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A LIFO QUEUE IN HEAVY TRAFFIC

By Vlada Limic1

Cornell University

This paper describes the heavy-traffic behavior of an M/G/1 last-in–
first-out preemptive resume queue. An appropriate framework for the anal-
ysis is provided by measure-valued processes. In particular, the paper
exploits the setting of recent works by Le Gall and Le Jan. Their finite-
measure-valued exploration process corresponds to our RES-measure
(residual services measure) process, that captures all the relevant infor-
mation about the evolution of the queue, while their height process corre-
sponds to the queue-length process. The heavy-traffic “diffusion” approxi-
mations for the RES-measure and the queue-length processes are derived
under the usual second moment assumptions on the service distributions.
The tightness of queue lengths argument uses estimates for the total size
and height of large Galton–Watson trees.

1. Introduction. Imagine customers arriving to a queue according to a
Poisson (rate λ) process, each customer requesting an amount of service time
with distribution function F, independently of the arrival process and of the
service times of other customers. LetF have finite meanm. The server devotes
all of its service potential to the last customer to have arrived. Moreover, at the
moment of each new arrival, the server switches instantaneously from serving
the current customer c (if any) to the newest customer c̄. Customer c stays
waiting in queue and only after c̄ is served completely and exits the queue does
the service of c resume. The above rule (or service discipline), that applies to
serving any customer c, corresponds to a branching structure (cf. Section 1.2).
This system is called the M/G/1 last-in–first-out (LIFO) preemptive resume
queue. From now on we will omit the qualifier “preemptive resume” for brevity.
Note that the server is busy whenever the queue is nonempty, which is usually
referred to as a nonidling or work-conserving property. We assume the queue
is empty at time 0.
For any two numbers x�y, let x+, x ∧ y and x ∨ y denote the positive part

of x, the minimum and the maximum of x and y, respectively. For any x, �x�
and �x� denote the largest integer smaller than or equal to x, and the smallest
integer larger than x, respectively. Also identify G	t
 with Gt whenever G is
a stochastic process.
Suppose a customer arrives to the queue at time t and requests an amount

v of service time. Ifwe letu	s
� s ≥ t, be its totalamountof time inservicebytime
s, the residual service time of this customer at time s is v− u	s
 = 	v− u	s

+.
Denote by 	A	t
� t ≥ 0
 the Poisson (counting) process of arrivals, by Z	t
 the
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queue length at time t, that is, the number of individuals in queue at time t,
and byW	t
 the (immediate) workload of the queue at time t, that is, the total
amount of work still required by customers present in the systemat time t (mea-
sured in units of server time). So the workload is equal to the total sum of
all residual service times. The parameter ρ = λm, called the traffic intensity
of the queue, is the average amount of work arriving per unit time. It is a
well-known (and easy) (cf. Section 2) fact that the workload process does not
vary over work-conserving service disciplines. In particular, the workload pro-
cess 	W	t
� t ≥ 0
 is the same for the first-in–first-out (FIFO) queue, where
the customers are served in the order of their arrival. Therefore, W is a
Markov process with respect to the filtration �t generated by arrivals and
service times up to time t, and it is positive recurrent, null-recurrent and
transient whenever ρ < 1, ρ = 1 and ρ > 1, respectively. From a practi-
cal point of view, it is desirable to “keep the server busy” most of the time
without getting it overwhelmed with work. This corresponds to the situa-
tion ρ = 1 − ε for some small ε > 0, and as ε ↘ 0, the queue approaches
heavy traffic.
The pioneering works in heavy-traffic approximations to queues (Kingman

[27]) and queueing networks (Iglehart and Whitt [21, 22], Harrison [19],
Reiman [31] and Whitt [35]) appeared a while ago. A detailed overview of the
enormous literature is given in Williams [36]. Recent papers by Bramson [7]
and Williams [37] provide powerful tools for the analysis of multiclass queue-
ing networks with feedback in heavy traffic. However, their techniques are
developed for head-of-the-line (HL) service disciplines. It is intuitively clear
what head-of-the-line means (see, e.g., [37] for precise definitions). The FIFO
discipline is the simplest HL discipline, while the LIFO discipline is perhaps
the simplest non-HL discipline. Recall that our LIFO discipline is preemptive
resume, where the server switches to serving the newest customer imme-
diately upon arrival. The queue-length process of the non-preemptive LIFO
queue, where the server serves each customer completely, and immediately
afterwards begins to serve the last customer to have arrived (if any), is equal
(in distribution) to that of the FIFO queue, so its heavy-traffic approximation
is given in [21, 22]. Although the LIFO discipline might seem “unfair,” and
therefore less natural than the FIFO discipline, it naturally arises in applica-
tions (e.g., LIFO stack in computer science; see also [4, 25]). In fact, here is a
natural “optimization” problem. Suppose that, for a queue close to heavy traf-
fic, we have a server with the ability of serving in both FIFO and LIFO orders
(equivalently, both non-preemptive and preemptive resume LIFO orders). Due
to limited space (say), it is important to minimize the queue length, and the
question is: which service discipline to use? Similar questions were considered
by Coffman and Mitrani [9]. We discuss the answer in Section 3.4.2, where we
see that typically one of the two disciplines is optimal.
Some important aspects of LIFO preemptive resume queues have been

investigated previously. Shanthikumar and Sumita [33] study properties of
invariant measure in the more general setting of renewal arrivals. Relation to
risk processes (Sigman [34]) is another connection to applications. Abate and
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Whitt [1] establish heavy-traffic limits for the steady-state waiting time in the
M/G/1 LIFO queue.
The goal of this paper is to describe the heavy-traffic behavior of an M/G/1

LIFO queue (Theorems 1 and 5). The corresponding description of its FIFO
counterpart is given in [21, 22]. An appropriate framework for the heavy-
traffic analysis of the LIFO queue is provided by measure-valued processes.
A random process is measure-valued if it takes values in a space of measures.
Measure-valued processes have been actively studied in the past two decades
(see, e.g., Dawson [10], Dynkin [12] for references). In particular, this paper
exploits the setting of the recent papers by Le Gall and Le Jan [14, 15], who
construct and study the finite-measure-valued exploration process (an ana-
logue of which we describe in Section 1.2 and call the RES-measure process)
as a step in their pathwise construction of superprocesses with general branch-
ing mechanism. The height process of [14, 15] corresponds to our queue-length
process. The theorems in Section 3.2 are stated and proved for an interesting
case (from the queueing perspective) where the approximation X	t
 to the
load process (cf. Section 1.1) is a Brownian motion. By examining the argu-
ment, it is easily checked that Theorem 1 continues to hold when X belongs
to a more general class of Lévy processes, and where the approximation Z	t

to the queue-length process has continuous paths. In particular, it holds in
the case of heavy-tailed service times, where the approximation to the load
is a Lévy stable-α process with α ∈ 	1�2
. Stable processes are common in
queueing models (e.g., [24, 20]).
Theorem 5 provides the heavy-traffic approximation for the queue-length

processes. Our tightness (in the Skorokhod topology) of queue-length argu-
ment rests on asymptotics for the distribution of a super-near-critical
Galton–Watson tree (cf. Lemma 8) where the offspring distribution has finite
variance. The weak convergence of queue-length processes for heavy-tailed ser-
vice times remains an open problem (we discuss this briefly in Section 3.4.4).
The Brownian motion approximation (Theorem 5) to queue length is analo-
gous to the Brownian excursion approximation to depth-first search walk of a
large (conditioned on total size) Galton–Watson tree, Aldous [2] (see Section
3.4.3). For some other interesting relations between queues and trees, we refer
the reader to Kersting and Geiger [16] and Shalmon [32].
The paper is organized as follows. Sections 1.1 and 1.2 introduce basic

concepts and some important relations. Section 2 is a brief analysis of the
workload process in heavy-traffic. Section 3 is devoted to the heavy-traffic
limit theorems for the RES-measure (cf. Section 1.2) and the queue-length
processes. We discuss some consequences and related work in Section 3.4, and
give the directions for further research in Section 4.

1.1. M/G/1 LIFO queue load as a Lévy process. Let 	Xt� t ≥ 0
 be the
Lévy process obtained by superimposing positive discrete jumps on the shift
−at, where a > 0. More precisely, the jumps occur at the times of increase
of a counting Poisson (rate λ) process A	t
, the sizes of the jumps vi� i ≥ 1,
are i.i.d. random variables with distribution F concentrated on 	0�∞
, and in
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between the jumps the process is linear with constant negative drift −a. The
Lévy characterization of X is

E exp	−xXt
 = exp�tax+ tλ
∫
	0�∞


	e−xr − 1
F	dr
�� x > 0�(1)

and a Lévy measure of X is π	dx
 = λF	dx
. See Section 3.1 for further
definitions and Bertoin [5] for background on Lévy processes. We can assume
by scaling that a equals 1. Then (as noted in [15]) X is the load process

Xt =
A	t
∑
i=1

vi − t� t ≥ 0�(2)

of an M/G/1 LIFO queue with customers arriving at the times of the jumps of
X, and requesting service equal to sizes of the jumps. It is also clear that the
load process X of any M/G/1 LIFO queue is a Lévy process of the above form.
Figure 1 shows a possible path of X over a finite time interval. Suppose X

had a jump at some (random) time s and write Xs− = limu↑↑s Xu. Let γs =
inf�u ≥ s� Xu ≤Xs−�. We identify the actual set of times when this customer
is in service with the set �s = �u ∈ �s� γs�� Xu ∈ �Xs−�Xs� and inf t∈�s� u�Xt ≥
Xu�, indicated in bold on the time axis in the figure. At time γs, this customer
exits the queue; in the meantime, its service might be interrupted several
times due to jumps of X, that is, arrivals of new customers. The “gaps” in �s

correspond to services of these customers. The customer who arrived (jumped)
at time s will still be in queue at time t > s if and only if γs > t, that is,

Xs− < inf
u∈�s� t�

Xu(3)

(as it happens for s and t in the figure). The difference 	infu∈�s� t�Xu −Xs−
+
is its residual service time at t. Therefore, the queue-length process Zt = Z	t

satisfies

Zt = #
{
s ≤ t� Xs− < inf

s≤u≤t
Xu

}
�(4)

Fig. 1.
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1.2. Branching and the RES-measure. The relation between queueing and
branching goes back to Kendall [26]. Some highlights of the literature are
given in [15]. Suppose we call a customer who arrives at time t a descendant of
a customer that arrived at time s if the latter is still in queue at time t, that is,
if (3) holds. Any customer either finds the queue empty upon arrival, in which
case it becomes a progenitor (or root), or finds the queue nonempty, in which
case it becomes a child (or offspring) of the customer being served previous
to its arrival. This procedure yields a sequence of Galton–Watson trees, with
each busy cycle corresponding to a different progenitor. The corresponding
offspring distribution depends on the Lévy measure ofX [15]; it is easy to see
that the mean equals λm and the variance equals λ2β+ λm− λ2m2, where β
is the second moment of F. We return to this very useful characterization in
the heavy-traffic analysis, Section 3.3.
Let It = inf s∈�0� t� Xs be the past infimum process, and let Its = infu∈�s� t� Xu

be the future infimum (dotted line in Figure 1). Note that −It equals the
(cumulative) idle time, the amount of time for which there has been no cus-
tomer in queue up to t. This is true since −It increases at constant rate 1
during the time intervals with no customers in queue. The jumps of It· may
occur only at the times s < t at which customers arrive, and the jump sizes
	infu∈�s� t�Xu −Xs−
+ are the residual service times (at time t) of the corre-
sponding customers. The workload process is then given by Wt = Xt − It.
The excursions ofX above its past infimum, or equivalently, the excursions of
W above 0, correspond to the busy cycles of the queue. The relation between
excursions of random walks and branching goes back to Harris [18].
Let τx = inf�s ≥ 0� Is ≤ −x�, and let Mx = #�s ∈ �0� τx�� Xs− < Xs and

Ws = Zs = 0� be the number of customers arriving to an empty queue during
the interval �0� τx�. So Mx is the number of busy cycles (i.e., the number of
trees) started in the interval �0� τx�. Observe that

Mx
d= Poisson 	rate λx
�(5)

where λ is the arrival rate.
One can think of a LIFO queue as a continuous-time process with values in

the state space of finite lists of arbitrary length. At each time t, the state of the
queue is the list of residual service times for all queued customers ordered by
their arrival times. Of course, one can obtain the above list from 	Xs� s ≤ t
,
the path of the load process up to t, or from the path of the workload W
up to t. The state space of (finite and infinite) lists appeared in [15], and it
seems convenient for certain types of analysis of evolution of the queue, e.g.,
for obtaining the stationary distribution and the dual process (cf. [15], Section
3). However, it is not convenient for the heavy-traffic analysis since the lists
“become uncountable” in the limit, which is related to the fact that the above
discrete branching mechanism converges under the heavy-traffic assumptions
to a continuum branching mechanism driven by Brownian excursions. A cru-
cial ingredient for this paper is the existence of a measure-valued encoding
qt of the state space, analogous to the exploration process of [14], that has a
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natural extension in the limit. The queue length is recoverable from q by

Zt = sup	Supp	qt

�(6)

where Supp(µ) denotes the closed support of measure µ. Moreover, the list
of residual service times at time t equals 	qt	1
� qt	2
� � � � � qt	Zt

, the list
of masses of atoms of qt. Of course, the workload is then given by Wt =∑Zt

i=1 qt	i
 =
∫ t
0 dI

t
s = �qt�1�. The process qt is defined by

�qt� ϕ� �=
∫ t

0
ϕ	Zs
dIts =

∫ t

0
ϕ	Zt

s
dIts�(7)

Here �µ�ϕ� stands for ∫�0�∞
 ϕdµ, and ϕ�R+ → R is continuous, with bounded
support, and

Zt
s = #

{
u ≤ s� Xu− < inf

u≤z≤t
Xz

}
(8)

is the number of individuals in queue at time s that will still be in queue at
time t. Note that the integrals in (7) are in fact finite sums. The equality in
(7) is due to a simple fact: Zs ≡ Zt

s� It	ds
-a.e., for each t ≥ 0, where the
step function Its defines an atomic measure I

t	ds
 in the usual way. Note that
Isu = Itu for all u ≤ s, It	ds
 almost everywhere. It is easily seen (and shown in
[15]) that the process qt is strong Markov. The process Zt

s is nondecreasing in
s for each fixed t, and this monotonicity will be essential in the heavy-traffic
analysis (Section 3).
The following observation will be important later on for deriving the queue-

length heavy-traffic approximation. If we fix any time t and time-reverse the
load X from t back to 0 (or equivalently, rotate Figure 1 about the origin by
180 degrees), the future infimum It· “gets mapped” onto the (past) supremum
process of the time-reversed load process X̃t

s = Xt −X	t−s
−. In particular,
the queue length Zt, which equals the number of jumps of the future infi-
mum (4), also equals the number of jumps of the time-reversed supremum
process occurring in �0� t�. The precise statements and their generalizations
are deferred until Section 3.1.
We prefer integrals to sums in (7) since the heavy-traffic limit Theorem 1

involves the convergence of rescaled q’s to a limit of the same form. The queue
length is usually denoted by Zt. In [15], the corresponding process is denoted
by H and is called the height. (The two processes are analogous, though H is
defined in discrete time and the walkH, unlikeZ, never visits the same vertex
twice.) The height process (the queue length) visits the vertices (the customers)
of the sequence of trees (busy cycles) in the depth-first search order (children
before siblings), recording their distance from the root. The exploration process
“explores” these trees in a similar way, carrying a lot of additional informa-
tion, and its advantage over the height process is the Markov property and
relation (6). The process Zt is Markov only if the service time distribution F
is exponential. From now on we identify any queue with the corresponding
measure-valued q, which we call the RES-measure (derived from REsidual
Services measure) process.
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2. The workload in heavy traffic. In this section we describe the frame-
work of heavy traffic. We state some of the usual assumptions (e.g., [7, 37])
and discuss asymptotics of the workload processes. The workload does not
depend on the service discipline and is a relatively simple object for analysis.
At the same time, the workload is the simplest (interesting) process related
to the queue, so any “natural” convergence of queues should comprise the
convergence of corresponding workloads.
Let qr = 	qrt � t ≥ 0
 be a family of RES-measure processes of M/G/1 LIFO

queues, indexed by r. Here r ranges over real numbers; it is easiest to think
of a sequence increasing to ∞. The rth M/G/1 queue has the arrival rate λr
and the service time distribution function Fr with mean mr. Assume

λr → λ ∈ 	0�∞
� mr →m ∈ 	0�∞
 as r→∞�(9)

Let ρr = λrmr. A usual heavy-traffic assumption is

r1/2	1− ρr
 = r1/2	1− λrmr
 → c ∈ R as r→∞�(10)

Let Ar	·
� Wr	·
 and Zr	·
 denote the corresponding arrival, workload and
queue-length processes. We assume that, for each r, the queue is empty at
time 0, or equivalently, Wr	0
 = 0, so that notation of Sections 1.1 and 1.2
directly applies. More general initial conditions can be treated with additional
work (cf. Section 3.4.1).
Let vri be the service time requested by the ith customer who arrives to the

queue. So �vri � i ≥ 1� is an i.i.d. sequence with distribution Fr, and denote
by Vr	n
 =∑n

i=1 v
r
i � n ≥ 1, the cumulative service time process. The workload

equation is (the same for all work-conserving disciplines)

Wr	t
 = Vr	Ar	t

 − t− Ir	t
 =Xr	t
 − Ir	t
�(11)

where Xr	t
 is the load and −Ir	t
 = − inf s≤t Xr	s
 is the idle time.
If we assume in addition to (9), (10) that, for each r, the service times have

second moment βr <∞ and

βr → β <∞ as r→∞�(12)

sup
r

E
[	vr1
21�vr1≥K�]→ 0 as K→∞(13)

(so a Lindeberg–Feller type of condition is satisfied), the rescaled load pro-
cesses 	r−1/2Xr	rt
� t ≥ 0
 converge weakly to a Brownian motion X with
drift −c, defined in (10), and variance λβ. The value λβ for the asymptotic
variance can be verified using standard arguments; intuitively, it is due to the
fact that the infinitesimal drift E	-	Xr

t 
2 � � r
t 
 equals λrE	vr1
2 dt = λrβrdt

(in the obvious notation), so in the limitX2
t −λβt should be (and is) a martin-

gale. By the continuous mapping theorem (e.g., Billingsley [6], Lemma 6.1),
under the same scaling, the workload processes Wr converge to W = X − I
obtained by reflecting X above the past minimum It = inf s≤t Xs.
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Remark. Since Brownian motion X is a stable process with index α = 2,
(10) reads

r1−γ	1− ρr
 → c �(14)

where γ = 1/α = 1/2. It is standard that 	Ar	rt
/r� t ≥ 0
 ⇒ 	λt� t ≥ 0
, as
r → ∞. Now consider a more general setting, where α ∈ 	0�2� and γ = 1/α.
Assume that limr→∞ br/rγ exists, that (9), (14) hold, and consider the rescaled
processes

Xr	rt
/br = Vr	Ar	rt

 − rt

br

=
∑Ar	rt


i=1 	vri −mr

br

+ Ar	rt
mr − rt

br

∼
∑rλt

i=1	vri −mr

br

+ r	ρr − 1
t
br

�

Assume moreover that, for all large r, the service times have heavy tails,
that is, Fr is in the domain of attraction of the stable-α law (cf. Breiman
[8], page 207). Assume that m < ∞ so it must be α ∈ 	1�2�. Then (e.g.,
Jacod and Shiryaev [23]) Xr	rt
/br converges to a stable-α process X, and
again the workload converges to X reflected above the past minimum. Under
more general conditions on br and Fr (see [23], Theorem VII.2.35 and [15],
Proposition 5.1),Xr	rt
/br will converge to a Lévy processX with no negative
jumps [i.e., the Lévy measure π in (16) is concentrated on (0�∞)].

3. Heavy-traffic limits. In this section we state and prove the heavy-
traffic limit theorems for M/G/1 LIFO queues. In Section 3.1 we define the
limit processes and mention some of their properties from Le Gall and Le Jan
[14, 15]. Sections 3.2 and 3.3 are devoted to the convergence, and Section 3.4
comments on some consequences and extensions, and relates our result to the
existing literature.

3.1. Limit processes. We briefly describe the setting of [14, 15]. Let X =
	Xt� t ≥ 0
 be a Lévy process with no negative jumps such that lim inf t→∞
Xt = −∞. Then

E exp 	−xXt
 = exp 	tψ	x

� x > 0�(15)

where the Laplace exponent ψ	x
 is of the form

ψ	x
 = cx+ σ2x2

2
+
∫
	0�∞


	e−xr − 1+ xr
π	dr
� c ≥ 0�(16)

and the Lévy measure π	dr
 satisfies∫
	0�∞


	r ∧ r2
π	dr
 <∞�(17)
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In Section 1.1 we identified the load processes (2) of M/G/1 LIFO queue with a
class of analogous (though much simpler) Lévy processes characterized by (1).
Moreover, in Section 2 we saw how some of the processes characterized by (15)–
(17) arise naturally as limits of rescaled load processes of queues approaching
heavy traffic. Such X can be viewed as a “generalized” queue load, and it is
plausible that a generalized queue length Zt and a generalized RES-measure
qt can be obtained from the load by mimicking (4) and (7). Indeed, this has
been done in [14, 15] [for X with general Laplace exponent (16), (17)], and
we recall their definitions here briefly. We will mainly deal with the special
Brownian case ψ	x
 = cx + σ2x2/2, c ∈ 	−∞�∞
� σ > 0. If the drift −c
is strictly positive, then limt→∞ Xt = ∞ (not −∞), and such processes were
not considered in [14, 15]. However, the definitions below and the rest of the
analysis extend naturally.
Let X• be a (not generalized) M/G/1 LIFO queue load process as in Section

1.1. In this section only, all the LIFO queue-related processes from Section 1
have additional “•” in the superscript. Recall the related infimum processes
I•t � I

•� t
s from Section 1.2. For each fixed t > 0, denote by 	X̃•� t

s � 0 ≤ s ≤ t
 the
time-reversed process X• from t, that is,

X̃•� t
s =X•

t −X•
	t−s
−� 0 ≤ s < t and X̃

•� t
t =X•

t �

and let S̃•� ts = supu∈�0� s� X̃•� t
u . Rewrite identities (4) and (8) as

Z•
t = #

{
z� z ∈ �0� t�� S̃•� tz > S̃•z−

}
�

Z•� t
s = #

{
z� z ∈ �t− s� t�� S̃•� tz > S̃•� tz−

}
�

(18)

since the future infimum I•� ts corresponds (in reversed time) to the past supre-
mum S̃

•� t
t−s−.

Now fix a generalized queue load process X, and let 	X̃t
s� 0 ≤ s ≤ t
 be the

corresponding time-reversed process, so that

X̃t
s =Xt −X	t−s
−� 0 ≤ s < t�

X̃t
t =Xt and S̃t

s = sup
u∈�0� s�

X̃t
u�

Now the set of increase points of S̃t is measured using local time. Let 	L̃t
s� 0 ≤

s ≤ t
 be a local time of the process 	S̃t
s− X̃t

s� 0 ≤ s ≤ t
 at level 0. Then L̃t
s is

a continuous nondecreasing additive process with support on the zero set of
S̃t
s − X̃t

s (see, e.g., [5], Chapter IV). By analogy to (18), define

Zt
s = L̃t

t − L̃t
t−s� 0 ≤ s ≤ t and Zt = Zt

t = L̃t
t�(19)

Local time is unique ([5], Proposition IV.2.5) up to a multiplicative constant.
For X a Brownian motion with drift −c and variance σ2, we can choose L̃t as

L̃t
s =

2
σ2

S̃t
s�(20)
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which translates back to

Zt
s=

2
σ2
	Its − It
� t ≥ 0�

Zt=
2
σ2
	Xt − It
 =

2
σ2

Wt�

(21)

where It = inf s≤t Xt and Its = infu∈�s� t�Xu as always. The choice of the nor-
malizing factor in (20) is motivated by heavy-traffic limits (e.g., Lemma 2).
Note that the processes Zt�Z

t
s in (21) are continuous. By (21), Z

t
s is nonde-

creasing in s for every t and lims↑t Zt
s = Zt. Moreover, it is straightforward

to see that again Zs ≡ Zt
s� I

t	ds
-a.e., t ≥ 0. So definition (7) extends to the
generalized setting. The finite-measure-valued process qt given by

�qt� ϕ� =
∫ t

0
ϕ	Zs
It	ds
 =

∫ t

0
ϕ	Zt	s

It	ds


is a strong Markov process, the identity (6) carries over, and moreover,

Supp	qt
 = �0�Zt�� t ≥ 0�
In fact, qt is a constant (σ2/2) multiple of the Lebesgue measure on �0�Zt�.
The above statements can be easily checked in our (Brownian) setting, and
some have analogues in the more general setting (16), (17) of [14].

3.2. Convergence. We are now ready to state our main result. Denote by
Mf	R+
 the complete, separable metric space of finite measures on �0�∞

(cf. Billingsley [6], or Dawson [10], Section 3), by DR�0�∞
, DR�0� t�,
DMf	R+
�0�∞
 the usual Skorokhod spaces, and by⇒ the corresponding weak
convergence of processes.
Let qr = 	qrt � t ≥ 0
� r ≥ 1, be a family of RES-measures with corresponding

queue load processes Xr = 	Xr
t � t ≥ 0
, as in Sections 1 and 2. Similarly,

denote by Zr�Zt� r the queue-length processes in (6) and (8), and let It� r· be
the future infimum processes of Xr.
Assume that (9), (10) and (12), (13) hold. Then we know (Section 2) that

X̂r = 	r−1/2Xr	rt
� t ≥ 0
 ⇒ X, where X is a Brownian motion with vari-
ance λβ and drift −c, and by the Skorokhod representation theorem, we may
assume that

X̂r →X a.s. in DR�0�∞
 as r→∞�(22)

For each r ≥ 1, let Ît� rs ≡ Ît� r	s
 �= r−1/2It� r	rs
, and

Ẑr
t = r−1/2Zr

rt� Ẑt� r	s
 = r−1/2Zrt� r	rs
�(23)

�q̂r	t
� ϕ� =
∫ t

0
ϕ	Ẑr

s
 Ît� r	ds
 =
∫ t

0
ϕ	Ẑt� r	s

 Ît� r	ds
�(24)
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Convergence in (22) implies that, for t fixed,

−Ît� r	·
 → −It	·
 a.s. in DR+�0� t� as r→∞�(25)

where It	s
 = infu∈�s� t� Xu.

Let Zt� Z
t	s
 ≡ Zt

s be as in (21). Note that X̂
r� X� Ẑr� Z ∈ DR+�0�∞
,

Ẑt� r	·
�Zt	·
 ∈ DR+�0� t� and q̂r� q ∈ DMf	R+
�0�∞
.

Theorem 1. Under assumptions 	9
, 	10
, 	12
, 	13
, we have q̂r ⇒ q, as
r→∞.

The proof is based on (25) and the following lemma:

Lemma 2. Let Ẑt� r	s
 be as in 	23
. Then, for each fixed t ≥ 0,

P

(
sup
s∈�0� t�

�Ẑt� r	s
 −Zt	s
� > ε

)
→ 0 as r→∞�

Proof. Assume (22), fix t > 0 and a finite subdivision 0 ≤ s1 < s2 < · · · <
sk = t on �0� t�. We show(

Ẑt� r 	s1
� Ẑt� r	s2
� � � � � Ẑt� r	sk

)

p→
(
Zt	s1
�Zt	s2
� � � � �Zt	sk


)
� r→∞�

(26)

where →p denotes convergence in probability. Recall Ẑt� r	s
 = #�u� t − s ≤
u ≤ t�

̂̃
S

t� r

	u
 > ̂̃
S

t� r

	u−
� · r−1/2� where ̂̃St� r

	u
 = supx∈�0� u� ̂̃Xrt� r

	x
 is the
supremum process of ̂̃Xrt� r

	s
 = r−1/2	Xr	rt
 −Xr		rt− rs
−

, the rescaled
and time-reversed Xr.
Consider the time-reversed process X̃rt� r	s
 =Xr	rt
 −Xr		rt− s
−
, 0 ≤

s ≤ rt. For z ≤ t, denote byMr
t 	z
 the number of jumps of X̃rt� r above its past

maximum in the interval �0� rz�. Note that Ẑt� r	s
 = r−1/2	Mr
t 	t
 −Mr

t 		t −
s
−

 = r−1/2	Mr

t 	t
 −Mr
t 	t− s

 since a.s. there is no jump at time t− s. Due

to (19), (20), it suffices to show that, for each fixed z ∈ �0� t�,

r−1/2Mr
t 	z


p→ 2
λβ

S̃t	z
� r→∞�(27)

where S̃t	z
 is defined above (19). The lemma will then follow from (26), since
Ẑt� r	·
 is nondecreasing for each r and t, and Zt	·
 is continuous and nonde-
creasing for each t.
In order to show (27), it is convenient to consider “extension” process

	X̃rt� t	s
� s ≥ 0
 of 	X̃rt� t	s
�0 ≤ s ≤ rt
, defined in the following way. Inde-
pendently of the filtration generated by Xr, take a sequence �ur

−i� i ≥ 1� of
i.i.d� exponential (rate λr) random variables, and a sequence �vr−i� i ≥ 1� of
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i.i.d� random variables with distribution Fr. Define X̃rt� r	rt+z
 = X̃rt� r	rt
+∑Ar
−	z


i=1 vr−i−z, z ≥ 0, where Ar
−	z
 = sup�j�

∑j
i=1 u

r
−j ≤ z�. Then the extended

process X̃rt� r has the distribution of the load process Xr.
Let S̃rt� r be the supremum process of the extended X̃rt� t. Denote by Tr� t

1 <

T
r� t
2 < · · · the successive increase (jump) times of S̃rt� r, and let Jr� t

i = X̃rt� r

	Tr� t
i 
−S̃rt� r	Tr� t

i −
, i ≥ 1, be the corresponding overshoots. If λrmr ≥ 1, there
are infinitely many overshoots almost surely, and they form an i.i.d. sequence
of random variables. The distribution of Jr

1 is known,

P	Jr
1 = dz

dz

= λr
∫
�z�∞


exp�−;r	0
	y− z
�Fr	dy
� z ≥ 0�(28)

where ;r	0
 ≥ 0 (see [5], page 188 for interpretation) is such that the right-
hand side of (28) defines a (proper) probability distribution. If λrmr < 1, there
are Nr� t many overshoots, where Nr� t is a geometric (1−λrmr) random vari-
able, and conditionally on Nr� t, the overshoots 	Jr� t

1 � � � � � J
r� t
Nr� t

 are indepen-

dent and identically distributed, with known distribution

P	Jr
1 = dz� overshoot occurs 


dz
= 1

mr
Fr	�z�∞

� z ≥ 0�(29)

Therefore,E	Jr
1� overshoot occurs
 = βr/	2mr
 in this case. Both (28) and (29)

are special cases of [5], Theorem VII.17(ii).
We are mainly interested in the overshoots that occurred by (reversed) time

rz ≤ rt. Note that

̂̃
S

t� r

	z
 =
Mr

t 	z
∑
i=1

1
r1/2

Jr
i �(30)

and the convergence in (22) implieŝ̃
S

t� r

	z
 → S̃t	z
 a.s. as r→∞�(31)

Assertion (27) is now a consequence of (30), (31) and Lemma 3 below. ✷

Lemma 3.

1
Mr

t 	z

Mr

t 	z
∑
i=1

Jr
i

p→ λβ

2
as r→∞�

Proof. An adaptation of the law of large numbers. It suffices to consider
subsequences rk of r for which either λrkmrk ≥ 1 for all k, or λrkmrk < 1 for
all k. Denote such subsequences again by r.
Assume λrmr ≥ 1. Note that

;r	0
 in 	28
 tends to 0 as r→∞�(32)

This is due to (9), (10), (12), (13). Suppose ;r	0
 > δ along a subsequence,
for some δ > 0. By (9) and the Markov inequality, the sequence of service
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time distributions Fr is tight. So we may assume that Fr converges weakly to
distribution F along the same subsequence. Distribution F has mean m and
second moment β, due to (12), (13). Let vr1 =d Fr and v1 =d F. Due to

1 = P	Jr
1 ≥ 0
 = λr

∫
�0�∞


exp�−;r	0
x�Fr	�x�∞

dx�

mrλr → 1, and 1 ≥ exp�−δx� > exp�−;r	0
x�, an application of the sandwich
theorem gives

lim
r

λr
∫
�0�∞


e−δxFr	�x�∞

dx = λ

δ
lim
r

E	1− exp	−δvr1



= λ

δ
E	1− exp	−δv1

 = 1�

where the limit is taken along the subsequence above. The last equality is
impossible, since E	1 − exp	−δv1

 ≤ 1 − exp	−δEv1
 = 1 − e−δm and λ	1 −
e−δm
/δ is strictly smaller than λm = 1.
Due to (13), random variables Jr

1 in (28) are uniformly integrable. Namely,
an application of Fubini’s theorem gives

lim
K→∞

EJr
11�Jr

1≥K� ≤ lim
K→∞

λr
∫
�K�∞


zFr	�z�∞

dz

≤ lim
K→∞

1
2

∫
�K�∞


z2Fr	dz
 = 0�

Since

EJr
1 =

∫ ∞
0

P	Jr
1 ≥ y
dy

= λr
∫ ∞
0

Fr	dz

∫ ∞
0

dy
∫ ∞
0

dx exp	−;r	0
x
1�x≥0� y≥0� x+y≤z��
by (32) and uniform integrability we have EJr

1 → 	λβ
/2 as r → ∞. So, it
suffices to show

1
Mr

t 	z

Mr

t 	z
∑
i=1

	Jr
i −EJr

1

p→ 0 as r→∞�

It is not hard to see that Mr
t 	z
 → ∞ in probability, due to (30) and (31).

Take ε′ > 0. Since

P

(∣∣∣∣ 1
Mr

t 	z

Mr

t 	z
∑
i=1

	Jr
i −EJr

1

∣∣∣∣ > 4ε′)

≤ P	Mr
t 	z
 < l
 +P

(
sup
k≥l

∣∣∣∣1k k∑
i=1
	Jr

i −EJr
1

∣∣∣∣ > 4ε′)�

it suffices to show that

P

(
sup
k≥l

∣∣∣∣1k k∑
i=1
	Jr

i −EJr
1

∣∣∣∣ > 4ε′) ≤ o	r� l
 �(33)
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where liml→∞ supr o	r� l
 = 0. Note that (33) is just an extension of the usual
strong law of large numbers. The proof is a variation on the classical proof.
Fix large K and split the sum in (33) into

k∑
i=1

(
Jr
i1�Jr

i≤K� −EJr
i1�Jr

i≤K�
)
+

k∑
i=1

(
Jr
i1�Jr

i>K� −EJr
i1�Jr

i>K�
)
�

Random variables Jr
i1�Jr

i≤K� are bounded; in particular, they have uniformly
(in r) bounded fourth moments and the simplest proof of the strong law of
large numbers yields

P

(
sup
k≥l

∣∣∣∣1k k∑
i=1

(
Jr
i1�Jr

i≤K� −EJr
11�Jr

i≤K�
)∣∣∣∣ > 2ε′)

≤ o	r� l�K

where liml→∞ supr o	r� l�K
 = 0. By uniform integrability, EJr

11�Jr
1>K� =

1
k

∑k
i=1EJ

r
i1�Jr

i>K� can be made uniformly small in r for large enoughK. So it
suffices to show

lim
l→∞

sup
r

P

(
sup
k≥l

1
k

k∑
i=1

Jr
i1�Jr

i>K� > ε′
)
≤ o	K
�(34)

where limK o	K
 = 0. Perhaps the easiest way to show (34) is by imitat-
ing Etemadi’s proof of SLLN [11], Theorem 1.8.4. Define truncated H

r�K
i =

Jr
i1�Jr

i>K�1�Jr
i1�Jri >K�

≤i�. Then

sup
r

P
(
H

r�K
i $= Jr

i1�Jr
i>K� for some i ≥ 1

)
≤ sup

r
EJr

11�Jr
1>K� ≤ o	K
�

where limK o	K
 = 0, so it suffices to show

lim
l→∞

sup
r

P

(
sup
k≥l

1
k

k∑
i=1

H
r�K
i > ε′

)
≤ o	K
�

Fix ε′′ > 0 and a > 1. Let Tr�K
n = ∑n

i=1H
r�K
i , and let k	n
 = �an�. By the

same calculation as in Etemadi’s proof, we get

sup
r

∞∑
n=1

P
(∣∣∣Tr�K

k	n
 −ET
r�K
k	n


∣∣∣ > ε′′k	n

)

≤ sup
r

16
	1− a2
ε′′2EJ

r
11�Jr

1>K� ≤ o	K
�

Since

sup
K

sup
r

∣∣∣EHr�K
i −EJr

11�Jr
1>K�

∣∣∣→ 0 as i→∞�
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then supr �ET
r�K
k	n
/k	n
 −EJr

11�Jr
1>K�� → 0, as n→∞, and therefore,

lim
l→∞

sup
r

P

(
sup
k	n
≥l

1
k	n
T

r�K
k	n
 > 2 ε

′′
)
≤ o	K
�

The rest is the same as in Etemadi’s proof. Details are left to the reader.
Assume λrmr < 1. By the same reasoning as above, again Mr

t 	z
 →p ∞,
as r→∞. Similarly, the distributions in (29) are again uniformly integrable.
Recall E	Jr

1� overshoot occurs
 = βr/	2mr
 → λβ/2. Write

P

(∣∣∣∣ 1
Mr

t 	z

Mr

t 	z
∑
i=1

(
Jr
i −

λrβr

2

)∣∣∣∣ > 4ε′)

≤ P	Mr
t 	z
 < l
 +P

(
sup

l≤k≤Nr� t

∣∣∣∣1k k∑
i=1

(
Jr
i −

λrβr

2

)∣∣∣∣ > 4ε′�Nr� t ≥ l

)
≤ P	Mr

t 	z
 < l


+
∞∑
j=l

P	Nr� t = j
P
(
sup
l≤k≤j

∣∣∣∣1k k∑
i=1

(
Jr
i −

λrβr

2

)∣∣∣∣ > 4ε′
∣∣∣∣Nr� t = j

)
�

By the observation made above (29), the last term in the sum above is domi-
nated by

P

(
sup
k≥l

∣∣∣∣1k∑
i

	 %Jr
i −E %Jr

1

∣∣∣∣ > 4ε′)�

where %Jr
i � i ≥ 1, are i.i.d. with distribution (29), and the rest of the proof is

the same as in the supercritical case. ✷

Corollary 4. For any fixed t and 0 ≤ t1 < t2 · · · < tk ≤ t,(
Ẑr

t1
� Ẑr

t2
� � � � � Ẑr

tk

)
p→
(
Zt1

�Zt2
� � � � �Ztk

)
�

Proof of Theorem 1. From Lemma 2 and (22)–(25), we easily obtain the
convergence of finite-dimensional distributions(

q̂rt1� � � � � q̂
r
tk

)
⇒
(
qt1� � � � � qtk

)
� r→∞�

So it suffices to show the tightness of the family 	q̂r
 in DMf	R+
�0�∞
. Let
q = qr, fix a bounded and continuous function ϕ� �0�∞
 → R and calculate

��q	s+ h
� ϕ� − �q	s
� ϕ��

=
∣∣∣∣(∫ s

0
+
∫ s+h

s

)
ϕ	Zs+h

z 
dIs+hz −
∫ s

0
ϕ	Zs

z
dIsz
∣∣∣∣

≤
∣∣∣∣∫ s

0
ϕ	Zs+h

z 
dIsz −
∫ s

0
ϕ	Zs+h

z 
dIs+hz

∣∣∣∣
+
∣∣∣∣∫ s+h

s
ϕ	Zs+h

z 
dIs+hz

∣∣∣∣+
∣∣∣∣∫ s

0
ϕ	Zs

z
 − ϕ	Zs+h
z 
dIsz

∣∣∣∣�
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where the inequality is an application of the triangle inequality, after conve-
nient rearrangement of the terms. Use the fact that Isz−Is+hz is nondecreasing
in z ∈ �0� s� in order to bound the first term from above by

&ϕ&∞
∣∣∣∣∫ s

0
dIsz − dIs+hz

∣∣∣∣
= &ϕ&∞

(
Iss − Is0 − 	Is+hs − Is+h0 
)

≤ &ϕ&∞	Xs − Is+hs 
�
For the second term, use a similar identity

∫ s+h
s dIs+hz = Is+hs+h− Is+hs =Xs+h−

Is+hs . To bound the third term, note that Zs
z and Z

s+h
z differ (clearly Zs

z ≥ Zs+h
z

for all z ∈ �0� s�) only for z ∈ �0� s� such that Isz > Is+hz , that is Isz > Is+hs . Now∫ s
0 	ϕ	Zs

z
 − ϕ	Zs+h
z 

dIsz =

∫
�z∈�0� s��Isz>Is+hs �	ϕ	Zs

z
 − ϕ	Zs+h
z 

dIsz, so that∣∣∣∫ s

0
	ϕ	Zs

z
 − ϕ	Zs+h
z 

dIsz

∣∣∣ ≤ 2 &ϕ&∞	Iss − Is+hs 
�
The above calculations imply

��q	s+ h
� ϕ� − �q	s
� ϕ�� ≤ &ϕ&∞
(
3	Xs − Is+hs 
 + 	Xs+h − Is+hs 


)
≤ 4&ϕ&∞ sup

θ∈�0� h�
�Xs+θ −Xs��

and after scaling,

��q̂r	s+ h
� ϕ� − �q̂r	s
� ϕ�� ≤ 4&ϕ&∞ sup
θ∈�0� h�

�X̂r
s+θ − X̂r

s ��

The tightness of q̂r now follows from the tightness of X̂r, by combining
Jakubowski and Aldous criteria, [10], Theorems 3.6.4 and 3.6.5 (see also [13],
Theorem III.8.6).

Remark. Since the mapping µ '→ sup	Supp	µ

 is clearly not continuous
in the topology on Mf	R+
, Theorem 5 below does not immediately follow
from Theorem 1 and (6). IfX in (22) is a stable-α (α ∈ 	1�2
) and the processes
Zt

s�Zt are appropriately defined (cf. Section 3.4.4), then assertion (26) becomes
a consequence of the analysis in [15], Section 5. Therefore, an analogue of
Theorem 1 exists in the stable-α setting, α ∈ 	1�2
.

Theorem 5. Under assumptions 	9
, 	10
, 	12
, 	13
, we have Ẑr ⇒ Z
as r→∞.

The difficulties in analyzing Ẑr and Z are related to their lack of Markov
property. Fix some ε > 0 and η > 0. Fix time T > 0, and let ti = i	T/n
�0 ≤
i ≤ n, be the subdivision of �0�T� with mesh size T/n. For n large enough,
we have

P

(
sup
1≤i≤n

sup
u∈�ti−1� ti�

∣∣∣Zti
−Zu

∣∣∣ > ε

)
≤ η�(35)
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by continuity ofZ (cf. [13], page 122). Recall that, for each t, the process (Zt	s
,
0 ≤ s ≤ t) given by (21) is continuous. The processes Zti	ti
−Zti	ti−θ
 = L̃

ti
θ ,

θ ∈ �0�T/n�, 1 ≤ i ≤ n, as defined in (19), are all identically distributed.
The processes L̃ti· are also independent, due to independent increments of
Brownian motion, but this property is not used in the argument. We claim
that, for all large n,

P

(
sup
1≤i≤n

sup
θ∈�0�T/n�

�Zti	ti
 −Zti	ti − θ
� > ε

)
≤ η�(36)

Local time L̃t1
θ is increasing in the variable θ, so it suffices to show that, for

any ε > 0, nP	LT/n > ε
 → 0 as n → ∞. This follows from (20) and the
following easy lemma. The proof is left to the reader.

Lemma 6. For St = supu∈�0� t�Bu, the supremum process of Brownian
motion B with variance 1 and drift c ∈ R, we have

nP	S1/n > ε
 → 0 as n→∞ for all ε > 0�(37)

Proof of Theorem 5. The finite-dimensional distributions of Ẑr are con-
verging to those of Z due to Corollary 4. So it suffices to show the tightness
of Ẑr� r ≥ 1, with respect to the Skorokhod topology on DR�0�∞
. It suffices
to show that any subsequence rn has a further subsequence rnk

so that Ẑrnk

is tight. For a given subsequence rn, find a weakly converging further subse-
quence Frnk→ F. This is possible again by tightness. Recall that F has mean
m and second moment β. To simplify the notation, denote the subsequence
rnk

again by r.

Formally, the idea is to use Ẑr
ti−θ ≈ Ẑti� r	ti − θ
 ≈ Ẑti� r	ti
 = Ẑr

ti
≈ Zti

for small θ, and exploit the monotonicity of Ẑt� r
s and Zt

s in s. Let � r
t be the

filtration generated by X̂r. Let ti = iT/n as above, and t ∈ �ti−1� ti�. Observe
that, for each r,

Ẑ
ti� r
ti−1 ≤ Ẑ

ti� r
t ≤ Ẑr

t ≤ Ẑr
ti−1 + Ẑ

r� i
t−ti−1�(38)

where 	Ẑr� i
u � u ∈ �0�T/n�
 has the same law as 	Ẑr

u� u ∈ �0�T/n�
, and is
independent of � r

ti−1 . The first inequality in (38) is the monotonicity of Z
t�r
s in

s; the second inequality trivially follows from the interpretation of Ẑti� r
t as the

(rescaled) number of individuals in queue at time rt whose service will not
have been completed by time rti. The last inequality in (38) is a special case of
[15], Lemma 4.5, though it can be argued using again queueing interpretation:
Ẑ

r� i
t−ti−1 is the (rescaled) number of customers who arrived to the queue in the

time interval �rti−1� rt� and who did not exit by time rt. In particular,

Ẑr
ti
= Ẑ

ti� r
ti−1 + Ẑ

r� i
ti−ti−1� 1 ≤ i ≤ n� almost surely.(39)
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Proposition 7. For any fixed ε�η > 0, there exist an integer n ≥ 1, and
r1 ≥ 1 so that

sup
r≥r1

P

(
sup
1≤i≤n

∣∣∣∣Ẑr
ti
− Ẑr

ti−1

∣∣∣∣ > 2ε) ≤ 2η(40)

and

sup
r≥r1

P

(
sup
1≤i≤n

sup
s∈�ti−1� ti�

∣∣∣∣Ẑti� r
s − Ẑ

ti� r
ti

∣∣∣∣ > 2ε) ≤ 2η�(41)

sup
r≥r1

P

(
sup
1≤i≤n

sup
u∈�0�T/n�

Ẑr� i
u > 5ε

)
≤ 18η�(42)

By Corollary 4, Lemma 2 and (35), (36), we can find r1 ≥ 1 so that both
(40) and (41) hold. The hard estimate (42) will be shown in the next section.
Estimates (40), (41) imply

sup
r≥r1

P

(
sup
1≤i≤n

∣∣∣∣Ẑr
ti−1 − Ẑ

ti� r
ti−1

∣∣∣∣ > 4ε) ≤ 4η�
so the left-most and the right-most side in (38) “typically differ” by at most
4ε + supu∈�0�T/n� Ẑr� i

u . Combined with (42), this implies that, for any 0 < h <
T/n, we have

sup
r≥r1

P

(
sup
�s−t�<h

∣∣∣∣Ẑr
s − Ẑr

t

∣∣∣∣ > 20ε) ≤ 22η�
The last estimate gives relative compactness of the sequence Zr, for example,
by [13], Corollary III.7.4, completing the proof of Theorem 5.

3.3. Tree estimates. This section proves assertion (42) in Proposition 7.
The proof uses estimates for the joint total size and height distribution of a
sequence of supercritical (near-critical) Galton–Watson trees.
Let � be a Galton–Watson random tree with offspring distributionD, where

D is concentrated on nonnegative integers. By this we mean a tree-valued
random variable constructed from a sequence of i.i.d.-D random variables. The
root of the tree is the zero generation. In the first step, the root gives birth to ξ0
children, where ξ0 ∼d D. If ξ0 = 0, then � consists of the root only. If ξ0 ≥ 1,
then the root has children ς1j�1 ≤ j ≤ ξ0, that form the first generation. Each
vertex ς1j is connected to the root by an edge. The tree is formed recursively. In
the nth step, each vertex in the 	n−1
st generation gives birth according to D,
independently of others and the previous generations. Again an edge connects
each child to its parent. The children of vertices in the 	n − 1
st generation
are the nth generation. Continue until extinction (no births from any vertex
in the same generation) occurs, or forever, if no extinction occurs. For any
vertex ς ∈ � , let gen (ς) denote its generation number. Let �ς denote the tree
spanned by ς and all of its descendents (children, children of children, etc.).
Then �ς =d � is an elementary consequence of the construction.
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The Galton–Watson tree is called strictly supercritical if Eξ0 > 1, critical if
Eξ0 = 1 and strictly subcritical if Eξ0 < 1. Similarly, � is super (sub)-critical
ifEξ0 ≥ 1 	≤ 1
. Let �� � denote the total size (number of vertices) of � , and let
ht	� 
 denote the height (the maximal generation number) of � , respectively.
The case of P	ξ0 = 1
 = 1 does not appear in the setting of this paper, so we
exclude it from consideration. Then, it is well known (e.g., [3]) that subcritical
trees have finite size (therefore height) with probability 1, whereas strictly
supercritical trees have infinite size (height) with nonzero probability. One
readily checks by induction that the number of vertices in the nth generation
of � has expectation 	Eξ0
n.
Recall the branching interpretation for the queue length from Section 1.2.

Each busy cycle of the queue corresponds to an excursion of the load (work-
load) process, and yields a Galton–Watson tree of customers who entered (and
exited) the queue during this busy cycle. There is one-to-one and onto corre-
spondence between the vertices of the tree and the customers of the busy cycle.
A new customer that arrives at time s creates a new vertex ς in the correspond-
ing tree. If the queue was empty immediately before the arrival (Z	s−
 = 0),
then ς becomes the root of the tree. Otherwise, ς becomes a child of the cus-
tomer whose service was interrupted, and gen 	ς
 = Z	s−
 = Z	s
 − 1. The
queue-length process Z is the height process (or depth-first search walk) that
visits trees in chronological order (of busy cycles), and within each tree visits
vertices in the depth-first search (LIFO) order. At each time u, Z	u
 records
the generation number (plus 1) of the vertex corresponding to the customer
currently in service (if any).
It is not hard to calculate the exact offspring distribution Dr corresponding

to the queue of index r. Consider a typical customer. At the moment of arrival,
this customer requests vr =d Fr amount of service time. Its service may be
interrupted several times due to new arrivals, each such arrival producing a
single offspring. Now it is easy to see that, after conditioning on vr, the total
number of offspring is Poisson (λrvr), so that

Dr	i
 = P	ξr = i
 = E

[
exp	−λrvr
	λrvr
i

i!

]
� i = 0�1�2� � � � �(43)

Without loss of generality, we can assume supercriticality, Eξr = λrEvr =
λrmr ≥ 1, for all r ≥ 1. If Eξr < 1, define cr = 1/Eξr = 1/λrmr > 1 and
vr = crvr with distribution F

r
. If Eξr ≥ 1, set Fr = Fr. Then clearly we can

couple the queue-length processes Zr�i
u and Z

r�i

u having service distributions
Fr and F

r
, so that, for each r,

Zr� i
u ≤ Z

r� i

u for all u� 1 ≤ i ≤ n� a.s

The convergence Fr → F implies F
r → F, convergence relations (9), (10),

(12) continue to hold and (13) implies

sup
r

E
[
	vr
21�vr≥K�

]
→ 0 as K→∞�

Henceforth, we assume Eξr ≥ 1 so that Fr = Fr� r ≥ 1.
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Proof of (42). Recall the setting of Proposition 7. For each i, we have
Ẑr� i

u = 	1/√r
Zr� i
ru � u ∈ �0�T/n�, where Zr� i is a copy of the queue length Zr,

and relations (38), (39) are satisfied.
Let � r

i� j, 1 ≤ j ≤ Mr
i , be the Galton–Watson trees of the busy cycles (cor-

responding to Zr� i) started after time 0 and completed before time rT/n. Let
� r
i be the tree of the busy cycle containing the customer present in service at
time rT/n. Denote by � r� †

i the initial portion of the last tree � r
i , traversed

by the queue length Zr� i up to time rT/n. If the queue is empty at time
rT/n, set � r

i = � r� †
i = * to be the empty tree with ht	*
 = 0. Due to the

above reasoning, the maximal queue length supu∈�0� rT/n�Zr� i
ru is dominated by

max1≤j≤Mr
i
ht	� r

i� j
 ∨ ht	� r� †
i 
 + 1, the maximal height of all trees (of busy

cycles) started in �0� rT/n�. So assertion (42) will follow from

sup
r≥r1

P

(
max
1≤i≤n

(
max
1≤j≤Mr

i

ht	� r
i� j


)
∨ ht	� r� †

i 
 > 5ε√r
)
≤ 18η�(44)

It is well known (cf. Athreya and Ney [3], Theorem I.9.1) that

P	ht	� 
 > r
 ∼ 2
σ2r

as r→∞�(45)

where � is a critical Galton–Watson tree with offspring distribution ξ,Eξ = 1
and 0 < var 	ξ
 = σ2 < ∞. This is also the content of Kolchin [28],
Theorem 2.1.2. Aldous ([2], Proposition 24) gives the following estimate for
the joint height and total size distribution of the same tree:

r1/2P	ht	� 
 > εr1/2� �� � < δr
 → σ−1δ−1/2G	εδ−1/2σ
 as r→∞�(46)

where G	x
 ≤ κ1 exp	−x/κ2
, 0 < x < ∞, for some 0 < κ1� κ2 < ∞. Since we
allow the offspring distribution Dr to vary with r, we will need the following
analogous lemma.

Lemma 8. Let � r be a sequence of supercritical Galton–Watson trees with
offspring distribution ξr such that:

(i) ξr →d ξ ∼d D, where Eξ = 1,
(ii) r1/2	1−Eξr
 → c ≤ 0,
(iii) 0 < var 	ξr
 = 	σr
2→ σ2 ∈ 	0�∞
,
(iv) supr E		ξr
21�ξr>K�
 → 0, as K→∞.

Then

lim sup
r

r1/2P	ht	� r
 > εr1/2� �� r� < δr
 ≤ σ−1δ−1/2G	εδ−1/2σ
�(47)

where G	x
 ≤ κ1 exp	−x/κ2
�0 < x <∞, for some 0 < κ1� κ2 <∞.
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Note that Fr → F, together with (43), (13) and (9), (10), (12), imply the
conditions (i)–(iv) of the lemma. The uniform integrability condition (iv) is
natural (cf. [30, 17]).
Assume Lemma 8 for now. Let ε�η > 0 and T be as in Proposition 7, let

K1 be a large number such that e−4cε	1+ η
/K1 < η and recall that λ is the
asymptotic arrival rate. Choose n1 large enough so that

K1
κ1	λ+ ε


σ
√	λ+ ε
Tn3/2 exp

(
− εσn1/2

κ2
√	λ+ ε
T

)
≤ η for all n ≥ n1�(48)

for κ1� κ2 in the lemma, and also large enough so that (35), (36) are satisfied
for all n ≥ n1. Fix some n ≥ n1. Assume r1 ≥ 1 to be large enough so that both
(40) and (41) hold. We use estimate (47) to bound the probabilities of events{

max
1≤i≤n

max
1≤j≤Mr

i

ht	� r
i� j
 > ε

√
r

}
and

{
max
1≤i≤n

ht	� r� †
i 
 > ε

√
r

}
�

Recall Mr
i is the number of trees corresponding to the completed busy cycles

of Zr� i, and let Nr
i = �� r

i�1� + �� r
i�2� + · · · + �� r

i�Mr
i
� + �� r� †

i � be the total number
of vertices visited before time rT/n.

Lemma 9. For any fixed n ≥ n1, there exists r3 ≥ 1 such that

sup
r≥r3

P

(
max
1≤i≤n

Nr
i ≥ 	λ+ ε
T

n
r

)
≤ η�(49)

sup
r≥r3

P

(
max
1≤i≤n

Mr
i ≥

√
r	λ+ ε


)
≤ 3η�(50)

Proof. The first assertion is easy since Nr
i =d Poisson (rate rλrT/n),

1 ≤ i ≤ n. For the second one, consider processes Xr� i = 	Xr
ti−1+s − Xr

ti−1 ,
s ∈ �0� rT/n�
, and let Ir� is = inf 0≤u≤s Xr� i

u , and τr� ix �= inf�s ≥ 0� Ir� is ≤ −x�.
Note that Ir� is = −��u ∈ �0� s�� Zr� i

u = 0��. Recall how (37) implied (41). Since
the asymptotic load X is a Brownian motion, the same assertion (37) implies
that, for any n ≥ n1, we can find r3 large enough so that

sup
r≥r3

P

(
min
1≤i≤n

τ
r� i√
r
< rT/n

)
≤ sup

r≥r3
nP

(
− I

r�1
rT/n >

√
r
)
≤ 2η�

On the complement of �min1≤i≤n τr� i√r < rT/n�, we haveMr
i ≤M

r�i√
r
, 1 ≤ i ≤ n,

where Mr�i√
r
equals the number of busy cycles started, and completed, during

�0� τr� i√
r
�. By (5),Mr�i√

r
=d M√

r =d Poisson (rate
√
rλ), and the second assertion

of the lemma follows just like the first one. ✷
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Now for any fixed n ≥ n1 and any r ≥ max�r1� r3�, we get

P

(
max
1≤i≤n

max
1≤j≤Mr

i

ht	� r
i� j
 > ε

√
r

)

≤ 4η+
n∑
i=1

P

(
max

1≤j≤Mr
i≤
√
r	λ+ε


ht	� r
i� j
 > ε

√
r�max

j
�� r

i� j�

< 	λ+ ε
T
n
r� andMr

i ≤
√
r	λ+ ε


)
≤ 4η+ n

√
r	λ+ ε
P

(
ht	� r
 > ε

√
r� �� r� < 	λ+ ε
T

n
r

)
�

and by (47) there exists r4 (possibly larger than r3) so that, for each r ≥ r4,

P

(
max
1≤i≤n

max
1≤j≤Mr

i

ht	� r
i�j
 > ε

√
r

)

≤ 5η+ κ1	λ+ ε

σ
√	λ+ ε
Tn3/2 exp

(
− εσn1/2

κ2
√	λ+ ε
T

)
≤ 6η 	by (48)
�

Lemma 10. For n ≥ n1 fixed as above, there exists some r5 ≥ r4 such that

sup
r≥r5

P

(
max
1≤i≤n

ht	� r� †
i 
 > 5ε√r

)
≤ 12η�

Proof. The following is an extension of the idea in the argument for (50).
Let Xr� i

· , I
r� i
· and τr� i· be as in Lemma 9. Let (Yr� i

s , s ≥ 0), 1 ≤ i ≤ n, be
mutually independent, distributed as the load process 	Xr

s� s ≥ 0
 and inde-
pendent of Xr. One can construct a new copy XI�r =d Xr from Xr� i

· and Yr�i
·

as described below. The point of the construction is that (typically) each tree
� r
i� j, 1 ≤ j ≤ Mr

i �1 ≤ i ≤ n, corresponding to a busy cycle of Zr� i (that is,
Xr� i) reappears as a tree corresponding to a busy cycle of XI�r. More impor-
tantly, each tree � r� †

i , 1 ≤ i ≤ n, reappears as the initial portion of a tree
of some busy cycle of XI�r. The idea is simple, but the notation could get
messy, so sometimes we omit “r” in the superscript. Define stopping times
τi = τ

r� i√
r
∧ 	rT/n
, 1 ≤ i ≤ n. Then %XI�r� i, defined by

%XI�r� i
s =Xr� i

s 1�s≤τi� + 	Xr� i
τi
+Yr� i

s−τi
1�s>τi��
equalsXr in distribution, due to independence ofXr� i andYr� i, and the strong
Markov property of Xr. Note that, moreover, %XI�r� i, 1 ≤ i ≤ n, are mutually
independent as processes.
Let τ̄i√

r
= inf�s ≥ 0� infu≤s %XI�r� i

u < −√r�. Then the processes

	 %XI�r� i
s � s ∈ �0� τ̄i√

r
�
� 1 ≤ i ≤ n�(51)
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are independent and identically distributed, where 	 %XI�r�1
s � s ∈ �0� τ̄1√

r
�
 =d

	Xr
s� s ∈ �0� τr√r�
, and τr√

r
= inf�u ≤ s� Xr

u < −√r�. Now define τI0 = 0,

τI
i
√
r
�=∑j≤i τ̄

j√
r
, and let

XI�r
s =

n−1∑
i=1

%XI�r� i(
s−τI	i−1
√r

)
∧τ̄i√

r

1{
τI	i−1
√r≤s

} + %XI�r�n
s−τI	n−1
√r1

{
s≥τI	n−1
√r

}�
So the path of XI�r is the concatenation of paths (51) for 1 ≤ i ≤ n − 1 and
the whole path 	 %XI�r�n

s � s ≥ 0
.
Again by Markov property,XI�r equalsXr in distribution. Note that τI

i
√
r
=

inf�s ≥ 0� infu≤s XI� r
u < −i√r�, which agrees with the usual notation. More-

over, on the event �min1≤i≤n τr� i√r ≥ rT/n�, we have τi = rT/n and τ̄i√
r
≥

rT/n. So on the same event, for each i, the path 	Xr� i
s � s ∈ �0� rT/n�
 is

the initial part of the path 	 %XI�r� i
s � s ∈ �0� τ̄i√

r
�
, and therefore, 	Xr� i

s � s ∈
�0� rT/n�
 = 	XI�r

τI	i−1
√r+s − X
I�r
τI	i−1
√r

� s ∈ �0� rT/n�
 almost surely. Hence, on
the event �min1≤i≤n τr�i√r ≥ rT/n�, the trees � r

i� j�1 ≤ j ≤ Mr
i (resp. �

r� †
i ),

1 ≤ i ≤ n, all reappear as trees (resp. initial parts of trees) corresponding to
busy cycles of 	XI�r

s � s ∈ �0� τI
n
√
r
�
.

Identity (39) together with bound (41) implies

sup
r≥r1

P

(
max
1≤i≤n

Ẑ
r� i
ti−ti−1 > 4ε

)
≤ 4η�

On the event �max1≤i≤n Ẑr� i
ti−ti−1 ≤ 4ε�, the generation number of the last vertex

visited by the queue-length process Zr� i on the interval �0� rT/n� is smaller
than or equal to 4ε

√
r, for all i ≤ n simultaneously.

Now consider the intersection Ar of “good” events

Ar =
{
min
1≤i≤n

τ
r� i√
r
> rT/n

}
∩
{
max
1≤i≤n

Ẑ
r� i
ti−ti−1 ≤ 4ε

}
∩
{
max
1≤i≤n

Nr
i ≤ 	λ+ ε
rT/n

}
∩
{
max
1≤i≤n

Mr
i ≤ 	λ+ ε
√r

}
�

By previous considerations and Lemma 9, the probability of the complement of
Ar is bounded from above by 8η for all r larger than max�r1� r3�. The condition
�max1≤i≤nMr

i ≤ 	λ+ ε
√r� will be used in later calculations, cf. (52).
Let � I� r

1 � � � � �� I� r
MI�r be the sequence of Galton–Watson trees generated by

	XI�r
s � s ∈ �0� τI

n
√
r
�
. Recall that � I� r

ς is the subtree spanned by vertex ς and
all of its descendants. Due to the above construction of XI�r,

P

({
max
1≤i≤n

ht	� r� †
i 
 > 5ε√r

}
∩Ar

)
≤ P

(
A

I�r
0

)
�
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where AI�r
0 = �ht	� I� r

ς 
 > ε
√
r− 1 and �� I� r

ς � < r	λ+ ε
T/n for some vertex
ςI� r ∈ � I� r

1 ∪ · · · ∪ � I� r
MI�r � gen 	ςI� r
 = �4ε√r� + 1�. The last statement is true

by the “triangle inequality.” On the event �max1≤i≤n ht	� r� †
i 
 > 5ε

√
r� ∩Ar,

the last vertex visited in each of the trees � r� †
i belongs to one of the first

�4ε√r� generations, and the total size of � r�†
i is smaller than or equal to

	λ+ε
rT/n, 1 ≤ i ≤ n. However, there is at least one vertex in � r� †
j , for some

1 ≤ j ≤ n, with generation number larger than �5ε√r�. The ancestor ςr of
this vertex in generation �4ε√r� + 1 must belong to the same tree � r� †

j , due
to the depth-first search order. Similarly, due to the depth-first search order,
the whole tree � I� r

ςr is contained in � r� †
j for this j. In the construction ofXI�r,

vertex ςr and its tree of descendants � I� r
ςr become ςI� r and � I� r

ςI� r , where gen
(ςI� r) = �4ε√r� + 1, so that AI�r

0 occurs.
Since MI�r =d Poisson (rate λrn

√
r) by (5), we have limr P	MI�r ≥ n	λ +

ε
√r
 = 0, so one may assume r to be large enough so that P	MI�r ≥ n	λ +
ε
√r
 ≤ η. The trees � I� r

1 � � � � �� I� r
MI�r are, conditionally on MI�r, independent

and identically distributed as � r. So, given MI�r < n	λ + ε
√r, the total
expected number of vertices in generation �4ε√r�+1 is bounded from above by

n	λ+ ε
√r	Eξr
4ε
√
r+1 ≤ 4	1+ η
n	λ+ ε
√re−4cε� r→∞�

due to assumption (10). Recall the large number K1 from (48). If we denoted
by MI�r	l
 = #�ς ∈ � I� r

1 ∪ · · · ∪ � I� r
MI�r � gen 	ς
 = l� the total size of generation

l, Markov inequality implies

P
(
MI�r	�4ε√r� + 1
 > K1n	λ+ ε
√r�MI�r ≤ n	λ+ ε
√r

)
≤ 	1+ η
e−4εc

K1
≤ η�

(52)

for all large r. Each vertex ς in generation �4ε√r� + 1 has equal probability
P	ht	�ς

I� r
 > ε
√
r, ��ς

I� r� < r	λ + ε
T/n
 = P	ht	� r
 > ε
√
r, �� r� < r	λ +

ε
T/n
 of contributing to event AI�r
0 . The above estimates put together with

(47), (48) imply the existence of some large r5 ≥ r4 such that

sup
r≥r5

P	AI�r
0 
 ≤ 2η+ sup

r≥r5
K1n	λ+ ε
√rP	ht	� r
 > ε

√
r�

�� r� < r	λ+ ε
T/n


≤ 3η+K1
κ1	λ+ ε


σ
√	λ+ ε
Tn3/2 exp

(
− εσn1/2

κ2
√	λ+ ε
T

)
≤ 4η�

Therefore,

sup
r≥r5

P
(
max
1≤i≤n

ht	� r� †
i 
 > 5ε√r

)
≤ sup

r≥r5
P	 not Ar
 +P	AI�r

0 
 ≤ 12η�

Now take r5 to be r1 in the statement of Proposition 7. ✷



A LIFO QUEUE IN HEAVY TRAFFIC 325

It remains to prove Lemma 8. The proof of (47) consists of adapting the
corresponding arguments in [28], and then applying the reasoning of [2]. We
sketch the proof, recalling the arguments of Kolchin along the way.
Let ξi, i ≥ 1, be i.i.d. integer-valued random variables with span 1 (that is,
P	ξ1 = 1
 > 0), and with meanEξ1 = a and var 	ξ1
 = σ2. Then the (standard)
local central limit theorem (e.g., [11], Theorem 2.5.2 or [28], Theorem 1.4.2)
gives

σ
√
NP	ξ1 + · · · + ξN =m
 − 1√

2π
exp

{
−	m− aN
2

2σ2N

}
→ 0�(53)

uniformly in m, as N→∞. The identity in [28], Lemma 2.1.3, implies

P	�� � =N
 = 1
N

P	ξ1 + · · · + ξN =N− 1
� N ≥ 1�(54)

and evaluating (53), (54) with a = 1 gives ([28], Lemma 2.1.4)

P	�� � =N
 ∼ 1√
2πσ

N−3/2�(55)

It is important to note that the criticality assumption (Eξ = 1) gets used
here only when applying (53), while the identity (54) holds for noncritical ξ’s
as well.
Theorem 2.4.3 of [28] shows the convergence of heights conditioned on total

size, which Aldous [2] recognizes in terms of the maximumW∗ of the standard
(unit length) Brownian excursion as

P

(
ht	� 
 > x

σ
N1/2��� � =N

)
= P	2W∗ > x
	1+ oN	1

�

lim
N

oN	1
 = 0�
(56)

It suffices to show uniform (in r) analogues of (53), (56):

Lemma 11. (i) As N→∞, uniformly in m,

sup
r≥1

(
σr
√
NP	ξr1 + · · · + ξrN =m


− 1√
2π

exp
{
−	m−EξrN
2

2N	σr
2
})

→ 0�

(57)

(ii)

P

(
ht	� r
 > x

σr
N1/2��� r� =N

)
= P	2W∗ > x
	1+ o	r�N

�(58)

where limN→∞ supr≥1 �o	r�N
� = 0.
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Due to (57) and (54), we have

P	�� r� = �ur�
= 1√
2πσ

	ur
−3/2 exp	−c2u/	2σ2

	1+ or	u



≤ 1√
2πσ

	ur
−3/2	1+ or	u

�
(59)

where supu∈�ε/√r�δ� �or	u
� → 0 as r→∞. The rest of the argument for (47) is
identical to the one in [2], Proposition 24 for (46), using (59) and (58) in place
of (55) and (56).

Sketch of the proof of Lemma 11. Assertion (57) is proved in the same
way as (53). Let φr	t
 = E exp	itξr
 be the characteristic function of ξr. One
uses the inversion formula, splits the real-line into the same four regions and
estimates the integrands, this time, uniformly over r. It is important that,
by assumption (i) of Lemma 8, φr → φ uniformly (on R since all φr are 2π
periodic), where φ is the characteristic function of ξ. We omit the details; the
reader can easily check that the argument carries over, step by step.
To prove (58), it suffices to consider only critical trees. Suppose the moment

generating function G	z
 = ∑∞
i=0P	ξ = i
zi, z ∈ �0�1�, of the offspring distri-

bution of � satisfies

G	a
 = aG′	a
 <∞�(60)

for some real a > 0. It is easy to check (originally due to Kolchin) that
the critical Galton–Watson tree �a with offspring distribution P	ξa = i
 =
	ai/G	a

P	ξ = i
 and the original tree � have the same distribution, when
conditioned on their total size. In particular,

P	ht	� 
 > xN1/2��� � =N
 = P	ht	�a
 > xN1/2���a� =N
�
If the tree � is critical, then a = 1. If the tree � is supercritical, that is,
G′	1
 > 1, then the smallest fixed point z0 ∈ �0�1� of G is strictly smaller
than 1. By convexity of G, it must be G′	z0
 < 1, so

G′	1
 > G	1
 and z0G
′	z0
 < G	z0
 = z0�

By continuity and convexity, there exists a unique a ∈ 	z0�1
 so that (60)
holds. Using assumptions (ii) and (iv) of the lemma, it is easy to check that
the sequence of smallest fixed points zr0 of G

r satisfies limr z
r
0→ 1; therefore,

limr a
r = 1. The sequence ξrar of integer random variables inherits all the

properties in assumptions of the lemma. Thus, without loss of generality, we
assume that all trees are critical, Eξr = 1, r ≥ 1.
Due to our assumptions (i)–(iv), again the relevant estimates in [28] can

be made uniform in r. For example, [28], Theorem 2.1.2 implies the analogue
of (45),

P

(
ht	� r
 > N

σr

)
= 1√

2πN
	1+ or�N	1

�(61)
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where limN→∞ supr �or�N	1
� = 0, which is the first step in showing (58).
The arguments in [28], Lemmas 2.4.3–2.4.5, Corollaries 2.4.1 and 2.4.2 and
Theorems 2.4.1–2.4.3 extend in a similar way; we omit the details.

3.4. Discussion.
3.4.1. Initial condition. We first comment on the heavy-traffic limits under

more general initial conditions. It is clear that convergence of initial load on
diffusion scale X̂r	0
 = Xr	0
/√r →d X0, where X0 is a.s. a finite nonneg-
ative random variable, would imply the convergence in distribution of the
load processes X̂r to a shifted Brownian motion started at X0. As before, this
implies the convergence of the workload processes

Ŵr
t ⇒W�(62)

whereWt = 	Xt−inf s≤t	Xs∧0

, t ≥ 0. It is intuitively clear that, provided we
have convergence of rescaled initial pure-atomic measures qr	0
 (with atoms
�1�2� � � � �Zr	0
� and intensities equal to residual service times) to a fixed
finite measure q0 with finite support �0�Z	0
� = �0� limr Ẑ

r	0
� and such that
�1� q0� = X0, then Theorems 1 and 5 should extend accordingly. We need to
introduce some notation in order to identify these limits. As in [15], for any
scalar a ≥ 0 and any measure µ such that Supp	µ
 ⊂ �0�∞�, let the truncation
of µ at level a be the measure µ�a defined by µ�a�0� x� = µ�0� x�∧a. So, if a ≤ 0,
then µ�a is the zero measure. Also if µ� ν are measures such that Supp	µ
 ∪
Supp	ν
 ⊂ �0�∞�, and sup	Supp	µ

 = b < ∞, define µ concatenated with
ν as 	µ ⊕ ν
	�0� x�
 = µ	�0� x ∧ b�
 + ν	�0� 	x − b
+�
. Then it is easy to see
that, at each level r, the RES-measure process qr	t
 = qr	0
�Xr	0
+I∗� rt

⊕q∗� r	t

encodes all the information, where q∗� r	t
 is a copy of the RES-measure process
from Section 1.2 (started at zero measure) and I

∗� r
t = infu∈�0� t�Xr� ∗

u is the
corresponding infimum process. As r→∞, the rescaled q̂r	t
 should converge
in the Skorokhod topology to qt = q0�X0+I∗t ⊕ q∗t , where q∗ is a copy of the
generalized RES-measure process from Theorem 1.
The heavy-traffic limit for the queue length, on the other hand, depends on

the finer properties of the asymptotic initial measure q0. By Theorems 1 and
5 and convergence (25), under certain regularity assumptions, one should get
Ẑr	t
 = sup	Supp	q̂rt 

 ⇒ sup	Supp	q0�X0+I∗t 

 + sup	Supp	q∗t 

. If q0	dx
 =
λβ
2 dx, x ≤ Z	0
, this means

Ẑr
t ⇒ Zt =

2
λβ
	X	0
 + I∗t 
+ +

2
λβ

W∗
t =

2
λβ

Wt�

where W is the limit in (62).
3.4.2. LIFO vs. FIFO. Recall the optimization question from the Introduc-

tion. Assume a sequence of queues approaches heavy traffic (9), (10), (12), (13)
and fix some large r. The two queues have the same workload process (11)
Wr, which is approximated by W, a reflected Brownian motion (variance λβ
and drift −c). Denote by Zr

FI and Zr
LI the queue lengths under the FIFO and
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the LIFO disciplines. For the FIFO queue, we have

Wr	t
 =
Zr
FI	t
∑
i=1

vri + εr	t
�(63)

where (vri , i ≥ 1) are i.i.d. with distribution Fr and εr	t
 is the residual service
time of the customer currently in service. Due to the law of large numbers,
Ẑr
FI ⇒ ZFI = λW in the limit; therefore,

Zr
FI	·
 ≈ λWr	·
�

while for the LIFO queue, (21) and Theorem 5 give Zr
LI	·
 ≈ 2

λβ
Wr	·
, so in

order to minimize the queue length in heavy traffic, the server should use
the LIFO discipline iff λ2β > 2 (equivalently, β > 2m2 or σ2 > 2m) and the
FIFO discipline (alternatively, LIFO non-preemptive) otherwise. Note that in
the special case, where both the arrival and the service times are exponen-
tial (rate λr), we can make the two queue lengths Zr

FI and Zr
LI coincide (as

processes); therefore, their limits coincide, confirming λ = 2
λβ
. If all customers

have constant service time mr, P	v = mr
 = 1, then β = m2 < 2m2 and, of
course, the FIFO discipline is optimal.
3.4.3. Random tree analogy. The argument in Lemma 2 uses an analogue

of (63) for the LIFO case. It is not surprising that the mean residual ser-
vice time depends on both the first and the second moment of the service
time distribution F. Moreover, its exact value is in agreement with the analo-
gous result in Aldous [2] about a “diffusion approximation” to a large Galton–
Watson tree. To simplify the comparison, we assume that, for all large r,
λr = λ = 1 and the service times have distribution Fr = F with mean m = 1
and variance β −m2. Then the busy cycles of the queue correspond to trees
with critical offspring distribution ξr = ξ, Eξ = 1, var 	ξ
 = β. Denote by Xr

the discrete-time depth-first search walk (from [2]) of a Galton–Watson tree
� with offspring distribution ξ, conditioned on �� � = r. Theorem 23 in [2]
states

	r−1/2Xr	�2rt�
� t ∈ �0�1�
 ⇒
(
2√
β
W∗

t � t ∈ �0�1�
)
�

where W∗ is standard Brownian excursion. The LIFO queue-length process
Zr is the depth-first search walk (continuous-time analogue) of an infinite
sequence of critical Galton–Watson trees generated from queueing. Theorem 5
and (21) state

	r−1/2Zr	rt
� t ≥ 0
 ⇒
(
2√
β
W∗	t
� t ≥ 0

)
�

where W∗	t
 is standard (mean 0, variance 1) Brownian motion.
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3.4.4. The heavy tails. Recall the heavy tails setting from the Remark in
Section 2. For X a stable-α process, α ∈ 	1�2
, we can choose ([15],
Proposition 4.3) the analogue of (21) as

Zt
s = lim

ε→0
εα−1#�u ∈ 	0� s��Xu− < Itu� -Xu ≥ ε��

s ∈ �0� t� and Zt = Zt
t�

(64)

where -Xu =Xu −Xu−. Again Zt
s and Zt are continuous processes (cf. [15],

Theorem 4.7). At each level r, define Ẑt� r
s = r1/α−1Zrt� r	rs
 and Ẑr

t = Ẑ
t� r
t .

Then (26) is satisfied (cf. [15], Proposition 5.2) with Zt
s in (64), so Theorem 1

extends in this case.
The finite-dimensional convergence of queue lengths (or heights) is a con-

sequence of a more general result ([15], Proposition 5.2). The “tightness from
below” for the queue length is again a consequence of (38) and (36). For the
“tightness from above,” an analogue of Proposition 7 might be obtained using
tree estimates analogous to those in Lemma 8. As remarked in Section 2, one
can construct a triangular array of loads Xr converging (after scaling) to a
general Lévy process X with Laplace exponent (16), (17). Duquesne and Le
Gall (personal communication) consider this setting, where σ = 0 in (16), and
obtain an analogue of Theorem 5 under suitable assumptions.

4. Directions for further research. Taking the FIFO queueing disci-
pline as a paradigm, we list several natural ways to generalize the result
of this paper. The full name of our queue, feed-forward, single class, single
server M/G/1 LIFO preemptive resume queue, gives a list of assumptions
that might be relaxed. Allowing renewal (non-Markovian) arrivals would be
valuable extensions for applications. We consider the above setting in the
forthcoming paper [29]. It turns out that LIFO preemptive resume service
discipline induces an unconventional heavy-traffic behavior, in that the limit
for the queue length depends on the type of arrivals (and services) in an intri-
cate way.
Introducing feedback, or more customer classes, to the system (where the

classes differ by their interarrival and/or service time distributions) or con-
sidering networks of LIFO queues, complicates the global arrival process and
might result in additional “surprises” in heavy traffic.
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