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Abstract A Large Deviation Principle (LDP) is proved for the family 1
n

∑n
1 f(xn

i ) · Zi

where 1
n

∑n
1 δxn

i
converges weakly to a probability measure R and (Zi)i∈N are Rd -valued

independent and identically distributed random variables having some exponential mo-
ments, i.e.

Eeα|Z| < +∞ for some 0 < α < +∞.

The main improvement of this work is the relaxation of the steepness assumption con-
cerning the cumulant generating function of the variables (Zi)i∈N . In fact, Gärtner-Ellis’
theorem is no longer available in this situation. As an application, we derive a LDP for
the family of empirical measures 1

n

∑n
1 Ziδxn

i
.

These measures are of interest in estimation theory (see Gamboa et al. [7], [12], Csiszar
et al., [6]), gas theory (see Ellis et al. [11], van den Berg et al. [22]), etc. We also de-
rive LDPs for empirical processes in the spirit of Mogul’skii’s theorem. Various examples
illustrate the scope of our results.
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1 Introduction

Let (Zi)i∈N be a sequence of Rd -valued independent and identically distributed (iid) ran-
dom variables satisfying:

Eeα|Z| < +∞ for some α > 0. (1.1)

Let (xn
i , 1 ≤ i ≤ n, n ≥ 1) be a X -valued sequence of elements satisfying:

1
n

n∑
1

δxn
i

weakly−−−−→
n→∞ R.

Here, R is assumed to be a strictly positive probability measure, that is R(U) > 0 whenever
U is a nonempty open subset of X . We prove in this article a Large Deviation Principle
(LDP) for the weighted empirical mean:

〈Ln, f〉 =
1
n

n∑
1




f1(xn
i ) · Zi
...

fm(xn
i ) · Zi




(
4
=

1
n

n∑
1

f(xn
i ) · Zi

)
,

where each fk is a bounded continuous function from X to R
d and · denotes the scalar

product in R
d .

The main improvement of the paper is to remove the steepness assumption on the cumu-
lant generating function of Zi (for a definition of steepness, see [9], def. 2.3.5). Without
this assumption, the Gärtner-Ellis theorem is no longer available. More precisely, one can-
not expect to use Cramér’s exponential change of measure technique to derive the Large
Deviation lower bound. Our approach consists of using an exponential approximation to
(loosely speaking) deduce the stated LDP from the sharp form of Cramér’s theorem (see
Bahadur and Zabell [2] and Section 6.1 in [9]) which holds true under condition (1.1).
Similar LDPs are studied by Ben Arous, Dembo and Guionnet [1] in a context where the
empirical measure 1

n

∑n
1 δxn

i
is random. For related work concerning quadratic forms of

gaussian processes, see Bercu, Gamboa and Lavielle [3], Bercu, Gamboa and Rouault [4],
Gamboa, Rouault and Zani [13], Bryc and Dembo [5], Zani [23] and the references therein.
In the case where the strict positivity of the probability measure R is not satisfied, coun-
terexamples are built in Section 2.3 to show that the LDP can fail to happen.
As an application of the previous LDP, we derive various LDPs in infinite dimensional
settings. We first establish the LDP for the following sequence of empirical measures:

Ln =
1
n

n∑
1

Ziδxn
i
.

The rate function driving the LDP has the following form:

I(µ) =
∫

Λ∗
(dµa

dR

)
dR + Is(µs),

where µ has the Lebesgue decomposition µ = µa + µs with µa � R. This family is
of interest in applications. It has been studied by Dacunha-Castelle and Gamboa in [7]
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and the LDP has been established by Gamboa and Gassiat in [12] to prove convergence
results via the Maximum Entropy on the Mean (MEM) method in estimation theory.
Following them, we shall call Ln the MEM empirical measure. Van den Berg, Dorlas,
Lewis and Pulé in [22] and Ellis, Gough and Pulé in [11] have also studied such LDPs in
more physical settings. We improve the previous works in two directions. We consider
R

d -valued variables (Zi) and we remove the steepness assumption which stands in both
papers. We also show that the assumption of strict positivity of R is necessary. Finally,
we describe a side-effect in Section 3.2 in the case where the support of R (the space X ) is
not compact. The LDP for (Ln)n≥1 is also present in the book of Dembo and Zeitouni ([9],
Section 7.2) where it is used to derive other results among which Mogul’skii’s theorem. It
is established under the following strong moment assumption:

Eeα|Z| < +∞ for all α > 0. (1.2)

It is interesting to note that no additional term involving µs appears under condition
(1.2), i.e. I(µ) =

∫
Λ∗(dµ/dR) dR if µ � R and ∞ otherwise. In the context of Sanov’s

theorem, the relation between exponential moment assumptions and the appearance of a
singular term has been studied by Léonard and the author in [15].
The MEM Large Deviation Principle is then used to derive Mogul’skii type theorems.
Namely LDPs are derived for the random functions:

t 7→ Z̄n(t) =
1
n

[nt]∑
i=1

Zi and t 7→ Z̃n(t) = Z̄n(t) +
(

t − [nt]
n

)
Z[nt]+1.

Following Lynch and Sethuraman [16] (see also de Acosta [8]), the LDPs are de-
rived in bv, the set of bounded variation functions endowed with the weak-∗ topology
σ(bv,C([0, 1],Rd )). Under condition (1.2), the LDPs are well-known (see [9] for an up-
dated account). Under condition (1.1), the LDP has been established by Mogul’skii [17]
and the interesting form of the rate function is due to Lynch and Sethuraman [16]. For
related work concerning processes with independent increments and satisfying condition
(1.1), see de Acosta [8], Léonard [14], Mogul’skii [18].
The paper is organized as follows. The LDP for the weighted empirical mean is stated in
Section 2. The LDP for the MEM empirical measure is established in Section 3. Mogul’skii
type theorems are derived in Section 4. In Section 5 we prove the LDP for the weighted
empirical mean. Finally, Sections 6 and 7 are devoted to additional proofs related to
examples.

2 The LDP for the weighted empirical mean

We introduce here some notations and the main assumptions that hold all over the paper.

2.1 Notations and Assumptions

Let X be a topological vector space endowed with its Borel σ-field B(X ) and let R be
a probability measure on X . We denote by C(X ) (resp. Cd(X )) the set of R-valued

3



(resp. R
d -valued) continuous bounded functions on X , by L1

d(X ) the set of Rd -valued
R-integrable functions on X and by P(X ) the set of probability measures on X . We shall
sometimes drop X and denote the previous sets by C, Cd, L1

d.

Let | · | denote a norm on any finite-dimensional vector space (usually R, Rd or Rm×d).
We denote by ‖ · ‖ the supremum norm on the space of bounded continuous functions
from X with values in R, Rd or Rm×d , i.e. ‖f‖ = supx∈X |f(x)|. As usual, δa is the Dirac
measure at a. We shall make the following assumptions:

Assumption A-1 The family (xn
i )1≤i≤n,n≥1 ⊂ X satisfies

1
n

n∑
1

δxn
i

weakly−−−−→
n→∞ R where R ∈ P(X ). (2.1)

Assumption A-2 R is a probability measure on (X ,B(X )) satisfying

if U is a non-empty open set then R(U) > 0.

Remark 2.1 The combination of Assumptions (A-1) and (A-2) is standard (see [1], [11]
and [12]). In Section 2.3, we derive counterexamples in the case where Assumption (A-2)
is not fulfilled. �

Assumption A-3 Let (Zi)i∈N be a sequence of Rd-valued independent and identically
distributed random variables with distribution PZ . The following exponential moment
condition holds:

Eeα|Z| < +∞ for some α > 0. (2.2)

Here, PZ is the image of P, that is P{Zi ∈ A} = PZ(A), where Zi : (Ω,F ,P) → (R,B(R)).
Furthermore, we denote by Λ the cumulant generating function of Z and by Λ∗ its convex
conjugate:

Λ(λ) = log Eeλ·Z for λ ∈ R
d ,

Λ∗(z) = sup
λ∈Rd

{λ · z − Λ(λ)} for z ∈ R
d ,

where · denotes the scalar product in R
d . As usual, DΛ = {λ ∈ R

d , Λ(λ) < ∞} is the
effective domain of Λ.

Let a be a m× d matrix and let z ∈ R
d . We denote by · the usual matrix product, that is

a · z =




a1 · z
...

am · z


 ,

where aj is the jth row of the matrix a. Hence, · denotes the scalar product λ · z or the
matrix product a · z, depending on the context. Let f : X → R

m×d be a (matrix-valued)
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bounded continuous function, then

f(x) · z =




f1(x) · z
...

fm(x) · z


 ,

where each fj ∈ Cd(X ) is the jth row of the matrix f . Let u : X → R
d be a measurable

function, we denote by

∫
X

f(x) · u(x)R(dx) =



∫
X f1(x) · u(x)R(dx)

...∫
X fm(x) · u(x)R(dx)


 .

We now introduce the weighted empirical mean and study it in the sequel.

〈Ln, f〉 4
=

1
n

n∑
i=1

f(xn
i ) · Zi.

We shall follow the convention that x ∈ X , y and θ are elements of Rm and z and λ, of
R

d .

2.2 Statement of the LDP

We state here the main result of the article. Both results of Section 3 (LDP for empirical
measures) and results of Section 4 (LDPs for random functions) rely on it.

Theorem 2.2 Let f : X → R
m×d be a continuous bounded function. Assume that (A-1),

(A-2) and (A-3) hold. Then the family

〈Ln, f〉 =
1
n

n∑
1

f(xn
i ) · Zi

satisfies the large deviation principle in (Rm ,B(Rm)) with the good rate function

If (y) = sup
θ∈Rm

{
θ · y −

∫
X

Λ
[ m∑

j=1

θjfj(x)
]
R(dx)

}
for y ∈ R

m , (2.3)

where fj ∈ Cd(X ) denotes the jth row of the matrix f .

The proof of Theorem 2.2 is postponed to Section 5.

Remark 2.3 Note that the rate function If is expressed as the convex conjugate of∫
X Λ[

∑m
1 θjfj(x)]R(dx) which plays the rôle of the limiting cumulant generating function.

�
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2.3 Counterexamples when Assumption A-2 is not fulfilled

Consider the following empirical probability measures over the space [0, 2]:

Rn =
1
n

n−1∑
i=1

δ i
n

+
δ2

n
.

Then Rn (weakly) converges to `(dx) where ` denotes the Lebesgue measure on [0, 1]. As
a measure on [0, 2], ` does not satisfy (A-2). We build in this section a probability measure
PZ and a sequence of iid PZ -distributed random variables Zi satisfying Assumption (A-3)
such that:
• if f is a continuous function whose values are 0 on [0, 1] and 1 on 2, then the random
variables

1
n

n−1∑
i=1

f

(
i

n

)
Zi +

f(2)
n

Zn =
Zn

n

do not satisfy a LDP.
• if f is a continuous function whose values are 1 on [0, 1] and −1 on 2, then the random
variables

1
n

n−1∑
i=1

f

(
i

n

)
Zi +

f(2)
n

Zn =
1
n

n−1∑
i=1

Zi −
Zn

n

do not satisfy a LDP.

The first counterexample shows that a particle can fail to satisfy a LDP and illustrates
the regularizing effect of the mean: Though Z

n does not satisfy a LDP, 1
n

∑n
1 Zi satisfies

a LDP (Cramér’s theorem). We shall prove in Lemma 5.1 that 1
n

∑N(n)
1 Zi holds as soon

as N(n)/n → ρ > 0.

The second counterexample, whose study is much more involved, shows that even if
1
n

∑n−1
1 Zi satisfies a LDP, the addition of a single contribution Z

n can break the LDP
and illustrates the fact that “without all the exponential moments, a single particle can
modify a LDP”.

These remarks give us a better understanding of Assumption (A-2) (strict positivity of R).
In fact, assume that Z

n does not satisfy a LDP and consider 1
nf(xi)Zi. Assumption (A-2)

ensures that there cannot be, around any point x0 ∈ X , a single particle which would
break the LDP. In fact, there are enough points around x0 to ensure the regularizing effect
of the mean. Let us explain the phenomenon. Let V be a neighborhood of x0 on which f
is almost constant (recall that f is continuous): f ≈ a. Then,

1
n

n∑
1

f(xi)Zi =
1
n

∑
xi∈V

f(xi)Zi +
1
n

∑
xi /∈V

f(xi)Zi

≈ a

n

∑
xi∈V

Zi + · · · .
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Let us compute the number of xi’s which belong to V :

NV (n) = ]{xi ∈ V } =
n∑
1

1V (xi) and
NV (n)

n
→ R(V ) > 0,

where the last limit follows from (A-2) as soon as R(∂V ) = 0. This ensures that around
x0, 1

n

∑
xi∈V Zi satisfies a LDP (recall Lemma 5.1, previously mentionned). Thus, the

phenomenon encountered with the second counterexample cannot hold. We shall first
study the case of the “single particle” Z

n .

2.3.1 Example of a particle which does not satisfy a LDP

Consider the random variable Z with distribution

PZ(an) = P{Z = an} = C
e−an

1 + a3
n

for n ≥ 0,

where an = 16n and C is a normalizing constant. This probability measure has two
interesting features: It is “lacunary” and the rate function Λ∗(z) is linear for z large
enough (see Proposition 6.1 and its proof). We first show that:

lim inf
n→∞

1
n

log P
{

Z

n
∈]1, 2[

}
= −∞. (2.4)

In fact, consider the subsequence φ(n) = 2an then

P{Z/φ(n) ∈]1, 2[} = P{φ(n) < Z < 2φ(n)} = 0,

as φ(n) = 2an > an and 2φ(n) = 4an < an+1 = 16an. Therefore, (2.4) is proved. We
show now that

lim sup
n→∞

1
n

log P
{

Z

n
∈ [1 + η, 2 − η]

}
≥ −8

7
. (2.5)

Consider the subsequence φ(n) = 14an−1 then

P

{
Z

φ(n)
∈ [1 + η, 2 − η]

}
= P{Z = an} = c

e−an

1 + a3
n

.

Therefore limn 1/φ(n) log P{Z/φ(n) ∈ [1 + η, 2− η]} = −8/7 and (2.5) is proved. Assume
now that Z

n satisfies a LDP with rate function J , then:

−8/7 ≤ lim sup
n

1
n

log P{Z/n ∈ [1 + η, 2 − η]} ≤ − inf
u∈[1+η,2−η]

J(u).

Moreover,

− inf
u∈]1,2[

J(u) ≤ lim inf
n

1
n

log P{Z/n ∈]1, 2[} ≤ −∞.

Necessarily, one should have infu∈]1,2[ J(u) = +∞ > 8/7 ≥ infu∈[1+η,2−η] J(u), which is
impossible. Hence Z

n does not satisfy a LDP.

7



2.3.2 The second counterexample

Let Zi be iid and PZ -distributed (as defined previously). We show here that 1/n
∑n−1

1 Zi−
Zn/n does not satisfy a LDP. The counterexample is based on the following idea: Consider
the event {Ẑn−Zn/n ∈ [z−2 ε, z+2 ε]} where z is negative and where Ẑn = 1/n

∑n−1
1 Zi.

As Ẑn is always positive, the only way the previous event is realized is by Zn/n being
large. As the “particle” Zn/n does not satisfy a LDP, the same should hold for Ẑn−Zn/n.

Proposition 2.4 The random variables (1/n
∑n−1

i=1 Zi − Zn/n) do not satisfy a LDP.

The proof of this proposition, technically involved, is postponed to Section 6.

3 The LDP for MEM empirical measures

We establish here the LDP for empirical measures.

3.1 The LDP

In Theorem 3.1, we state a LDP for empirical measures. We first introduce a few notations.
Denote by C∗

d(X ) the topological dual of Cd(X ). We endow it with the weak-∗ topology
E = σ(C∗

d , Cd) and with the associated Borel σ-field B(C∗
d). If ξ ∈ C∗

d(X ) and f ∈ Cd(X ),
we shall denote by 〈ξ, f〉 the duality bracket.

Assumption A-4 X is a compact Hausdorff space.

In the case where X is compact, the continuous linear forms over Cd(X ) are vector mea-
sures. We denote by Md(X ) the set of vector measures with value in Rd , that is µ ∈ Md(X )
iff µ = (µ1, . . . , µd) where each µi ∈ M(X ). Let f ∈ Cd(X ) and µ ∈ Md(X ). We denote
by ∫

X
f(x) · µ( dx)

4
=

d∑
l=1

∫
X

fl(x)µl( dx). (3.1)

Let f : X → R
m×d be a (matrix valued) bounded continuous function and let fi ∈ Cd(X )

be the jth row of the matrix f . We denote by

∫
f · dµ

4
=



∫
X f1(x) · µ(dx)

...∫
X fm(x) · µ(dx)


 . (3.2)

We shall endow Md(X ) with the weak-∗ topology Σ = σ(Md, Cd) which makes every
linear form Γf : µ 7→

∫
f · dµ continuous and with the associated Borel σ-field B(Md).

Let µ ∈ Md(X ). We denote by µa its absolutely continuous part with respect to R and
by µs its singular part.

8



Theorem 3.1 Assume that (A-1), (A-2) and (A-3) hold. Then the family

Ln =
1
n

n∑
1

Ziδxn
i

satisfies a large deviation principle in (C∗
d(X ), E ,B(C∗

d )) with the good rate function

I(ξ) = sup
f∈Cd(X )

{〈ξ, f〉 −
∫
X

Λ[f(x)]R(dx)}.

Assume moreover that (A-4) holds. Then the LDP holds in (Md(X ),Σ,B(Md)) with the
good rate function

I(µ) = sup
f∈Cd(X )

{
∫
X

f(x) · µ(dx) −
∫
X

Λ[f(x)]R(dx)}

=
∫
X

Λ∗
[dµa

dR
(x)
]
R(dx) +

∫
X

ρ
[dµs

dθ
(x)
]
θ(dx),

(3.3)

where ρ(z) = sup{λ · z, λ ∈ DΛ} is the recession function of Λ∗ and θ is any real-valued
nonnegative measure with respect to which µs is absolutely continuous.

Remark 3.2 [Rôle of θ] If the Zi’s are R-valued, one can choose θ = |µs| = µ+
s + µ−

s

(where µs = µ+
s − µ−

s by the Hahn-Jordan decomposition) and the rate function is given
by:

I(µ) =
∫

Λ∗
[dµa

dR

]
dR + ρ(1)µ+

s (X ) + ρ(−1)µ−
s (X ).

In the Rd -case, one can choose θ =
∑d

1 |µk
s | where µs = (µ1

s, . . . , µ
d
s). �

Remark 3.3 [Compactness of X ] Without the compactness assumption, the continuous
linear functionals on Cd(X ) are no longer measures. They are regular bounded additive
set functions [10]. Moreover, Assumption (A-4) is central to identify the rate function
(see (3.3)) via an identity due to Rockafellar [21]. �

Remark 3.4 In the case where Eeα|Z| < ∞ for every α > 0, the recession function is
ρ(z) = sup{λ · z, λ ∈ R

d} = +∞ everywhere except in zero where ρ(0) = 0. Hence I(µ)
is finite only if µ is absolutely continuous with respect to R and the rate function is:

I(µ) =
∫
X

Λ∗
[ dµ

dR
(x)
]
R(dx) if µ � R, +∞ otherwise.

This is in accordance with Theorem 7.2.3 in [9] where no extra term involving µs appears.
�
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Proof • The LDP. Denote by C ′
d(X ) (resp. C ′(X )) the algebraic dual of Cd(X ) (resp.

C(X )). Denote by 〈 , 〉 the duality bracket between these spaces and consider the mapping

pf1,...,fm : C ′
d(X ) → R

m , ξ 7→




〈ξ, f1〉
...

〈ξ, fm〉


 ,

where fi ∈ Cd(X ). Then pf1,...,fm(Ln) = 〈Ln, f〉 satisfies a LDP by Theorem 2.2. By
Dawson-Gärtner’s theorem, Ln satisfies a LDP in C ′

d(X ) endowed with the weak-∗ topol-
ogy with the good rate function

I(ξ) = sup
m≥1

sup
f1,...,fm∈Cd(X )

sup
θ∈Rm

{
m∑
1

θi〈ξ, fi〉 −
∫
X

Λ[
m∑
1

θifi(x)]R(dx)}

= sup
f∈Cd(X )

{〈ξ, f〉 −
∫
X

Λ[f(x)]R(dx)} for ξ ∈ C ′
d(X ).

• Restriction of the LDP. Let us show that I(ξ) < +∞ implies that ξ is a continuous
linear form (i.e. ξ ∈ C∗

d(X )). Assume that I(ξ) < +∞. Then for all f ∈ Cd(X ), f 6= 0

〈ξ, f

a‖f‖〉 ≤ I(ξ) +
∫

Λ
( f

a‖f‖
)

dR ≤ I(ξ) + Λ|Z|
(1

a

)
, (3.4)

where Λ|Z| denotes the cumulant generating function of |Z|. For a large enough Λ|Z|
(

1
a

)
is finite by (A-3) and 〈ξ, f〉 ≤ K‖f‖. Considering −f , we get |〈ξ, f〉| ≤ K‖f‖. Thus ξ is
a continuous linear form and the LDP holds in the stated space by Lemma 4.1.5 in [9].
If moreover Assumption (A-4) holds, Riesz’s representation theorem implies that ξ can
be represented as a Rd -valued measure over X , i.e. ξ ∈ Md(X ). We shall denote it by µ.
We can now apply Lemma 4.1.5 in [9] to obtain the LDP in (Md(X ),Σ,B(Md)).
• Representation of the rate function. Under (A-2) and (A-4), Theorem 5 in [21] yields

I(µ) =
∫
X

Λ∗
[dµa

dR
(x)
]
R(dx) +

∫
X

ρ
[dµs

dθ

]
dθ,

where ρ is the recession function of Λ∗ and θ is any real-valued nonnegative measure with
respect to which µs is absolutely continuous. As Λ is the convex conjugate of Λ∗, ρ is the
support function of Λ ([19], theorem 13.3), that is:

ρ(z) = sup{λ · z, λ ∈ DΛ}.

Hence Theorem 3.1 is proved. �

3.2 Side-effects in the noncompact case: A fact and a heuristic

Assume that R is a probability measure on R
+ satisfying (A-2) and that there exists

a sequence (xn
i ) satisfying (A-1). Let (Zi) be iid PZ -distributed R-valued nonnegative

random variables where PZ( dz) = 1[0,∞)(z)e−z dz. In this case (A-3) is satisfied and Ln

satisfies a LDP in (C∗
d(R+ ), E ,B(C∗

d )) by Theorem 3.1.
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The fact

Consider µn = aR + δn then I(µn) ≤ 1 + Λ∗(a). In fact,

I(µn) = sup
f∈C(R+)

{∫
a f dR + f(n)−

∫
Λ(f) dR

}

= sup
f∈C(R+), f≤1

{∫
a f dR + f(n) −

∫
Λ(f) dR

}
,

where the last equality follows from the fact that
∫

Λ(f) dR = +∞ if f > 1 (one can
check that Λ(λ) = +∞ if λ > 1). Finally if f ≤ 1 then:∫

a f dR + f(n) −
∫

Λ(f) dR ≤
∫

a f dR − Λ(
∫

f dR) + 1

≤ Λ∗(a) + 1.

Thus I(µn) ≤ Λ∗(a) + 1. Therefore µn ∈ {I ≤ Λ∗(a) + 1} which is a compact set. Hence
µn admits cluster points (as limits of converging subnets since C∗

d(R+) is not metrizable)
which obviously are not measures.

The heuristic

A heuristical interpretation of the previous remark is the following: In a large deviation
regime, Ln can behave asymptotically as aR + δn. This legitimates the appearance of
linear forms which are no longer measures in the non-compact case. To see this, first note
that the “particle” Z

n satisfies a LDP with good rate function

δ∗(z) =
{

z if z ≥ 0
+∞ else

.

Therefore the contribution of one particle is of importance in the LD phenomenon. Since
limn 1/n

∑
δxn

i
= R which is spread over R+ , there exists a subsequence of (xn

i ), say xn,
satisfying limn xn = +∞. Consider now

Ln =
1
n

n−1∑
i=1

Zi δxn
i

+
Zn

n
δxn .

A large deviation behaviour can occur with Zn
n being large, the rest of the empirical

measure being standard. This heuristic yields Ln ≈ m R + δxn where m = EZ.

3.3 Example: Lack of strict convexity for the rate function I

In this example, we shall consider the following setup: X = [0, 1], R( dx) = `(dx)
where `(dx) stands for the Lebesgue measure on [0, 1], (xn

i ) = (i/n) and PZ( dz) =
C.1[0,∞)(z) e−z

1+z3 dz. Thus (Zi) are nonnegative real valued random variables. Let

11



z∗ = Λ′(1) and m = EZ. Standard considerations yield that Λ is not steep and Λ∗

is linear for z > z∗:
Λ∗(z) = z − z∗ + Λ∗(z∗) for z > z∗. (3.5)

In this context, the recession function is ρ(z) = z and it can easily be shown that the
rate function I(µ) of the MEM large deviation principle is finite only if µ is a positive
measure. Therefore, I has the form:

I(µ) =
∫

[0,1]
Λ∗
[dµa

d`
(x)
]
`(dx) + µs[0, 1].

if µ is a positive measure and I(µ) = +∞ otherwise.

3.3.1 The value of the rate function I for a special measure

Let κ be the Cantor function on [0, 1], that is κ is continuous, non-decreasing from [0, 1]
to [0, 1] and κ’s derivative is `-a.e. null. In particular, κ is the repartition function of a
probability measure µκ singular with respect to ` and

I(` + µκ) = Λ∗(1) + µκ[0, 1] = Λ∗(1) + 1.

3.3.2 Existence of several minimizers under a convex constraint

Consider the convex constraint C = {µ ∈ M([0, 1]), 〈µ, 1〉 = E} and denote by M the set
of minimizers of the rate function I under C. Then the following holds:

Proposition 3.5 Let E be a real number:

1. if E ∈ [m, z∗), then there exists a unique minimizer of I under the constraint C.
This minimizer µ is defined by dµ

d` (x) = E and I(µ) = Λ∗(E).

2. if E ≥ z∗, then every positive measure satisfying µ = µa + µs where g(x) = dµa

d` (x)
satisfies g(x) ≥ z∗ ` − a.e. and 〈µ, 1〉 = E is a minimizer. Moreover, I(µ) =
E − z∗ + Λ∗(z∗).

The proof of Proposition 3.5 is postponed to Section 7.

Remark 3.6 In view of part 2 of the previous proposition, all the following measures
belong to M in the case where E > z∗:

α `(dx) + β δu(dx) + γ µκ(dx),

where α + β + γ = E, α ≥ z∗ and u ∈ [0, 1]. In particular, there are infinitely many
minimizers. �

Remark 3.7 As a by-product of the second part of the proposition, the rate function
I fails to be stricly convex on its domain DI = {µ, I(µ) < ∞}. A similar fact has been
noticed in the context of Sanov’s theorem in [15]. �
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4 Mogul’skii type results

In this section, we derive functional LDPs for the random functions

t 7→ Z̄n(t) =
1
n

[nt]∑
i=1

Zi and t 7→ Z̃n(t) = Z̄n(t) +
(

t − [nt]
n

)
Z[nt]+1,

where [x] denotes the integer part of x. These results are essentially corollaries of the MEM
large deviations principle previously derived in the case where X = [0, 1], R(dx) = `(dx)
is the Lebesgue measure on [0, 1] and (xn

i ) =
(

i
n

)
. One can check that, in this situation,

Assumptions (A-1) and (A-2) hold true.
Following Lynch and Sethuraman [16] (see also de Acosta [8] and Zani [23], chapter
4), we introduce some notations. Let bv([0, 1],Rd) (shortened in bv) be the space of
functions of bounded variation on [0, 1]. We identify bv with Md([0, 1]) in the usual
manner: To f ∈ bv there corresponds µf characterized by µf ([0, t]) = f(t). Up to this
identification, Cd([0, 1]) is the topological dual of bv. We endow bv with the weak-∗
topology σ (bv,Cd([0, 1])) (shortened in σw) and with the associated Borel σ-field Bw.
Let f ∈ bv and µf be the associated measure in Md([0, 1]). Consider the Lebesgue
decomposition of µf , µf = µf

a + µf
s where µf

a denotes the absolutely continuous part of
µf with respect to dx and µf

s its singular part. We denote by fa(t) = µf
a([0, t]) and by

fs(t) = µf
s ([0, t]).

4.1 The LDP for the discontinuous line Z̄n(.)

The LDP for the discontinuous line can be found in [9] in the case where Λ(λ) =
ln Eeλ·Zi < ∞ for all λ ∈ R

d . It is established under the supremum norm topology.
In the following theorem, we loosen the assumptions on the exponential moments of Zi.
However, the LDP is stated under a weaker topology.

Theorem 4.1 Assume that (A-3) holds. Then the random functions
(
Z̄n(t)

)
t∈[0,1]

satisfy
the LDP in (bv, σw,Bw) with the good rate function

Φ(f) =
∫

[0,1]
Λ∗(f ′

a(t)) dt +
∫

[0,1]
ρ(f ′

s(t)) dθ(t),

where θ is any real-valued nonnegative measure with respect to which µf
s is absolutely

continuous and f ′
s = dµf

s/dθ.

Remark 4.2 Note that the definition of f ′
s is θ-dependent. See also Remark 3.2. �

Proof consider Π : Md → bv where

Π(µ) =




µ1[0, t]
...

µd[0, t]




t∈[0,1]

.
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and recall that Ln = 1/n
∑n

1 Ziδxi . Then Π is a continuous bijection and Π(Ln) = Z̄n. As
Ln satisfies the LDP with the good rate function (3.3) by Theorem 3.1, the contraction
principle yields the LDP. �

4.2 The LDP for the polygonal line Z̃n(.)

The LDP for the polygonal line Z̃n(.) has been established by Mogul’skii in [17]. Our
results differ from his. In fact, our LDP is derived under a weaker topology than in [17].
However, both the state space and the rate function are explicit here.

Theorem 4.3 Assume that (A-3) holds. Then the random functions
(
Z̃n(t)

)
t∈[0,1]

satisfy

the LDP in (bv, σw,Bw) with good the rate function

Φ(f) =
∫

[0,1]
Λ∗(f ′

a(t)) dt +
∫

[0,1]
ρ(f ′

s(t)) dθ(t),

where θ is any real-valued nonnegative measure with respect to which µf
s is absolutely

continuous and f ′
s = dµf

s/dθ.

Proof Let f ∈ Cd([0, 1]) and consider the empirical measure L̃n characterized by

〈L̃n, f〉 =
n∑

i=1

∫ i/n

(i−1)/n
f(t) dt · Zi,

where the integral
∫ i/n
(i−1)/n f(t) dt is Rd -valued. Then Π(L̃n) = Z̃n (where Π is defined as

in the previous proof) and the theorem is proved as far as we prove the LDP for L̃n with
good rate function given by (3.3). To this end, let f : X → R

m×d be a (matrix valued)
bounded continuous function and let fj ∈ R

d be the jth row of f . we introduce 〈L̃n, f〉
defined by

〈L̃n, f〉 =
n∑
1



∫ i/n
(i−1)/n f1(t) dt · Zi

...∫ i/n
(i−1)/n fm(t) dt · Zi




(
4
=

n∑
1

∫ i/n

(i−1)/n
f(t) dt · Zi

)
.

Let us show that 〈Ln, f〉 and 〈L̃n, f〉 are exponentially equivalent:

|〈L̃n, f〉 − 〈Ln, f〉| ≤
n∑

i=1

|Zi|
∣∣∣∣∣
∫ i/n

(i−1)/n
f(t) dt − f(i/n)

n

∣∣∣∣∣
≤

n∑
i=1

|Zi|
∫ i/n

(i−1)/n
|f(t) − f(i/n)| dt.

Let ε > 0 be fixed. As f is uniformly continuous on [0, 1], |f(t) − f(i/n)| ≤ ε for t ∈
[(i − 1)/n, i/n] and for n large enough. Therefore,

|〈L̃n, f〉 − 〈Ln, f〉| ≤ 1
n

n∑
1

|Zi| ε

14



for n large enough and

lim sup
n

1
n

log P{|〈L̃n, f〉 − 〈Ln, f〉| > δ}

≤ lim sup
n

1
n

log P{1/n
n∑
1

|Zi| ε > δ} ≤ −Λ∗
|Z|

(
δ

ε

)
.

As by (A-3) limε→0 Λ∗
|Z|
(

δ
ε

)
= +∞, 〈L̃n, f〉 and 〈Ln, f〉 are exponentially equivalent. Thus

〈L̃n, f〉 satisfies the LDP in R
m with good rate function given by (2.3) and one can prove

the LDP for L̃n as in the proof of Theorem 3.1. �

5 Proof of Theorem 2.2

There are two parts in the proof of Theorem 2.2. First we establish the LDP in Section
5.1, then we identify the rate function in Section 5.2.

5.1 The Large Deviation Principle

The proof relies on several preliminary results. Via a rescaled version of Cramér’s theorem
(Lemma 5.1), we establish the LDP for finite-range step functions (Lemma 5.2). Let
f(x) =

∑p
1 ak1Ak

(x), then

〈Ln, f〉 D=
1
n

NA1
(n)∑

i=1

a1 · Z(1)
i + · · · + 1

n

NAp(n)∑
i=1

ap · Z(p)
i

satisfies the LDP principle. Finally, we show in Proposition 5.3 that (〈Ln, fp〉)p≥1 is an
exponential approximation of 〈Ln, f〉 where (fp) is a well-chosen sequence of finite-range
step functions. This step is the key point of the proof and yields the LDP for 〈Ln, f〉.

Lemma 5.1 Let (Zi)i≥1 satisfy Assumption (A-3). Assume further that (NA(n))n≥1 is
a sequence of integers satisfying:

lim
n→∞

NA(n)
n

= RA > 0,

then
(

1
N

∑NA(n)
1 Zi

)
satisfies the LDP with good rate function I(z) = RA Λ∗( z

RA
).

Proof We denote by Λ∗(B) = infz∈B Λ∗(z). First, notice that

Z̄A
n =

1
NA(n)

NA(n)∑
i=1

Zi

15



satisfies the LDP with good rate function Λ∗ and with speed NA(n), that is

−Λ∗(
◦
B) ≤ lim inf

n→∞
1

NA(n)
log P

{
Z̄A

n ∈ B
}

and

−Λ∗(B̄) ≥ lim sup
n→∞

1
NA(n)

log P
{
Z̄A

n ∈ B
}

,

where
◦
B (resp. B̄) denotes the interior (resp. the closure) of B. Indeed, this is a direct

application of Cramér’s theorem in R
d (see for example [9], section 6).

Consider on the other hand the degenerate random variables αn with distribution given
by P{αn = NA(n)

n } = 1 and which are independent of (Z̄A
n ). It is straightforward to check

that (αn) satisfies the LDP with speed NA(n) and with good rate function given by

δ(t|RA) =
{

0 if t = RA

+∞ else.
.

Therefore, the couple (αn, Z̄A
n ) satisfies the LDP with speed NA(n), and with good rate

function
δ ⊕ Λ∗(t, z) = δ(t|RA) + Λ∗(z)

(Lynch and Sethuraman [16], lemma 2.8). Hence, the contraction principle yields the LDP
for (αnZ̄A

n ) with speed NA(n) and with good rate function

I(z) = inf{δ ⊕ Λ∗(t, z′), tz′ = z} = Λ∗
(

z

RA

)
.

Thus ( 1
n

∑NA(n)
i=1 Zi) satisfies the LDP with speed n and with good rate function

RAΛ∗(z/RA)

and Lemma 5.1 is proved. �

Lemma 5.2 Assume that (A-1) and (A-3) hold and let (Ak)1≤k≤p be a family of mea-
surable sets of X such that R(Ak) > 0. Assume further that each Ak is a continuity set
for R (i.e. R(∂Ak) = 0 where ∂Ak = Āk − Åk). Consider the step function

f(x) =
p∑

k=1

ak1Ak
(x),

where each ak is a m × d matrix. Then

〈Ln, f〉 =
1
n

n∑
1

f(xn
i ) · Zi

=
1
n

n∑
1

(a1 · Zi) 1A1(x
n
i ) + · · · + 1

n

n∑
1

(ap · Zi) 1Ap(x
n
i )
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satisfies the LDP in (Rm ,B(Rm)) with the good rate function

If (y) = inf
{ p∑

1

R(Ak)Λ∗(uk),
p∑
1

ak · uk R(Ak) = y, uk ∈ R
d
}

= inf
u∈L1

d

{∫
X

Λ∗(u(x))R(dx),
∫
X

f(x) · u(x)R(dx) = y
} (5.1)

for y ∈ R
m .

Proof • Let f(x) =
∑p

1 ak1Ak
(x) and consider the variable Zi. Its coefficient is f(xn

i )
and as xn

i can change with n, so does f(xn
i ). Hence, 〈Ln, f〉 has the following form:

〈Ln, f〉 =
1
n

∑
i∈I1(n)

a1 · Zi + · · · + 1
n

∑
i∈Ip(n)

ap · Zi,

where Ik(n) = {i ≤ n, xn
i ∈ Ak}. Let NAk

(n) = ]{i ≤ n, xn
i ∈ Ak} =

∑n
i=1 1Ak

(xn
i ).

There exist p independent families
(
Z̃

(k)
i , i ≥ 1

)
1≤k≤p

of iid random variables having the

same distribution as Z and such that the following equality holds in distribution:

〈Ln, f〉 D=
1
n

NA1
(n)∑

i=1

a1 · Z̃(1)
i + · · · + 1

n

NAp (n)∑
i=1

ap · Z̃(p)
i

( 4
= 〈L̃n, f〉

)
. (5.2)

• First note that limn→∞
NAk

(n)

n = limn→∞
∑n

i=1 1Ak
(xn

i )

n = R(Ak) as Ak is a continuity set

for R. Therefore we can apply Lemma 5.1 to each sequence 1
n

∑NAk
(n)

i=1 Z̃
(k)
i . Moreover,

the sequence

(ζn)n≥1 =
( 1

n

NA1
(n)∑

i=1

Z̃
(1)
i , . . . ,

1
n

NAp (n)∑
i=1

Z̃
(p)
i

)
n≥1

satisfies the LDP with the good rate function

I(z1, . . . , zp) =
p∑

k=1

R(Ak) Λ∗( zk

R(Ak)
)

for zk ∈ R
d

(Lynch and Sethuraman [16], lemma 2.8). The contraction principle yields the LDP for
〈L̃n, f〉 with the good rate function

If (y) = inf
{ p∑

k=1

R(Ak) Λ∗
( zk

R(Ak)

)
,

p∑
1

ak · zk = y, zk ∈ R
d for 1 ≤ k ≤ p

}

= inf
{ p∑

1

R(Ak) Λ∗(uk),
p∑
1

ak · uk R(Ak) = y, uk ∈ R
d for 1 ≤ k ≤ p

}
.

Finally the LDP holds for 〈Ln, f〉 by (5.2).
• We now establish the following equality:

If (y) = inf
u∈L1

d

{
∫
X

Λ∗(u(x))R(dx),
∫
X

f(x) · u(x)R(dx) = y}. (5.3)
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Suppose that uε is an ε-minimizer, i.e.
∫
X Λ∗(uε(x))R(dx) ≤ If (y) + ε and∫

f · uε dR = y. Consider uk =
∫
Ak

uε(x)R(dx)/R(Ak) then
∑

ak · uk R(Ak) = y and

p∑
1

R(Ak) Λ∗(uk)
(Jensen)

≤
p∑
1

∫
Ak

Λ∗(uε(x))
R(dx)
R(Ak)

R(Ak) =
∫
X

Λ∗(uε(x))R(dx).

Thus If (y) ≤ inf{
∫

Λ∗(u) dR,
∫

f · u dR = y}. The converse inequality is straightforward.
Hence (5.3) is proved and so is Lemma 5.2. �

Lemma 5.3 Assume that (A-1), (A-2) and (A-3) hold and let f : X → R
m×d be a

bounded continuous function. Then there exists a sequence (fp)p≥1 of finite-range step
functions satisfying assumptions of Lemma 5.2 and such that (〈Ln, fp〉)p≥0 is an exponen-
tial approximation of 〈Ln, f〉, i.e.:

lim
p→∞ lim sup

n→∞
1
n

log P(|〈Ln, fp〉 − 〈Ln, f〉| > δ) = −∞ for all δ > 0.

Moreover, (〈Ln, f〉) satisfies the LDP with the good rate function

Υ(y) = sup
ε>0

lim inf
p→∞ inf

y′∈B(y,ε)
Ifp(y′) for y ∈ R

m ,

where B(y, ε) = {y′ ∈ R
m , |y′ − y| < ε}.

Proof [Proof of Lemma 5.3] • Approximation of f by “good” step functions.
As f is continuous and bounded, f(X ) is relatively compact in R

m×d . Hence, by Proposi-
tion A.1 there exist α1, . . . ,αp ∈ R

m×d and ε1, . . . , εp ≤ ε such that

X ⊂ ∪p
k=1f

−1B(αk, εk) where R(∂f−1B(αk, εk)) = 0,

where B(αk, εk) is an open ball centered in αk with radius εk. Since each set f−1B(αk, εk)
is open, Assumption (A-2) yields that it is either empty or with strictly positive R-
measure. Let us keep the ones with strictly positive R-measure. Hence, we get a cover
of X by R-continuity sets with strictly positive R-measure. Thus assumptions of the
Partition lemma (Lemma A.2) are fulfilled and there exists a partition (Cl)1≤l≤q of X
where each Cl is a R-continuity set and has strictly positive R-measure (Lemma A.2). In
particular, for each l, there exists a k such that

Cl ⊂ f−1B(αk, εk). (5.4)

Consider a pairing which associates to each l a single k(l) such that (5.4) is satisfied.
Denote by

f ε =
q∑

l=1

αk(l) 1Cl
.

It is then straightforward to check that ‖f ε − f‖ ≤ ε. Moreover, f ε satisfies the properties
stated in Lemma 5.2. In particular, f ε satisfies the LDP with good rate function If ε . Now
let p = [ε−1] where [·] denotes the integer part and consider the associated step function
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fp to obtain the uniformly convergent sequence.

• The exponentially good approximation and the weak LDP. As previously, consider f :
X → R

m×d and let fp be the approximating step function as built before. Let η be
fixed and consider {|〈Ln, f〉 − 〈Ln, fp〉| > η}. Then there exists pε such that for p ≥ pε,
‖fp − f‖ < ε. Hence

{|〈Ln, f〉 − 〈Ln, fp〉| > η} = {|1/n
n∑
1

(f − fp) · Zi| > η} ⊂ {1/n
n∑
1

ε|Zi| > η}.

Thus

lim sup
n≥1

1
n

log P{|〈Ln, f〉 − 〈Ln, fp〉| > η}

≤ lim sup
n≥1

1
n

log P

{
1/n

n∑
1

ε|Zi| > η

}
≤ −Λ∗

|Z|
(η

ε

)
.

By (A-3), limε→0 Λ∗
|Z|(η/ε) = +∞ which yields

lim sup
p→∞

lim sup
n→∞

1
n

log P{|〈Ln, f〉 − 〈Ln, fp〉| > η} = −∞.

Thus, 〈Ln, fp〉 is an exponentially good approximation of 〈Ln, f〉. As each fp satisfies
assumptions of Lemma 5.2, 〈Ln, fp〉 satisfies the LDP and by Theorem 4.2.16 in [9],
〈Ln, f〉 satisfies a weak LDP with the rate function

Υ(y) = sup
ε>0

lim inf
p→∞ inf

y′∈B(y,ε)
Ifp(y′) for y ∈ R

m ,

where Ifp is given by (5.3).
• Exponential tightness and the full LDP. It remains to show that 〈Ln, f〉 is exponentially
tight. This is straightforward by the following inequality:

lim sup
n→∞

1
n

log P{|〈Ln, f〉| > K}

≤ lim sup
n→∞

1
n

log P{1/n
n∑
1

|Zi| >
K

‖f‖} ≤ −Λ∗
|Z|
( K

‖f‖
)
−−−−→
K→∞

−∞.

Hence the full LDP holds for (〈Ln, f〉)n≥1 and Υ is a good rate function. Proof of Lemma
5.3 is completed. �

5.2 Identification of the rate function

Recall that

If (y) = inf
u∈L1

d

{ ∫
X

Λ∗(u(x))R(dx),
∫

f · u dR = y
}

for y ∈ R
m ,

Υ(y) = sup
ε>0

lim inf
p→∞ inf

y′∈B(y,ε)
Ifp(y′) for y ∈ R

m .
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In the case where fp is a step function satisfying the assumptions of Lemma 5.2, Ifp is
lower semicontinuous as a rate function. This property is not clear for If if f ∈ Cd(X ).
We first clarify the link between If and Υ in Lemma 5.4. This is a key point to obtain
the dual identity

Υ(y) = sup
θ∈Rm

{θ · y −
∫
X

Λ(
m∑

j=1

θjfj(x))R(dx)},

which is proved in Lemma 5.6.

Lemma 5.4 Let f ∈ Cd(X ) and assume that (fp)p≥1 satisfies the properties stated in
Lemma 5.3. Then Υ is the lower semicontinuous regularization of If (denoted in the
sequel by lscr If ).

The following control will be of help.

Proposition 5.5 Let u : X → R be a measurable function satisfying∫
X

Λ∗[u(x)]R(dx) ≤ M + 1,

then
∫
|u| dR ≤ KM < ∞ where KM depends on M but not on u.

Proof [Proof of Proposition 5.5] By (A-3), there exists ε > 0 such that {λ ∈ R
d , |λ| = ε}

is a subset of the interior of DΛ and such that sup|λ|=ε Λ(λ) is finite. Therefore,

Λ∗(z) + sup
|λ|=ε

Λ(λ) ≥ ε|z| for all z ∈ R
d .

The result follows by integrating both parts of the inequality. �

Proof [Proof of Lemma 5.4] Let u(x) satisfy
∫

f ·u dR = z. We shall call it a control. Let
us denote by

Cp(y, ε)
4
=

{
u ∈ L1

d(X ), |
∫

fp · u dR − y| ≤ ε

}
, Cp(y)

4
= Cp(y, 0),

C(y, ε)
4
=

{
u ∈ L1

d(X ), |
∫

f · u dR − y| ≤ ε

}
, C(y)

4
= C(y, 0).

• We first show that
If (y) < ∞ ⇒ Υ(y) ≤ If (y). (5.5)

Let If (y) = M < ∞ then by Proposition 5.5,

If (y) = inf
u∈L1

d

{
∫

Λ∗(u) dR,

∫
f · u dR = y,

∫
|u| dR ≤ KM}.

Let ε > 0 be fixed. There exists p∗ε such that ‖fp − f‖ ≤ ε for p ≥ p∗ε . Therefore for p ≥ p∗ε
and under the condition

∫
|u| dR < KM , one gets:

C(y) ⊂ Cp(y, εKM ).
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Thus for p ≥ p∗ε ,

inf
y′∈B(y,εKM )

{∫
Λ∗(u) dR, u ∈ Cp(y′)

}
≤ If (y).

And for every ε > 0,

lim inf
p→∞ inf

y′∈B(y,εKM )

{∫
Λ∗(u) dR,

∫
fp · u dR = y′

}
≤ If (y).

Finally,

Υ(y) = sup
ε>0

lim inf
p→∞ inf

y′∈B(y,εKM )

{ ∫
Λ∗(u) dR,

∫
fp · u dR = y′

}
≤ If (y),

and (5.5) is proved.
• Let us show now that

Υ(y) < ∞ ⇒ lscr If (y) ≤ Υ(y). (5.6)

Let Υ(y) = M < ∞ then by Proposition 5.5,

Υ(y) = sup
ε>0

lim inf
p→∞ inf

y′∈B(y,ε)
{
∫

Λ∗(u) dR, u ∈ Cp(y′),
∫

|u| dR ≤ KM}.

Let ε > 0 be fixed. There exists p∗ε such that ‖fp − f‖ ≤ ε for p ≥ p∗ε . Therefore for p ≥ p∗ε
and under the condition

∫
|u| dR < KM , one gets:

Cp(y, ε) ⊂ C(y, ε(1 + KM )).

Thus,

inf{
∫

Λ∗(u) dR, u ∈ C(y, ε(1 + KM ))} ≤ inf{
∫

Λ∗(u) dR, u ∈ Cp(y, ε)}.

And for every ε > 0,

inf{
∫

Λ∗(u) dR, u ∈ C(y, ε(1 + KM ))} ≤ lim inf
p

inf{
∫

Λ∗(u) dR, u ∈ Cp(y, ε)}.

Finally,
sup
ε′>0

inf
y′∈B(y,ε′)

If (y′) ≤ Υ(y),

which is the desired property since supε′>0 infy′∈B(y,ε′) If (y′) is the lower semicontinuous
regularization of If .
• Since Υ is lower semicontinuous and lscr If ≤ Υ ≤ If , Lemma 5.4 is proved. �

Lemma 5.6 Let f : X → R
m×d be a bounded continuous function. Recall that

If (y) = inf
u∈L1

d

{
∫

Λ∗(u) dR,

∫
f · u dR = y},
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where y ∈ R
m . Then, the following identity holds:

lscr If (z) = sup
λ∈Rm

{λ · z −
∫

Λ(
m∑
1

λjfj) dR}.

In particular,

Υ(y) = sup
θ∈Rm

{θ · y −
∫

Λ(
m∑
1

θjfj) dR}.

Proof The functionals
∫

Λ∗ dR and
∫

Λ dR are convex conjugates for the duality (L1
d, L

∞
d )

(see Rockafellar [20, 21]), where L∞
d denotes the space of mesurable, essentially bounded

functions with value in R
d :∫

Λ∗(u)dR = sup
g∈L∞

d

{
∫

u · g dR −
∫

Λ(g)dR} for all u ∈ L1
d,∫

Λ(g)dR = sup
u∈L1

d

{
∫

g · u dR −
∫

Λ∗(u)dR} for all g ∈ L∞
d .

Recall that fj (the jth row of the matrix f) belongs to Cd(X ). Therefore, fj can be
identified with an element of L∞

d . Consider the operator A : L1
d → R

m and its adjoint
A∗ : Rm → L∞

d defined by:

Au =
∫

f · u dR , u ∈ L1
d and A∗y =

m∑
i=1

yifi , y ∈ R
m .

With these notations and the fact that
∫

Λ and
∫

Λ∗ are convex conjugate, the first part
of the proof is a direct application of Theorem 3 in [21]:

sup
θ∈Rm

{
θ · y −

∫
Λ(A∗y) dR

}
= lscr inf

u∈L1
d

{∫
Λ∗(u) dR, Au = y

}
.

The second part of the lemma follows from Lemma 5.4. �

5.3 Proof of Theorem 2.2

Proof Lemma 5.3 yields the LDP. Lemmas 5.4 and 5.6 yield the stated formula for the
rate function. Hence Theorem 2.2 is proved. �

6 Proof of the second counterexample

Proposition 2.4 relies on Proposition 6.3 which is stated and proved in Section 6.2. We
shall use the following notation:

Ẑn =
1
n

n−1∑
i=1

Zi.

22



6.1 Some preparation

We study here very carefully the rate function I which would have been associated to
Ẑn−Zn/n if this quantity was to satisfy a LDP. We also establish a usefull inequality. The
proofs of Propositions 6.1 and 6.2, though standard, are given for the reader’s convenience.
We introduce the following notations:

δ(λ|[−1,+∞)) =
{

0 if λ ∈ [−1,∞)
+∞ otherwise

,

δ∗(z) = sup
λ∈R

{λ z − δ(λ|[−1,+∞))} =
{

−z if z ≤ 0
+∞ otherwise

,

I(z) = inf{Λ∗(x) + δ∗(y), x + y = z}.

Note that δ∗ would have been the rate function associated to the particle −Zn/n if this
particle was to satisfy a LDP. Similarily, I(z) would have been the rate function associated
to Ẑn − Zn/n.

Proposition 6.1 Denote by z∗− = Λ′(−1).

• If z ≥ z∗− then I(z) = Λ∗(z).

• If z < z∗− then I(z) = Λ∗(z∗−) + z∗− − z.

In the case where z < z∗−, the infimum inf{Λ∗(x) + δ∗(y), x + y = z} is uniquely attained
for x = z∗− and y = z − z∗−.

Proof First note that:

I(z) = sup
λ∈R

{λ z − Λ(λ) − δ(λ|[−1,+∞))} = sup
λ∈[−1,1]

{λ z − Λ(λ)}.

Let us denote by z∗+ = Λ′(1). One should notice that the special form of the probability
distribution e−an

1+a3
n

implies that Λ is not steep and therefore that z∗+ is finite.
•If z ≥ z∗+ then

I(z) = sup
λ∈R

{λ (z − z∗+) + λ z∗+ − Λ(λ)} (a)
= z − z∗+ + Λ∗(z∗+)

(b)
= Λ∗(z),

where (a) and (b) are standard.
•If z∗− ≤ z ≤ z∗+ then there exists λz ∈ [−1, 1] satisfying z = Λ′(λz) therefore I(z) =
zλz − Λ(λz) = Λ∗(z).
•If z ≤ z∗− then

I(z) = sup
λ∈[−1,1]

{λ (z − z∗−) + λ z∗− − Λ(λ)} = z∗− − z + Λ∗(z∗−).

To prove the last part of the proposition, consider the function Λ∗(x) + δ∗(z − x). By
the second point of the proposition, this function attains its minimum for x = z∗−. Since
Λ∗(x)+ δ∗(z−x) is strictly convex in a neighbourhood of z∗−, this minimum is unique and
the proposition is proved. �
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Proposition 6.2 Let ε > 0 and z < z∗−−2ε be fixed and consider the following quantities:

Iε = inf{Λ∗(x) + δ∗(y), x + y ∈ [z − 2 ε, z + 2 ε], x /∈ (z∗− − ε, z∗− + ε)},
I0 = inf{I(u), u ∈ [z − 2 ε, z + 2 ε]} = Λ∗(z∗−) + z∗− − z − 2 ε.

Then Iε > I0.

Proof First note that I0 and Iε are always finite and that Iε ≥ I0. Assume that Iε = I0.
Let (xn, yn) be a sequence of minimizing elements, that is

xn + yn ∈ [z − 2 ε, z + 2 ε],
xn /∈ (z∗− − ε, z∗− + ε),

limn→∞ [Λ∗(xn) + δ∗(yn)] = Iε = I0.

Using the compactness of the level sets of Λ∗ and δ∗, one can prove that there exists a
minimizer (x∗, y∗) satisfying:

x∗ + y∗ ∈ [z − 2 ε, z + 2 ε],
x∗ /∈ (z∗− − ε, z∗− + ε),

Λ∗(x∗) + δ∗(y∗) = I0 = Λ∗(z∗−) + z∗− − z − 2ε.

The second part of Proposition 6.1 yields that x∗ = z∗−, which contradicts x∗ /∈ (z∗− −
ε, z∗− + ε). Necessarily, Iε > I0 and Proposition 6.2 is proved. �

6.2 Statement and proof of Proposition 6.3

Let ε > 0 and z < z∗− − 2ε be fixed. The following holds.

Proposition 6.3 There exists a finite real number A > 0 such that

lim inf
n→∞

1
n

log P{Ẑn − Zn/n ∈ [z − 2 ε, z + 2 ε]} ≤ −A. (6.1)

Moreover, there exist real numbers α ∈ (0, 1), δ ∈ (0, (1 − α)2 ε) and a real number
B ∈ (0, A) such that:

−B ≤ lim sup
n

1
n

log P
{

Ẑn − Zn/n ∈ [z + α 2 ε − δ, z + α 2 ε + δ]
}

. (6.2)

The proof of Proposition 6.3, though very involved, is interesting because it gives an
insight on how Large Deviation phenomena fail to occur.

Proof [Proof of Proposition 6.3] • We first prove that there exists a subsequence φ(n)
such that

lim sup
n→∞

1
φ(n)

log P{Ẑφ(n) − Zφ(n)/φ(n) ∈ (z − 2ε, z + 2ε)} ≤ −Iε < −I0, (6.3)
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where Iε and I0 are defined in Proposition 6.2. This will yield the first part of Proposition
6.3. Consider the following notations:

B1
k = [z∗− + 2kε − ε, z∗− + 2kε + ε),

B2
k = (z − z∗− − 2kε − 3ε, z − z∗− − 2kε + 3ε].

The following is straightforward:

{Ẑn − Zn/n ∈ [z − 2ε, z + 2ε]} ⊂
⋃
k∈Z

{
Ẑn ∈ B1

k

}
∩
{
−Zn/n ∈ B2

k

}
.

The previous union is a union of disjoint sets. Moreover {Ẑn ∈ B1
k} is empty if k is

negative with |k| large enough (say k ≤ k− < 0) since Ẑn is a nonnegative random
variable. Therefore, the following holds:

P{Ẑn − Zn/n ∈ [z − 2ε, z + 2ε]} ≤
∑

k≥k−
P

{
Ẑn ∈ B1

k

}
P
{
−Zn/n ∈ B2

k

}
.

Let L > Iε be given. By Cramér’s theorem, there exists k+ such that

lim sup
n→∞

1
n

log P
{

Ẑn ≥ z∗− + k+ ε
}
≤ −L.

Furthermore,

P{Ẑn − Zn/n ∈ [z − 2ε, z + 2ε]}

≤
k+∑

k=k−
P{Ẑn ∈ B1

k}P{−Zn/n ∈ B2
k}

+ P

{
Ẑn ≥ z∗− + k+ ε

}
. (6.4)

Let us give the guideline of what is done next: We know from Proposition 6.1 that the
infimum

inf{I(y), y ∈ [z − 2ε, z + 2ε]} = I(z − 2ε)

is uniquely attained for I(z − 2ε) = Λ∗(z∗−) + δ∗(z − z∗− − 2ε). Therefore, consider

T = {Ẑn ≈ z∗−} ∩ {−Zn/n ≈ z − z∗− − 2ε}.

The event T can be seen as the “most typical” subset of {Ẑn − Zn/n ∈ [z − 2ε, z + 2ε]}
since the infimum of the rate function is “realized” on T . If we choose a subsequence φ(n)
such that {

−
Zφ(n)

φ(n)
≈ z − z∗− − 2ε

}
= ∅,

then the Large Deviation upper bound shall decrease and we shall obtain (6.3). We
formalize this in the sequel.
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Consider the subsequence defined by φ(n) =
[

2an
z∗−+ε−z

]
where [x] denotes the integer part

of x. It is then straightforward to check that

P

{
−

Zφ(n)

φ(n)
∈ (z − z∗− − 3ε, z − z∗− + 3ε]

}
= 0

for n large enough. Therefore, when considering the subsequence φ(n), (6.4) becomes

P{Ẑφ(n) − Zφ(n)/φ(n) ∈ [z − 2ε, z + 2ε]}

≤
k+∑

k 6=0,k=k−
P{Ẑφ(n) ∈ B1

k}P{−Zφ(n)/φ(n) ∈ B2
k}

+ P

{
Ẑφ(n) ≥ z∗− + k+ ε

}
.

In other words, the “most typical” subset{
−

Zφ(n)

φ(n)
∈ (z − z∗− − 3ε, z − z∗− + 3ε]

}
∩ {Ẑφ(n) ∈ [z∗− − ε, z∗− + ε)}

has been removed. Let k ∈ {k−, . . . , k+} and k 6= 0. Usual techniques to derive upper
bounds yield:

lim sup
n→∞

1
φ(n)

log P{Ẑφ(n) ∈ B1
k}P{−Zφ(n)/φ(n) ∈ B2

k}

≤ − inf{Λ∗(x), x ∈ B1
k} − inf{δ∗(y), y ∈ B2

k}
≤ − inf{Λ∗(x) + δ∗(y), x + y ∈ [z − 2ε, z + 2ε], x ∈ B1

k}

and by Lemma 1.2.15 in [9],

lim sup
n→∞

1
φ(n)

log P{Ẑφ(n) − Zφ(n)/φ(n) ∈ [z − 2ε, z + 2ε]}

≤ sup
k 6=0, k−≤k≤k+

− inf{Λ∗(x) + δ∗(y), x + y ∈ [z − 2ε, z + 2ε], x ∈ B1
k} · · ·

∨ (−L)

≤ − inf{Λ∗(x) + δ∗(y), x + y ∈ [z − 2ε, z + 2ε], x /∈ (z∗− − ε, z∗− + ε)}
≤ −Iε < −I0,

where a ∨ b = sup(a, b) and where the last inequality comes from Proposition 6.2. The
first part of the proposition is then proved.
• Let us now prove the second part of the proposition. Consider {Ẑn −Zn/n ∈ [z +α2ε−
δ, z + α2ε + δ]} where α < 1 and δ < (1 − α)2 ε. Then

{Ẑn ∈ [z∗− − δ/2, z∗− + δ/2]} ∩ {−Zn/n ∈ [z − z∗− + α2ε − δ/2, z − z∗− + α2ε + δ/2]}
⊂ {Ẑn − Zn/n ∈ [z + α2ε − δ, z + α2ε + δ]}.
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Choose now a subsequence of integers defined by the following inequalities:{
an−1 < φ(n)(z∗− − z − α 2 ε − δ/2) ≤ an

an

(a)

≤ φ(n)(z∗− − z − α 2 ε + δ/2) < an+1

,

where an = 16n. Such a subsequence always exists and

lim inf
n→∞

1
φ(n)

log P
{
−

Zφ(n)

φ(n)
∈ [z − z∗− + α2ε − δ/2, z − z∗− + α2 ε + δ/2]

}

= lim inf
n→∞

1
φ(n)

log P{Z = an} = lim inf
n→∞ − an

φ(n)
≥ −(z∗− − z − α 2 ε + δ/2),

where the last inequality comes from (a). As by Cramér’s theorem,

lim inf
n→∞

1
n

log P{Ẑn ∈ [z∗− − δ/2, z∗− + δ/2]} ≥ −Λ∗(z∗−),

we obtain:

lim sup
n→∞

1
n

log P{Ẑn −Zn/n ∈ [z +α2ε− δ, z +α2ε+ δ]} ≥ −(Λ∗(z∗−)+ z∗−− z−α 2 ε+ δ/2).

Finally, as limα→1,δ<(1−α) 2 ε(Λ∗(z∗−) + z∗− − z − α 2 ε + δ/2) = I0 and I0 < Iε, there exist
α > 0, δ > 0 and γ > 0 such that Λ∗(z∗−) + z∗− − z − α 2 ε + δ/2 ≤ Iε − γ and the second
part of the proposition is proved. �

6.3 End of proof

We prove here Proposition 2.4.

Proof [Proof of Proposition 2.4] Assume that (Ẑn −Zn/n)n≥1 satisfies a LDP with rate
function J and choose the real numbers α and δ as in Proposition 6.3. Then:

− inf
z∈(z−2 ε,z+2 ε)

J(z) ≤ lim inf
n→∞

1
n

log P{Ẑn − Zn/n ∈ (z − 2ε, z + 2ε)}
(a)

≤ −A,

where (a) follows from (6.1) and

− B
(b)

≤ lim sup
n→∞

1
n

log P
{

Ẑn − Zn/n ∈ [z + α 2ε − δ, z + α 2ε + δ]
}

≤ − inf
[z+α 2ε−δ,z+α 2ε+δ]

J(z),

where (b) follows from (6.2). As B < A, one should have

inf
u∈[z+α 2ε−δ,z+α 2ε+δ]

J(u) < inf
u∈(z−2ε,z+2ε)

J(u),

which is impossible since [z + α 2ε − δ, z + α 2ε + δ] ⊂ (z − 2ε, z + 2ε). �
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7 Proof of Proposition 3.5

Proof One can easily check that the measure defined by dγ = E d` is always a minimizer
of I under C (Jensen). Therefore, if µ is a minimizer:

I(µ) = Λ∗(E) =
{

Λ∗(E) if E < z∗

Λ∗(z∗) + E − z∗ else.
.

In the case where E < z∗, let us prove that the minimizer is unique. Assume that µ and
ν are distinct minimizers, that is:{

〈µ, 1〉 = E
〈ν, 1〉 = E

and I(µ) = I(ν) = Λ∗(E).

Note that any convex combination αµ + βν belongs to C.

I(αµ + βν) =
∫

Λ∗
(

α
dµa

d`
+ β

dνa

d`

)
d` + αµs[0, 1] + βνs[0, 1].

If `
{

αdµa

d` + β dνa
d` < z∗

}
= 0 then

I(αµ + βν) ≥
∫
{α dµa

d`
+β dνa

d`
≥z∗}

Λ∗
(

α
dµa

d`
+ β

dνa

d`

)
d` ≥ Λ∗(z∗) > Λ∗(E),

which is impossible since I(αµ + βν) ≤ αI(µ) + βI(ν) = Λ∗(E). Therefore, assume that
`
{

αdµa

d` + β dνa
d` < z∗

}
> 0. In this case,

∫
Λ∗
(

α
dµa

d`
+ β

dνa

d`

)
d`

=
∫
{α dµa

d`
+β dνa

d`
<z∗}Λ∗

(
αdµa

d` + β dνa
d`

)
d` +

∫
{α dµa

d`
+β dνa

d`
≥z∗} Λ∗

(
αdµa

d` + β dνa
d`

)
d`.

Since Λ∗ is strictly convex for z ∈ (−∞, z∗],

Λ∗
(

α
dµa

d`
+ β

dνa

d`

)
< αΛ∗

(
dµa

d`

)
+ βΛ∗

(
dνa

d`

)

on
{

αdµa

d` + β dνa
d` < z∗

}
. Moreover, the inequality remains strict by integrating (7) over

the set
{
αdµa

d` + β dνa
d` < z∗

}
. Therefore, I(αµ + βν) < αI(µ) + βI(ν) = Λ∗(E), which is

impossible. Necessarily, the minimizer is unique.

In the case where c ≥ z∗, the only thing to prove is that `
{

dµa

d` < z∗
}

= 0 if µ is a

minimizer. Assume that `
{

dµa

d` < z∗
}

> 0. We denote by g(x) = dµa

dx (x).

∫
Λ∗(g) d` =

∫
{g<z∗}

Λ∗(g) d` +
∫
{g≥z∗}

Λ∗(g) d`.
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Jensen’s inequality yields

∫
{g<z∗}

Λ∗(g) d` ≥ `{g < z∗}Λ∗
(∫

{g<z∗} g d`

`{g < z∗}

)
.

Similarily, ∫
{g≥z∗}

Λ∗(g) d` ≥ `{g ≥ z∗}Λ∗
(∫

{g≥z∗} g d`

`{g ≥ z∗}

)
.

Therefore,

∫
Λ∗(g) d` ≥ `{g < z∗}Λ∗

(∫
{g<z∗} g d`

`{g < z∗}

)
+ `{g ≥ z∗}Λ∗

(∫
{g≥z∗} g d`

`{g ≥ z∗}

)
.

Since
∫
{g<z∗} g dx

`{g<z∗} < z∗ and Λ∗ is strictly convex on (−∞, z∗], we have:

`{g < z∗}Λ∗
(∫

{g<z∗} g d`

`{g < z∗}

)
+ `{g ≥ z∗}Λ∗

(∫
{g≥z∗} g d`

`{g ≥ z∗}

)
> Λ∗

(∫
g d`

)
,

and I(µ) > Λ∗(〈µa, 1〉) + 〈µs, 1〉. Denote by αE = 〈µa, 1〉 where α ∈ (0, 1). As the
maximun slope of the convex function Λ∗ is 1, the following inequality is true for every
real number E:

Λ∗(E) − Λ∗(αE)
E − αE

≤ 1.

Therefore, I(µ) > Λ∗(αE) + E − αE ≥ Λ∗(E). This is impossible since I(µ) = Λ∗(E) as
µ is a minimizer. Necessarily, `

{
dµa

d` < z∗
}

= 0 and the second part of the proposition is
proved. �

A Two results concerning R-continuity and partitioning

It has been seen in Lemma 5.2 that step functions f(x) =
∑p

k=1 ak1Ak
(x) where

inf{R(Ak), 1 ≤ k ≤ p} > 0 and sup{R(∂Ak), 1 ≤ k ≤ p} = 0,

are relevant to get LDPs. The two following results permit us to construct step functions
of the previous kind which approximate any bounded continuous function. These results
are used in the proof of Lemma 5.3.

A.1 How to get R-continuity in a cover of X?

In the following proposition, X is a topological space endowed with its Borel σ-field and
with a probability distribution R, Y is a metric space endowed with its Borel σ-field.
As usual, B(y, ε) is the ball centered at y ∈ Y with radius ε > 0. Recall that A is a
R-continuity set if

R(∂A) = 0 where ∂A = Ā − Å.
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Here, Ā denotes the closure of A and Å its interior. Let f : X → Y. The following
inclusion will be usefull:

∂f−1(A) ⊂ f−1(∂A). (A.1)

Proposition A.1 Let f : X → Y be a continuous function. Assume moreover that the
range f(X ) is relatively compact in Y. Then for every ε > 0, there exist (yk, 1 ≤ k ≤ p) ⊂
Y and ε1, . . . , εp ∈ (0,∞) such that εk ≤ ε and

X ⊂ ∪p
k=1f

−1B(yk, εk) where R(∂f−1B(yk, εk)) = 0 for k ∈ {1, . . . , p}.

Proof Let ε > 0 be fixed and denote by

Iε(y) = {ε′ ∈ (0, ε], R(∂f−1B(y, ε′)) > 0},
Jε(y) = {ε′ ∈ (0, ε], R(∂f−1B(y, ε′)) = 0}.

The set Iε(y) is at most countable. In fact, consider

φ : (0, ε] → [0, 1]
ε′ 7→ R ◦ f−1 B(y, ε′).

The function φ is non-decreasing, left-countinuous and admits at most a countable number
of discontinuities. Let us show that if φ is continuous in ε0, then

R ◦ f−1 [∂B(y, ε0)] = 0. (A.2)

In fact,
lim

ε′↘ε0
R ◦ f−1B(y, ε′) = R ◦ f−1B(y, ε0)

by continuity. But

lim
ε′↘ε0

R ◦ f−1B(y, ε′) = R ◦ f−1 ∩ε′>ε B(y, ε′)

= R ◦ f−1B̄(y, ε0),

where B̄(y, ε0) denotes the closed ball centered in y and with radius ε0. Finally,

R ◦ f−1 [∂B(y, ε0)] = R ◦ f−1B̄(y, ε0) − R ◦ f−1B(y, ε0) = 0.

The inclusion (A.1) yields that

R∂f−1B(y, ε0) ≤ R ◦ f−1 [∂B(y, ε0)] = 0.

Thus, Iε(y) is at most countable. As Iε(y) ∪ Jε(y) = (0, ε], Jε(y) is never empty and

f(X ) ⊂ ∪y∈f(X ), ε′∈Jε(y)B(y, ε′).

As f(X ) is relatively compact, there exist (yk, 1 ≤ k ≤ p) ⊂ Y and (εk, 1 ≤ k ≤ p) ⊂ (0,∞)
satisfying:

f(X ) ⊂ ∪p
k=1B(yk, εk) ⇒ X ⊂ ∪p

k=1f
−1B(yk, εk).

Moreover, as εk ∈ Jε(yk), R(∂f−1B(yk, εk)) = 0 and Proposition A.1 is proved. �
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A.2 A Partition Lemma

Lemma A.2 Assume that (A-2) holds and let (Ak, 1 ≤ k ≤ p) be a measurable cover of
X satisfying R(A1) > 0 and R(∂Ak) = 0 for 1 ≤ k ≤ p. Then there exists a partition
(Bl, 1 ≤ l ≤ q) of X satisfying B1 = Ā1, R(Bl) > 0 and R(∂Bl) = 0 for 1 ≤ l ≤ q.
Moreover, for each Bl, there exists Ak such that Bl ⊂ Āk.

Proof We proceed by induction on p. If p = 1 we take B1 = Ā1 and the result is proved.
Let p > 1. We can assume that the cover is based on closed sets. In fact, if (Ak)1≤k≤p

is a cover satisfying the assumptions of the lemma, so is (Āk)1≤k≤p. If X ⊂ Ā1 then the
partition is reduced to the single element B1 = Ā1. Otherwise X\Ā1 is a nonempty open
set and R(X\Ā1) > 0 by (A-2). Necessarily there exists k satisfying R(Āk\Ā1) > 0. In
fact

0 < R(X\Ā1) ≤
p∑
2

R(Āk\Ā1).

Now consider the family {Ā1∪ Āk, Aj , 2 ≤ j ≤ p, j 6= k}. This is a cover of p−1 elements
of X satisfying the assumptions of the lemma (recall that the R-continuity sets form an
algebra on X ). Hence we can apply the induction assumption and there exists a partition
(Bl, 1 ≤ l ≤ q) where B1 = Ā1 ∪ Āk, R(∂Bl) = 0 and R(Bl) > 0 for 1 ≤ l ≤ q. Now split
B1 into C1 = Ā1 and C2 = Āk\Ā1 then the partition {C1, C2, Bl, 2 ≤ l ≤ q} satisfies
the requirements of the lemma and Lemma A.2 is proved. �
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