performance measures, such as task delay, queue lengths and processor
utilization, and these are usually computed under equilibrium assumptions.
It does not model the timing requirements of each customer nor does it ana-
lyze the ability of a scheduling algorithm to meet those timing requirements.
What is needed is a new theory that combines the focus on meeting task tim-
ing requirements as studied in real-time scheduling theory with the focus on
stochastic task sets as studied in queueing theory. This paper represents a step
in the direction of building such a theory, hence the name real-time queueing
theory.
To study whether tasks or customers meet their timing requirements, we

must keep track of the customer lead times, where the lead time is the time
remaining until the deadline elapses, that is,

lead time = deadline− current time�

Customer lead times decrease linearly while a customer is in the queue.
Because the lead time must be tracked for each customer, the dimension of the
system state is the number of customers in the queue, which is unbounded.
This causes analytic difficulties. In spite of this unbounded dimension, a heavy
traffic analysis can be carried out. This analysis decomposes the behavior of
the real-time queue into two parts: the number in the system, sayQ�t� (which
is shown under the heavy-traffic scaling to converge weakly to a reflected
Brownian motion with drift) and the set of lead times, �L1�t�� � � � �LQ�t��t��
(we refer to this as the lead-time profile), conditional on the queue length.
It is convenient to think of this profile as a random counting measure on �.
In heavy traffic, under the earliest-deadline-first queue discipline, it will be
shown that when suitably scaled, the lead-time profile converges to a nonran-
dom function of the limit of the scaled queue length process, the particular
function being determined by the distribution of initial deadline of arriving
customers. Hence, in heavy traffic, the unbounded dimension process collapses
to a one-dimensional process and we can conceptualize the real-time queue-
ing process as a diffusion evolving on a one-dimensional manifold of lead-time
profiles. Simulation results, presented in Section 4, indicate that this charac-
terization is surprisingly accurate.
This work is based on the long tradition of heavy-traffic queueing theory

pioneered by Kingman [14]. This research was generalized in scope and sys-
tem complexity by a number of authors; for example, see Iglehart and Whitt
[12, 13], who studied the multiple server case, for a review of this early liter-
ature. The use of heavy-traffic theory in the study of the behavior of priority
queues was initiated by the work of Whitt [30], Hooke [11], Harrison [5] and
Kyprianou [16]. The phenomenon of state space collapse, which was originally
observed by Reiman [26, 27], also occurs in our work. Specifically, the lead-
time profiles have the dimension of the number of customers in the queue,
which is unbounded. Nevertheless, in heavy traffic, those random profiles con-
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verge to a deterministic manifold of profiles indexed by the queue length, a
one-dimensional parameter.
Heavy-traffic queueing theory has evolved greatly over the last 25 years,

especially for queueing networks that carry multiple customer types. A great
increase in interest in this research area came with the work of Harrison and
co-authors (e.g., [6–9] and Peterson [24]. The EDF queue discipline studied
in this paper is related to multiclass queues, although in EDF there are an
infinite number of distinct priority classes and customers change classes as
they wait in the queue. Most of the work in heavy-traffic queueing networks
studies the behavior of queue lengths and workloads, rather than focusing
on the lead times of individual customers. We expect that our results on the
convergence of the lead-time profiles for the single queue case will carry over
to networks, but we do not study network behavior in this paper. Similarly,
we expect that optimal control methods can be applied to real-time queues to
control customers’ lateness in the way that many researchers have used these
methods to optimize inventory holding costs; see, for example, Harrison and
Wein [9, 29].
There is some recent work on heavy-traffic approximations for systems that

handle customers with due dates. Of particular importance are the papers by
Van Mieghem [28], Markowitz and Wein [21], Doytchinov [3] and Lehoczky
[17–19]. Van Mieghem studied a single server multiclass queueing system
with k distinct customer classes. Each class has an associated convex cost of
delay, Ck�τ�, with derivative ck�τ�. The objective is to minimize the total delay
cost incurred over a finite time horizon. The paper studied the “generalized
cµ policy,” which schedules the customer having maximum value µkck�ak�t��,
where µk is the service rate for class k and ak�t� is the age of the oldest
customer in class k. Customers are served in FIFO order in each class, which is
equivalent to EDF within each class. This policy is shown to be asymptotically
optimal in heavy traffic. Generalizations to a countable number of customer
classes and several homogeneous servers in a nonstationary, deterministic or
stochastic environment are also considered.
Markowitz and Wein [21] studied the single machine scheduling problem

in a manufacturing context using heavy-traffic methods. They give a uni-
fied treatment that permits setup costs, customer due dates and a mixture
of standardized and customized products. The analysis assumes a cyclic pol-
icy in which different products must be produced in a fixed sequence, but the
machine busy/idle policy and lot-sizing decisions are dynamic. As such, the
system resembles a polling system. A heavy-traffic averaging principle such
as characterized by Coffman, Puhalskii and Reiman [2] is assumed to hold
and, subject to this assumption, the optimal policy is determined. Their paper
gave a detailed discussion of the interactions between the setup, due date and
product mix factors.
Doytchinov [3] developed a partial differential equation-based approach to

the study of real-time M/M/1 queues in which the arrivals have constant dead-
lines. In this case, the EDF and FIFO queue disciplines are identical. His
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methodology proved that the lead-time profiles converge to a uniform distri-
bution in heavy traffic.
Lehoczky [17] gave an informal analysis for the M/M/1 queue based on

representing the lead-time profile as a measure-valued Markov process and
then arguing, under heavy traffic conditions, that the generator converges to
that of a deterministic profile conditional on the queue length. This was done
both for EDF and for processor sharing. Lehoczky [18] used these results
to study the behavior of various queue control policies to reduce customer
lateness. Lehoczky [19] extended the analysis to Jackson networks.
This paper is organized as follows. In Section 2, we present the basic model,

assumptions and notation. Section 3 gives the major theorems that describe
the heavy-traffic limiting behavior of EDF real-time single server queueing
systems. Section 4 presents simulation results that illustrate the accuracy of
the theory. Section 5 presents some conjectures for the extension of the theory
of Section 3. Appendixes A and B are included to set notation. Appendix A
collects key definitions and theorems related to weak convergence of measures
on metric spaces, and Appendix B recalls classical heavy-traffic theorems.

2. The basic model, assumptions and notation. We first define the
basic real-time queueing theory model. Because we shall ultimately pass to
a heavy-traffic limit, we posit a sequence of queueing systems, indexed by n.
The assumptions on the nth queueing system are the following:

A1. There is a single station serving customers.
A2. Customer interarrival times are determined by the sequence of strictly

positive i.i.d. random variables �u�n�j �∞j=1 with E�u�n�j 	 = 1/λ�n� and

Var�u�n�j 	 = �α�n��2.
A3. Customers have service requirements that are determined by the

sequence of nonnegative i.i.d. random variables �v�n�j �∞j=1 with E�v�n�j 	 =
1/µ�n� and Var�v�n�j 	 = �β�n��2.

A4. Each customer arrives with a hard deadline (initial lead time) L�n�j . These
initial lead times are i.i.d. with distribution given by

��L�n�j ≤ √ny� = G�y��(2.1)

where G is a right-continuous cumulative distribution function. We define

y∗ �= min�y ∈ ��G�y� = 1�(2.2)

and assume that y∗ is finite.
A5. The sequences �u�n�j �∞j=1, �v�n�j �∞j=1 and �L�n�j �∞j=1 aremutually independent.
A6. Customers are served using the earliest-deadline-first queue discipline,

that is, the server always services the customer with the shortest lead
time.

A7. Preemption is permitted (we assume preempt–resume). There is no setup,
switchover or any other type of overhead.
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A8. Late customers (customers with negative lead times) stay in the queue
until served to completion.

A9. The queue is empty at time zero.

The interarrival times, service times, initial lead times and queue discipline
completely determine the behavior of the queue. From them we can derive the
customer arrival times

S
�n�
k

�=
k∑

j=1
u
�n�
j �

with S�n�0
�= 0, and the customer arrival process

A�n��t� �= max{k�S�n�k ≤ t
}
�

The work arrival process

V�n��t� �=
�t�∑
j=1

v
�n�
j

records the amount of work that arrives with the first �t� customers, and the
netput process

N�n��t� �= V�n�(A�n��t�)− t

measures the work remaining in queue at time t, provided that the server is
never idle up to time t. The cumulative idleness process

I�n��t� �= − min
0≤s≤t

N�n��s��
gives the amount of time the server is idle, and adding this to the netput
process, we obtain the workload process

W�n��t� �=N�n��t� + I�n��t��
which records the amount of work in the queue, taking server idleness into
account. All the foregoing above processes are independent of the queue service
discipline, provided that the server is never idle when there are customers in
the queue. The queue length processQ�n��t�, which is the number of customers
in the queue at time t, depends on the queue discipline. All these processes
are right-continuous with left-hand limits �RCLL�.
To obtain heavy-traffic limits, we must scale and sometimes center the pre-

ceding processes. The real-valued processes whose limits we shall consider
are

Â�n��t� �= 1√
n

(
A�n��nt� − λ�n�nt

)
�(2.3)

V̂�n��t� �= 1√
n

�nt�∑
j=1

(
v
�n�
j − 1

µ�n�

)
�(2.4)

N̂�n��t� �= 1√
n
�V�n�(A�n��nt�� − nt

)
�(2.5)



338 B. DOYTCHINOV, J. LEHOCZKY AND S. SHREVE

Î�n��t� �= 1√
n
I�n��nt��(2.6)

Ŵ�n��t� �= 1√
n
W�n��nt� = N̂�n��t� + Î�n��t��(2.7)

Q̂�n��t� �= 1√
n
Q�n��nt��(2.8)

Heavy-traffic assumptions. Define the traffic intensity ρ�n� �= λ�n�/µ�n�. The
following assumptions shall be in force throughout:

lim
n→∞

√
n�1− ρ�n�� = γ > 0�(2.9)

lim
n→∞λ�n� = λ > 0� lim

n→∞µ�n� = λ�(2.10)

lim
n→∞α�n� = α� lim

n→∞β�n� = β�(2.11)

We also impose the usual Lindeberg condition on the interarrival and service
times:

lim
n→∞Ɛ

[(
u
�n�
j − 1

λ�n�

)2
�{∣∣u�n�j −1/λ�n�

∣∣>c√n}
]

= lim
n→∞Ɛ

[(
v
�n�
j − 1

µ�n�

)2
�{∣∣v�n�j −1/µ�n�

∣∣>c√n}
]
= 0 ∀ c > 0�

(2.12)

It is a standard result (see Corollary B.4) that the triple �N̂�n�� Î�n�� Ŵ�n��
converges weakly to �N∗� I∗�W∗�, where N∗ is a Brownian motion with drift
and

I∗�t� �= − min
0≤s≤t

N∗�s��

W∗�t� �=N∗�t� + I∗�t��(2.13)

The process W∗ is a reflected Brownian motion with drift, and I∗ causes
the reflection. Furthermore, the scaled queue length process Q̂�n� converges
weakly to λW∗ (see Corollary 3.2).

EDF-related processes. With the EDF queue discipline, customers are
served in order of increasing lead times. Any two customers in the queue
will maintain their relative order until they depart; however, arriving cus-
tomers may preempt and move directly into service if they have a sufficiently
short initial lead time. To study the behavior of the EDF queue discipline, it
is useful to keep track of the lead time of the customer currently in service
and the largest lead time of all customers who have ever been in service. We
define the frontier

F�n��t� �=

largest lead time of any customer who has ever been in
service, whether still present or not, or

√
ny∗ − t� if this

quantity is larger than the former one

 �
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We adopt the usual convention that until the arrival of the first customer, the
largest lead time of any customer who has ever been in service is −∞, and
hence F�n��t� = √ny∗ − t for 0 ≤ t < S

�n�
1 . We define the current lead time

C�n��t� �=
{
lead time of the customer in service,
or F�n��t� if the queue is empty

}
�

Under the EDF queue discipline, there is no customer in the queue with lead
time smaller than C�n��t� and there has never been a customer in service
whose lead time, if the customer were still present, would exceed F�n��t�.
Furthermore, C�n��t� ≤ F�n��t� for all t ≥ 0. Both F�n� and C�n� are RCLL
processes.
At time t all customers in the system have lead times equal to or greater

than C�n��t�; if the queue is nonempty, C�n��t� is the left support point of the
random counting measure, which puts a unit point mass at the lead time
of each customer in the queue at time t. In spite of this, the frontier is more
important than C�n��t� in the analysis of the EDF queue discipline for two rea-
sons. The first reason is that in heavy traffic the scaled number of customers
with lead times between C�n��t� and F�n��t� is negligible. Customers at time t
with lead times in the interval �C�n��t��F�n��t��, if any, are part of a special
type of busy period. For a nonempty queue, this busy period was initiated by
a customer arrival that preempted a customer, � , in service [the preempted
customer with current lead time F�n��t�]. This busy period was possibly sus-
tained by other arrivals, each of which had, at the time of its arrival, a lead
time shorter than � ’s lead time. Because � ’s lead time decreases linearly with
time, the traffic intensity associated with the customers that sustain this spe-
cial busy period decreases with time. As shown subsequently in Proposition
3.6, under the heavy-traffic assumptions the scaled number of customers hav-
ing lead times at time t taking values in �C�n��t��F�n��t�� converges to 0 as
n → ∞. It follows that in heavy traffic the occupancy of the queue consists
essentially of customers with lead times in �F�n��t��∞�.
The second feature of the frontier is that customers with lead times in

�F�n��t��∞� at time t have never received any service; their lead-time profile
is determined entirely by the arrival process. Because only the arrival process
is involved, this profile can be determined and in heavy traffic converges to a
nonrandom function of the limit of the scaled queue length.
Although this paper focuses on a heavy-traffic analysis of a single server

queue using the EDF queue discipline, it is worth noting that some of the
results can be expected to carry over in non-heavy-traffic conditions. For exam-
ple, if the traffic intensity were not near 1, but the queue length happened
to be relatively long, then most of the customers in the system would have
lead times that take values in �F�n��t��∞�, and their profile would be deter-
mined solely by the arrival process, not the service process. Consequently, the
lead-time profiles would be the same as those predicted for that queue length
under heavy-traffic conditions.
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Measure-valued processes. At any instant of time, the system consists of a
set of customers, each of which has a specific lead time and a remaining work
requirement. We wish to characterize the instantaneous lead-time profile of
the customers. It is convenient to think of this profile as a counting measure
on �. In this section, we define a collection of RCLL measure-valued processes
that will be useful in the analysis.

Queue length measure:

� �n��t��B� �=
{
number of customers in the queue at time t
having lead times at time t in B ⊂ �

}
�

Workload measure:

� �n��t��B� �=
{
work at time t associated with customers in
the queue having lead times at time t in B ⊂ �

}
�

Customer arrival measure:

� �n��t��B� �=
{
number of all arrivals by time t having
lead times at time t in B ⊂ �

}
�

Workload arrival measure:

	 �n��t��B� �=
{
work associated with all arrivals by time
t having lead times at time t in B ⊂ �

}
�

The following relationships easily follow:

Q�n��t� = � �n��t�����
A�n��t� = � �n��t�����

V�n��A�n��t�� = 	 �n��t�����

� �n��t��B� =
A�n��t�∑
j=1

�{
L
�n�
j −�t−S

�n�
j �∈B

}
=

∞∑
j=1

�{
S
�n�
j ∈B+t−L

�n�
j �S

�n�
j ≤t
}�

	 �n��t��B� =
A�n��t�∑
j=1

v
�n�
j �{

L
�n�
j −�t−S

�n�
j �∈B

}
=

∞∑
j=1

v
�n�
j �{

S
�n�
j ∈B+t−L

�n�
j �S

�n�
j ≤t
}�



REAL-TIME QUEUES 341

Scaled EDF-related processes. For the processes just defined under the
EDF queue discipline, we use the heavy-traffic scalings

F̂�n��t� �= 1√
n
F�n��nt�� Ĉ�n��t� �= 1√

n
C�n��nt��

�̂ �n��t� �= 1√
n
� �n��nt��√nB�� �̂ �n��t� �= 1√

n
� �n��nt��√nB��

We define also

�̂ �n��t��B� �= 1√
n
� �n��nt��√nB��

= 1√
n

A�n��nt�∑
j=1

1{
L
�n�
j −�nt−S

�n�
j � ∈

√
nB
}

= 1√
n

∞∑
j=1
1{

S
�n�
j ∈√nB+nt−L�n�j � S

�n�
j ≤nt

}�
	̂ �n��t��B� �= 1√

n
	 �n��nt��√nB�

= 1√
n

A�n��nt�∑
j=1

v
�n�
j 1
{
L
�n�
j −�nt−S

�n�
j � ∈

√
nB
}

= 1√
n

∞∑
j=1

v
�n�
j 1
{
S
�n�
j ∈√nB+nt−L�n�j � S

�n�
j ≤nt

}�
3. Heavy-traffic analysis. We set

H�y� �=
∫ ∞
y
�1−G�η�� dη =


∫ y∗

y
�1−G�η�� dη� if y ≤ y∗,

0� if y > y∗.
(3.1)

The function H maps �−∞� y∗	 onto �0�∞� and is strictly decreasing and
Lipschitz continuous with Lipschitz constant 1 on �−∞� y∗	. Therefore, there
exists a continuous inverse function H−1 that maps �0�∞� onto �−∞� y∗	.
We next define what we shall ultimately show is the limiting scaled frontier
process

F∗�t� �=H−1�W∗�t��� t ≥ 0�(3.2)

where W∗ is as in (2.13).
In this section, we prove weak convergence of �̂ �n� and �̂ �n� as measure-

valued processes. Weak convergence of measure-valued processes is a spe-
cial case of weak convergence of metric-space-valued random objects, which is
reviewed in Appendix A. We summarize its salient features here.
Denote by
 the set of all finite, nonnegative measures on ����, the Borel

subsets of �. Under the weak topology, 
 is separable. We can define a met-
ric d
 on 
 that is consistent with the weak topology on 
 .
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We now define D
 �0�∞�, the space of RCLL measure-valued functions on
�0�∞�. An RCLL measure-valued process is a random object that takes values
in D
 �0�∞�, where in D
 �0�∞� we use the Borel σ-algebra (generated by
the open sets under the Skorohod topology). A sequence �Xn�∞n=1 of RCLL
measure-valued processes converges weakly to an RCLL measure-valued pro-
cess X if the measures induced on D
 �0�∞� by Xn converge weakly to the
measure induced on D
 �0�∞� by X, that is, for every bounded, continuous
(or equivalently, uniformly continuous) function F� D
 �0�∞� → �, we have

lim
n→∞ƐnF�Xn� = Ɛ∗F�X��

The expectation operators Ɛn and Ɛ∗ reflect the fact that each Xn may be
defined on a probability space with a probability measure depending on the
index n, and all these spaces may differ from the space on whichX is defined.
In the application of this paper, the prelimit processes are all defined on the
same space and we write Ɛ rather than Ɛn.
The main result of this section is the following.

Theorem 3.1. Let �̂ ∗ and �̂∗ be the measure-valued processes defined by

�̂ ∗�t��B� =
∫
B∩�F∗�t��∞�

�1−G�y�� dy� �̂∗�t��B� = λ�̂ ∗�t��B�(3.3)

for all Borel sets B ⊂ �. Then the measure-valued processes �̂ �n� and �̂ �n�

converge weakly to �̂ ∗ and �̂∗, respectively.

Corollary 3.2. Under the earliest-deadline-first queue discipline, the
scaled queue length processes Q̂�n� defined by (2.8) converge weakly to λW∗.

Proof of Corollary 3.2. We note that

�̂ ∗�t���� =H�F∗�t�� =W∗�t��
�̂∗�t���� = λW∗�t��

�̂ �n��t���� = Q̂�n��t��
The mapping from 
 into �, which maps each µ ∈
 to its total mass µ���,
is continuous. By Theorem 3.1 and the continuous mapping theorem,
Theorem A.1,

�̂ �n���� ⇒ �̂∗���
or, equivalently,

Q̂�n� ⇒ λW∗� ✷

The proof of Theorem 3.1 is given at the end of this section. To prove this
result, we first examine the convergence of the measure-valued processes 	̂ �n�

and �̂ �n�. Recall that these processes keep track of arrived work and arrived
customers, but not departures.
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Proposition 3.3. Let −∞ < y < y∗ and T > 0 be given. As n→∞,
sup
0≤t≤T

∣∣	̂ �n��t��y�∞�+H�y+√n t� −H�y�∣∣ P−→ 0�(3.4)

sup
0≤t≤T

∣∣�̂ �n��t��y�∞�+ λH�y+√n t� − λH�y�∣∣ P−→ 0�(3.5)

Proof. For (3.4), let ε > 0 be given and choose a partition y = η0 <
η1 < · · · < ηM = y∗ such that �ηm+1 − ηm� ≤ ε for every m = 0� � � � �M − 1.
Then the following inequalities hold, for each m̄ = 1� � � � �M:

−ε+
m̄−1∑
m=0

(
1−G�ηm�

)�ηm+1 − ηm�

≤
∫ ηm̄

y
�1−G�η�� dη ≤ ε+

m̄−1∑
m=0

(
1−G�ηm+1�

)�ηm+1 − ηm��
(3.6)

To see why this is true, observe that for each m = 0� � � � �M− 1 we have∫ ηm+1

ηm

�1−G�η��dη ≤ �1−G�ηm���ηm+1 − ηm�

= �1−G�ηm+1���ηm+1 − ηm�
+ �G�ηm+1� −G�ηm���ηm+1 − ηm�

≤ �1−G�ηm+1���ηm+1 − ηm� + ε�G�ηm+1� −G�ηm���
Summing up the preceding inequality for m = 0� � � � � m̄−1 and cancelling the
“telescoping” terms gives the right inequality in (3.6). The left inequality is
obtained in a similar way.
For 0 ≤ t ≤ T, we have

	̂ �n��t��y�∞� = 1√
n

∞∑
j=1

v
�n�
j ��nt+√ny−L�n�j <S

�n�
j ≤nt�

≤ 1√
n

M∑
m=1

∞∑
j=1

v
�n�
j ��√nηm−1<L

�n�
j ≤

√
nηm���nt−

√
n�ηm−y�<S�n�j ≤nt�

=
M∑

m=1
Ŷ
�n�
m �t� +

M∑
m=1

Û
�n�
m �t��

where

Ŷ
�n�
m �t� �= 1√

n

∞∑
j=1

[
v
�n�
j �{√

nηm−1<L
�n�
j ≤

√
nηm

} − 1
µ�n�

(
G�ηm� −G�ηm−1�

)]
× �{

nt−√n�ηm−y�<S�n�j ≤nt
}�

Û
�n�
m �t� �= 1

µ�n�
√
n

∞∑
j=1

(
G�ηm� −G�ηm−1�

)
�{
nt−√n�ηm−y�<S�n�j ≤nt

}�
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To see that for each m� Ŷ
�n�
m ⇒ 0 as n → ∞, we define the sequence of non-

negative i.i.d. random variables

ṽ
�n�
j

�= v
�n�
j �{√

nηm−1<L
�n�
j ≤

√
nηm

}� j = 1�2� � � � �

and set

Ṽ
�n�
m �t� �= 1√

n

�nt�∑
j=1

(
ṽ
�n�
j − Ɛṽ

�n�
j

)

= 1√
n

�nt�∑
j=1

[
v
�n�
j �{√

nηm−1<L
�n�
j ≤

√
nηm

} − 1
µ�n�

(
G�ηm� −G�ηm−1�

)]
�

We may write

Ŷ
�n�
m �t� = Ṽ

�n�
m

(
1
n
A�n��nt�

)
− Ṽ

�n�
m

(
1
n
A�n���nt−√n�ηm − y��+�

)

= Ṽ
�n�
m

(
1√
n
Â�n��t� + λ�n�t

)
− Ṽ

�n�
m

(
1√
n
Â�n�

((
t− 1√

n
�ηm − y�

)+)

+
(
λ�n�t− 1√

n
λ�n��ηm − y�

)+)
�

Theorem B.1 (with v�n�j replaced by ṽ�n�j ) implies that �Ṽ�n�
m �∞n=1 has a continu-

ous weak limit Ṽ∗
m. The differencing theorem, Theorem A.3, and Theorem B.2

imply that Ŷ�n�m ⇒ 0 on �0�T	, and hence

sup
0≤t≤T

∣∣∣∣ M∑
m=1

Ŷ
�n�
m �t�

∣∣∣∣ P−→ 0�

For the analysis of Û�n�
m �t�, we observe that

Û
�n�
m �t� = 1

µ�n�
√
n

(
G�ηm� −G�ηm−1�

)
×
[
A�n��nt� −A�n���nt−√n�ηm − y��+�

]
= 1

µ�n�
(
G�ηm� −G�ηm−1�

)
×
[
Â�n��t� − Â�n�

((
t− 1√

n
�ηm − y�

)+)
+λ�n�

√
n t− λ�n��√n t− �ηm − y��+

]
�
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As n→∞, the sequence of processes{
Â�n��t� − Â�n�

((
t− 1√

n
�ηm − y�

)+)
� t ≥ 0

}∞
n=1

converges weakly to zero. Hence, the weak limit of
∑M

m=1 Û
�n�
m �t� is the weak

limit of

M∑
m=1

(
G�ηm� −G�ηm−1�

)[√
n t− �√n t− �ηm − y��+]�(3.7)

With n and t fixed, we define

m̄�t� = max
{
m ∈ �0�1� � � � �M�� t ≥ 1√

n
�ηm − y�

}
�

Then (3.7) becomes

m̄�t�∑
m=1
�G�ηm� −G�ηm−1���ηm − y� +

M∑
m=m̄�t�+1

�G�ηm� −G�ηm−1��
√
n t

≤
m̄�t�∑
m=1
�1−G�ηm−1���ηm − y� −

m̄�t�∑
m=1
�1−G�ηm���ηm − y�

+ ��m̄�t�≤M−1��ηm̄�t�+1 − y��G�ηM� −G�ηm̄�t���

=
m̄�t�−1∑
m=0

�1−G�ηm���ηm+1 − y� −
m̄�t�−1∑
m=0

�1−G�ηm���ηm − y�

− �1−G�ηm̄�t����ηm̄�t� − y�
+ ��m̄�t�≤M−1��ηm̄�t�+1 − y��1−G�ηm̄�t����

If m̄�t� =M, then 1−G�ηm̄�t�� = 0 and we have
m̄�t�−1∑
m=0

�1−G�ηm���ηm+1 − ηm� ≤ ε+
∫ y∗

y
�1−G�η��dη�

where we have used (3.6). If m̄�t� <M, we have again from (3.6) that

m̄�t�∑
m=0
�1−G�ηm���ηm+1 − ηm� ≤ ε+

∫ ηm̄�t�+1

y
�1−G�η��dη

≤ 2ε+
∫ ηm̄�t�

y
�1−G�η��dη

≤ 2ε+
∫ y+√n t

y
�1−G�η��dη�
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In the former case, when m̄�t� =M, we have y +√n t ≥ y∗. Since G�η� = 1
for η ≥ y∗, in both cases we have on (3.7) the upper bound

2ε+
∫ y+√n t

y
�1−G�η��dη = 2ε−H�y+√n t� +H�y��

We conclude that

sup
0≤t≤T

[
M∑

m=1
Û
�n�
m �t� +H�y+√n t� −H�y� − 2ε

]+
P−→ 0�

Since ε > 0 is arbitrary, we have in fact shown

sup
0≤t≤T

[
	̂ �n��t��y�∞�+H�y+√n t� −H�y�]+ P−→ 0�

To complete the proof of (3.4), we use the lower bound

	̂ �n��t��y�∞� ≥
M∑

m=1
Y̆
�n�
m �t� +

M∑
m=1

Ŭ
�n�
m �t��

where

Y̆
�n�
m �t� �= 1√

n

∞∑
j=1

[
v
�n�
j �{√

nηm−1<L
�n�
j ≤

√
nηm

} − 1
µ�n�

(
G�ηm� −G�ηm−1�

)]
× �{

nt−√n�ηm−1−y�<S�n�j ≤nt
}�

Ŭ
�n�
m �t� �= 1

µ�n�
√
n

∞∑
j=1

(
G�ηm� −G�ηm−1�

)
�{
nt−√n�ηm−1−y�<S�n�j ≤nt

}�
By the same argument used to show that Ŷ�n�m ⇒ 0, we may show that
Y̆
�n�
m ⇒ 0. In place of (3.7), we have now

M∑
m=1
�G�ηm� −G�ηm−1��

[√
n t− �√n t− �ηm−1 − y��+](3.8)

and we need to lower bound this quantity. With n and t fixed, we define m̄�t�
as before and (3.8) becomes

M∧�m̄�t�+1�∑
m=1

�G�ηm� −G�ηm−1���ηm−1 − y� +
M∑

m=m̄�t�+2
�G�ηm� −G�ηm−1��

√
n t

≥
M∧�m̄�t�+1�∑

m=1
�1−G�ηm−1���ηm−1 − y�

−
M∧�m̄�t�+1�∑

m=1
�1−G�ηm���ηm−1 − y�

+ ��m̄�t�≤M−2��ηm̄�t� − y��G�ηM� −G�ηm̄�t�+1��
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=
m̄�t�∑
m=1
�1−G�ηm���ηm − y� −

m̄�t�∑
m=1
�1−G�ηm���ηm−1 − y�

− ��m̄�t�≤M−1��1−G�ηm̄�t�+1���ηm̄�t� − y�
+ ��m̄�t�≤M−2��1−G�ηm̄�t�+1���ηm̄�t� − y�

=
m̄�t�∑
m=1
�1−G�ηm���ηm − ηm−1� − ��m̄�t�=M−1��1−G�ηM���ηM−1 − y�

≥ −ε+
∫ ηm̄�t�

y
�1−G�η��dη

≥ −2ε+
∫ y+√n t

y
�1−G�η��dη

= −2ε−H�y+√n t� +H�y��
It follows that

sup
0≤t≤T

[ M∑
m=1

Ŭ
�n�
m �t� +H�y+√n t� −H�y� + 2ε

]−
P−→ 0�

Since ε > 0 is arbitrary, we have in fact shown

sup
0≤t≤T

[
	̂ �n��t��y�∞�+H�y+√n t� −H�y�]− P−→ 0

and (3.4) is proved.
The proof of (3.5) is accomplished by repeating the foregoing proof, replacing

v
�n�
j and 1/µ�n� = Ɛv

�n�
j everywhere by 1. ✷

Using a Glivenko–Cantelli type of argument, we can upgrade Proposition 3.3
to make the convergence uniform with respect to y on compact intervals:

Proposition 3.4. Let −∞ < y0 < y∗ and T > 0 be given. As n→∞,

sup
y0≤y≤y∗

sup
0≤t≤T

∣∣	̂ �n��t��y�∞�+H�y+√n t� −H�y�∣∣ P−→ 0�(3.9)

sup
y0≤y≤y∗

sup
0≤t≤T

∣∣�̂ �n��t��y�∞�+ λH�y+√n t� − λH�y�∣∣ P−→ 0�(3.10)

Proof. Let ε > 0 be given. We will produce anN such that, for all n ≥N,

�

{
sup

y0≤y≤y∗
sup
0≤t≤T

∣∣	̂ �n��t��y�∞�+H�y+√n t� −H�y�∣∣ ≥ ε

}
< ε�

To do this, we first choose a partition y0 < y1 < · · · < yM = y∗, such that
�ym+1 − ym� < ε/2 for m = 0� � � � �M− 1 and hence

0 ≤H�ym� −H�ym+1� <
ε

2
for m = 0� � � � �M− 1�(3.11)
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According to Proposition 3.3, we can find n0� n1� � � � nM such that, for m = 0�
1� � � � �M and for n ≥ nm,

�

{
sup
0≤t≤T

∣∣	̂ �n��t��ym�∞�+H�ym +
√
n t� −H�ym�

∣∣ ≥ ε

2

}
<

ε

2�M+ 1� �
(3.12)

We chooseN = max�n0� n1� � � � � nM�. Using first the monotonicity ofH�y� and
of 	̂ �n��t��y�∞� +H�y + √n t� with respect to y, and then (3.11) and (3.12)
we see that for n ≥N,

�

{
sup

y0≤y≤y∗
sup
0≤t≤T

∣∣	̂ �n��t��y�∞�+H�y+√n t� −H�y�∣∣ ≥ ε

}

≤
M−1∑
m=0

�

{
sup

ym≤y≤ym+1
sup
0≤t≤T

∣∣	̂ �n��t��y�∞�+H�y+√n t� −H�y�∣∣ ≥ ε

}

≤
M−1∑
m=0

�

{
sup
0≤t≤T

∣∣	̂ �n��t��ym�∞�+H�ym +
√
n t� −H�ym+1�

∣∣ ≥ ε

}

+
M−1∑
m=0

�

{
sup
0≤t≤T

∣∣	̂ �n��t��ym+1�∞�+H�ym+1 +
√
n t� −H�ym�

∣∣ ≥ ε

}

≤
M∑

m=0
2�
{
sup
0≤t≤T

∣∣	̂ �n��t��ym�∞�+H�ym +
√
n t� −H�ym�

∣∣ ≥ ε

2

}
< 2�M+ 1� ε

2�M+ 1� = ε�

This proves (3.9); the proof of (3.10) is analogous. ✷

Corollary 3.5. Let −∞ < y0 < y∗ and T > 0 be given. As n→∞,

sup
y0≤y≤y∗

sup
0≤t≤T

	̂ �n��t��y� P−→ 0�(3.13)

sup
y0≤y≤y∗

sup
0≤t≤T

�̂ �n��t��y� P−→ 0�(3.14)

Proof. We give the proof of (3.13); the proof of (3.14) is analogous. For δ ∈
�0�1�� y0 ≤ y ≤ y∗ and 0 ≤ t ≤ T, the monotonicity and Lipschitz continuity
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with constant 1 of the function H imply

	̂ �n��t��y�∞�+H�y+√n t� −H�y�
≤ 	̂ �n��t��y�∞�+H�y+√n t� −H�y�
≤ 	̂ �n��t��y− δ�∞�+H�y− δ+√n t� −H�y− δ� + δ

≤ δ+ sup
y0−1≤η≤y∗

sup
0≤s≤T

∣∣	̂ �n��s��η�∞�+H�η+√ns� −H�η�∣∣�
It follows that

	̂ �n��t��y� ≤ δ+ sup
y0−1≤η≤y∗

sup
0≤s≤T

∣∣	̂ �n��s��η�∞�+H�η+√ns� −H�η�∣∣
− [	̂ �n��t��y�∞�+H�y+√n t� −H�y�]�

Proposition 3.4 implies that the limit of the right-hand side, in probability,
is δ. Since δ is arbitrary, we have (3.13). ✷

The heavy-traffic analysis of the queueing system with due dates depends
critically on the following proposition, which asserts that the number of cus-
tomers whose lead times lie between the current lead time C�n��t� and the
frontier F�n��t� and the work associated with these customers is negligible.

Proposition 3.6. The processes �̂ �n��Ĉ�n�� F̂�n�� and �̂ �n��Ĉ�n�� F̂�n�� con-
verge weakly to zero as n→∞.

Proof. We fix T > 0 and establish the convergence on �0�T	. For this we
follow ideas of Peterson [24].
Let y ≤ y∗ be given. For t ≥ 0, we set

T̂�n��t� �= 1√
n

�nt�∑
j=1

(
v
�n�
j ��L�n�j ≤

√
ny� −

1
µ�n�

G�y�
)
�

According to Theorem B.1, T̂�n� converges weakly to a Brownian motion.
Next define

τ�n��t� �= sup{s ∈ �0� t	� Ĉ�n��s� = F̂�n��s�}�
By assumption, Ĉ�n��0� = F̂�n��0� = y∗ and so τ�n��t� ≤ t, that is, the supre-
mum is not over the empty set. We first show that

t− τ�n��t� ⇒ 0(3.15)

and subsequently show that
√
n�t− τ�n��t�� ⇒ 0�(3.16)

where the convergence in (3.15) and (3.16) is for processes on �0�T	.
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Observing that �̂ �n��Ĉ�n�� F̂�n�� is RCLL, we note that
�̂ �n��τ�n��t�−�[Ĉ�n��τ�n��t�−�� F̂�n��τ�n��t�−�)

= �̂ �n��τ�n��t�−�� � = 0�
(3.17)

�̂ �n��τ�n��t��[Ĉ�n��τ�n��t��� F̂�n��τ�n��t��)
≤ 1√

n
max

1≤j≤A�n��nt�
v
�n�
j ≤ max

0≤s≤T
[
N̂�n��s� − N̂�n��s−�]�(3.18)

As long as there are customers with lead times in the unscaled interval
�C�n��F�n��, the unscaled frontierF�n� decreases at rate 1 per unit time. There-
fore, for s ∈ �nτ�n��t�� nt	,

F�n��s� = F�n�
(
nτ�n��t�)− (s− nτ�n��t�)�(3.19)

For what follows, it will be helpful to introduce some notation. We define

D�n��t� =
∞∑
j=1

v
�n�
j �{

nτ�n��t�<S�n�j ≤nt
}

× �{
L
�n�
j −�nt−S

�n�
j �<F�n��nτ�n��t��−n�t−τ�n��t��

}�(3.20)

Observe that because of (3.19), whenever nτ�n��t� < S
�n�
j ≤ nt, the condition

L
�n�
j − (nt−S

�n�
j

)
< F�n��nτ�n��t�� − n�t− τ�n��t��

is equivalent to L�n�j < F�n��S�n�j �. In other words, D�n��t� is the work asso-
ciated with customers arriving within the time interval �nτ�n��t�� nt	 whose
lead times upon arrival are to the left of the frontier.
We now note that on the time interval �nτ�n��t�� nt	 the server is never idle,

which means that the workload is being decreased by the server at a constant
rate 1. This gives us the estimate

0 ≤ � �n��nt��C�n��nt��F�n��nt��
= � �n��nτ�n��t��[C�n��nτ�n��t���F�n��nτ�n��t��)+D�n��t� − n�t− τ�n��t��

or, after scaling,

0 ≤ �̂ �n��t��Ĉ�n��t�� F̂�n��t��
= �̂ �n��τ�n��t��[Ĉ�n��τ�n��t��� F̂�n��τ�n��t��)(3.21)

+ 1√
n
D�n��t� − √n�t− τ�n��t���

Next, we estimate the term �1/√n�D�n��t�. For y ≤ y∗ we have either

t− τ�n��t� < 1√
n

(
y∗ − y

)
(3.22)
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or else

nτ�n��t� + √n(y∗ − y
) ≤ nt�(3.23)

In the latter case,

1√
n
D�n��t� ≤ 1√

n

∞∑
j=1

v
�n�
j �{

nτ�n��t�<S�n�j ≤nτ�n��t�+
√
n�y∗−y�

}
+ 1√

n

∞∑
j=1

v
�n�
j �{

nτ�n��t�+√n�y∗−y�<S�n�j ≤nt
}�{

L
�n�
j ≤

√
ny
}

= 1√
n
V�n��A�n��nτ�n��t� + √n�y∗ − y���

− 1√
n
V�n��A�n��nτ�n��t��� + T̂�n�

(
1
n
A�n��nt�

)
− T̂�n�

(
1
n
A�n��nτ�n��t� + √n�y∗ − y��

)
+ G�y�
µ�n�

√
n

[
A�n��nt� −A�n��nτ�n��t� + √n�y∗ − y��]

= N̂�n�
(
τ�n��t� + 1√

n
�y∗ − y�

)
− N̂�n�(τ�n��t�)+ y∗ − y

+ T̂�n�
(
1√
n
Â�n��t� + λ�n�t

)
− T̂�n�

(
1√
n
Â�n�

(
τ�n��t� + 1√

n
�y∗ − y�

)
(3.24)

+ λ�n�τ�n��t� + λ�n�√
n
�y∗ − y�

)
+ G�y�

µ�n�

[
Â�n��t� − Â�n�

(
τ�n��t� + 1√

n
�y∗ − y�

)]
+G�y�ρ�n�√n�t− τ�n��t�� −G�y�ρ�n��y∗ − y�

≤
[
N̂�n�

(
τ�n��t� + 1√

n
�y∗ − y�

)
− N̂�n�(τ�n��t�)]

+
[
T̂�n�

(
1√
n
Â�n��t� + λ�n�t

)
− T̂�n�

(
1√
n
Â�n�

(
τ�n��t� + 1√

n
�y∗ − y�

)

+λ�n�τ�n��t� + λ�n�√
n
�y∗ − y�

)]
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+ G�y�
µ�n�

[
Â�n��t� − Â�n�

(
τ�n��t� + 1√

n
�y∗ − y�

)]
+G�y�ρ�n�√n�t− τ�n��t�� + �1−G�y�ρ�n���y∗ − y��

Continuing this inequality we may write

1√
n
D�n��t� ≤ max

0≤s≤T

∣∣∣∣N̂�n�
(
s+ 1√

n
�y∗ − y�

)
− N̂�n��s�

∣∣∣∣
+2 max

0≤s≤T

∣∣∣∣T̂�n�( 1√nÂ�n��s� + λ�n�s
)∣∣∣∣

+ 2G�y�
µ�n�

max
0≤s≤T

∣∣∣Â�n��s�
∣∣∣+G�y�ρ�n�√n�t− τ�n��t��

+ �1−G�y�ρ�n���y∗ − y��

Assume now that y < y∗. Substituting the preceding inequality into (3.21),
using (3.18) and dividing by �1−G�y�ρ�n��√n, we obtain

0 ≤ t− τ�n��t� ≤ 1
�1−G�y�ρ�n��√n
×
{
max
0≤s≤T

[
N̂�n��s� − N̂�n��s−�]

+ max
0≤s≤T

[
N̂�n�

(
s+ 1√

n
�y∗ − y�

)
− N̂�n��s�]

+2 max
0≤s≤T

∣∣∣∣T̂�n�( 1√nÂ�n��s� + λ�n�s
)∣∣∣∣

+ 2G�y�
µ�n�

max
0≤s≤T

∣∣Â�n��s�∣∣}+ 1√
n
�y∗ − y��

(3.25)

Of course, if (3.22) holds, then (3.25) does as well. From (3.25) we have (3.15).
Next we substitute inequality (3.24) into (3.21), using (3.18), and dividing

by �1−G�y�ρ�n�� to get

0≤√n�t−τ�n��t�� ≤ 1
�1−G�y�ρ�n��

×
{
max
0≤s≤T

[
N̂�n��s�−N̂�n��s−�]

+
[
N̂�n�

(
τ�n��t�+ 1√

n
�y∗−y�

)
−N̂�n�(τ�n��t�)]

+
[
T̂�n�

(
1√
n
Â�n��t�+λ�n�t

)
−T̂�n�

(
1√
n
Â�n�

(
τ�n��t�+ 1√

n
�y∗−y�

)
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+λ�n�τ�n��t�+ λ�n�√
n
�y∗−y�

)]

+G�y�
µ�n�

[
Â�n��t�−Â�n�

(
τ�n��t�+ 1√

n
�y∗−y�

)]}+
+�y∗−y��

where the positive part on the terms in �· · ·� ensures that this inequality
holds even if (3.23) fails [and hence (3.22) holds]. As n → ∞, (3.15) and the
time change and differencing theorems, Theorems A.2 and A.3, imply that the
right-hand side has limit y∗ − y, that is,[√

n�t− τ�n��t�� − �y∗ − y�
]+
⇒ 0�

Since y < y∗ is arbitrary, we must have (3.16).
Using (3.18), (3.21) and inequality (3.24) with y = y∗, we obtain

0 ≤ �̂ �n��t�[Ĉ�n��t�� F̂�n��t�) ≤ max
0≤s≤T

[
N̂�n��s� − N̂�n��s−�]

+
[
T̂�n�

(
1√
n
Â�n��t� + λ�n�t

)
− T̂�n�

(
1√
n
Â�n�

(
τ�n��t�

)
+ λ�n�τ�n��t�

)]
+ 1
µ�n�

[
Â�n��t� − Â�n�(τ�n��t�)]− �1− ρ�n��√n�t− τ�n��t���

Once again the time change and differencing theorems, Theorems A.2 and A.3,
show that the right-hand side has limit zero. This implies

�̂ �n��Ĉ�n�� F̂�n�� ⇒ 0�

Similarly,

0 ≤ �̂ �n��t��Ĉ�n��t�� F̂�n��t�� ≤ 1√
n

[
1+A�n��nt� −A�n��nτ�n��t��]

= 1√
n
+ Â�n��t� − Â�n��τ�n��t�� + λ�n�

√
n�t− τ�n��t���

The time change and differencing theorems, Theorems A.2 and A.3, and the
convergence (3.16) imply that the right-hand side has limit zero. This implies

�̂ �n�[Ĉ�n�� F̂�n�)⇒ 0� ✷

We next examine the limit of the scaled frontier process F̂�n�. Since
√
ny∗−

nt ≤ F�n��nt� ≤ √ny∗ at all times, we have the bounds

y∗ − √n t ≤ F̂�n��t� ≤ y∗� t ≥ 0�(3.26)

The following lemma provides a tightness bound from below.



354 B. DOYTCHINOV, J. LEHOCZKY AND S. SHREVE

Lemma 3.7. For every T > 0 and ε > 0, there exists y ∈ �−∞� y∗� such
that for all n,

�

{
inf
0≤t≤T

F̂�n��t� < y

}
< ε�

Proof. By definition,

W�n��t� = � �n��t���� = � �n��t�[C�n��t��F�n��t�)+� �n��t�[F�n��t��∞)�
Scaling this equation, we obtain

Ŵ�n��t� = �̂ �n��t�[Ĉ�n��t�� F̂�n��t�)+ �̂ �n��t�[F̂�n��t��∞)�
Corollary B.4 implies Ŵ�n� ⇒ W∗, where W∗ is a reflected Brownian motion
with drift, and Proposition 3.6 shows that �̂ �n��Ĉ�n�� F̂�n�� ⇒ 0. Therefore,

�̂ �n��F̂�n��∞� ⇒W∗�(3.27)

Fix T > 0. The continuous mapping theorem, Theorem A.1, applied to (3.27)
yields

max
0≤t≤T

Ŵ�n��t��F̂�n��t��∞� ⇒ max
0≤t≤T

W∗�t��(3.28)

At time t, no customer with lead time in �F �n��t��∞� has ever been in
service, so 0 ≤ 	̂ �n��t��F̂ �n��t��∞� ≤ �̂ �n��t��F̂ �n��t��∞�. From (3.28) we see
then that the sequence of random variables �max0≤t≤T 	̂ �n��t��F̂ �n��t��∞��∞n=1
is tight. Let ε > 0 be given. Because limy→−∞H�y� = ∞, we may choose
y < y∗ so that for each n,

max
0≤t≤T

	̂ �n��t��F̂ �n��t��∞� ≤
√
H�y� on An�

where the event An satisfies ��An� ≥ 1− ε/3. Proposition 3.3 and the contin-
uous mapping theorem, Theorem A.1, imply the existence of N such that for
every n ≥N,

min
0≤t≤T

[
	̂ �n��t��y�∞�+H�y+√n t�] ≥ 1

2H�y� on Bn�

where the event Bn satisfies ��Bn� ≥ 1− ε/3.
Now ��An ∩Bn� ≥ 1− 2ε/3 and on An ∩Bn,√

H�y� ≥ max
0≤t≤T

	̂ �n��t��F̂ �n��t��∞�

≥ max
0≤t≤T

	̂ �n��t��y�∞���F̂ �n��t�<y�

≥ max
0≤t≤T

[
	̂ �n��t��y�∞�+H�y+√n t�]��F̂ �n��t�<y��
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because y + √n t ≥ y∗ on �F̂ �n��t� < y� [see (3.26)] and H�y + √n t� = 0.
Continuing, we have on An ∩Bn that√

H�y� ≥ 1
2H�y� max0≤t≤T

��F̂ �n��t�<y� = 1
2H�y���inf 0≤t≤T F̂ �n��t�<y��

which implies

2√
H�y� ≥ Ɛ

[
��inf 0≤t≤T F̂ �n��t�<y��An∩Bn

]
= Ɛ
[
��inf 0≤t≤T F̂ �n��t�<y�

(
1− ��An∩Bn�c

)]
≥ �

(
inf
0≤t≤T

F̂ �n��t� < y

)
− �

(�An ∩Bn�c
)

≥ �

(
inf
0≤t≤T

F̂ �n��t� < y

)
− 2ε
3
�

In other words,

�

(
inf
0≤t≤T

F̂ �n��t� < y

)
≤ 2ε
3
+ 2√

H�y�
and by choosing �y� larger if necessary, we may ensure that 2/√H�y� <
ε/3. ✷

Corollary 3.8. The processes �̂ �n��Ĉ �n�� F̂ �n�	 and �̂ �n��Ĉ �n�� F̂ �n�	 con-
verge weakly to zero as n→∞. In particular,

	̂ �n��F̂ �n��∞� ⇒W∗�(3.29)

Proof. In light of Proposition 3.6, it suffices to show that �̂ �n��t��F̂ �n��t��
and �̂ �n��F̂ �n��t�� converge weakly to zero. We first choose T > 0, ε > 0
and y0 so that ��inf 0≤t≤T F̂ �n��t� < y0� < ε. On the complementary set
�inf 0≤t≤T F̂ �n��t� ≥ y0�, we have

sup
0≤t≤T

Ŵ �n��F̂ �n��t�� ≤ sup
0≤t≤T

	̂ �n��t��F̂ �n��t��

≤ sup
y0≤y≤y∗

sup
0≤t≤T

	̂ �n��t��y��

Corollary 3.5 implies that the last expression converges in probability to zero.
The proof for �̂ �n��t��F̂ �n��t�� is analogous.
Finally, because at time t no customer with lead time in �F �n��t��∞� has

ever been in service, we have

0 ≤ Ŵ �n��t��F̂ �n��t��∞�− 	̂ �n��t��F̂ �n��t��∞� = Ŵ �n��F̂ �n��t���
From (3.27), we conclude that (3.29) holds. ✷
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Proposition 3.9. Let −∞ < y0 < y∗ and T > 0 be given. As n→∞,

sup
y0≤y≤y∗

sup
0≤t≤T

∣∣	̂ �n��t��F̂ �n��t� ∨ y�∞�−H�F̂ �n��t� ∨ y�∣∣ P−→ 0�(3.30)

sup
y0≤y≤y∗

sup
0≤t≤T

∣∣�̂ �t��F̂ �n��t� ∨ y�∞�− λH�F̂ �n��t� ∨ y�∣∣ P−→ 0�(3.31)

Proof. Because of the inequality F̂ �n��t� + √n t ≥ y∗ and the fact that
H�y� = 0 for y ≥ y∗, the quantities on the left-hand sides of relations (3.9)
and (3.10) in Proposition 3.4 dominate those on the left-hand sides of (3.30)
and (3.31), respectively. ✷

Proposition 3.10. F̂ �n� ⇒ F∗ �=H−1�W∗�.

Proof. Let T > 0 and ε > 0 be given. Using Lemma 3.7, we may choose

y0 < y∗ so that An
�= �inf 0≤t≤T F̂ �n��t� > y0� satisfies ��An� ≥ 1− ε for every

n. According to Proposition 3.9, there is anN such that for each n ≥N, there
is an event Bn with ��Bn� ≥ 1− ε and on the event Bn, we have

sup
y0≤y≤y∗

sup
0≤t≤T

∣∣	̂ �n��t��F̂ �n��t� ∨ y�∞�−H�F̂ �n��t� ∨ y�∣∣ < ε�

On the intersection An ∩Bn, we have in particular

sup
0≤t≤T

∣∣	̂ �n��t��F̂ �n��t��∞�−H�F̂ �n��t��∣∣
= sup
0≤t≤T

∣∣	̂ �n��t��F̂ �n��t� ∨ y0�∞�−H�F̂ �n��t� ∨ y0�
∣∣ < ε�

It follows that

sup
0≤t≤T

∣∣	̂ �n��t��F̂ �n��t��∞�−H�F̂ �n��t��∣∣ P−→ 0�

Relation (3.29) shows that

H�F̂ �n�� ⇒W∗�(3.32)

Applying the continuous function H−1 to both sides of (3.32), we obtain the
desired result F̂ �n� ⇒ H−1�W∗� from the continuous mapping theorem,
Theorem A.1. ✷

Proposition 3.11. Let T > 0 be given. As n→∞,

sup
y∈�

sup
0≤t≤T

∣∣�̂ �n��t��y�∞�−H�F̂ �n��t� ∨ y�∣∣ P−→ 0�(3.33)

sup
y∈�

sup
0≤t≤T

∣∣�̂ �n��t��y�∞�− λH�F̂ �n��t� ∨ y�∣∣ P−→ 0�(3.34)
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Proof. For y ≥ y∗,

�̂ �n��t��y�∞� =H�F̂ �n��t� ∨ y� = 0�

For y < y∗� 0 ≤ t ≤ T,∣∣�̂ �n��t��y�∞�−H�F̂ �n��t� ∨ y�∣∣
≤ ∣∣�̂ �n��t��F̂ �n��t� ∨ y�∞�−H�F̂ �n��t� ∨ y�∣∣+ �̂ �n��t��Ĉ �n��t�� F̂ �n��t�	
= ∣∣	̂ �n��t��F̂ �n��t� ∨ y�∞�−H�F̂ �n��t� ∨ y�∣∣+ �̂ �n��t��Ĉ �n��t�� F̂ �n��t�	�

Corollary 3.8 implies that the second term on the right-hand side has limit
zero. The first also has limit zero in probability, uniformly over y ∈ �y0� y∗	� t ∈
�0�T	, for each fixed y0 andT, because of Proposition 3.9. However, Lemma 3.7
permits us to extend this result to uniform convergence over y ≤ y∗ and
t ∈ �0�T	. This establishes (3.33); the proof of (3.34) is similar. ✷

We are now prepared to prove Theorem 3.1.

Proof of Theorem 3.1. We define a mapping ψ� �→
 by the formula

ψ�x��B� �=
∫
B∩�x�∞�

�1−G�η��dη� for x ∈ �� B ∈ �����

Observe that, for x1� x2 ∈ �,

sup
B∈����

�ψ�x1��B� − ψ�x2��B�� ≤
∫ x1∨x2

x1∧x2
�1−G�η��dη ≤ �x2 − x1��

which shows that the mapping ψ is continuous. According to Proposition 3.10,

F̂ �n� ⇒ F∗�

By the continuous mapping theorem, Theorem A.1,

ψ�F̂ �n�� ⇒ ψ�F∗� = �̂ ∗�(3.35)

On the other hand, according to Proposition 3.11,

sup
y∈�

sup
0≤t≤T

∣∣�̂ �n��t��y�∞�− ψ�F̂ �n��t���y�∞�∣∣ P−→ 0(3.36)

[this is a rewriting of (3.33)]. Combining (3.35) and (3.36), we see that �̂ �n� ⇒
�̂ ∗. The proof of �̂ �n� ⇒ �̂∗ is analogous. ✷
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4. Simulation results. In this section, we use simulation to verify the
predictive value of the theory of the previous sections. In the previous sections,
we actually considered a sequence of queueing systems, indexed by n, whereas
here we want to consider a single queueing system. We imagine that this single
system is a member of the sequence of the previous sections that corresponds
to a large value of n. We first recast the definitions of the previous sections in
such a way that this parameter n does not appear.
Suppressing the time variable t, we recall the definitions of Section 2. We

denoted the queue length in the nth system by Q �n� and the scaled queue
length by Q̂ �n� = �1/√n�Q �n�, which, for large values of n, is approximately
equal to Q∗ = λW∗ (Corollary 3.2). The workload and scaled workload, respec-
tively, are W �n� and Ŵ �n� = �1/√n�W �n�. The “frontier” (see Section 2 for the
definition) is F �n� and the scaled frontier is F̂ �n� = �1/√n�F �n�. Finally, there
are the measure-valued processes � �n� and �̂ �n�. We shall be interested par-
ticularly in � �n��x�∞�, which tells us the number of customers whose lead
times exceed x, and in �̂ �n��y�∞� = �1/√n�� �n��√ny�∞�, where we continue
to suppress the time variable t.
Recall that customers arrive with lead-time distribution given by (2.1):

�
(
L
�n�
j ≤ √ny

)
= G�y��

We define Gn�x� = G�x/√n�, so that
��L�n�j ≤ x� = Gn�x�(4.1)

is the cumulative distribution function of the lead times in the nth queueing
system. The limit of �̂ �n� is characterized in terms of the function H of (3.1):

H�y� �=
∫ ∞
y
�1−G�η��dη�

In this section, we will need the function

Hn�x� =
√
nH

(
x√
n

)
=
∫ ∞
x
�1−Gn�ξ��dξ�(4.2)

whose inverse is H−1
n �y� =

√
nH−1�y/√n�.

According to Theorem 3.1, for large values of n,

�̂�y�∞� ≈ λH�y ∨F∗��(4.3)

Moreover,F∗ =H−1�W∗� =H−1�Q∗/λ�. Multiplying (4.3) by√n and replacing
y by x/

√
n, we obtain

� �n��x�∞� ≈ λHn�x ∨
√
nF∗��(4.4)

Because Hn�
√
nF∗� = √nH�F∗� = �√n/λ�Q∗ ≈ �1/λ�Q �n�, we also obtain

√
nF∗ ≈H−1

n

(
1
λ
Q �n�

)
�(4.5)
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We define

Fn
�=H−1

n

(
1
λ
Q �n�

)
�(4.6)

so that (4.5) becomes
√
nF∗ ≈ Fn and (4.4) becomes

� �n��x�∞� ≈ λHn

(
x ∨Fn

)
� x ≥ 0�(4.7)

Note that Fn is not the frontier F�n� defined in Section 2. However,

1√
n

(
Fn −F�n�

) = H−1
(
1
λ
Q̂�n�

)
− F̂�n�

⇒H−1�W∗� −F∗ = 0�

Relations (4.6) and (4.7) connect the unscaled queue length Q �n� with the
number of customers whose unscaled lead times exceed x, and the functionHn

appearing in these relations can be computed from the cumulative distribution
function Gn of the unscaled lead-time distribution. These relations can be
verified by simulation without knowledge of the parameter n.
The function of x appearing on the right-hand side of (4.7) is nonincreasing,

with limit Q�n� at −∞ and limit zero at ∞. Therefore,

Fthy�x� = 1−
λ

Q�n�Hn�x ∨Fn�� x ≥ 0�(4.8)

is a cumulative distribution function. According to (4.7), Fthy�x� should appro-
ximate the fraction of customers in queue whose lead times are less than or
equal to x. Since the parameter n is irrelevant, we henceforth omit it in our
discussion of (4.8).
We present simulation results that illustrate the accuracy this approxima-

tion. In the various experiments, we simulate an M/M/1 queue using the EDF
queue discipline, usually with λ = 0�95 or 0�99, µ = 1�0� ρ = 0�95 or 0�99. (The
theory applies to GI/G/1 queues, but only M/M/1 systems are simulated in this
section. Limited experience with the simulation of GI/G/1 queues suggests that
the accuracy of the approximations in this section are representative of more
general systems.) According to the theory developed in Section 3, if we were
randomly to stop the simulation at any point, observe the current number
in the queue, Q, and find that Q is sufficiently large, then the corresponding
instantaneous lead-time profile, expressed as an empirical cdf, should be given
approximately by (4.8).
For real-time queueing theory to be useful in practice, it is important that

it can be applied in cases in which the queue length Q is moderate in size.
However, when Q is moderate, we expect the lead-time profiles to exhibit
substantial variability, and it is not at all clear that the asymptotic form given
by (4.8) is appropriate. The simulations presented in this section are designed
to address this issue.
For each simulation run, a particular deadline distribution, G = Gn, and

queue length, Q = Q�n�, is chosen. The run is initiated with an empty queue
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Fig. 1. Sample lead-time profiles, Q = 20, Q = 60.

and continues until the instant the local time at levelQ reaches a prespecified
value, 10 for the results presented in this paper. At that instant, the lead-time
profile is recorded. This same experiment is repeated a total ofN times; hence,
the N profiles can be thought of as independent random objects. We wish to
assess how close they are to their predicted form given by (4.8).
The deadline distribution G used in Figures 1–5 is a Uniform(30, 70) distri-

bution. Figure 1 illustrates the variability in the lead-time profiles for small
to moderate values of Q. This figure shows the first four lead-time profiles
recorded when Q = 20 (then when Q = 60) and the accumulated local time
is 10. The lead-time profiles are actually 20- (or 60-) dimensional vectors, but
are plotted here as line segments for visual convenience. Notice that although
the profiles have similar shapes, they exhibit substantial variability.

4.1. Uniform deadlines. The first deadline distribution considered was the
Uniform(A�B). For this distribution, the frontier F = Fn is given by

F =


B−√2W�B−A�� if W ≤ B−A

2
�

B+A

2
−W� if W >

B−A

2
�

where throughout we use the notation W = Q/λ. The theoretical cdf defined
by (4.8) for this Uniform(A�B) deadline case is given by one of two forms
depending on the magnitude of W. If W ≥ �B−A�/2, then

Fthy�x� =


0� if x ≤ F�

1− 1
W

(A+B

2
− x
)
� if F < x < A�

1− �B− x�2
2W�B−A� � if A ≤ x ≤ B�
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Fig. 2. Profiles: mean, max, min and theory, Q = 15, N = 50.

whereas if W < �B−A�/2, then

Fthy�x� =


0� if x ≤ F�

1−
(B− x

B−F

)2
� if F < x ≤ B�

1� if B ≤ x�

If we substitute the simulated customer lead times into Fthy, the resulting
empirical cdf should correspond to a Uniform(0, 1). In addition, from Fthy the
quantiles of the lead-time distribution can be determined by solving F−1thy�p� =
xp for 0 < p < 1. For W ≥ �B−A�/2 this gives

xp =


F+ pW� if 0 < p < 1− B−A

2W
�

B−
√
2�1− p�W�B−A�� if 1− B−A

2W
< p < 1,

whereas for W < �B−A�/2 we have
xp = B− �B−F�

√
1− p� 0 < p < 1�

The theoretical profiles for any particular Q and G in all the following
figures are obtained by connecting the points ��xp�p�� p = 1/�2Q + 1�� � � � �
2Q/�2Q+ 1��.
Interestingly, in spite of the substantial variability in each profile, if we

average those profiles (by averaging each of the components of the N distinct
Q-dimensional vectors), the result is a very smooth profile that is nearly iden-
tical to the theoretical cdf given by (4.8). Figures 2–5 show the mean profile,
the componentwise minimum profile and the componentwise maximum profile
for the cases Q = 15�20�40 and 60, each component of which is denoted by
an “×”. The componentwise minimum and maximum form an envelop for allN
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Fig. 3. Profiles: mean, max, min and theory, Q = 20, N = 50.

profiles generated by the particular simulation run. In Figures 2 and 3, 95%
confidence intervals for the mean are determined for each of the Q quantiles.
These confidence limits are denoted by “∗” and have been constructed inde-
pendently for each of the Q components. In subsequent figures, the confidence
interval indications are omitted because they become visually distracting. In
all cases, the traffic intensity is 0.95 and the profile is recorded when exactly
10 units of local time at the indicated queue length have elapsed. The global
time at which the last lead-time profile is taken is recorded at the top of each
figure.
The profile is approximately correct for Q = 15, but there are systematic

departures evident. Figures 3–5 suggest that the profile form given by (4.8)
is nearly exact as a mean value for Q ≥ 20, because the theoretical curve is
always within the 95% confidence limits.
In considering the behavior of a real-time queueing system, it is important

to put bounds or confidence sets around the profiles described by (4.8), which
capture a large fraction of profiles. Such bounds could be used to determine
access control policies that would prevent customer lateness (at the expense
of losing customers through admission denial). The minimum and maximum
curves offer some idea of how wide such profiles must be and how wide the
confidence regions must be. Presumably, the bounds can be constructed using
large deviation theory; however, this is not studied any further in this paper.
Although the minimum and maximum limits seem fairly wide, we expect that
nearly all of the empirical profiles will be within an O�1� distance from the
theoretical profile in which lead times are O�√n�.
These plots are representative of many such plots for a variety of bounded

deadline distributions and traffic intensities. The greater the variability
in G, the larger Q must be for the average profiles to agree with (4.8).
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Fig. 4. Profiles: mean, max, min and theory, Q = 40, N = 50.

Fig. 5. Profiles: mean, max, min and theory, Q = 60, N = 50.
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The accumulated local time at which the profiles are recorded also has impor-
tant consequences. These issues are both addressed in the next section

5. Future research. In this section, we introduce additional simulation
results that illustrate potential generalizations of the real-time queueing
theory developed in this paper and some additional issues.

5.1. More general deadline distributions. The theory developed in Sections
3 and 4 used the assumption that the deadline distribution was bounded above
by some finite constant. Here, we illustrate that this assumption appears to be
unnecessary. Two distributions that are not bounded above are considered: the
exponential(α) distribution with mean 1/α and the Pareto(α�B) distribution.
We begin with the exponential(α) distribution with mean 1/α. All moments

of this distribution are finite, but it is not bounded above as in the uniform
case. For this distribution, the frontier is given by

F =


−1
α
log�αW�� if W ≤ 1

α
,

1
α
−W� if W >

1
α
.

The theoretical cdf for the lead-time profiles for this exponential(α) case takes
on one of two forms depending upon whether W ≥ 1/α or not. For the case in
which W ≥ 1/α, we have

Fthy�x� =


0� if x ≤ F�

1− 1
αW

�1− αx�� if F < x < 0�

1− 1
αW

exp�−αx�� if x ≥ 0�
whereas for W < 1/α we have

Fthy�x� =
{
0� if x ≤ F�

1− 1
αW

exp�−αx�� if x > F�

For W ≥ 1/α, the quantiles are given by

xp =


1
α
−W�1− p�� if 0 < p < 1− 1

αW
,

−1
α
log�αW�1− p��� if 1− 1

αW
≤ p < 1,

whereas for W < 1/α they are given by

xp = −
1
α
log��1− p�αW�� 0 < p < 1�

For the simulation, we chose α = 0�02, giving a mean of 50. We again sim-
ulate 50 independent profiles taken when 10 units of local time have been
reached. Figure 6 shows the mean profile for Q = 20. Again, the shape is
generally correct, but systematic departures are evident. Because this dead-
line distribution will result in a few customers in the queue having very large
lead times, it is more informative to use Q-Q plots to judge the agreement
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Fig. 6. Profiles: mean, max, min and theory, Q = 20, N = 50.

between the empirical and the theoretical cdf. A Q-Q plot is obtained by plot-
ting ��Fthy�Li�� i/�Q + 1��� 1 ≤ i ≤ Q�. If the lead times �L1� � � � �LQ� are
a random sample from Fthy, then these points should lie close to a 45◦ line
connecting �0�0� with �1�1�. Figure 7 gives the Q-Q plot that corresponds to
Figure 6. Figure 8 presents the Q-Q plot for the same exponential deadline
case when Q = 40. When Q = 20, systematic departures between the average
empirical cdf and the theoretical cdf are evident, especially in the left-hand
tail. Nevertheless, when Q = 40, the agreement is nearly exact.
We next consider a Pareto(α�B� deadline distribution. This distribution is

characterized by the cdf

G�x� =


0� if

x

B
< 1,

1−
(B
x

)�α−1�
� if

x

B
≥ 1�

for B > 0 and α > 1. This distribution has no moments of order α−1 or higher;
hence, it has a very heavy right-hand tail. Indeed, for 1 < α ≤ 2, the function
H�y� = ∞ for all finite y, and the proposed lead-time profile given by (4.8)
does not exist. Nevertheless, we show simulation results for α = 3 and α = 6
which demonstrate that there is a stable lead-time profile associated with this
family of distributions for α > 2. For α > 2, the frontier is given by

F =


B
( B

�α− 2�W
)1/�α−2�

� if W ≤ B

α− 2 �
α− 1
α− 2B−W� if W >

B

α− 2 �

The theoretical cdf for this Pareto(α�B) case is given by one of two forms
depending upon whether W ≥ B/�α − 2� or not. For the case in which
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Fig. 7. Q-Q profiles: mean, max, min and theory, Q = 20, N = 50.

Fig. 8. Q-Q profiles: mean, max, min and theory, Q = 40, N = 50.
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W ≥ B/�α− 2�, we have

Fthy�x� =


0� if x ≤ F�

1− 1
W

(α− 1
α− 2B− x

)
� if F ≤ x < B�

1− B

W�α− 2�
(B
x

)α−2
� if x ≥ B�

whereas for W < B/�α− 20� we have

Fthy�x� =

0� if x ≤ F�

1− B

W�α− 2�
(B
x

)α−2
� if x ≥ F�

For W ≥ B/�α− 2� the quantiles are given by

xp =


α− 1
α− 2B− �1− p�W� if 0 < p < 1− B

�α− 2�W ,

B
( B

�α− 2�W�1− p�
)1/�α−2�

� if 1− B

�α− 2�W < p < 1�

whereas for W < B/�α− 2� they are given by

xp = B

(
B

�α− 2�W�1− p�
)1/�α−2�

� 0 < p < 1�

Figures 9 and 10 give Q-Q plots for the Pareto(6, 40) distribution, a dis-
tribution with mean 50 and a relatively heavy tail. The traffic intensity was
increased to 0.99 and the number of profiles was increased from 50 to 100.
Figure 9 corresponds to Q = 20, while Figure 10 corresponds to Q = 40. The
variability in the Q-Q plots is quite large; however, there is good agreement
between the average profile and the theoretical distributions. For Q = 20,
there are some systematic departures in the tails, but for Q = 40, the agree-
ment is very good except in the upper tail.
Figures 11 and 12 present results for the more extreme Pareto(3, 25), a

distribution with mean 50, but infinite variance. This distribution has an
extremely heavy right-hand tail, and very long lead times will occur as Q
increases. For this case, we considered longer queue lengths, with Figure 11
corresponding to Q = 40 and Figure 12 corresponding to Q = 60. Figure 11
shows systematic departures in the left-hand tail, while Figure 12 shows near
exact agreement between the average profile and the theoretical distribution.

5.2. FIFO queue discipline. This paper studied the EDF queue discipline;
however, the results can be used heuristically to determine lead-time profiles
for the behavior of FIFO queues. Suppose that arriving customers have dead-
lines given by distribution G, but are serviced in FIFO order. This queue disci-
pline does not require knowledge of the customer deadlines, and a customer’s
instantaneous lead time is equal to its initial deadline minus its time in the
queue. The time in the queue can be determined using (4.8) first by assum-
ing all customers have deadlines 0. If all customers have deadline 0, then
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Fig. 9. Q-Q profiles: mean, max, min and theory Q = 20, N = 100.

Fig. 10. Profiles: mean, max, min and theory, Q = 40, N = 100.
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Fig. 11. Profiles: mean, max, min and theory, Q = 40, N = 100.

Fig. 12. Profiles: mean, max, min and theory, Q = 60, N = 100.
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the EDF queue discipline is equivalent to FIFO, and any customer’s instan-
taneous lead time is equal to the negative of its time in the queue. Profiles of
customers’ times in the queue can be approximated by using (4.8) with dead-
line distribution corresponding to point mass at 0. In this case, the resulting
distribution will be Uniform(−W�0�. By adding back their actual deadlines to
their time in queue, we can recover the customer lead times. Consequently,
if we were to order the customers in a FIFO queue by lead time (the FIFO
ordering is by time in the queue), then the resulting lead-time profile should
be the convolution of G with a Uniform(−W�0� distribution.
Figures 13 and 15 illustrate the lead-time profiles for a FIFO queue assum-

ing G is exponential(1/50),Q = 20 andQ = 40. Figures 14 and 16 present the
corresponding Q-Q plots for more accurate assessment of agreement. In this
case, the frontier is given by F = −W = −Q/λ. The theoretical cdf is given by

Fthy�x� =


0� if x < −W�

1+ x

W
+ 1
αW

�e−α�x+W� − 1�� if −W < x < 0�

1− 1− e−αW

αW
e−αx� if 0 ≤ x�

There are two different cases associated with finding the quantiles for this
distribution. First, when 0 < p < 1 − �1 − e−αW�/αW, then xp = y/α −W,
where y is the solution of the equation

y+ e−y = 1+ αWp�

For 1− �1− e−αW�/αW ≤ p < 1�

xp = −
1
α
log
( �1− p�αW
1− e−αW

)
�

Again, the agreement is reasonable for Q = 20 and excellent for Q = 40.

Fig. 13. Profiles: mean, max, min and theory, Q = 20, N = 50.
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Fig. 14. Q-Q profiles: mean, max, min and theory, Q = 20, N = 50.

Fig. 15. Profiles: mean, max, min and theory, Q = 40, N = 50.
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Fig. 16. Q-Q profiles: mean, max, min and theory, Q = 40, N = 50.

5.3. Profiles at hitting times. Real-time queueing theory should be useful
for developing and analyzing control policies to reduce or eliminate customer
lateness. One simple policy would be a threshold policy in which arrivals would
be denied admission and be lost if Q reached some specified level. In princi-
ple, the threshold could be chosen based on the predicted lead-time profiles,
for example, by choosing the threshold so that the frontier is bounded away
from 0 by some confidence margin. This analysis would use the profile whenQ
first hit the threshold. Interestingly, the profile obtained at the time at which
a level is first hit can be systematically different from the profile predicted
by (4.8). Figure 17 gives a representative example. The simulation param-
eters are identical to those presented in Figure 5 except that the profile is
recorded at the instant that Q = 60 rather than after 10 units of local time
have been accumulated at level 60. The mean empirical cdf curve is shifted
away from the theoretical profile. The introduction of the hitting time, which
guarantees that the queue length has never exceeded the level in question,
creates systematic distortions in the profiles. It will be important to develop
corrections to (4.8) that incorporate this stopping time bias.

5.4. The non-heavy-traffic case. The theory presented in Section 3 was
developed assuming the traffic intensity approaches 1 as n → ∞ [see (2.9)].
Interestingly, suppose we do not assume this heavy-traffic condition, but sim-
ulate an EDF system with moderate traffic intensity. If the simulation is con-
tinued until a suitable amount of local time (say 10 units) at a large enough
queue level (sayQ = 40) is obtained and the lead-time profile is recorded, then
that profile will be essentially indistinguishable from those recorded under
heavy-traffic conditions. Hence, it appears that for the EDF queue discipline,
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Fig. 17. Q-Q profiles: mean, max, min and theory, Q = 60, N = 50.

heavy-traffic theory calculations can be used to make accurate lead-time profile
predictions under moderate traffic conditions. Of course, if the traffic inten-
sity is moderate, long queue lengths are relatively infrequent compared with
heavy-traffic conditions. Much more research is needed to assess the accuracy
of the conjectures presented in this section. Nevertheless, it appears that the
heavy-traffic approximations developed for real-time queues will have many
important applications under nonextreme traffic conditions.

APPENDIX A

Weak convergence. The following standard results can be found in or
are easily derived from assertions found in Parthasarathy ([23], Chapter II)
and Billingsley ([1], Section 17). In this Appendix, we state a version of these
results needed for this paper.
Let S be a separable metric space and let
 �S� be the set of finite measures

defined on the σ-algebra of Borel subsets of S. We endow
 �S� with the weak
topology, whereby a sequence of finite measures �µn�∞n=1 converges to a finite
measure µ if and only if limn→∞

∫
S gdµn =

∫
S gdµ for every bounded, contin-

uous function g mapping S into �. The weak topology on 
 �S� is metrizable
and 
 �S� is locally compact.
Now let �Xn�∞n=1 be a sequence of S-valued random objects defined on

respective probability spaces �<n��n��n�, which may depend on n, and let X
be an S-valued random object defined on a probability space �<∗�� ∗��∗�. We
say Xn converges weakly to X and we write Xn ⇒X if the sequence of prob-
ability measures µn induced on S by Xn converges weakly to the probability
measure induced on S by X.
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Theorem A.1 (Continuous mapping theorem). Let �Xn�∞n=1 be a sequence
of S-valued random objects converging weakly to another S-valued random
object X. Let f� S → U be a measurable function from S to another metric
spaceU and assume f is continuous on the support ofX. Then f�Xn� ⇒ f�X�.

Let �S�ρ� be a locally compact separable metric space and let T > 0 be
given. A separable metric space that shall concern us is DS�0�T	, the space
of right-continuous functions with left-hand limits (hereafter called RCLL
functions) from �0�T	 to S, equipped with the Skorohod metric

dT�x�y� = inf
λ

{
sup
0≤t≤T

ρ
(
x�λ�t��� y�t�)+ sup

0≤t≤T
�λ�t� − t�

}
� x� y ∈ DS�0�T	�

where the infimum is over all strictly increasing functions λ mapping �0�T	
onto itself.
In this paper, most processes are in fact defined on �0�∞�. The space

DS�0�∞� of RCLL S-valued functions defined on �0�∞� has a metric d∞
with the property that whenever x and y are in DS�0�T	 and their restric-
tions x��0�T	 and y��0�T	 to �0�T	 agree, then d∞�x�y� ≤ e−T ( [4], Chapter 3,
Section 5). If �xn�∞n=1 is a sequence in DS�0�∞�, x is another function in
DS�0�∞�, and for every T > 0 the sequence of restrictions �xn��0�T	�∞n=1 con-
verges in DS�0�T	 to x��0�T	, then �xn�∞n=1 converges in DS�0�∞� to x. The
converse holds if x is continuous.
Now let �Xn�t�� 0 ≤ t ≤ T�∞n=1 be a sequence of RCLL S-valued processes

defined on �0�T	. These induce a sequence of measures on DS�0�T	. If this
sequence converges weakly to the measure induced by another RCLL S-valued
process �X�t�� 0 ≤ t ≤ T�, then we say that the sequence of processes �Xn�∞n=1
converges weakly to the process X and write Xn ⇒X. The definition of weak
convergence of a sequence of RCLL S-valued processes on �0�∞� is similar.
Such a sequence converges weakly to a continuous process �X�t�� 0 ≤ t <∞�
if and only if, for every T > 0, the sequence of restricted processes �Xn�t�� 0 ≤
t ≤ T� converges weakly to the restricted process �X�t�� 0 ≤ t ≤ T�.

Theorem A.2 (Time change theorem). Suppose the sequence of RCLL
S-valued processes �Xn�t�� 0 ≤ t < ∞�∞n=1 converges weakly to a continu-
ous, S-valued process �X�t�� 0 ≤ t < ∞�. Suppose further that the sequence
of RCLL �0�∞�-valued processes �>n�t�� 0 ≤ t <∞�∞n=1 converges weakly to a
nonrandom continuous �0�∞�-valued process �>�t�� 0 ≤ t <∞�. Then

Xn ◦>n ⇒X ◦>�

Theorem A.3 (Differencing theorem). Suppose the sequence of RCLL
S-valued processes �Xn�t�� 0 ≤ t < ∞�∞n=1 converges weakly to a continuous,
S-valued process �X�t�� 0 ≤ t < ∞�. Suppose further that the sequences
of RCLL �0�∞�-valued processes �>n�t�� 0 ≤ t < ∞�∞n=1 and �?n�t�� 0 ≤
t < ∞�∞n=1 converge weakly to the identically zero process. Then the sequence



REAL-TIME QUEUES 375

of processes

Yn�t� �= ρ
(
Xn�t+>n�t���Xn�t+?n�t��

)
converges weakly to the identically zero process.

APPENDIX B

Functional central limit theorem. This Appendix summarizes classi-
cal heavy-traffic limit results for a sequence of queues. It is included here
primarily to establish notation for the main body of the paper. Recall the def-

initions S�n�0
�= 0 and for k ≥ 1, S�n�k

�= ∑k
j=1 u

�n�
j , where for each n, �u�n�j �∞j=1

is a sequence of independent, identically distributed strictly positive random
variables with mean 1/λ�n� and standard deviation α�n�. In the nth queue, S�n�k

is the arrival time of the kth customer. The number of customers arrived by

time t is A�n��t� �= max�k ≥ 0� S�n�k ≤ t�. We define the centered and scaled
arrival process

Â�n��t� �= 1√
n

[
A�n��nt� − λ�n�nt

]
� t ≥ 0�

Recall also the definition of the centered and scaled work arrival process

V̂�n��t� �= 1√
n

�nt�∑
j=1

(
v
�n�
j − 1

µ�n�

)
�

where for each n, �v�n�j �∞j=1 is a sequence of independent, identically distributed
random variables with mean µ�n� and variance β�n�. The work arrival process
is

V �n��t� �=
�nt�∑
j=1

v
�n�
j �

and the centered and scaled netput process is

N̂�n��t� �= 1√
n

[
V�n��A�n��nt�� − nt

]
�

We impose the heavy-traffic assumptions (2.9)–(2.11), which are in force
throughout.
SupposeB is a standard Brownian motion, and µ and σ are constants. Then

B∗�t� = µt+σB�t� is a Browian motion with drift µ and variance σ2 per unit
time. We denote this by writing B∗ ∼ BM�µ�σ2�. The following theorems are
consequences of Prohorov ([25], Theorem 3.1), used to extend Billingsley ([1],
Section 17.3).
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Theorem B.1. The sequence of processes �V̂�n��∞n=1 converges weakly to a
process V∗ ∼ BM�0� β2�.

Theorem B.2. The sequence of processes �Â�n��∞n=1 converges weakly to a
process A∗ ∼ BM�0� α2λ3�.

Theorem B.3. The sequence N̂�n� converges weakly to �1/λ�A∗+V∗◦λe−γt,
where A∗ ∼ B�0� α2λ3�, V∗ ∼ B�0� β2�, A∗ and V∗ are independent, and e is
the identify function e�t� = t for all t ∈ �0�1	.

Corollary B.4. Let N∗ = �1/λ�A∗ +V∗ ◦λe− γt be the Brownian motion
with drift in Theorem B.3, and define

I∗�t� �= − min
0≤s≤t

N∗�s��

W∗�t� �=N∗�t� + I∗�t��
Then (

N̂ �n�� Î �n�� Ŵ �n�)⇒ (
N∗� I∗�W∗)�
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