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The Longtime Behavior of Branching Random Walk, in a
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Abstract

Consider a countable collection (ξt) of particles located on a countable group, performing
a critical branching random walk where the branching rate of a particle is given by a random
medium fluctuating both in space and time. Here we study the case where the time–space
random medium (ηt) (called catalyst) is also a critical branching random walk evolving
autonomously while the local branching rate of the reactant process (ξt) is proportional to
the number of catalytic particles present at a site. The process (ηt) and the process (ξt)
typically have different underlying motions.

Our main interest is to analyze the behavior of the bivariate system (ηt, ξt) as t→∞ and
to exhibit features of (ξt)t≥0 which are different from those of classical branching random
walk. Some of these features have already been noticed for super processes.

First, we show first that if the symmetrized motion of the catalytic particles is transient
then (ξt) behaves similarly as a classical branching random walk: depending on whether the
symmetrized motion of the reactant is transient or recurrent we have an equilibrium with
the original intensity, or we have local extinction.

Next, we consider the case where the symmetrized motion of the catalyst is recurrent. It is
well known that in this case the catalyst goes locally to extinction; however, we discover new
features of the reactant depending on the mobility both of catalyst and reactant. Now three
regimes are possible. In one regime the reactant (ξt) behaves like a system of independent
random walks in the limit t → ∞, that is it converges to a Poisson system. In a second
regime the reactant (ξt) approaches also a nontrivial stable state which is now a mixture
of Poisson systems. Thirdly the reactant (ξt) can become locally extinct even in this case
of a catalyst going to local extinction. We give examples for all these regimes and set the
framework to develop a complete theory.

Keywords: Branching random walk in random medium, reactant–catalyst systems, interacting
particle Systems, random media.
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1 Motivation and main results

(a) Motivation and background

A branching random walk is a process where particles move independently through space and
branch according to some branching law independent of the motion. The space is usually given by
Zd or some other countable group as e.g. the hierarchical group introduced in population genetics
by Sawyer and Felsenstein (compare [DG2]). Such spatially structured branching processes
have been studied to quite some extent and it has been shown that their longtime behavior
exhibits a rather interesting property: a dichotomy between local persistence and local extinction
(depending on the underlying migration mechanism), and in the latter case various different
regimes of clustering occur. For an overview see Wakolbinger (95) and Klenke (96).

The two crucial assumptions used in the analysis of the classical model are the independence
of the evolution of the different families descending from distinct ancestors and the fact that the
rate at which branching occurs is constant both in space and time. New phenomena occur if one
drops this assumption of independence of subpopulations (Greven (91), Dawson and Hochberg
(91)) or the assumption of a constant (in time and space) branching rate. Various models have
been studied where the assumption of the homogeneity of the branching rate in space has been
dropped and many new phenomena in the longtime behavior have been found, as for example
phase transitions with the drift of the motion as crucial parameter (Greven and den Hollander
(92)), while in other cases the behavior remains unchanged (Dawson and Fleischmann (83) and
(85)).

Furthermore many papers study models without spatial structure in the case of a branching
rate fluctuating in time (independent of the process) using the approach of a random dynamical
system and Lyapunov exponents (Tanny [T]).

In this paper we are interested in spatial models for the case where the branching rate
fluctuates both in time and space. Some pioneering work has been done here on the level of
super processes on Rd. Here, different from the particle model we are going to present, only
d ≤ 3 makes sense non–trivially since the super processes live on low dimensional sets. Processes
of the above mentioned type (super process in a catalytic medium) have been constructed by
Dawson and Fleischmann in [DF5] and [DF3]. There also the longtime behavior in d = 1 has
been investigated while d = 3 is dealt with in [DF4]. The d = 2 case is studied in detail in
Fleischmann and Klenke (98). Already on the level of super processes one sees new features
in the longtime behaviors. For a detailed review of the work on spatial branching processes in
random media see Klenke (99).

We will consider particle systems of the following type. First we have the catalytic random
medium, which is a critical branching random walk (ηt) on some Abelian group (Zd or the
hierarchical group for example) and evolves autonomously. Then we have a reactant process,
which is a branching random walk (ξt) whose branching rate at a site and at a time is proportional
to the number of catalytic particles at that site at that time. This way we obtain the catalyst–
reactant system (ηt, ξt)t≥0.

The main question we want to resolve is: To what extent does the large time behavior of
the reactant process differ from that of a classical branching random walk? For frozen media,
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as mentioned above the behavior of a system in random media can be drastically different from
that of a classical system depending on finer properties of the underlying migration mechanism
([GH, 92]). Is this also the case for media which fluctuate in time as well?

Another aspect is that our model, though dealing with a “one way interaction” only, might
help to give insight also into more complicated situations where the reactant influences also the
evolution of the catalyst in some way. For material in this direction see the work on multitype
contact processes as for example in Durrett and Schinazi ([DS]).

The essential parameters of the problem of the longtime behavior of the catalyst–reactant
system are the two random walk kernels describing the motions of the catalyst and the reactant
respectively. We will see that similarly as in the theory of one–particle evolutions in random
media two situations can occur. On one hand there is a regime where the behavior is similar
to the classical case, in a sense only “constants change”, on the other hand there are also
regimes where we obtain a completely different behavior. In fact, for a catalyst which goes to
local extinction we have three different possibilities for the behavior of the reactant. Namely
(i) the reactant eventually behaves like a system of countably many independent random walks
(pure Poisson system), or (ii) like a mixture of Poisson systems, where the mixing law reflects
qualitatively the randomness of both the catalyst and the reactant, or (iii) the reactant becomes
locally extinct. Of particular interest is the case (ii) on the borderline between the regimes of
persistent catalyst and (strongly) locally vanishing catalyst, where we find the mixed Poisson
system in the longtime limit.

For the reader with a background in super processes we should remark that catalytic super
Brownian motion shows an analogous behavior in the corresponding regimes (see [DF5, DF6,
FK]): In d = 3 the joint distribution of catalyst and reactant has a non–trivial equilibrium. The
cases d = 1 and d = 2 correspond to (i) and (ii) respectively. There are no analogues for the
cases (iii) and persistent catalyst with reactant going to extinction.

It is not hard to believe that in d = 1 and d = 3 the behavior of catalytic super Brownian
motion carries over to the random walk setting – at least if the random walks are symmetric
Bernoulli. However we can show our results in a much greater generality. In d = 2 the situation
is a lot more delicate. Note that the large deviation behavior of random walks differs from that
of Brownian motion, resulting in the compact support property for super Brownian motion but
not for super random walk. This property, however, is a crucial ingredient in the proof of the
statement for two–dimensional catalytic super Brownian motion. This shows that these diffusion
limits cannot be taken too näıvely.

Concluding we can say that in many – but not in all – cases there is a diffusion limit that is
a good approximation of the particle system.

(b) The model

We continue with a precise description of the model. We need the following ingredients for this
purpose.

Ingredients:

– a countable Abelian group G. The important examples are G = Zd and G = ΩN , where
ΩN is the hierarchical group (with N symbols)
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– two irreducible random walk kernels a(·, ·) and b(·, ·) on G×G

– a translation invariant probability measure µ on (N0×N0)G which is ergodic and has finite
intensity θ = (θη, θξ) ∈ [0,∞)2, i.e. under µ the expected size of a component indexed by
g ∈ G is (θη, θξ). The set of those measures is denoted in the sequel

Eθη,θξ(1.1)

and elements of this set will be used as initial law of the process under consideration. The
analogous set of measures on (N0)G with intensity θ ∈ [0,∞) will be denoted by

Eθ.(1.2)

Now we define a Markov process (ηt, ξt)t≥0 on a suitable subset E ⊆ (N0 × N0)G by the
following rules

(i) L[(η0, ξ0)] = µ.

(ii) The process evolves (the initial state being independent of the evolution) according to the
following mechanism

– (ηt)t≥0 evolves autonomously (i.e. is not influenced by (ξt)t≥0). The evolution of ηt
is a branching random walk. The branching mechanism is critical binary branching
and the migration evolves via a continuous time random walk on G with transition
rates given by the kernel a(·, ·).

– Conditioned on (ηt)t≥0 the process (ξt)t≥0 is a branching random walk. The mech-
anism of branching for a particle in g at time t is critical binary branching at rate
ηt(g). The migration kernel of (ξt) is b(·, ·).

Definition We call ηt the catalyst and ξt the reactant.

Remark We will often view the configurations η or ξ as measures rather than functions on
the countable set G, that is we define

η̃ ∈M(G) : η̃(A) =
∑
g∈A

η(g), for A ⊆ G

but we will drop the ∼ and simply write η for notational convenience.

In the sequel we formally construct the process just described, this may be skipped at a first
reading.

The process (ηt, ξt)t≥0 can be constructed in two ways which we both present shortly. One
way is to construct a Markov process on the configuration space by introducing the semigroup
of the process via generators, the second way uses an explicit representation via single ancestor
processes.
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The construction of the process via semigroups forces us to give a rigorous description of the
proper state space of the process, following the device of Liggett and Spitzer. For our model we
can define

||(η, ξ)||=
∑
g

γ1(g)η(g) + γ2(g)ξ(g)(1.3)

where γ1 and γ2 are weight functions which satisfy for some M ∈ (1,∞)
∑
g γ1(g)a(g, g′) ≤

Mγ1(g′),
∑

g γ2(g)b(g, g′) ≤Mγ2(g′) and which can be found as follows

γ1(g) =
∑
n

∑
g′

a(n)(g, g′)β(g′)M−n

and

γ2(g) =
∑
n

∑
g′

b(n)(g, g′) β(g′)M−n.

Here a(n) and b(n) denote the n-fold compositions of the transition kernels a respectively b and
β(·) is a strictly positive summable function on G.

The state space E ⊆ (N0 ×N0)G is then given by

E = {(η, ξ) : ||η, ξ||<∞}.(1.4)

On E the semigroup is then constructed using approximations by processes with initially finitely
many particles (compare Liggett (85)). The generator is described as follows:
Let f(η, ξ) be a function depending only on finitely many components. Define for ζ ∈ NG0 and
k ∈ Z:

ζg,g′ = ζ − 1g + 1g′ , ζkg = ζ + k1g .(1.5)

Let (pk)k∈N0, (qk)k∈N0 be probability distributions on N0 with finite mean. These are the off-
spring distribution laws of η and ξ. We carry out the construction in this generality but later
we will always assume that the branching is critical binary: p0 = p2 = q0 = q2 = 1

2 .

Now the generator of the system (ηt, ξt) acts as follows (ci ∈ R+):

(Gf)(η, ξ) = c1

∑
g,g′

[f(ηg,g′ , ξ)− f(η, ξ)]a(g, g′)η(g)(1.6)

+ c2

∑
g

[
∞∑
k=0

pkf(ηk−1
g , ξ)− f(η, ξ)

]
η(g)

+ c3

∑
g,g′

[f(η, ξg,g′)− f(η, ξ)]b(g, g′)ξ(g)

+ c4

∑
g

[
∞∑
k=0

qkf(η, ξk−1
g )− f(η, ξ)

]
· η(g)ξ(g).
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Later we will need the continuous time transition kernels at and bt defined by

at = e−c1t
∞∑
n=0

(c1t)
n

n!
a(n), bt = e−c3t

∞∑
n=0

(c3t)
n

n!
b(n). t ≥ 0.(1.7)

In the sequel we will in most cases tacitly assume c1 = c2 = c3 = c4 = 1 to avoid cumbersome
notation.

We come now to the explicit construction, which gives as well the whole historical process.
We focus on the construction of the reactant.

The catalyst (ηt)t≥0 is defined to be the (rate 1) branching random walk on G with branching
law (pk) and random walk transition probabilities a(·, ·). It is well known how to construct this
process from i.i.d. exponentially distributed branching times and collections of i.i.d. random
walks, we do not repeat this here.

The construction of the reactant (ξt)t≥0 is more complicated. Let T = T (ω) be a (random)

Galton–Watson tree with branching law (qk). By ∅ ∈ T we denote the root of T and by
←
v we

denote the ancestor of v ∈ T . Define the marked tree

T = ((v, τv, (Xv,t)t≥0), v ∈ T ),(1.8)

where τv − τ←
v
, v ∈ T , are for given T i.i.d. exponentially (mean one) distributed random

variables and (Xv,t)t≥0, v ∈ T , are independent random walks on G according to b(·, ·) with

Xv,0 = 0 ∈ G a.s. For notational convenience we introduce a formal point
←
∅ and let τ←

∅
= 0.

Choose g ∈ G and let Y←
∅

= g and σ←
∅

= 0. We define inductively the effective branching

times σv, v ∈ T , and the paths (Yv,t)t∈[σ←
v
,σv[, v ∈ T , by

σv =

{
σ←
v

+ inf{t > 0 :
∫ t

0 ηs+σ←v
(Xv,s + Y←

v ,σ←
v

) ds≥ τv − τ←v }, σ←
v
<∞

∞, σ←
v

=∞
(1.9)

Yv,t = Y←
v ,σ←

v

+Xv,t−σ←
v

for t ∈

{
[σ←

v
, σv], σv <∞

[σ←
v
, σv[, σ←

v
< σv =∞

.(1.10)

We define the reactant (ξgt )t≥0 with initial state ξg0 = δg (the Dirac measure on g) a.s. by

ξgt =
∑
v∈T

t∈[σ←
v
,σv [

δYv,t , t ≥ 0.(1.11)

For starting the reactant in the possibly random state ξ0 ∈ N (G) (the integer valued measures
on G) we take for given catalyst independent copies (ξg,it )t≥0, g ∈ G, i ∈ N (with ξg,i0 = δg) and
define

ξt =
∑
g∈G

ξ0({g})∑
i=1

ξg,it .(1.12)
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It can be shown that we obtain in this way a Markov process (ηt, ξt)t≥0 with state space E.
Note that for all translation invariant initial laws with finite intensity (θη, θξ) the initial state
lies a.s. in E and so do all the configurations evolving in time from this initial state. We are
not going into further detail.

Though (1.3) defines a topology on E we will henceforth use the coarser product topology on
E. In terms of N (G) this is the vague topology. In particular, weak convergence of probability
measures on E will be equivalent to convergence of finite dimensional distributions.

(c) Results

In this section we will present the results we have on the behavior of (ηt, ξt) as t → ∞. It is
clear that besides the mobility of the reactant particles the other essential determinant for the
behavior of the reactant ξt as t → ∞ are the properties of the catalyst process. Therefore we
will start by introducing in (i) a classification of the catalyst process according to its longtime
behavior in three regimes. We continue in (ii) with the basic features of the behavior of the
combined system (ηt, ξt) as t→∞ which are stated in three theorems.

(i) Longtime properties of the catalyst

In order to understand the catalyst pro-
cess we need some basic facts from the
theory of branching random walks. Recall
that a classical branching random walk
(which is critical) approaches either an
equilibrium or it becomes locally extinct
depending on whether the symmetrized
underlying motion is transient or recur-
rent. In the latter case (the case of lo-
cal extinction) various different regimes
can be distinguished (concentrated clus-
tering, diffusive clustering). See Klenke
(96), Dawson and Greven (96).
The behavior of the reactant process de-
pends both on the kernel b of its own mo-
tion and on the kernel a of the motion of
the catalyst. To work out first the role of
the catalyst motion we introduce a clas-
sification for the longtime behavior of the
catalyst process.

WL,γ

6
time

Figure 1 BRW on the torus Z/(500)
and the empty parabola WL,γ (ex-
plained in Section 4)

In the following terminology for the process (ηt)t≥0 of the catalyst, we always refer to a
process whose initial lawL[η0] is translation invariant and ergodic with finite positive intensity.

Definition 1.1 We say that (ηt)t≥0 is site–recurrent, iff

P[sup{t : ηt(g) > 0} = +∞] = 1 ∀g ∈ G(1.13)
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and site–transient iff

P[sup{t : ηt(g) > 0} <∞] = 1 ∀g ∈ G. 3(1.14)

In the case of site–recurrent media we distinguish two different cases:

Definition 1.2 We say (ηt)t≥0 is strictly site–recurrent iff the process is site–recurrent and in
addition

lim inf
t→∞

P[ηt(g) > 0] > 0(1.15)

and the process is called weakly site–recurrent, iff it is site–recurrent and satisfies

lim sup
t→∞

P[ηt(g) > 0] = 0. 3(1.16)

With the help of the standard ergodic theory for branching random walks and the (shift)-
ergodicity of the initial law one can show that we have a complete classification:

The first question is which regime occurs and the answer depends on the kernel a(·, ·). From
the standard theory of branching random walks we know the following fact:

(ηt)t≥0 is strictly site–recurrent ⇐⇒ â is transient(1.17)

where â(ξ, ξ′) = 1
2(a(ξ, ξ′) + a(ξ′, ξ)) denotes the kernel which describes the jump distribution

of the distance between two independent random walks with jump kernel a.

Next one looks at the two remaining cases where one would like to settle the question as
to when a catalyst process is site–transient or weakly site–recurrent, which as we already know
from (1.17) can only occur for â being recurrent. On the other hand is {sup{t : ηt(g) > 0} <∞}
a translation invariant event (for our starting distribution). Hence by the ergodicity of the initial
distribution the probability of that event is 0 or 1. Therefore we have in particular

Proposition 1.1 Every catalyst process is either site–transient, strictly site–recurrent or weakly
site–recurrent. 3

The next question is which of the two cases occurs in the case â recurrent? This question is
rather subtle and therefore a complete theory of this phenomenon would distract from our main
point, hence we provide only some typical examples.

Proposition 1.2 (a) Consider the case G = Z and let a(·, ·) be the kernel of symmetric simple
random walk. Then the corresponding catalyst process (ηt)t≥0 is site–transient (see Figure
1).

(b) For G = Z2 and a symmetric transition kernel a(·, ·) with finite variance the catalyst
process is weakly site–recurrent.

(c) If a(·, ·) is irreducible has a non–zero drift and finite variance then both in G = Z1 or Z2

the process is weakly site–recurrent. 3
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The three different possible regimes for the catalyst process give rise to different features of
the large time behavior of the reactant process.

(ii) The four regimes of longtime behavior of the catalyst–reactant system

According to the previous paragraph (i) we have three basic regimes for the behavior of the
catalyst process. In the remainder we study the longtime behavior of ξt and of (ηt, ξt) in these
three regimes which further splits these regimes since now for the reactant four possibilities
occur

(a) convergence to an infinitely divisible system which is non–Poissonian and has a local de-
pendence structure,

(b) local extinction.

(c) convergence to a Poisson system,

(d) convergence to a mixed Poisson system,

In Theorem 1 we will give a complete answer for the case of strictly site–recurrent catalysts,
with two types of longtime behavior for the catalyst–reactant system namely (a) and (b). In
particular we will find that the behavior in this case is as in the classical homogeneous case,
where (a) or (b) occurs depending on whether the symmetrized reactant motion is transient or
recurrent. In Theorem 2 and 3 we will describe besides local extinction the two other possible
regimes of longtime behavior (Poisson systems and mixed Poisson systems) for classes of models
on Z1 respectively Z2, where the catalyst is site–transient respectively weakly site–recurrent.

We begin our analysis with the simplest case, namely the one where the catalyst process
(ηt)t≥0 is strictly site–recurrent.

Here is our first theorem, which shows that for strictly site–recurrent catalytic media the
reactant evolves after large times on a rough qualitative level in the same way as a classical
branching random walk with the migration kernel a and branching rate given by E[ηt(g)]. Recall
that we call (ξt) or (ηt) persistent (stable) if the intensity of weak limit points as t→∞ of L[ηt]
respectively L[ξt] are equal to the initial intensity.

Theorem 1 Assume that (ηt)t≥0 is strictly site–recurrent and the initial law µ of (ηt, ξt)t≥0 is
an element of Eθη,θξ (see (1.1)). Then we have the following dichotomy in b̂:

(a) If b̂ is transient then the catalyst–reactant system is persistent (stable) and furthermore:

L[(ξt, ηt)] =⇒
t→∞

νθη ,θξ ,(1.18)

where νθη ,θξ is an invariant measure of the process (ηt, ξt), which satisfies:

νθη ,θξ ∈ Eθη,θξ(1.19)

E[ξ∞(g)|η∞] = θξ a.s. for all g ∈ G, where L[(ξ∞, η∞)] = νθη ,θξ(1.20)
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(b) If b̂ is recurrent then the reactant clusters, i.e. with 0 being the configuration with all sites
0:

L[(ηt, ξt)] =⇒
t→∞

νθη ⊗ δ0,(1.21)

where νθη is the unique extremal equilibrium of the catalyst process with intensity θη.
3

Remark For given (ηt)t∈R the law of
the population consisting of the complete
family of a reactant particle picked at ran-
dom from the population at time t at a
point g ∈ G from the equilibrium process
(ηt, ξt)t∈R can be given explicitly. We give
an explicit representation of this canonical
Palm distribution of the reactant given the
catalyst in Section 2(b), Proposition 2.2.

The other extreme case for the catalyst
process will be our next topic, namely
we consider site–transient catalyst pro-
cesses. Here locally the catalyst disap-
pears eventually. Therefore the reactant
process should survive, at least if reactant
particles do not travel too much.

6
time

Figure 2 CBRW on the torus Z/(500).
a and b are symmetric simple. The cat-
alyst (green) is the same realization as
in Figure 1. The reactant (red) sur-
vives. See Theorem 2 (a).

However by moving the reactant particles enough we can in fact make up for the rareness of
spots populated with catalysts since the latter have high population density in these rare spots.

To illustrate this phenomenon we consider
two cases on G = Z1, where the cata-
lyst motion relative to the catalyst has
zero respectively nonzero drift. In the case
of nonzero drift the reactant becomes lo-
cally extinct. For technical reasons we can
show this in Theorem 2(b) only in the case
where a(x, y) = δ(x, y) is the kernel of the
random “walk” that stands still. However
the statement should also be true for a
symmetric simple random walk, as sug-
gested by the computer simulation of Fig-
ure 3.
In the case of zero drift the reactant even-
tually does not meet catalyst particles
anymore and for large time t turns sim-
ply into a system of infinitely many inde-

6
time

Figure 3 CBRW on the torus Z/(500).
a is symmetric simple. The reactant
has a drift to the right and dies out.
See Theorem 2 (b).
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pendent random walks on G. The latter system has as equilibrium states so called Poisson–
systems with intensity θ, which we denote by Hθ. Formally for distinct points gi ∈ G, i =
1, . . . , j, we define:

Hθ({η ∈ NG0 : η(g1) = k1, . . . , η(gj) = kj}) =

j∏
i=1

(
e−θ

θki

ki!

)
.(1.22)

Theorem 2 Choose G = Z1.

(a) Let a(·, ·) and b(·, ·) be transition kernels on Z1 with the property
∑
a(0, x)x =

∑
b(0, x)x =

0 and
∑
a(0, x)|x|α <∞ and

∑
b(0, x)|x|β <∞ for some α > 2 and β > 1. Then for µ ∈ Eθη ,θξ :

L[(ηt, ξt)] =⇒
t→∞

δ0 ⊗Hθξ .(1.23)

(b) Let a(·, ·) be equal to δ(x, y) and b(·, ·) simple random walk with nonzero drift. Then:

L[(ηt, ξt)] =⇒
t→∞

δ0 ⊗ δ0. 3(1.24)

A key ingredient for the proof of Theorem 2 (b) is a continuous time version of a result by
Harry Kesten (1995) on the range of branching random walk. Although this statement is a little
bit technical we state the proposition here since it might be of some interest on its own. The
proof can be found in the appendix.

Proposition 1.3 Let (φt)t≥0 be continuous time critical binary branching random walk on Z,
starting with one particle at 0 ∈ Z at time t = 0. Assume that the migration kernel a satisfies∑

x∈Z a(0, x)x = 0 and for some α ≥ 7∑
x∈Z

a(0, x)|x|α+ε <∞, for some ε > 0.(1.25)

Then

sup
T≥1

sup
z≥2

Tz3P
[

sup
0≤t≤T

max(supp φt) ≥ zT
1/2
]
<∞.(1.26)

Moreover if we assume that (1.25) holds only for α ≥ 4 then we still get that for every ε > 0

sup
T≥1

sup
z≥2

P[sup0≤t≤T max(supp φt) ≥ zT 1/2]

z−α/2 T−1 + z(1−α)/2 T (2−α)/4
<∞. 3(1.27)

Now we are at the point to discuss the most interesting situation, namely the case of a catalyst
which is weakly site–recurrent. This can be combined with different types of reactant motions,
which can lead to various types of longtime behavior. We can distinguish first the cases of a
transient and recurrent symmetrized reactant motion.
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In the transient regime we will find no new phenomenon, but again we see pure Poisson states
as limiting states. Precisely, start the system (ηt, ξt) in a Poisson configuration with intensity
(θη, θξ) then:

L[(ηt, ξt)]=⇒
t→∞

δ0 ⊗Hθξ .(1.28)

The proof of an even somewhat stronger result (Proposition 2.4) is given in Section 2(c).

We will focus here on the case of recurrent symmetrized reactant motion. Here a very
interesting and new type (different from the homogeneous case) of longtime behavior occurs.
We find mixed Poisson systems as limiting states. This occurs when catalyst and reactant have
the same mobility. An analogous statement for super processes in d = 2 has recently been proved
by Fleischmann and Klenke (98).

In this regime the point is the following. The observer sitting at site 0 sees catalyst clusters
of increasing height passing by at random time points, which exhibit larger and larger distances.
The question is: Do these catalyst clusters contain enough particles and are they met frequently
enough by the reactant to cause local extinction? Or are too few catalyst clusters arriving so
that eventually a Poisson system develops? Or do we see something intermediate?

Interestingly enough a situation occurs with sufficiently regular motion kernel, where at time
T no catalyst is present in a spatial volume of order T and time window γT (1 > γ > 0)
back. Thus the spatial motion of the reactant can prevent extinction but is not strong enough
to average out completely the randomness inherent in the time space catalyst process. Hence a
mixed Poisson law of the reactant appears. We describe this phenomenon now in the following
situation precisely.

Let G = Z2 and recall that we have critical binary branching and as underlying motions
symmetric simple random walk. The goal will be to show that in d = 2 the reactant process
is persistent and that in fact the limit law is a mixed Poisson random field E[Hζ ]. I.e., it is a
Poisson random field with random intensity, which has the special form

ζ`,(1.29)

with ` counting measure on Z2 and where ζ is a random variable with values in R+. (Note that
a system of pure random random walks on Zd would have a Poisson random field as extremal
invariant state. Hence ζ is all what is left in the longtime limit from the randomness created by
the branching of the reactant.) What can we say about ζ?

This random variable should reflect the catalytic medium as experienced through time by a
typical reactant particle, that is the moments of ζ should be given via a space–time average of
the catalyst, with averaging weights reflecting the properties of the random walk kernel of the
reactant. In order to make this precise the basic idea is to use an “invariance principle” and
look at the diffusion limit, which is a special measure valued diffusion on Rd, namely a super
process in a random medium. We are going to explain this object now.

Let (%t)t≥0 be super Brownian motion on R2 with initial state θη · ` (recall that this is the
small mass fast branching continuum space diffusion limit of a branching random walk). Here `
is the Lebesgue measure on R2.

14



It is possible to construct super Brownian motion X% in the catalytic medium % (Dawson
and Fleischmann [DF5]). Here the branching rate of the reactant process X% is given by the
additive functional of the collision local time of Brownian motion with (the catalyst) % which is
itself super Brownian motion. (For a treatment of collision local times see Barlow et al (92).)
We will show in Proposition 1.4 that in fact this process X% occurs as the space–time rescaled
limit of our catalytic branching random walk.

The process X% has the property that for initial condition for catalyst respectively reactant
given by

%0 = θη · ` and X%
0 = θξ · ` a.s.,(1.30)

for every t > 0, the reactant X%
t ∈ M(R2) (:= the set of σ-finite Borel measures on R2) has a

density (Fleischmann and Klenke (98)),Theorem 1, henceforth referred to as [FK]).

Let ζ denote the density of X%
1 at the origin that is

ζ =
X%

1(dx)

dx

∣∣∣
x=0

.(1.31)

This definition makes sense for almost all %. The R+-valued random variable ζ can be represented
as the limit

ζ = lim
δ→0

(pBδ ∗X
%
1−δ)(0),(1.32)

where pBt denotes the heat kernel. This relation makes precise the idea that ζ arises via a
space–time average of the catalyst based on a “small” time window, a property which will be
important below.

Furthermore the random density ζ has for given catalyst % full expectation and finite variance:

E[ζ|%] = θξ a.s.(1.33)

Var[ζ|%] = 2θξ

∫ 1

0
dt

∫
R2
%t(dx)pB1−t(0, x)2 <∞ a.s.(1.34)

This implies in particular (by a well known time - space - mass scaling property of X%) that X%

is persistent and that X%
t converges to ζ` ([FK], Corollary 2):

L[L[X%
t |%]]=⇒

t→∞
L[L[ζ`|%]].

In the case of branching random walk we can now prove:

Theorem 3 Choose G = Z2. Assume that
∑

x∈Z2 a1(0, x)x =
∑

x∈Z2 b1(0, x)x = 0, that the
second moments exists and that under a1(0, x) (respectively b1(0, x)) the coordinates of x =
(x1, x2) are uncorrelated with variance 1. Further assume that∑

x∈Z2

a(0, x)|x|α <∞ for some α > 6.(1.35)
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Then the reactant component of the process (ηt, ξt) converges as t → ∞ to a mixed Poisson
system:

L[L[ξt|η]] =⇒
t→∞

L[E[Hζ |%]].(1.36)

Here (%t, X
%
t ) is the superprocess model defined in (1.30) and ζ is the density of X%

1 (see (1.31)).
3

Remark The assumptions are fulfilled, e.g., if a and b are the kernels of symmetric simple
random walk and if c1 = c3 = 2 (recall (1.7)).

The strategy of the proof follows the above described heuristics. We show

– The properly rescaled catalyst and reactant converge to the super–catalyst and super–
reactant (Proposition 1.4).

– The catalyst η has time–space gaps on a macroscopic scale in which the fluctuations from
the branching of the reactant can be sufficiently homogenized by the migration (Proposition
1.5).

Here are the formal statements:

Proposition 1.4 (Diffusion limit) Let X% be super Brownian motion in R2 in the catalytic
medium % and let (at) and (bt) fulfill only the first and second moment assumption of Theorem 3.
Furthermore let the initial conditions of η, ξ, %, and X% be as in Theorem 3.
(a) Then the catalyst converges to super–Brownian motion:

L

[(
T−1ηsT (T 1/2 · )

)
s≥0

]
=⇒
T→∞
L [(%s)s≥0] .(1.37)

(b) Furthermore for any fixed s > 0,

L[L[T−1ξsT (T 1/2·)|η]] =⇒
T→∞

L[L[X%
s |%]]. 3(1.38)

For the next Proposition we need the higher moment assumption (1.35) of Theorem 3.

Proposition 1.5 (Empty time–space cylinder) Let (ηt)t≥0 be the catalyst process on Z2

where (at) fulfills the assumptions of Theorem 3. For ε > 0 there exist δ > 0 and r > 0 such
that (with B(R) denoting the box with radius R)

lim sup
T→∞

PH1

[
sup

(1−δ)T≤s≤T
ηs(B(rT 1/2)) > 0

]
< ε. 3(1.39)
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Since we talk about weak convergence and conditional distributions of measures on R2 in
(1.38) we should mention thatM(R2), equipped with the vague topology is a Polish space and so
the standard theory applies toM(R2). See Kallenberg (83). Note that for NG0 = N (G) ⊂M(G)
the vague topology coincides with the product topology that we have used in the previous
statements.

If we are only interested in showing persistence of the reactant we can get this from Propo-
sition 1.5 alone; Proposition 1.4 is only needed for the more detailed information on the limit
law.

Corollary 1.6 Consider the situation of Theorem 3, then (1.39) implies that the reactant (ξt)
is persistent. In fact, for any weak limit point L[L[ξ∞|η]] of L[L[ξt|η]] we have

P[E[ξ∞(0)|η] = θξ] = 1. 3(1.40)

Outline The rest of the paper is organized as follows. In Section 2 we collect a number of
tools for branching processes in random medium, among which is the appropriate version of
Kallenberg’s backward tree and Kallenberg’s persistence–extinction criterion. Then we proceed
in three sections each proving one of the three theorems in order of their appearance. In the
appendix we show Proposition 1.3

2 Preliminaries

In this section we provide first of all in Subsection 2(a) some tools but then in Subsections
2(b) - 2(d) we explain and adapt the idea of Palm distributions, canonical measures and the
Kallenberg backward tree criterion for persistence/extinction.

(a) Laplace functionals, moments and Poisson convergence

Throughout the proofs we will frequently make use of explicit calculations based on Laplace
transforms, moments and convergence to Poisson systems due to migration. In this paragraph
we collect the relevant facts.

Let (Yt)t≥0 be the random walk with transition probabilities given by bt(·, ·) (recall (1.7))
and let κ be a (possibly random) additive functional of (Yt) which is absolutely continuous w.r.t.
Lebesgue measure. Let Q(z) =

∑∞
k=1 qkz

k be the p.g.f. of (qk). Recall that N (G) denotes the
(nonnegative) integer valued measures on G.

Lemma 2.1 (Laplace functional)
There exists a unique multiplicative strong Markov process (ζt)t≥0 with values in N (G) starting
in δg at time r whose Laplace functional (for ϕ : G→ [0,∞) )

wκr,t(g) = Eκ
r,δg [exp{−〈ζt, ϕ〉}],(2.1)

satisfies

wκr,t(g) = Eκ
r,g

[
e−ϕ(Yt)e−κ((r,t)) +

∫ t

r

e−κ((r,s))Q(wκs,t(Ys))κ(ds)

]
.(2.2)
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Here Eκ
r,δg (respectively Eκ

r,g) refers to the process (ζt)t≥r (respectively (Yt)t≥r) started with one
particle at g ∈ G. 3

Proof See Dawson (93), Lemma 4.4.2 and the references given there. �

Definition 2.1 We refer to (ζt)t≥0 as the (κ,Q, b) branching process. 3

Lemma 2.2 Let (ηt)t≥0 be a branching random walk. Let (Yt)t≥0 be the random walk with
transition rate b. Choose κ(dt) = ηt(Yt)dt as the additive functional. Consider the (κ̄, Q, b)-
branching process (ζt). Then (ηt, ζt)t≥0 is the catalyst–reactant process (CRP) introduced in
(1.12). 3

Proof It suffices to show that the CRP (ηt, ξt)t≥0 solves (2.1) and (2.2). Define the conditional
Laplace transforms wηr,t = Er,δg[exp(−〈ξt, ϕ〉)|η] and let B the generator of bt. By construction
wηr,t(g) solves the backward equation

−
d

dr
wηr,t(g) = ηr(g)Q(wηr,t(g))− ηr(g)wηr,t(g) + Bwηr,t(g).(2.3)

This equation has a unique solution with Feynman–Kac representation

wηr,t(g) = Eη
r,g

[
e−ϕ(Yt) exp{−

∫ t

r

ηs(Ys)ds}(2.4)

+

∫ t

r

ηs(Ys)Q(wηs,t(Ys)ds) exp{−

∫ s

r

η(Yu)du}

]
. �

Next we use this representation of the Laplace transform of a branching random walk in
random medium to compare the probabilities of local extinction of two such processes associated
with two media described by the two additive functionals κ̄1 and κ̄2, which satisfy:

κ̄1 ≥ κ̄2.(2.5)

We denote the two resulting processes by (ζ1
t )t≥0 and (ζ2

t )t≥0 and the corresponding Laplace
functionals by wir,t, i = 1, 2. It is assumed that L[ζ1

0 ] = L[ζ2
0 ]. Then the following comparison

result holds:

Lemma 2.3 (comparison) Assume that (2.5) holds. Then the following is true.

w1
r,t ≥ w

2
r,t, t ≥ r.(2.6)

P[ζ1
t (A) = 0] ≥ P[ζ2

t (A) = 0], A ⊆ G, t ≥ 0. 3(2.7)
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Proof Define

vr,t(g) = w1
r,t(g)−w2

r,t(g), g ∈ G, t ≥ r.(2.8)

Then {vr,t(g), g ∈ G} satisfy the following system of differential equations (recall B is the
generator of bt):

−
d

dr
vr,t(g) = −kr,t(g)vr,t(g) + (Bvr,t)(g) + hr,t(g), ∀g ∈ G(2.9)

where (recall Q is the generating function of the offspring distribution (qk)):

kr,t(g) =
κ̄2(dr)

dr

(
1−

Q(w1
r,t(g))−Q(w2

r,t(g))

vr,t(g)

)
≥ 0(2.10)

hr,t(g) =
(κ̄1 − κ̄2)(dr)

dr

(
Q(w2

r,t(g)− w1
r,t(g))

)
≥ 0.

Since the system of differential equations (2.9) has a unique solution, by the standard theory for
differential equations in Banach spaces, here L∞(G) , the solution has the following Feynman–
Kac representation (Yt is the random walk generated by B)

vr,t(g) = Er,x

[∫ t

r

hs,t(Ys) exp

{
−

∫ s

r

ku,t(Yu)du

}
ds

]
≥ 0.(2.11)

Manifestly we have vr,t(g) ≥ 0 proving (2.6). For the relation (2.7) recall that if we choose in
the Laplace functional ϕ = λ1A then we obtain the extinction probabilities in the limit λ→∞.
This completes the proof. �

Now we will give formulas for the first and second moments of ξt conditioned on (ηt)t≥0 in
the case of critical binary branching of ξt, i.e. for q0 = q2 = 1

2 .

Lemma 2.4 (Moments) For f : G→ [0,∞) bounded we have

E0,δg [〈ξt, f〉|η] = (btf)(g) a.s.(2.12)

Var0,δg [〈ξt, f〉|η] = bt(f
2)(g)− (btf)2(g) +

∫
ds
∑
g∈G

bs(g, g
′)ηs({g

′})(bt−sf)2(g′). 3(2.13)

Proof (2.12) follows from the criticality of the branching mechanism of ξt. (2.13) can be
obtained by solving the backward equation for Er,δg [〈ξt, f〉

2|η]. We omit the details. �

We will need the asymptotics of the probability of survival of the Galton Watson process
(Zt)t≥0 with offspring distribution (qk) and with Z0 = 1 a.s.
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Lemma 2.5 If (qk) has a finite variance σ2, then

lim
t→∞

tP[Zt > 0] =
2

σ2
.(2.14)

Furthermore in this case the rescaled process converges to an exponential mean σ2/2 random
variable

L[Zt/t | Zt > 0] =⇒
t→∞

exp

(
σ2

2

)
.(2.15)

In the special case q0 = q2 = 1
2 we have the equality

P[Zt > 0] =
2

2 + t
, t ≥ 0. 3(2.16)

Proof See Athreya and Ney (72). �

We come to a lemma that states convergence towards a mixed Poisson field of certain random
populations.

Let G = Zd or G = Rd and ` be the normed Haar measure on G (i.e., counting measure on Zd
or Lebesgue measure on Rd). Let (Φn)n∈N be a sequence of random populations of particles on G
(i.e., N0-valued random measures on G) and let (Kn)n∈N be a sequence of stochastic kernels on
G. We write Φn◦Kn for the random population obtained from Φn by independent displacements
of the particles according to Kn. Further we write ΦnKn for the intensity measure of Φn ◦Kn

given Φn, i.e., with B(G) denoting Borel sets

(ΦnKn)(A) =

∫
Φn(dg′)Kn(g′, A), A ∈ B(G).(2.17)

The followig proposition is well–known; we include a proof for the reader’s convenience

Proposition 2.1 (Poisson convergence) Assume that there is a nonnegative random vari-
able ζ such that

L[ΦnKn] =⇒
n→∞
L[ζ `].(2.18)

Further assume that for compact C ⊂ G

αn(C) := sup{Kn(g, C), g ∈ G}−→
n→∞

0.(2.19)

Then Φn ◦Kn converges in distribution towards a mixed Poisson field with random intensity ζ:

L[Φn ◦Kn] =⇒
n→∞

E[Hζ ]. 3(2.20)
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Proof Recall that N (G) carries the vague topology. Hence we have to show that for ϕ ∈
C+
c (G)

E[exp(−〈Φn ◦Kn, ϕ〉)]−→
n→∞

E[exp(−ζ〈`, 1− e−ϕ〉)].(2.21)

Note that if αn(supp(ϕ)) ≤ 1/2, hence for n large enough:∣∣∣∣log

[
1−

∫
Kn(g, dg′)(1− e−ϕ(g′))

]
+

∫
Kn(g, dg′)(1− e−ϕ(g′))

∣∣∣∣(2.22)

≤

(∫
Kn(g, dg′)(1− e−ϕ(g′))

)2

≤ αn(supp(ϕ))

∫
Kn(g, dg′)(1− e−ϕ(g′)).

Thus using the independence of the displacements and (2.22)

E [exp(−〈Φn ◦Kn, ϕ〉)] = E

[
exp

(∫
Φn(dg) log

(
1−

∫
Kn(g, dg′)[1− e−ϕ(g′)]

))]
(2.23)

= E[exp(−〈ΦnKn, 1− e
−ϕ〉) · exp(βn)],

where |βn| ≤ 〈ΦnKn, 1 − e−ϕ〉 · αn(supp(ϕ)). Then by assumption (2.18) and (2.19), βn → 0
stochastically as n→∞. We conclude (with (2.18)) that

lim
n→∞

E[exp(−〈Φn ◦Kn, ϕ〉)] = lim
n→∞

E[exp(−〈ΦnKn, 1− e
−ϕ〉)](2.24)

= E[exp(−ζ〈`, 1− e−ϕ〉)].

The r.h.s. above is for fixed ζ the Laplace transform of a Poisson system. This completes the
proof. �

(b) The canonical Palm distributions of the reactant process

In this paragraph we present the tools arising from the infinite divisibility of L[ξt|η], namely
canonical measures and Palm distribution.

Assume that the process (ηt, ξt)t≥0 has as initial distribution (where νθ denotes the unique
extremal intensity θ-equilibrium of (ηt)t≥0):

µ = νθη ⊗Hθξ ∈ Eθη ,θξ .(2.25)

This means that the catalyst starts in an ergodic measure with intensity θη which is an equi-
librium and the reactant process is a Poisson system independent of the catalyst. In particular
the law µ(·|η) is infinitely divisible and has a canonical measure. Also the law L[ξt|(ηt)s≤t] is
infinitely divisible and hence has a canonical measure. In other words for every realization of
(ηt)t≥0 there exists a σ-finite measure Q

η
t on (N0)G such that

E
[
e−〈ξt,ϕ〉|(ηs)s≤t

]
= exp

(
−

∫
NG0

(1− e−〈χ,ϕ〉)Qηt (dχ)

)
,(2.26)
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where ϕ is a function G → R+ which is 0 except at finitely many points. The measure Q
η
t

describes the intensity of configurations of particles descending from the same ancestor. We
view ξt below as a random measure on G rather than a configuration in (N0)G.

Next recall the concept of Palm distributions of measures on the configuration space. Let
R ∈M(M(G)) and assume that R has locally finite intensity I , i.e.

I(g) :=

∫
χ({g})R(dχ)<∞, g ∈ G.(2.27)

Define the Campbell measure on G×M(G):

R̄(A×B) =

∫
χ(A) 1B(χ)R(dχ).(2.28)

Then define:

Rg(B) =
R̄(dg × B)

I(dg)
.(2.29)

The family {Rg, g ∈ G} is called the Palm distribution associated with R.

In other words for every g with I(g) > 0 the Palm distribution Rg arises through a re–
weighting of the form of a local size biasing of R:

Rg(B) =

∫
χ({g})1B(χ)R(dχ)

I(g)
, B ⊆M(G).(2.30)

Consider the situation when R is the canonical measure of an infinitely divisible law P on
M(G). In this case (with a slight abuse of language) we make the following definition:

Definition 2.2 The family (Rg, g ∈ G) is called the family of canonical Palm distributions
of P. 3

The best way to think of Rg is in terms of a two step sampling. Consider a Poisson system
of configurations (ζi) with intensity measure R. Write ζ =

∑
i ζi for its superposition. We

first make a size biased sampling of ζ, that is we choose dζ with probability (ζ(g)/I(g))P[dζ].
Given ζ we choose the configuration ζi with probability ζi(g)/ζ(g). The law of the sampled
configuration is Rg.

We now develop the tools that allows us later to analyze the infinitely divisible distributions
L[ξt|η] in terms of Palm distribution and canonical Palm distributions.

We begin by constructing the canonical Palm distribution of (ξt)t≥0 for given catalytic
medium (ηt)t≥0 where we use the initial law given in (2.25) for (ηt, ξt)t≥0. We identify the
canonical Palm distribution by giving an explicit representation of a realization, the so called
Kallenberg backward tree. We need some ingredients.
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For this purpose return to the branching random walk scenario of part (a) of this section for
the additive functional κ given by the catalyst (ηt)t≥0. Recall (2.26).

Let (Ȳ gt )t≥0 be a random walk on G with transition kernel b̄ (b̄(g, g′) := b(g′, g)) starting in
g at time 0. Furthermore let

{(ξg,st )t≥s, g ∈ G, s ∈ R+}(2.31)

be a collection of independent branching random walks in catalytic medium with transition
kernel b, starting in point g at time s with one particle. Next we consider a Poisson random
measure νg,T on G× [0, T ] with intensity measure

δȲ gT−s
(dg′)ηs(g

′)ds.(2.32)

The ingredients introduced above allow to define the branching population

ξ̂T = δg +

∫
G×[0,T ]

νg,T (dg′, ds)ξg
′,s
T(2.33)

which is embedded into a backward tree.

“Ego” is sampled at position g, which is the starting point of the ancestral line Ȳ g going
back from time T into the past. The Poisson random measure ν marks the space–time points
along the side–trees ξg

′,s.

As we will see in Proposition 2.2 (a) equation (2.33) provides a representation of the canonical
Palm distribution. For a time discrete setting, this goes back to Kallenberg [K1]. For the time–
continuous, time–homogeneous case a proof is given in [GRW]. We will outline the proof here
both in order to be self–contained and to cope with the time–inhomogeneous situation we are
interested in.

Later on, we will need that (2.33) provides a stochastic minorant for the Palm distribution of
a system started off in a general initial distribution with homogeneous intensity. This assertion
which we state in Proposition 2.3 follows rather directly from from Proposition 2.2 (a) together
with the backward formula 1.9.1 in [LMW]; we will give a direct proof embedded into a general
elementary argument.

Proposition 2.2 (a) (Backward tree representation, canonical Palm distribution)
A representation of the Palm distribution of the canonical measure QηT corresponding to the point
g ∈ G is given for every given catalyst η by:

(QηT )g = L
[
ξ̂T |(ηt)t∈[0,T ]

]
. 3(2.34)

Remark Recall that this realization describes for given catalyst the law of the cluster of a
randomly picked reactant particle at time T at site g.

We can also describe the Palm distribution of the law of the reactant process starting with
one particle in a fixed position. Consider the random walk bridge

(Y (h,t),(g,T )
s )t≤s≤T ,(2.35)

which is obtained by conditioning Y to start at time t in h and to arrive at time T in g. Then:
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Proposition 2.2 (b) (Backward tree representation, fixed ancestor) The Palm distri-

butions of the reactant process ξh,tT in the point g is given by the formula

(L[ξh,tT ]|η)g = L

[
δg +

∫
G×[t,T ]

ν(h,t),(g,T )(dg′, ds)ξg
′,s
T

∣∣∣η],(2.36)

where ν(h,t),(g,T )(dg′, ds) is a Poisson measure on G× [t, T ] with random intensity measure

δ
Y

(h,t),(g,T )
s

(dg′)ηs(g
′)ds. 3(2.37)

Proof of Proposition 2.2 The proof follows the argument in [GRW] in Section 2 of that
paper. The only additional complication faced in the present situation is the time–inhomogeneity
of the reactant process for given catalyst process. We give the complete argument here.

It is convenient (and simplifies notation) to think of a fixed realization η; let us then write

κ(g′, s) := ηs(g
′), g′ ∈ G, s ≥ 0.(2.38)

We start by proving (2.36). For ϕ ∈ C+
c (G), g′ ∈ G and 0 ≤ s ≤ T , define

wηs,T (g′) := E
[
exp

(
−〈ξg

′,s
T , ϕ〉

)
|η
]
,(2.39)

vηs,T (g′) := E
[
ξg
′,s
T (g) exp

(
−〈ξg

′,s
T , ϕ〉

)
|η
]
.(2.40)

Let B be the generator of the random walk Y . The function v is the solution of the following
equation:

∂vηs,T (g′)

∂s
= −Bvηs,T (g′) + κ(g′, s)(1−wηs,T (g′))vηs,T (g′), s ≤ T,

vηT,T (g′) = 1{g}(g
′) e−ϕ(g′).

(2.41)

Thus, by the Feynman–Kac formula we have

vηt,T (h) = bT−t(h, g)e−ϕ(g)E
[

exp
(
−

∫ T

t

κ(Y (h,t),(g,T )
s , s)(1−wηs,T (Y (h,0),(g,T )

s ) ds
)
|η
]

= E[ξh,tT (g)]E
[

exp
(
−
〈
δg +

∫
G×[0,T ]

ν(h,t),(g,T )(dg′, ds)ξg
′,s
T , ϕ

〉)
|η
]
.

(2.42)

This proves (2.36).

Now we turn to the proof of (2.34). Using (2.40) and (2.42) we have (recall (2.26) and (2.32)):∫
QηT (dχ)χ({g}) exp(−〈χ, ϕ〉) = θξ

∑
h∈G

E
[
ξh,0T (g) exp (− 〈ξh,0T , ϕ〉)|η

]
= θξ

∑
h∈G

vη0,T (h) = θξE
[

exp
(
−
〈
δg +

∫
G×[0,T ]

νg,T (dg′, ds) ξg
′,s
T , ϕ

〉)
|η
]
,

(2.43)
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where the last equality results from the fact that

L[(Ȳ gT−s)0≤s≤T ] =
∑
h∈G

bT (h, g)L
[
(Y (h,0),(g,T )
s )0≤s≤T

]
.(2.44)

The proof of (2.34) is completed by observing that
∫
QηT (dχ)χ({g}) = θξ. �

Finally we use the representations above to give a stochastic minorant for the size–biased
distributions (L[ξT |η])g if we start the reactant system in a quite general initial distribution.
Namely

Proposition 2.3 (Comparison for Palm distribution)
Take as initial distribution for the catalyst–reactant system any law satisfying:

E[ξ0(g)] = θξ ∈ (0,∞), g ∈ G.(2.45)

Then (recall (2.32) for ν) in the sense of stochastic ordering

(L[ξT |η])g ≥ L

[ ∫
G×[0,T ]

νg,T (dg′, ds)ξg
′,s
T

∣∣∣η]. 3(2.46)

Proof We will derive this from Proposition 2.2 (b) and the following elementary fact:
Let I be a countable set and {Xi, i ∈ I} a family ofM(G)-valued random variables with means

ei = E[Xi(g)] ∈ [0,∞),
∑
i∈I

ei ∈ (0,∞).(2.47)

Define

X =
∑
i∈I

Xi,(2.48)

and denote (for those i with ei > 0) by Xg
i , X

g realizations of the size–biased (in g) distribution
of Xi respectively X . This is L[Xg] = (L[X ])g and L[Xg

i ] = (L[Xi])g. Note that we do not
assume independence of either of the families {Xi, i ∈ I} and {Xg

i , i ∈ I}. Furthermore define
a random variable R which is independent of the family {Xg

i , i ∈ I} by setting

P[R = i] = ei/E[X(g)].(2.49)

Then

L[Xg] ≥ L[Xg
R].(2.50)
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This is verified by the following explicit calculation. For a test function ϕ : G → [0,∞) and
K ≥ 0:

P[〈Xg, ϕ〉 ≥ K] =
1

E[X(g)]
E[X(g); 〈X, ϕ〉 ≥ K] =

1

E[X(g)]

∑
i∈I

E[Xi(g); 〈X,ϕ〉 ≥ K](2.51)

≥
1

E[X(g)]

∑
i∈I

E[Xi(g); 〈Xi, ϕ〉 ≥ K]

=
1

E[X(g)]

∑
i∈I

eiP[〈Xg
i , ϕ〉 ≥ K]

= P[〈Xg
R, ϕ〉 ≥ K].

We now apply formula (2.50) to the following situation. Let I = G × N . To define the Xi

let X̄(h,n) denote independent versions of the reactant process started with one particle in h at
time 0 and evaluated at time T . Define

X(h,n) = X̄(h,n)1{ξ0(h)≥n}.(2.52)

and note that

L[Xg
(h,n)] = (L[ξh,0T |η])g.(2.53)

Writing R = (R1, R2), i.e. R1 = h if R = (h, n), we have P[R1 = h] = bT (h, g) and (recall
(2.31))

L[Xg
R] = E

[(
L
[
ξ

(R1,0)
T |R1, η

])
g
|η
]
.(2.54)

This in turn equals the r.h.s. of (2.46) by Proposition 2.2 (b). On the other hand we have
L[X ] = L[ξT |η]. Hence (2.54) equals also the l.h.s. of (2.46) and we have proved Proposition
2.3. �

(c) A first application of the backward trees

We will now demonstrate the use of the backward tree representation in an easy example, which
already gives some interesting information about our model and prove the statement (1.28) in
the introduction.

Proposition 2.4 (recurrent catalyst motion, transient reactant motion) Consider the
model (ηt, ξt) introduced in Section 1 where the kernel â is recurrent and the kernel b̂ is transient.
Pick L[(η0, ξ0)] = µη ⊗Hθξ , where µη ∈ Eθη (recall (1.2)). Then

L[(ηt, ξt)]=⇒
t→∞

δ0 ⊗Hθξ . 3(2.55)
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Proof The proof proceeds in two steps, in the first step we use the Kallenberg technique to
reduce the assertion to a statement on canonical Palm distributions which we prove in Step 2.

Step 1 Let (Rηt )g denote the Palm distribution of the canonical measure Qηt of ξt for given
catalyst (ηt)t≥0. We will prove in Step 2 that for every B ⊆ G with |B| <∞, there exists a t0
such that for every t ≥ t0:

P[(Rηt )g({χ : (χ− δg)(B) > 0})] < ε, ∀g ∈ B.(2.56)

The above relation implies that

(Rηt )g

∣∣∣
B

=⇒
t→∞

δ(δg) stochastically.(2.57)

However note that the r.h.s. is the canonical Palm distribution of Hθξ . Since the intensity of ξt
for given η is θξ for all t we find that the (Rηt )g converge as t → ∞ to δ(δg) and the intensities
of ξt converge to the intensity of Hθξ . It follows from [K1], Lemma 10.8, that L[ξt|η] =⇒

t→∞
Hθξ

stochastically. Hence

L[ξt] =⇒
t→∞

Hθξ .(2.58)

Since â is recurrent we know that

L[ηt] =⇒
t→∞

δ0.(2.59)

The combination of the last two relations gives the assertion.

Step 2 We now prove (2.56). Choose T large enough such that

θη ·

∫ ∞
T

b̂s(g, B)ds <
ε

2
.(2.60)

Next choose C ⊇ B, with |C| <∞ such that for the random walk (Yt) associated with b̄ (recall
that b̄(g, g′) = b(g′, g):

P[A1] > 1− ε/4, A1 := {Ȳ g
s ∈ C, ∀s ∈ [0, T ]}.(2.61)

Furthermore we can choose T so large that in addition:

P[A2] > 1− ε/4, A2 := {ηt−T (C) = 0, ∀s ∈ [0, T ]}.(2.62)

Using the Kallenberg representation of Proposition 2.2 (a) and Chebyshev’s inequality we get

P[(Rηt )g({χ : (χ− δg)(B) > 0}) > 0; A1 ∩A2](2.63)

≤ E[1A1

∫ t

0

bs(Ȳ
g
s , B)ηt−s(Ȳ

g
s )ds; A2]

≤ E
[ ∫ t

T

bs(Ȳ
g
s , B)ηt−s(Ȳ

g
s )ds

]
≤
ε

2
.

Since P[Ac
1 ∪A

c
2] < ε/2 by construction we obtain the assertion (2.56). �
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(d) Kallenberg criterion

For spatial critical branching processes there exists a well known criterion for persistence versus
local extinction, the so called Kallenberg criterion based on the explicit representation of the
canonical Palm distribution (compare Section 2(b)). That is, the question whether a spatial
branching process goes to local extinction or is persistent can be answered by deciding whether
the pedigree of a sampled individual is locally clumping as t→∞ or not.

This idea is due to Kallenberg [K1], who treated time discrete homogeneous models. Later
this was extended to various classes of time continuous models, see [LW] and the references given
there.

Here we generalize the Kallenberg criterion to the case of branching in random medium.
Namely we establish the Kallenberg criterion for branching random walk in the time inhomoge-
neous medium. Due to the discrete space we can give a fairly short (and self–contained) proof
avoiding the technicalities of continuum models.

The random medium we use is κ(g,−t), t ≥ 0, g ∈ G. That is if we start the branching
random walk at time −t then the additive functional of the random walk (Ys)−t≤s≤0 is given by

κ((−r,−s)) =

∫ −s
−r

κ(Yu, u)du

(see Lemma 2.1).

Let ξ−ts be the population at time s of a branching random walk in the (fixed) catalytic
medium κ started at time −t in the random state of a spatially homogeneous Poisson field with
mean 1. We assume that the motion is given by the random walk Y with transition kernel
bs(·, ·). We fix a g ∈ G and denote by (Ȳ gs )s≥0 a random walk with kernel b̄ started at time 0 in
g.

Proposition 2.5 (Kallenberg criterion)

(a) There is a random population ξ−∞0 such that L[ξ−t0 ]=⇒
t→∞
L[ξ−∞0 ].

(b) Fix g ∈ G. Let νg,0(dg′, ds) be a Poisson measure on G× (−∞, 0] with random intensity
κ(Ȳ g−s, s) ds. Let {(ξg,st )t≥s, g ∈ G, s ≤ 0} be an independent family of branching random
walks moving with kernel b in the medium κ, starting at time s in δg.

The following conditions are equivalent:

(i)

∫
G×(−∞,0]

νg,0(dg′, ds)ξg
′,s

0 (g) is stochastically bounded as t→∞.(2.64)

(ii)

∫ ∞
0

bt(Ȳ
g
t , g)κ(Ȳ gt ,−t) dt <∞ a.s.

(iii) E[ξ−∞0 (g)] = 1 (i.e. (ξt) is persistent).

(iv) E[ξ−∞0 (g)]> 0.
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(c) Suppose we are in the situation given in (i)-(iv) above. Then the Palm distributions

(L̃[ξ−∞0 ])g of the canonical measure of L[ξ−∞0 ] have the representation

(L̃[ξ−∞0 ])g = L[δg +

∫
G×(−∞,0]

νg,0(dg′, ds)ξg
′,s

0 ], g ∈ G. 3(2.65)

Proof We prove each of the statements (a) - (c). in a separate step.

(a) Since E[ξ−t0 ] = ` for all t ≥ 0 the family L[ξ−t0 ], t ≥ 0} is tight. Hence it suffices to show
convergence of the Laplace transforms. For f ∈ C+

c (G) let

u(t, g; f) = 1− E−t,δg [exp(−〈ξ0, f〉)],(2.66)

where (ξs)−t≤s≤0 is branching random walk in the medium κ and starting time and configuration
are encoded as subscript of E. If we can show that E[exp(−〈ξ−t0 , f〉)] is decreasing in t, then
the limit ξ−∞0 exists. However, by the branching property and the independence of particles in
the initial configuration

E[exp(−〈ξ−t0 , f〉)] = exp(−〈`, u(t, ·, f)〉).(2.67)

We know that u solves the partial differential equation

∂tu = Bu− κ(g,−t)u2,(2.68)

where B is the generator of (Yt). Differentiating the r.h.s. of (2.67) and inserting (2.68) yields
a non–positive number and we are done.

(b) The equivalence of (i) with (iii) is immediate from the representation of the canonical
Palm distribution in Part 3 of this proposition. We are now going to show the equivalence of
(ii), (iii), and (iv). The proof has two parts. Part 1 shows that (ii)⇐⇒ (iii) and Part 2 shows
that (iii) ⇐⇒ (iv) of which only (iv)⇒(iii) is nontrivial. For transparency each part is broken
in steps.

(ii) ⇐⇒ (iii)
Step 1 We begin proving an identity between distribution, Palm distribution and canonical
Palm distribution. Fix g ∈ G and define Nt = ξ−t0 (g), 0 ≤ t ≤ ∞. Let N̂t have the size biased
distribution of Nt, i.e. (note that E[Nt] = 1)

P[N̂t = n] = nP[Nt = n].(2.69)

Further let
̂̃
Nt have the size biased distribution of the canonical measure of Nt. We assume that

Nt and
̂̃
Nt are independent. Then

N̂t
D
= Nt +

̂̃
Nt.(2.70)
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This is easily shown by a small calculation with Laplace transforms. Let Qt be the canonical
measure of L[Nt]. Then by definition for λ ≥ 0

E[e−λNt] = exp

(
−
∞∑
m=0

Qt({m})(1− e
−λm)

)
.(2.71)

Differentiating both sides of (2.71) gives (note that P[Nt = 0] > 0, hence Qt is finite)

E[e−λN̂t] = E[e−λNt ]
∞∑
m=0

Qt({m})me
−λm = E[e−λNt ] E[e−λ

̂̃
N t ].(2.72)

Step 2 Here we prove (ii) =⇒ (iii). Now E[ξ−∞0 (g)] = 1 is equivalent to uniform integrability

of {Nt, t ≥ 0} which in turn is equivalent to the tightness of L
[
N̂t

]
since E[Nt] = 1. By (2.70)

this is equivalent to the tightness of

{
L

[̂̃
Nt

]
, t ≥ 0

}
.

In order to check tightness of

{
L

[̂̃
Nt

]
, t ≥ 0

}
we recall from (2.34),

̂̃
Nt that

L[
̂̃
Nt] = L[St],(2.73)

where St is the following functional of the branching tree

St = 1 +

∫
G×(−∞,0]

νg,0(dg′, ds) ξg
′,s(g).(2.74)

Hence we can define the monotone limit S:

S = lim
t→∞

St(2.75)

Note that a.s. finiteness of S is equivalent to tightness of {L[St], t ≥ 0}, and hence to persistence
of (ξ−t0 ).

Then we get (ii)⇒(iii) by the equality

E[S|Ȳ g] =

∫ ∞
0

bt(Ȳ
g
t , g)κ(Ȳ gt ,−t) dt.(2.76)

Step 3 It remains to show that (iii) implies (ii). We do so by proving that S < ∞ implies
(ii). Assume that S < ∞ a.s. Let F∞ :=

⋂
t≥0 σ(Ȳ gs , s ≥ t) be the terminal σ-field of (Ȳ gt ).

Let
̂
ξg
′,−t

0 (g) have the size–biased distribution of ξg
′,−t

0 (g). Then we have the backward tree
representation

L[St|(Ȳ
g
s )s≥t] = L

[
̂

ξ
Ȳ gt ,−t
0 (g)|Ȳ gt

]
.(2.77)

This follows by using for the l.h.s. (2.74) and for the r.h.s. (2.36).
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With this identity we can continue as follows: By the martingale convergence theorem we
get:

lim sup
n→∞

lim sup
t→∞

P

[
̂

ξ
Ȳ gt ,−t
0 (g) ≥ n|Ȳ g

]
= lim sup

n→∞
lim sup
t→∞

P

[
̂

ξ
Ȳ gt ,−t
0 (g) ≥ n|Ȳ g

t

]
(2.78)

= lim sup
n→∞

lim sup
t→∞

P
[
St ≥ n|(Ȳ

g
s )s≥t

]
≤ lim sup

n→∞
lim sup
t→∞

P
[
S ≥ n|(Ȳ gs )s≥t

]
= lim sup

n→∞
P[S ≥ n|F∞] = 0

by the assumption S < ∞. Hence {L[
̂

ξ
Ȳ g−s,s

0 (g)|Ȳ g], s ≤ 0} is tight a.s., and this implies the
existence of a constant γ = γ(Ȳ g) > 0 such that for s ≤ 0

P

[
ξ
Ȳ g−s,s

0 (g) > 0|Ȳ g
]
≥ γE

[
ξ
Ȳ g−s,s

0 (g)|Ȳ g
]

(2.79)

= γb−s(Ȳ
g
−s, g).

Next we note

S ≥

∫
G×(−∞,0]

νg,0(dg′, ds)1(ξg
′,s

0 (g) > 0).(2.80)

Hence S can be bounded below by a Poisson random variable with mean

γ

∫ ∞
0

bt(Ȳ
g
t , g)κ(Ȳ

g
t ,−t)dt,(2.81)

which is finite iff this expression is finite. In other words S < ∞ a.s. implies (i) and we are
done.

(iii) =⇒ (ii).
Assume that E[N∞] > 0. Let ξ−t−s be the population at time −s of a branching random walk
in the catalytic medium κ started at time −t, −t ≤ −s, in the initial law H1. By the same
reasoning as in the proof of Part 1 we infer that there exists a random population ξ−∞−s such that
L[ξ−t−s]=⇒

t→∞
L[ξ−∞−s ], and that L[ξ−∞−s ] is transported into L[ξ−∞0 ] through the branching dynamics

in the medium κ. The random population ξ−∞0 can be represented as

L[ξ−∞0 ] =

∫
N (G)

P[ξ−∞−t ∈ dm] L

∑
h∈G

m({h})∑
i=1

ξi,h,−t0

 ,(2.82)

where the family {ξi,h,−t, i ∈ N, h ∈ G} is independent. We thus obtain for all c > 0:

E[ξ−∞0 ; {ξ−∞0 > c}] =(2.83)

=

∫
N (G)

P[ξ−∞−t ∈ dm] E

[∑
h∈G

m({h})∑
i=1

ξi,h,−t0 (g);
∑
h∈G

m({h})∑
i=1

ξi,h,−t0 (g) > c

]
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≥

∫
N (G)

P[ξ−∞−t ∈ dm]

∫
G

m(dh) E[ξ1,h,−t
0 (g); ξ1,h,−t

0 (g) > c]

=

∫
N (G)

P[ξ−∞−t ∈ dm]

∫
G

m(dh) bt(h, g) P[
̂

ξ1,h,−t
0 (g) > c]

=

∫
N (G)

P[ξ−∞−t ∈ dm]

∫
G

m(dh) bt(h, g)

P
[
1 +

∫
G×[−t,0]

ν(h,−t),(g,0)(dg′, ds) ξg
′,s

0 (g) > c
]
,

where we used (2.36) in the last equality and defined ν(h,−t),(g,0) as the Poisson measure on
G× (−∞, 0] with intensity (recall (2.35) and compare with (2.37))

δ
Y

(h,−t),(g,0)
s

(dg′)κ(g′, s)ds.(2.84)

Since by assumption E[ξ−∞0 (h)] = ε > 0 for all h ∈ G we know that also E[ξ−∞−t (h)] = ε > 0
and hence the r.h.s. in (2.83) equals

εP
[
1 +

∫
G×[−t,0]

νg,0(dg′, ds)ξg
′,s

0 (g) > c
]

= εP[St > c].(2.85)

This shows that the random variable S (recall (2.75)) is a.s. finite. As stated in Step 2, this is
equivalent to persistence.

(c) Denote the canonical measure of ξ−∞0 by R∞ and by Rt the canonical measure of the
population of the process at time 0 if we start at time −t, in the initial distributionH1. Observe
that

∫
R∞(dψ)ψ(g) = 1 = `(g). Furthermore ψ(g) is uniformly integrable under the measures

Rt. Since for all f ∈ C+
c (G) the finite measures Rt(dψ)(1− e−〈ψ,f〉) converge weakly as t→∞

to R∞(dψ)(1− e−〈ψ,f〉), we get∫
R∞(dψ)ψ(g)(1− e−〈ψ,f〉) = lim

t→∞

∫
Rt(dψ)ψ(g)(1− e−〈ψ,f〉).(2.86)

With Proposition 2.2 (a) we continue this equation

= lim
t→∞

E
[
1− exp

(
−
〈
δg +

∫
G×[−t,0]

νg,0(dg′, ds)ξg
′,s

0 , f
〉)]

= E
[
1− exp

(
−
〈
δg +

∫
G×(−∞,0]

νg,0(dg′, ds)ξg
′,s

0 , f
〉)]

.

This completes the proof. �

3 Persistent catalysts: Proof of Theorem 1

The proof of Theorem 1 will be based on the fact that the law of the reactant process given
the catalyst process is (for suitable initial law) infinitely divisible. Hence it is associated with
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a canonical measure so that ξt can be decomposed into the clans of related particles which
correspond to the point process generated on N (G) by the canonical measure. Then following
Section 2(b) it is possible to give an explicit construction of the canonical Palm distribution (see
Definition 2.2).

Having this Palm distribution for given catalyst process in an explicit representation at our
disposal we will establish the local divergence or convergence of a realization of this measure
depending on whether b̂ is recurrent or transient. From these results we deduce the needed
facts on L[ξt] itself using the Kallenberg criterion of Section 2(d). Since the behavior of L[ηt]
as t→∞ is well known, we can use coupling techniques to make assertions about L[(ηt, ξt)] as
t→∞.

In order to analyze the canonical Palm distribution a prominent role is played by certain
functionals generated by random walks in random scenery and we therefore study the latter in
a separate Subsection 3(a), before we prove Theorem 1. in Subsection 3(b).

(a) Preparation: Random walk in random scenery

In this section we prove some statements concerning objects controlling the law of the Kallenberg
backward tree, which appeared in Section 2(b).

An important quantity in studying the Kallenberg backward tree is the expected number
of relatives of the randomly chosen particle located at the particular site 0, conditioned on the
random walk path of the randomly chosen particle. According to Section 2(b) (Proposition
2.2(a)) this conditional expectation is equal to:

E1

[ ∫ T

0

ηt
(
Ȳ 1
T−t

)
1
(
Ȳ 1
T−t = Ȳ 2

T−t

)
dt

]
,(3.1)

where (Ȳ it )t≥0 i = 1, 2 are independent realizations of random walks starting in 0 at time 0 and
which have transition kernel b̄ ( b̄(g, g′) = b(g′, g) ) and Ei, i = 1, 2, denotes expectation with
respect to the i-th walk.

We saw in Section 2(b), Proposition 2.5(b), that depending on whether this quantity in (3.1)
remains stochastically bounded or not the laws L[ξ̂t|(ηs)s≥0] form a tight family or not. We will
therefore continue by studying the expression (3.1) and prove:

Proposition 3.1 (Catalytic occupation functional)
Let (Zit)t≥0 i = 1, 2 be two independent irreducible random walks on G, which start in the points
g and g′. Furthermore consider (ηt)t≥0 with L[η0] = νθ ∈ Eθ with θ > 0, where νθ is the unique
extremal equilibrium of the branching random walk with intensity θ. Then∫ ∞

0
ηt(Z

1
t ) 1 (Z1

t = Z2
t )dt =

+∞

<∞
(ηt)t≥0 - a.s.,(3.2)

depending on whether (Z1
t − Z

2
t )t≥0 is recurrent or transient. 3
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Proof For (Z1
t − Z

2
t )t≥0 transient the statement is trivial. In fact, by the independence of η

and the random walks even the expectation is finite:

E

[∫ ∞
0

ηt(Z
1
t ) 1{0}(Z

1
t − Z

2
t ) dt

]
=

∫ ∞
0

E[ηt(Z
1
t )] P[Z1

t − Z
2
t = 0] dt

= θ ·

∫ ∞
0

P[Z1
t − Z

2
t = 0] dt <∞.

(3.3)

Now consider the case (Z1
t −Z

2
t )t≥0 recurrent. Here we give a proof using a standard variance

calculation. Below follows a more systematic approach in a situation without variances.

Define the inverse collision time

Tt = inf

{
s :

∫ s

0
dr 1Z1

r=Z2
r
≥ t

}
and let χt = ηTt(Z

1
Tt

). Note that by recurrence Tt < ∞ a.s. for all t and that Z1
Tt− = Z2

Tt−,
t ≥ 0. Hence ∫ Tt

0
ηs(Z

1
s )1Z1

s=Z2
s
ds =

∫ t

0
χs ds.

Notice that E[
∫ t

0 χs ds|Z
1, Z2] = tθ a.s. and that

Var[

∫ t

0

χs ds] = E[Var[

∫ t

0

χs ds| Z
1, Z2]]

= E[

∫ t

0
dr

∫ t

0
ds Cov[ηTr(Z

1
Tr), ηTs(Z

1
Ts)|Z

1, Z2]].

(3.4)

Note that supg,h∈GCov[ηt(g), ηs(h)] is finite, depends only on |t−s| and vanishes as |t−s| → ∞.
Hence

lim
t→∞

t−2Var[

∫ t

0
χs ds] = 0.

Thus there exists a sequence tn ↑ ∞ such that t−1
n χtn → θ a.s. In particular χt → ∞, t → ∞,

a.s. �
Note that in the proof above we needed second moments only in the recurrent case, but even

there they are not necessary as we will now develop in a more general set–up. Observe that with
the irreducibility of the random walks we can assume w.l.o.g. that g = g′ = 0 and we will do so
in the rest of this subsection.

Part 1
Take a (time–space) random field, i.e.

{L(s, g); s ∈ R, g ∈ G}(3.5)

which satisfies (time–space homogeneity):

L[{L(s+ s′, g + g′); s ∈ R, g ∈ G}](3.6)

= L[{L(s, g); s ∈ R, g ∈ G}] ∀ s′ ∈ R, g′ ∈ G
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{L(s, g), s ∈ R, g ∈ G} is mixing.(3.7)

We will study for two independent random walks (Zit)t≥0, i = 1, 2, with the same initial
point and (possibly different) irreducible transition kernels the object∫ ∞

0
L(s, Z1

s ) 1 (Z1
s = Z2

s )ds.(3.8)

The key result is a generalization of Proposition 3.1 to a general mixing field L instead of η
(Lemma 3.1). In fact, Proposition 3.1 is a corollary of Lemma 3.1 once we have showed that η
fulfills the assumptions of Lemma 3.1. This is the content of the subsequent Lemma 3.3.

Lemma 3.1 Let (Z1
t )t≥0 and Z2

t )t≥0 be independent (possibly different) random walks on G. If
E[L(s, g)] = θ > 0 and if (Z1

t − Z
2
t )t≥0 is recurrent then∫ t

0
L(s, Z1

s ) 1 (Z1
s = Z2

s ) ds
/∫ t

0
1 (Z1

s = Z2
s ) ds −→

t→∞
θ a.s. 3(3.9)

Lemma 3.2 Consider a branching random walk on G with transient symmetrized migration
kernel. The equilibrium process associated with the extremal equilibrium measure νθ induces a
field

{ηt(g), (t, g) ∈ R×G}(3.10)

which is stationary and mixing. 3

With Lemma 3.2 we see that we can use Lemma 3.1 which then gives immediately the assertion
of Proposition 3.1 in the recurrent case.

All which remains to conclude the proof of Proposition 3.1 is now to verify Lemma 3.1 and
Lemma 3.2. This we do in the next two parts below.

Part 2
Proof of Lemma 3.1 The proof proceeds in two steps. In order to handle the quantities
above we need to establish that the field seen from the random walk (Z1

t )t≥0 remains stationary
and mixing. To that extent we need the following tool (Lemma 3.3) formulated and proved for
a discrete random walk in Step 1, then Step 2 completes the proof of Lemma 3.1 based on the
discrete time Lemma 3.3.

Step 1 Let L̃ = {(L̃(n, g)), n ∈ Z, g ∈ G} be a mixing random field and let (Tn, Xn)n∈N be
a random walk in Z×G, independent of L̃ and satisfying

P[Tn+1 ≥ Tn + 1] = 1.(3.11)

We continue the random walk for indices n ∈ Z− by means of the reversed random walk.
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Lemma 3.3 The random field K = (Kn)n∈Z with

Kn = L̃(Tn, Xn)(3.12)

is stationary and mixing. 3

The key to this property is the fact that by (3.11) this space–time random walk is transient.

Proof Clearly (Kn)n∈Z is stationary. So it suffices to check the mixing property. We will
show

|P[K ∈ A, σkK ∈ B] −P[K ∈ A]P[K ∈ B]| −→
k→∞

0(3.13)

where σk denotes the shift by the element k ∈ Z and with cylinder sets A,B ∈ B(RZ) depending
only on the coordinates 0, . . . , N (N ∈ N). First note that we may assume P[T0 = 0] = 1.

By the mixing property of L̃ for A,B ∈ B(RZ×G) and ε > 0 there exists M > 0 such that for
k ≥M and all g ∈ G∣∣∣P [L̃ ∈ A, L̃(k + ·, g+ ·) ∈ B

]
−P

[
L̃ ∈ A

]
P
[
L̃ ∈ B

]∣∣∣ ≤ ε.(3.14)

We have to introduce some notation. For (t, g) = (tn, gn)n∈Z ∈ (Z×G)Z and l, k ∈ Z, l ≤ k,
let

ϑk(t, g) = (tn+k, gn+k)n∈Z,(3.15)

ϑk(t, g) = (tn+k − tk, gn+k − gk)n∈Z,

(t, g)l,k = (tn+l, gn+l)n=0,...,k−l.

Note that (T,X)0,k and (ϑk+1(T,X))0,l are by the random walk property independent for k, l ≥
0.

For h ∈ (N0 ×G){0,...,N} let

Ah = {a ∈ R(N0×G) : a ◦ h ∈ A}(3.16)

Bh = {b ∈ R(N0×G) : b ◦ h ∈ B}.

Fix ε > 0 and choose N ∈ N nd J ⊂ (N0 ×G){0,...,N} finite such that

P[(T,X)0,N ∈ J ] ≥ 1− ε.(3.17)

Choose M ≥ N large enough such that (3.14) holds for any choice A′ = Ag, B
′ = Bh (g, h ∈ J ).

For k ≥M and g, h ∈ J let

Hk(g, h) = {j ∈ (N0 ×G)Z : j0,N = g, (ϑk(j))0,N = h}(3.18)

and define Hk as the disjoint union

Hk =
⋃

g,h∈J

Hk(g, h).(3.19)
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Note that

P[(T,X) ∈ Hk(g, h)] = P[(T,X)0,N = g] ·P[(T,X)0,N = h].(3.20)

Denote by cε any quantity of absolute value ≤ ε. Then for k ≥ M (note that this implies
Tk ≥M a.s.)

P[K ∈ A, σkK ∈ B](3.21)

= P[K ∈ A, σkK ∈ B, (T,X) ∈ Hk] + cε

=
∑
g,h∈J

∫
Hk(g,h)

P[(T,X) ∈ d(t, f)] ·P
[
L̃ ∈ Ag, L̃(tk + · , fk + ·) ∈ Bh

]
+ cε

=
∑
g,h∈J

∫
Hk(g,h)

P[(T,X) ∈ d(t, f)] ·P
[
L̃ ∈ Ag

]
·P
[
L̃ ∈ Bh

]
+ 2cε

=

∑
g∈J

P [(T,X)0,N = g] P[L̃ ∈ Ag]

(∑
h∈J

P[(T,X)0,N = h]P[L̃ ∈ Bh]

)
+ 2cε

= P[K ∈ A]P[K ∈ B] + 4cε.

This proves the assertion (3.13) and hence Lemma 3.3. �
Step 2 We are ready to complete the proof of Lemma 3.1. Since we can build the given
continuous time random walks (Zit)t≥0 i = 1, 2 via a Poisson process and the jump chain, we
can reduce the problem of showing (3.9) to a discrete time problem which then allows to apply
Step 1 and the standard ergodic theorem to conclude the argument.

Let λi and ci(·, ·) be the jump rate and jump distribution of (Z̄it), i = 1, 2. We assume that
λ1 and λ2 are minimal in the sense that either c1(0, 0) = 0 or c2(0, 0) = 0. (This ensures that
(Z̄1

t − Z̄
2
t ) does not make jumps on the spot.) Let (Nt)t≥0 a Poisson process with rate λ1 + λ2

and with N0 = 0. Let

Ñn = inf{t ≥ 0 : Nt ≥ n}, n ∈ N0(3.22)

be the time of the n-th jump. Let (Z̃n)n∈N0 = (Z̃1
n, Z̃

2
n)n∈N0 be a random walk in G × G with

transition probabilities

P
[
Z̃n+1 − Z̃n = (g, 0)

]
=

λ1

λ1 + λ2
c1(0, g)(3.23)

P
[
Z̄n+1 − Z̃n = (0, g)

]
=

λ2

λ1 + λ2
c2(0, g)

Thus

L
[
(Z̃Nt)t≥0

]
= L

[
(Z1

t , Z
2
t )t≥0

]
.(3.24)
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Let T0 = 0 and define for n ∈ N inductively the times of the n-th entrance in the diagonal
D ⊂ G×G

Tn = inf{m > Tn−1 + 1 : Z̃1
m = Z̃2

m}(3.25)

(note that by the minimality assumption excluding jumps on the spot: P
[
Z̃1
Tm+1 6= Z̃2

Tm+1

]
=

1 ∀m). We assume that all these random objects are independent of the field L.

Let

L̃(n, g) =

∫ Ñn+1

Ñn

L(t, g) dt.(3.26)

Then (L̃(n, g), n ∈ N0, g ∈ G) is also mixing and has mean θ
λ1+λ2 .

Let Mt = sup{n ∈ N0 : Tn ≤ Nt}. Then up to an asymptotically negligible nuisance term,
the l.h.s. of (3.9) equals∑Mt

n=0 L̃(Tn, Z̃
1
Tn

)∑Mt
n=0(ÑTn+1 − ÑTn)

.(3.27)

Note that by the recurrence assumption on (Z1
t − Z

2
t ), we have Mt →∞ a.s.

Now by the law of large numbers for i.i.d. random variables we get:

1

n

n∑
k=0

(ÑTk+1 − ÑTk)−→
n→∞

1

λ1 + λ2
a.s..(3.28)

Hence it suffices to show

1

n

n∑
k=0

L̃(Tk, Z̃
1
Tk

)−→
n→∞

θ

λ1 + λ2
a.s..(3.29)

However, this is a consequence of (3.12) in Lemma 3.3 together with the classical ergodic theorem
for stationary processes. �

Part 3
Proof of Lemma 3.2
It is a classical result that the field η under the equilibrium measure is mixing (in space) see
Theorem 1.7 in [F]. A proof can be based on the representation of the canonical measure of
the equilibrium distribution (recall Section 2(b)). Namely the extremal equilibrium νθ of a
branching random walk is a Poisson system in the space of clans, that is N (G), and its intensity
measure is given by the canonical measure of the infinitely divisible law νθ. Denote this intensity
measure on N (G) by Q, a realization of the Poisson–system of clans by η̂∞. Observe that with
this notation for g, g′ ∈ G

Q(η̂∞(g) > 0, η̂∞(g′) > 0) ≤ θQg(η̂∞(g′) > 0)(3.30)

≤ θ

∞∑
l=1

Qg(η̂∞(g′) = l)

= θā0(g′, g) + θ

∫ ∞
0

â2t(g, g
′)dt −→

g→∞
0.
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This implies that {ηt(g), g ∈ G} is mixing for all t ∈ R.

Hence all we need is to show that we have the mixing property in time for the equilibrium
process:

L[(ηt(g), ηt+s(g)] −→
s→∞

(L[ηt(g)])∗2, for all g ∈ G.(3.31)

Now we have to refine the picture from the previous argument and we look at the complete
branching tree. Here we introduce the cemetery ∆, that is every particle dying in the usual
picture is now making a jump into ∆ instead. Corresponding to the equilibrium process (ηt)t∈R
we can construct the process of all paths associated with a particle present at some time. This
object decomposes now into a Poisson system of clans of related particles in the space of paths
N (D((−∞, 0), G∪ {∆})), with canonical measure Q̄. This system can be obtained by starting
a branching dynamic at time −s in νθ, weighting all paths of descent with 1 and then letting
s→∞. Denote by ϕ an element of N (D(R, G∪∆)) describing one clan. Let T ∈ R and r > 0.
Similarly as in (3.30) we size–bias Q̄ in the space–time point (g, T ). This distribution Q̄(g,T ) has
a backward tree representation as in Proposition 2.2 now involving the paths of the side–trees.
Hence as in (3.30) we get (note that the first term corresponds to the backbone):

Q̄(ϕT (g) > 0, ϕT−r(g
′) > 0) = θār(g

′, g) + θ

∫ ∞
0

∑
g′′∈G

āt(g
′, g′′)at+r(g

′′, g)dt.(3.32)

The right hand side of the inequality above tends to 0 if either r→∞ or d(g, g′)→∞, since â
(and hence a) is transient.

Therefore the event that at the time point t and t+ r we find in g a particle of the same clan
has probability independent of t and tending to 0 as r → ∞. This means that the equilibrium
branching random walk is mixing with respect to time–shifts. �

(b) Completion of the proof of Theorem 1

The proof of this theorem proceeds differently for the case of transient and recurrent kernels
b̂. In the recurrent case we exploit the Proposition 3.1 from the previous section together with
the backward techniques from chapter 2. The transient case is treated in a somewhat different
manner adding coupling to the tool kit. We therefore begin with the recurrent case.

The case b̂ recurrent
Now we are in the case b̂ recurrent and we have to obtain the local extinction of the reactant
for general initial laws in Eθη,θξ . Since we know that L[ηt]=⇒

t→∞
νθη as t→ ∞ it suffices to prove

here that L[ξt]=⇒
t→∞

δ0 as t→∞. We will establish below that

L[ξt(0)|η]=⇒
t→∞

δ0 stochastically.(3.33)

For that relation above it suffices to show that the size–biased distributions of L[ξt(0)|η] diverge
stochastically as t→∞. Note that if (ηt)t≥0 were the equilibrium process then we would obtain
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this divergence by combining Proposition 2.3 with Proposition 3.1 and Proposition 2.5, Part 2.
Our strategy is therefore to make a comparison to that situation of a catalyst in equilibrium.

In order to set the scene for that comparison argument we think of the catalyst–reactant
system started at time −t in µ and evaluated at time 0. We denote that system by (η−ts , ξ−ts )s∈R,
where we use the convention that for s ≤ −t we keep the system constant, i.e. equal to (η−t−t, ξ

−t
−t).

From the convergence of L[ηt] to νθη as t→∞ we conclude that

L
[
(η−Tt )t∈R

]
=⇒
T→∞
L
[
(η−∞t )t∈R

]
,(3.34)

where (η−∞t )t∈R denotes the equilibrium process with marginal νθη .

To continue recall the notation in Proposition 2.2 and Proposition 2.5 and define for 0 ≤ t ≤
T ≤ ∞ and a fixed element g ∈ G:

N−T−t =

∫ 0

−t
νg,0−T (dg′, ds)ξg

′,s
0 (g),(3.35)

where the Poisson point measure νg,0−T is defined with respect to the medium (η−Tt )t∈R. As
pointed out above we know already that:

P[N−∞−t →∞ as t→∞] = 1.(3.36)

Since by (3.34) we have

L[N−T−t ] =⇒
T→∞
L[N−∞−t ](3.37)

we can conclude that

N−t−t −→
t→∞
∞ stochastically.(3.38)

From Proposition 2.3 together with the fact

(L[ξ̂T (g)]) = E[L[ξ̂T (g)|η]](3.39)

we get

L[N−t−t ] ≤ L[ξ̂t(g)].(3.40)

Hence L[ξ̂t(g)] diverges and therefore L[ξt(g)] converges to δ0 and we have completed the proof
of (3.33). �

The case b̂ transient
In the case b̂ transient we start in Step 1 proving Theorem 1 based on Section 2 and 3(a) but
only under the assumption that the initial law µ is of a special form implying in particular two
things: (i) The catalyst is given by the equilibrium process for every initial configuration for the
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reactant and (ii) for every catalyst realization the law of the reactant is infinitely divisible. Note
that the methods of infinite divisible laws and canonical measures apply only to L[ξt|(ηs)s≤t]
but not to L[(ηt, ξt)]. This approach of first looking at special initial states allows us on the way
also to identify the canonical Palm distribution of L[ξ0|(ηt)t≤0] of the equilibrium process. We
remove in Step 2 the assumption on the initial state using coupling techniques.

Step 1 Assume now that µ is of the form:

µ = νθη ⊗Hθξ .(3.41)

Then the catalyst (ηt)t≥0 is in an extremal equilibrium with intensity θη: L[ηt] = L[η0] ∀t ≥ 0.
Furthermore L[ξt|(ηs)s≥0] is infinitely divisible and we can apply the Kallenberg criterion given
in Section 2(d) in Proposition 2.5.

Our arguments are grouped into three pieces: (i) We show that starting in µ (recall (3.41))
the law L[(ηt, ξt)] converges for t→∞ towards a limit law νθη ,θξ which we specify. (ii) We prove
that νθη ,θξ ∈ Eθη,θξ . (iii) We establish that νθη ,θξ is an invariant measure for the catalyst–reactant
dynamic.

(i) Consider the catalyst equilibrium process (ηt)t∈R which is prescribed by L[η0] = νθη , where
νθη ∈ Eθη is the unique extremal invariant measure with intensity θη of the catalyst process. For
every realization of the catalyst process we can construct according to Lemma 2.2 the reactant
process (ξ−ts )s≥−t which starts at time −t in Hθξ . In this context again the Kallenberg criterion

applies and from Part 1 (a) of Proposition 2.5 we can conclude that there exists ξ−∞0 such that:

L[ξ−t0 |(ηs)s∈R] =⇒
t→∞

L[ξ−∞0 |(ηs)s∈R], (ηs)s∈R − a.s.(3.42)

For a given medium η̂ = (ηs)s∈R we denote this limit by K(η̂, ·). From Part (b), (ii) and (iii),
of Proposition 2.5 we know that∫

K(η̂, dξ) ξ(g) = θξ , ∀g ∈ G a.s.,(3.43)

provided that, with (Ȳ
g
t )t≥0 denoting a random walk with transition kernel b̄, the following

holds: ∫ ∞
0

bs(Ȳ
g
s , g)η−s(Ȳ

g
s )ds <∞ {(Ȳ gu )u≥0, (ηu)u∈(−∞,0]} − a.s.(3.44)

This latter statement is however (compare the recurrent case) according to Proposition 3.1
equivalent to the transience of b̄. Hence by assumption (3.43) holds.

We define now νθη ,θξ by setting for every bounded measurable function F on NG0 × NG0 and
with the abbreviation ν̂θη = L[η̂] for the law of the equilibrium process (on path space):∫

νθη ,θξ (dη̃, dξ̃)F (η̃, ξ̃) =

∫
ν̂θη (dη̂)K(η̂, dξ̃)F (η̂0, ξ̃)(3.45)

=

∫
νθη (dη̃)K0(η̃, dξ̃)F (η̃, ξ̃),
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where K0 is the average of K(η̂, ·) over L[η̂|η̂0].

If we abbreviate by K−t(η̂, ·) = L[ξ−t0 |(ηs)s∈R] then we want to show finally that for every
test function F ∈ Cb(NG0 ×NG0 ):∫ ∫

K−t(η̂, dξ̃)ν̂θη (dη̂)F (η̂0, ξ̃) −→
t→∞

∫ ∫
K(η̂, dξ̃)ν̂θη (dη̂)F (η̂0, ξ̃).(3.46)

This however follows with Lebesgue dominated convergence from (3.42) since F is in particular
continuous in ξ̃ and is bounded in both variables.

Altogether we have established that with L[(η0, ξ0)] = µ as defined in (3.41):

L[(ηt, ξt)] =⇒
t→∞

νθη ,θξ .(3.47)

(ii) The next point is to prove that νθη ,θξ ∈ Eθη,θξ . Begin with

νθη ,θξ is shift invariant.(3.48)

Recall that the equilibria νθη and ν̂θη of the catalyst are shift invariant as well as Hθξ . Call a
kernel K shift invariant if K(τg·, τg·) = K(·, ·) with σg denoting the shift of the configuration by
g. Then by construction L[ξ−t0 |(ηs)s∈R] is shift invariant and hence also its weak limit of (3.46)
as t→∞. This implies then by the definition of νθη ,θξ the shift invariance of the latter.

Next we check that the means of both components have the right value. Since νθη ,θξ has a
projection on the catalyst component which is νθη and furthermore due to (3.43) we know that

Eνθη,θξ
[η(g)] = θη, Eνθη,θξ

[ξ(g)] = θξ.(3.49)

The final point is now to show that νθη,θξ is shift–ergodic.

We will prove the stronger property that the random field (η∞(g), ξ∞(g)), g ∈ G, with
L[η∞, ξ∞] = νθη ,θξ , is mixing. The basic idea is that a spatial branching population in equilibrium
can be decomposed into independent random family clusters of related particles (the realization
of the point process on configuration space induced by the canonical measure) and each cluster
has the property that the probability to find a member of the cluster in the point g and the
point g′ goes to 0 as d(g, g′) tends to infinity. (Recall the proof of Proposition 3.1 below (3.31)).

This implies that {η∞(gi), i = 1, . . . , n} becomes asymptotically independent as d(gi, gj)→
∞ for all i, j with i 6= j. A similar argument as below (3.8) can be carried out for ξ∞ if we
consider a fixed realization of the catalyst and start the reactant process at time −t and observe
it at time 0. We omit further details at this point.

It then remains to prove that also

{η∞(gi), i = 1, . . . , n}, {ξ∞(g′i), i = 1, . . . , m}(3.50)

become asymptotically independent if the distance between the two sets {gi; i = 1, . . . , n} and
{g′i; i = 1, 2, . . . , m} tends to ∞. For this it is enough to observe that the catalyst process in
equilibrium is mixing in time. This allows us to proceed as follows:
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(α) We first choose a space–time set of the form A × [t, T ], (t < T ) containing {g′i; i =
1, . . . , m}×{T} with T − t and A large enough so that {ξT (g′i); i = 1, . . . , m} depends up
to an ε only on A × [t, T ], that is: the distribution of ξt on {g′i; i = 1, . . . , m} at time T
and the corresponding finite dimensional distribution of the reactant (ξ′s)s≥t evolving from
time t on with the catalyst (ηs1A)s≥t, is in variational distance ε-close. (This is easily seen
from the backward tree representation.)

(β) Next we choose the {gi; i = 1, . . . , n} so far away, that the catalyst on {gi; i = 1, ,̇n}×[t, T ]
is up to an ε, independent of the catalyst in A× [t, T ]. The latter is possible because of the
time–space mixing property of the catalyst in equilibrium already used to prove Proposition
3.1.

Combining the observations (α) and (β) proves (3.50).

(iii) In order to verify that νθη,θξ is invariant under the catalyst–reactant dynamic we observe
first that the following weakened Feller property holds:{

µn ∈ Eθη,θξ , µn =⇒
n→∞

µ, Eµ[η(0) + ξ(0)] = θη + θξ

}
(3.51)

implies
{
Lµn [(ηt, ξt)] =⇒

n→∞
Lµ[(ηt, ξt)] for all t > 0

}
.

This is easily deduced for example from the couplings we present in (3.55) and (3.65) below.

Denote by (S(t))t≥0 the semigroup associated with (ηt, ξt)t≥0. Then the relation (3.51) implies
together with (3.47):

(νθη ,θξ)S(t) = w− lim
s→∞

(νθη ⊗Hθξ )S(t+ s) = νθη ,θξ ,(3.52)

which shows that νθη ,θξ is invariant under (S(t))t≥0.

Step 2 In this step we have to remove the assumption of the special form of our initial state
in the convergence statement for L[(ηt, ξt)] in the case of transient b̂. The strategy is to compare
the initial state νθη ⊗Hθξ with an arbitrary element µ ∈ Eθη,θξ by going through an intermediate
situation. Namely let πη denote the projection on the η-component and define

ν := πη(µ) ∈ Eθη .(3.53)

Denote again with (S(t))t≥0 the semigroup of the process (ηt, ξt)t≥0. We will show

(i) (νθη ⊗Hθξ − ν ⊗Hθξ )S(t) =⇒
t→∞

0−measure,

(ii) (µ− ν ⊗Hθξ )S(t) =⇒
t→∞

0−measure.
(3.54)

Combining relations (3.54) part (i) and (ii) with (3.47) of Step 1 gives finally the convergence
assertion of the theorem. Let us now prove relations (i) and (ii) of (3.54).

(i) It is well known (compare [G], Proof of Theorem 1 specialized in the notation of that
paper to the case p = 0, or [L] for the treatment of similar models) that if ν and µ are two
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homogeneous, ergodic laws on (N0)G with the same intensity θ, then we can construct a bivariate
process (η1

t , η
2
t )t≥0 such that (ηit)t≥0, i = 1, 2, is a version of the catalyst process (ηt)t≥0 with

initial law ν respectively µ and the property (since â is transient)

E[|η1
t (g)− η2

t (g)|] = E[|η1
t (0)− η2

t (0)|]↘ 0 as t→∞.(3.55)

For this purpose one defines the mechanism in the bivariate process by letting migration and
branching occur at rate η1

t (g) ∧ η2
t (g) in both components and with rate (η1

t (g)− η2
t (g))+,− in

component one respectively two. Then the result (3.55) is a special case of the model treated in
[G]. See also proof of (3.54) Part (ii) below for more details of such arguments.

The coupling relation implies in particular that the processes agree in boxes of arbitrary size
for large values of t with probability close to one. By choosing the box B around A large enough
and using the preservation of the mean we can guarantee that for any given time interval no
migration from the complement of B into A occurs. Hence for every A ⊂ G, |A| < ∞ and for
every T > 0:

P
[
η1
t+s(g) = η2

t+s(g), ∀g ∈ A, s ∈ [0, T ]
]
−→
t→∞

1.(3.56)

From this fact we will deduce the desired convergence result based on the analysis of the infinitely
divisible laws L[ξit|(ηs)s∈R], i = 1, 2, where the reactant processes are constructed on the same
probability space using the coupled catalyst. Here are the details.

We start now the two coupled catalyst processes η1 and η2 from above at time −t by using
the realization of (η1

s , η
2
s) and considering on the same probability space

(η1,−t
s , η2,−t

s )s≥−t = (η1
t+s, η

2
t+s)s≥−t.(3.57)

For both these processes we construct on one probability space the two reactant processes
(ξi,−ts )s≥0 which start at time −t in the same realization of Hθξ for every given realization of
the catalyst. We abbreviate

Γ−t
ηi

= L[ξi,−t0 |(ηi,−ts )s≥−t], i = 1, 2.(3.58)

Let (Γ̃−t
ηi

)g denote the canonical Palm distributions of Γ−t
ηi

in the point g ∈ G.

We will prove that (3.56) implies the relation:

(Γ̃−t
η1 )g − (Γ̃−t

η2 )g =⇒
t→∞

0−measure, in (η1, η2)− probability.(3.59)

Then by Lemma 10.8 in [K2]

(Γ−t
η1 )− (Γ−t

η2 )=⇒
t→∞

0−measure, in (η1, η2)− probability.(3.60)

From this relation we obtain as before in (3.46) that

L
[
(η

1,−t
0 , ξ

1,−t
0 )

]
−L

[
(η

2,−t
0 , ξ

2,−t
0 )

]
=⇒
t→∞

0−measure.(3.61)
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This concludes the proof once we have verified (3.59).

At this point in order to prove (3.59) we bring into play the coupling result (3.56) and the
explicit representation of the canonical Palm distribution. This representation was described in
Section 2(b). The key is the following. If we consider a reactant starting with a single particle,
then we can achieve that with high probability it sees the same medium whether we work with
η1,−t or η2,−t provided his descendents do not migrate too far. Here are the details.

For t ≥ T > 0, consider branching random walks (ξi,−t,−T,gs )s≥−T , i = 1 or 2, with migration
kernel b starting at time −T with one particle in g and using the medium ηi,−t, i = 1, 2 (recall
the catalyst process ηi,−t starts at time −t). As a consequence of the coupling result in (3.56)
we conclude that for every A ⊆ G with |A| <∞ and T > 0 we can couple the reactant processes
for i = 1 and i = 2 such that for every fixed g′ ∈ G:

P
[
ξ1,−t,−T,g
s (g′) = ξ2,−t,−T,g

s (g′) for all g ∈ A, s ∈ [−T, 0]
]
−→
t→∞

1.(3.62)

Namely we simply have to choose B ⊇ A such that P[Y gs ∈ B, ∀s ∈ [0, T ]] ≥ 1 − ε/2 for all
g ∈ A and then t ≥ t0(ε) such that P[η

1,−t
s (g) = η

2,−t
s (g), ∀g ∈ B, s ∈ [−T, 0]] ≥ 1− ε/2 (see

(3.56)). Then conclude that the l.h.s. of (3.62) exceeds 1 − ε for t ≥ t0(ε), if we use in the
construction of ξi,−t,−T,gs , i = 1, 2, the same branching events in B and the same collection of
walks for the jointly generated particles.

Finally to handle particles performing large excursions, that is particles breaking off the
Kallenberg tree in A but leave B between [−T, 0] or particles breaking of before time −T ,

consider the random variable which is defined as follows. Let (Ȳ g
′

t ) be a random walk with
transition rates b̄ starting in g′ and consider a Poisson point process on [−t, 0] with intensity

ηi,−ts (Ȳ g′

−s)ds at the time point s ∈ [−t, 0). Denote the realizations by s1, s2, . . .. Define the
random variable:

Ri,Tt =
∑
k∈It,T

ξi,−t,−sk ,gk0 (g′), gk = Ȳ g′

−sk(3.63)

with It,T = {k : sk ≤ −T or gk /∈ B}.

Then for every t ≥ T (probability over random walk and Poisson point process):

P
[
R
i,T
t > 0

]
≤ θη ·

∫ ∞
T

b̂2s(g
′, g′)ds+ θη

∫ T

0

∑
g∈G\B

bs(g
′, g)bs(g, g

′)ds −→
T→∞

CB ,(3.64)

where CB ↓ 0 as B ↑ Zd. Return now to the representation of the canonical Palm distributions
(Γ̃−t
ηi

)g, i = 1, 2, in Proposition 2.2 and note that the contributions can be split in two such that

either (3.62) or (3.64) applies. Now the combination of (3.62) and (3.64) proves (3.59).

(ii) Recall (3.53) and (3.54). Now we prove the second part of (3.54). Since both initial
laws of the processes which we compare have the same projection on the η-component we can
construct (η1

0, ξ
1
0) and (η2

0, ξ
2
0) in such a way that η1

0 = η2
0. Then we work with one given medium

(ηt)t≥0.
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It is easy to see that for a given medium (ηt)t≥0 we can construct a coupling between two
processes ξ1

t , ξ
2
t starting in different initial states but moving in the same medium.

– migration of one particle from g to g′ in both components occurs at rates b(g, g′) (ξ1
t (g) ∧

ξ2
t (g)) and only in one of the components i = 1, 2 at rates b(g, g′)(ξ1

t (g)− ξ2
t (g))±.

– Branching of one particle in both components in g occurs at rate ηt(g)(ξ1
t (g) ∧ ξ2

t (g)) and
at rate ηt(g)(ξ1

t (g)− ξ2
t (g))± only in one of the components i = 1, 2.

Then going over the proof of (3.55) (for some details see below) one sees that for b̂ transient the
coupling is successful, that is

E
[
|ξ1
t (g)− ξ2

t (g)|
]

= E
[
|ξ1
t (0)− ξ2

t (0)|
]
↘ 0 as t→∞.(3.65)

In order to understand this note that the convergence to 0 in (3.65) is due to the migration
and has nothing to do with the branching mechanism as long as the latter is critical for given
medium. Next we give some information on the formal details.

The key point is that for the coupled dynamic (ηt, ξ
1
t , ξ

2
t ) we have with G denoting the

generator of this evolution and with h((η, ξ1, ξ2)) = |ξ1(g)− ξ2(g)|:

(Gh)((η, ξ1, ξ2)) =
∑
g′∈G

b(g′, g)
(
|ξ1(g′)− ξ2(g′)| − |ξ1(g)− ξ2(g)|

)
(3.66)

−2
∑
g′∈G

b(g′, g)|ξ1(g′)− ξ2(g′)|∆g,g′(ξ
1, ξ2),

where

∆g,g′(ξ
1, ξ2) = 1((ξ1(g)− ξ2(g)) · (ξ1(g′)− ξ2(g′)) < 0).(3.67)

Next note that

d

dt
E[|ξ1

t (g)− ξ2
t (g)|] = E[(Gh)(ηt, ξ

1
t , ξ

2
t )](3.68)

and that the r.h.s. can be evaluated explicitely using (3.66).

In the expression on the r.h.s. of (3.66) the medium does not enter explicitly. Nevertheless
for given catalyst (ξ1

t , ξ
2
t ) is not spatially homogeneous. But after averaging over the medium

again as in the homogeneous case the first term in (3.66) disappears, so that E|ξ2
t (g)− ξ2

t (g)| is
non–increasing in t. In fact this expectation is strictly decreasing as long as the discrepancies
between the two processes in points g and g′ with b(g′, g) > 0 have different sign. This fact
together with the irreducibility of b and the ergodicity of limiting states gives (3.65). This part
of the argument carries over from the homogeneous case, we do not repeat all the details at this
point and refer to [G].

Recall thatN (G) carries the vague topology. Hence from (3.65) it is clear that the weak limits
of L[(ηt, ξ

1
t )] and L[(ηt, ξ

2
t )] for t→∞ agree. We get therefore the convergence of L[(ηt, ξ

i
t)) to

the same limit as t → ∞ if we start in µ respectively ν ⊗ Hθξ , which completes the proof of
(3.54) part (ii).
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4 Catalysts locally dying out: Proof of Theorem 2

(a) The reactant is asymptotically Poisson: Proof of Theorem 2 (a)

Since under the assumptions of the theorem, the catalyst becomes locally extinct, it suffices to
show that this implies indeed that the reactant converges to a Poisson system with intensity θξ.
The proof of the latter fact will be based on the following idea. The catalyst is site–transient
and we can show that larger and larger areas are eventually vacant. As a consequence, since
also for a typical reactant particle there is a positive probability to survive until it reaches such
a catalyst free area and then remain in it forever it can in fact survive forever with positive
probability. This we will prove in Step 1. Together with preservation of intensity for finite times
this will give in Step 2 the assertion.

Step 1 (Surviving reactant particle)
For T > 0 and x ∈ Z define (ξx,Tt )t≥T to be the reactant process in the catalytic medium (ηt)t≥0

starting with one particle at x at time T ≥ 0. Define the probability σT that a single reactant
particle started in 0 at time T will never branch by

σT = P[‖ξ0,T
t ‖ ≡ 1, t ≥ T ].(4.1)

Lemma 4.1 For L[η0] stationary with E[η0(x)] = θη <∞ the following holds

lim inf
T→∞

σT = 1. 3(4.2)

Proof Recall that b(·, ·) has finite moments of order β. We begin by introducing the following
two types of time dependent sets in the time–space diagram. These sets depend on two param-
eters L and γ, where γ ∈ ( 1

β ∨ (1
2 + 1

α), 1) is fixed and L > 0 will be adapted later on to obtain
with high probability two things: (1) catalyst free regions in the sense that all catalyst particles
descending from an ancestor in that region have died out and (2) regions which the random
walk (Yt) does not leave. These two facts we will prove below in (i) and (ii) respectively.

(i) In order to define a catalyst free region we need three objects:

UL,γ(x) = LK0(|x|+ 1)1/γ, x ∈ Z,(4.3)

where K0 = K0(γ) is given by

K0 = 2θη
∑
x∈Z

(|x|+ 1)−1/γ,(4.4)

VL,γ(t) = {x ∈ Z : UL,γ(x) ≤ t} =

{
x ∈ Z : |x| ≤

(
t

K0L

)γ
− 1

}
(4.5)

WL,γ(t) =

{
x ∈ Z : |x| ≤

1

2

(
t

K0L

)γ
− 1

}
.(4.6)

See Figure 1 on page 12 for an illustration of the set

WL,γ = {(t, x) : x ∈WL,γ(t)}.(4.7)
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Next we define the event BL,γ that at time t all catalyst particles started at time 0 in VL,γ(t)
have died out already. Recall that by construction of the process we can decompose (ηt)t≥0 into

independent branching random walks {(ηx,it )t≥0, x ∈ Z, i ∈ N },

ηt =

η0(x)∑
i=1

ηx,it .(4.8)

Let

BL,γ =
{
‖ηx,i
UL,γ(x)

‖ = 0 for all x ∈ Z, 1 ≤ i ≤ η0(x)
}
.(4.9)

Since for all x ∈ Z and i ∈ N, P[‖ηx,it ‖ > 0] = 2
2+t (see Lemma 2.5), we have

P[BL,γ] ≥ 1−
∑
x∈Z

E[η0(x)]
2

2 + UL,γ(x)
(4.10)

= 1−
∑
x∈Z

2θη
2 + UL,γ(x)

≥ 1−
1

L
.

Hence for ε > 0 and L > 2/ε

P[BL,γ] ≥ 1−
ε

2
.(4.11)

(ii) Now we define the event that a realization of the random walk with transition probabilities
(bt), denoted by (Yt), does not leave WL,γ at large times:

AT,L,γ = {Yt−T ∈WL,γ(t) ∀ t ≥ T} , T > 0.(4.12)

The next argument makes use of the assumption that γ > 1/β. Recall that E[Y1] = 0 and
E[|Y1|β] < ∞. By a sharpened version of the strong law of large numbers (see, e.g., Durrett
(96), Ch. 1, Thm. 8.8) for ε > 0 there is a T0 ≥ LK0 such that for T ≥ T0,

P[AT,L,γ] ≥ 1−
ε

2
.(4.13)

Now we are ready to return to σT (recall (4.1)). Clearly,

σT = E

[
exp

(
−

∫ ∞
T

ηt({Yt−T }) dt

)]
.(4.14)

Hence (abbreviating A = AT,L,γ and B = BL,γ)

σT ≥ E

[
1A∩B exp

(
−

∫ ∞
T

ηt({Yt−T }) dt

)]
= E

[
exp

(
−1A∩B

∫ ∞
T

ηt({Yt−T}) dt

)]
−P[(A ∩B)c]

≥ exp

(
−

∫ ∞
T

E [1A∩B ηt({Yt−T })] dt

)
− ε.

(4.15)
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Now (recall that (Xt) is a random walk with transition kernels (at))

E [1A∩B ηt({Yt−T })] ≤ sup
{

E [1Bηt({x})] , x ∈WL,γ(t)
}

= sup

{
θη

∑
y∈(VL,γ(t))c

at(y, x), x ∈WL,γ(t)

}

≤ θηP

[
|Xt| ≥

1

2

(
t

K0L

)γ]
.

(4.16)

Recall that we assumed that for some α > 2

C := E[|X1|
α] <∞.

Hence using an inequality of Marcinkiewisz–Zygmund (see, e.g., Dharmadhikari, Fabian and
Jogdeo (1968), cf. also Burkholder (1973), Theorem 3.2) we get

E[|Xt|
α] ≤ C Cα t

α/2, t ≥ 1,(4.17)

for some universal constant Cα <∞. Using Chebyshev’s inequality we get

P

[
|Xt| ≥

1

2

(
t

K0L

)γ]
≤ C Cα

tα/2

((t/K0L)γ/2)α

= 2α(K0L)αγC Cαt
(α/2)−αγ.

(4.18)

Since we assumed γ > 1
2 + 1

α , we have α
2 − αγ < −1. Plugging this estimate in (4.16) we get∫ ∞

T

dt E [1A∩B ηt({Yt−T})] ≤ θη
21+α(K0L)αγC Cα

2 + α − αγ
T 1−αγ−α/2 −→ 0, T →∞.(4.19)

Hence by (4.15)

lim inf
T→∞

σT ≥ 1− ε.(4.20)

Since ε > 0 was arbitrary, (4.2) holds. �

With a little more effort we can extend the proof of Lemma 4.1 and show that WL,γ becomes
vacant for large L if α > 4 (see Figure 1 on page 12). Technically we will not make use of that
result but we state it here since we think that it is instructive.

Lemma 4.2 Assume that α > 4. Then

lim inf
L→∞

P[ηt(WL,γ(t)) = 0 for all t ≥ 0] = 1.
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Proof We give an elementary proof only for the case where a is the kernel of a Bernoulli random
walk. The more general case can be handled using Kesten’s result on the range of BRW (see
Proposition 1.3).

Fix ε > 0. Let L > 2/ε and define

xt = sup

{
x ∈ N0 : x ≤

1

2

(
t

K0L

)γ
− 1

}
.

Recall that B = BL,γ from (4.10). Using (4.16) and (4.18) we can choose T0 such that for T ≥ T0∫ ∞
T

E[1Bηt({−xt − 1,−xt,−xt + 1, xt − 1, xt, xt + 1})] dt ≤ ε/2.(4.21)

Hence for T large enough

P [1Bηt({−xt, xt}) > 0 for some t ≥ T ] ≤ ε.(4.22)

Together with (4.11) we have

P [ηt({−xt, xt}) = 0 for all t ≥ T ] ≥ 1− 2ε.(4.23)

Given the event in (4.23) all particles in WL,γ(t) for some t ≥ T stem from ancestors in
WL,γ(T ) at time T . However the probability that any of these particles has an offspring alive at
time t is bounded by

|WL,γ(T )| · θη ·
2

2 + (t− T )
→ 0, t→∞.(4.24)

Hence for T ′ > T large enough

P[ηt(WL,γ(t)) = 0 for all t ≥ T ′] ≥ 1− 3ε.(4.25)

Note that WL,γ(t) is decreasing in L. Hence we can assume that L is so large that WL,γ(T ′) = ∅
making the condition t ≥ T ′ void:

P[ηt(WL,γ(t)) = 0 for all t ≥ 0] ≥ 1− 3ε.(4.26)

This concludes the proof. �

Step 2 (Preservation of intensity)
With Lemma 4.1 at hand the statement of Theorem 2 seems rather obvious: For a fixed time
T > 0 there is preservation of mass in the reactant

E[ξT ] = θξ`.

Lemma 4.1 says that after a large time T the particles of (ξt) essentially perform indepen-
dent random walks and hence ξt converges in distribution to a Poisson field with intensity θξ.
Although this argument is quite convincing it might be necessary to give a formal proof.
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We will define for fixed (large) time T two processes (ξT,t)t≥T and (ξ′T,t)t≥T . The initial
state of both processes is assumed to coincide with ξT . For t ≥ T the particles of (ξT,t) evolve
as independent random walks with transition kernel given by (bt). For t ≥ T the motion of
particles of (ξ′T,t) coincides with that of (ξT,t) but we impose an additional killing in contact
with the catalyst. In other words, (ξ′T,t) is “branching” random walk in the catalytic medium η

with offspring probability q0 = 1, qk = 0, k ≥ 1. Clearly we can construct the three processes
(ξT,t)t≥T , (ξ′T,t)t≥T and (ξt)t≥0 on one probability space such that

ξ′T,t ≤ ξT,t, t ≥ T a.s.(4.27)

and

ξ′T,t ≤ ξt, t ≥ T a.s.(4.28)

Note that L[(ξt, ξT,t, ξ
′
T,t)] is translation invariant for all t ≥ T . From Lemma 4.1 we know that

E[ξt − ξ
′
T,t] = E[ξT,t − ξ

′
T,t] ≤ θξ(1− σT )`, t ≥ T.(4.29)

Hence

E[|ξt − ξT,t|] ≤ 2θξ(1− σT )`, t ≥ T.(4.30)

Since E[ξt] = θξ` is bounded, {L[ξt], t ≥ 0} is tight. Let µ be a weak limit point of L[ξt] as
t → ∞ and let tn → ∞ be a sequence such that L[ξtn] =⇒ µ, n → ∞. We are done if we can
show that µ = Hθξ .

For every T > 0 we have

L[ξT,tn] =⇒ Hθξ , n→∞.(4.31)

Hence we can find a sequence Tn→∞, n→∞ such that

L[ξTn,tn] =⇒ Hθξ , n→∞.(4.32)

Since

E[|ξtn − ξTn,tn|] ≤ 2θξ(1− σTn)→ 0, n→∞(4.33)

it is clear that µ = Hθξ .

(b) The reactant dies out locally: Proof of Theorem 2 (b)

Note first that the catalyst process (ηt)t≥0 becomes locally extinct, i.e. L[ηt]=⇒
t→∞

δ0, since it is

a branching random walk where the symmetrized kernel â governing the migration is recurrent.
Therefore it suffices to prove that the reactant dies out locally, that is limT→∞P[ξT (x) > 0] = 0.
In order to cope with the randomness of the medium, we will show the equivalent statement:

lim sup
T→∞

P[ξT (0) > 0] < ε for all ε > 0.(4.34)
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The idea of the proof is as follows. From Lemma 2.3 in Section 2 we know that it suffices
to establish (4.34) for a smaller medium. We will use as such a smaller medium one where we
consider only one family of catalyst particles, which has a large population at the time T con-
sidered. Next we use a version of the Kallenberg criterion to establish the relation (4.34) above,
by comparing the population ξ̂T (0), distributed for given medium according to the Palm distri-

bution (L[ ̂ξT (0)|η]), with a population generated via the Kallenberg representation (Proposition
2.2 (a)) of the Palm distribution but now for the simplified and smaller medium.

The above discussion shows that we need to work out mainly two things. (i) First we have
to establish that the catalyst has within the range of the backward reactant path a site from
which a family survives until times of order T and which consists over time spans of this order
of order T particles. (ii) We have to analyze the behavior of the reactant population generated
by the backbone in the medium consisting of the one single catalyst family, which was analyzed
in the first part (i). Here are now the details.

(i) A caricature of the medium
Step 1 Recall that the reactant random walk has a drift and hence a range of order T .
Therefore we would like to establish that the probability of a single ancestor catalyst family
to produce a family consisting of at least δT particles during the time span say [T/2, 2T ] is of
order T−1. A classical result by Lamperti and Ney asserts that a continuous time critical binary
Galton–Watson process (Zt)t≥0 with Z0 = 1 has the property that

L
[
T−1(ZαT )α∈[0,2]|Z2T > 0

]
(4.35)

converges to a limiting diffusion with positive drift which would imply the desired result. The
reference is not easily available, so we give a self contained proof of the statement which we
actually need.

Lemma 4.3 Let (Zt)t≥0 be a continuous time critical binary Galton–Watson process. Then

lim inf
δ→0

lim inf
T→∞

{TP[Zt ≥ δT, t ∈ [T/2, 2T ]]} ≥ e−1. 3(4.36)

Proof Fix δ > 0 and β > δ. From Lemma 2.5 we know that:

lim inf
T→∞

{TP[ZT/2 ≥ T/4]} = 4/e.(4.37)

Note that by the branching property P[Zt ≥ a|Z0 = n] is nondecreasing in n for every a ≥ 0.
Therefore we get from (4.37) together with the Markov property of (Zt)t≥0 that

lim inf
T→∞

{TP[Zt ≥ δT, t ∈ [T/2, 2T ]|Z0 = 1]}(4.38)

≥ 4e−1 lim inf
T→∞

{P[Zt ≥ δT, t ∈ [0, 3T/2]|Z0 = [T/4]]}.

In order to analyze the r.h.s. above we use Chebyshev’s inequality to get

P[Z3T/2 ≥ βT |Zt ≤ δT for some t ∈ [0, 3T/2], Z0 = [T/4]]

≤ (βT )−1E[Z3T/2|Zt ≤ δT for some t ∈ [0, 3T/2], Z0 = [T/4]].
(4.39)
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Consider now the stopping time (3T/2) ∧ inf{t|Zt ≤ δT} and use the strong Markov property
to estimate the expectation on the r.h.s. of (4.39) by δT to arrive at:

P[Z3T/2 ≥ βT |Zt ≤ δT for some t ∈ [0, 3T/2], Z0 = [T/4]] ≤ δ/β.(4.40)

This estimate we can rewrite as:

P[Zt ≤ δT for some t ∈ [0, 3T/2]|Z0 = [T/4]]

≤ (1− δ/β)−1(1−P[Z3T/2 ≥ βT |Z0 = [T/4]]).
(4.41)

By the branching property we estimate the second factor on the r.h.s. of (4.41) further as follows:

lim sup
T→∞

P[Z3T/2 < βT |Z0 = [T/4]] ≤ lim sup
T→∞

(P[Z3T/2 < βT |Z0 = 1])[T/4](4.42)

By Yagloms theorem we know (recall Lemma 2.5) that P[ZT ≥ βT |Z0 = 1] is asymptotically
equivalent to 2

T exp(−2β). Hence

lim sup
T→∞

P[Z3T/2 < βT |Z0 = [T/4]] ≤ exp

(
−

1

3
exp

(
−

4

3
β

))
.(4.43)

Combining (4.41) - (4.43) and inserting the result in (4.38) yields:

lim inf
T→∞

TP[Zt ≥ δT, t ∈ [T/2, 2T ]]≥ 4e−1
(

1−
exp(−1

3 exp(−4
3β))

1− δ/β

)
.(4.44)

Therefore

lim sup
δ→0

lim sup
T→∞

TP[Zt ≥ δT, t ∈ [T/2, 2T ]]≥ 4e−1
(

1− exp
(
−

1

3
exp

(
−

4

3
β
)))

.(4.45)

The r.h.s. of (4.45) converges for β → 0 to 4e−1(1− e−1/3) which is bigger than e−1 as claimed.
�

Step 2 In this step we are going to define for every T the caricature ηT ≤ η of our medium.
W.l.o.g. assume that the drift

h :=
∞∑

x=−∞

b(0, x)x

is positive. For defining the caricature we need a subset ST of the space–time diagram which
describes for every site x the time range for which we want the catalyst in that site to be large
(recall that the backward reactant path has drift −h):

ST = {(t, x) ∈ [0,∞)× Z : (T + h−1x)/2 ≤ t ≤ 2(T + h−1x)}.(4.46)

Since for x close to −hT or 0 this set will be narrow in the time component and hence many
such sites will carry surviving catalysts we restrict the x considered. We define for ε1 > 0 (which
we will choose later in (4.54)):

Iε1,T = {x ∈ Z : −(1− ε1)hT ≤ x ≤ −ε1hT}.(4.47)
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Define now for γ > 0 the events

C̃γx,T = {ηt(x) ≥ γT, t ∈ [(T + h−1x)/2, 2(T + h−1x)]}.(4.48)

CγT =
⋃

x∈Iε1,T

C̃γx,T .(4.49)

It will be useful to decompose CγT into disjoint events of the form C̃γx,T . We define

Cγx,T = C̃γx,T ∩

( ⋂
y∈Iε1,T
y>x

(C̃γy,T )c
)
, x ∈ Iε1,T .(4.50)

We define now the caricature ηT of our medium η by

ηTt (x) = γT 1ST (t, x) 1Cγx,T
.(4.51)

This should be interpreted as follows. We choose for each time T the rightmost site x < 0,
where at time 0 a catalyst family started which survives till a late time (depending on h) and
which has a large population (order T ) over a time span of this order. Then the whole medium
is replaced by the one generated by the single family of catalysts.

For the definition (4.51) to be useful we need to show that we can for given ε > 0 find T0

and γ0 such that for T ≥ T0 and γ ≤ γ0 the probability of CγT is bigger than 1− ε. This will be
carried out in the next step.

Step 3 In order to estimate P[Cγt ] we note first that by Lemma 4.3 applied with δ = γ, we
can find γ0 > 0, T0 <∞ such that for T > T0, 0 < γ < γ0:

inf
x∈Iε1,T

((T + h−1x)P[C̃γx,T ]) > e−1.(4.52)

Assume for the moment that η0(x) = 1 for all x ∈ Z a.s. Therefore using the independence of
the {(ηt(x))t≥0, x ∈ Z} we get:

lim inf
T→∞

P[CγT ] ≥ 1− lim sup
T→∞

∏
x∈Iε1,T

(1− (T + h−1x)−1e−1)(4.53)

= 1− lim sup
T→∞

∏
x∈Iε1,T

(
1−

h

x
e−1
)

= 1− lim sup
T→∞

exp

 ∑
x∈Iε1,T

log(1−
h

x
e−1)


= 1− lim sup

T→∞
exp

− ∑
x∈Iε1,T

h

x
e−1


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= 1− lim sup
T→∞

exp

− ∑
x∈Iε1,T

h

x
e−1


= 1− exp

(
−
h

e

∫ 1−ε1

ε1

1

x
dx

)
= 1− exp

(
−
h

e
(log ε1 − log(1− ε1))

)
= 1−

(
ε1

1− ε1

)h/e
.

Now we choose

ε1 <

(
1 +

(
2

ε

)e/h)−1

(4.54)

to get for T ≥ T0(ε) and γ ≤ γ0(ε)

P[CγT ] ≥ 1− ε/2.(4.55)

The case of general ergodic initial law for η can be handled with the ergodic theorem. We omit
the details.

(ii) The reactant in the caricature of the medium
We begin by pointing out what is now needed to prove the assertion (4.34). Denote by (ξTt )t≥0

the reactant process evolving in the medium (ηTt )t≥0, which was defined in (4.51). We know
from Lemma 2.3 that

P[ξTT (0) > 0] ≥ P[ξT (0) > 0].(4.56)

In view of (4.55) it suffices therefore in order to prove (4.34) to show that

P[ξTT (0) > 0|Cγx,T ] ≤ ε/2 for all x ∈ Iε1,T .(4.57)

For this it suffices to show that the conditional size–biased distributions diverge. We have
established in Section 2, Proposition 2.3, that these distributions are stochastically larger than
the Kallenberg distribution ξ̂TT defined in (2.33). Therefore we have to show that for all N > 0
and T large:

P[ξ̂TT (0) < N |Cγx,T ] ≤ ε/2 for all x ∈ Iε1,T ,(4.58)

in order to conclude the proof of the relation (4.34).

The proof of (4.58) will now be carried out in several steps. The population ξ̂TT (0) will be
bounded below by a simpler population which we can approximate by a tractable object. This
object will arise by considering a thinned out version of ξ̂Tt which will be obtained by removing
reactant particles that follow ancestral paths which are difficult to treat explicitly. This will
lead to an object which we are now going to study in the next step.
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Step 1 Let T be a random tree which is generated by a critical binary Galton–Watson process.
Fix a parameter % > 0 and attach to each v ∈ T an independent (for given tree T ) Bernoulli
random variable B%v with expectation %. Consider now the population Z% defined by the tree
with branches removed from the first 1 on, i.e.

Z% = |{v ∈ T , B%v = 1, B%w = 0 for all w < v}|.(4.59)

The distributional properties of Z% are summarized in:

Lemma 4.4

(a) The generating function ϕ%(λ) = E[λZ%], |λ| < 1 is given by

ϕ%(λ) =
1

1− %
(1−

√
2%(1− %)(1− λ) + %2).(4.60)

(b) E[Z%] = 1, Var [Z%] = %−1.

(c) P[Z% > 0] ∼
√

2% as %→ 0.

(d) Denote by Ẑ% the size–biased population of Z%. Then the rescaled random variable converges
to a Gamma(1/2) distribution.

L
[1

2
%Ẑ%

]
=⇒
% ↓ 0

Gamma(1/2). 3(4.61)

Proof of Lemma 4.4
(a) Condition on the generation descending from the root ∅, to obtain the following equation

ϕ%(λ) = E[λZ%; B%∅ = 1] + E[λZ% ; B%∅ = 0, T 6= {∅}](4.62)

+E[λZ%, B
%
∅ = 0, T = {∅}]

= %λ+
1− %

2
ϕ2
%(λ) +

1− %

2
.

Solving this quadratic equation in ϕ%(λ) yields (4.60).
(b),(c) These are immediate consequences of the explicit formula for ϕ%.
(d) Define

L%(θ) = E[e−θẐ% ],(4.63)

and recall that the Laplace transform of Gamma(1/2) is

(1 + θ)−
1
2 .(4.64)

Furthermore note that the Laplace transform of the size–biased distribution of Z% is given in
terms of Z% by

L%(θ) = E[Z% exp(−θZ%)] = ϕ′%(e
−θ)e−θ = %e−θ(2%(1− %)(1− e−θ) + %2)−

1
2 .(4.65)
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Hence

lim
%→0

L%(%θ/2) = lim
%→0

%(2%(1− %)(1− e−%θ/2) + %2)−
1
2 = (1 + θ)−

1
2 . �(4.66)

Step 2 Now we return to the Kallenberg population ξ̂TT . We will construct a more tractable
lower bound for this object, which is constructed on an event where the path of the backbone
(Ȳt)0≤t≤T has nice properties and we will show that this event has probability close to 1 for large
enough T .

Recall that the path (Ȳt)t≥0 is a realization of a random walk with transition rates b̄, that
is in particular with drift −h. We need to control the time when the catalyst site x is reached
first by the backbone Ȳt and the time which is spent in this site. Here are the details.

Define

τx = inf{t > 0 : Ȳt = x}, x ≤ 0

τ∗x = sup{t > 0 : Ȳt = x}, x ≤ 0.
(4.67)

The sequence (recall Ȳ0 = 0)

τ−1, τ−2 − τ−1, τ−3 − τ−2, . . .(4.68)

is an i.i.d. sequence. Since Ȳ is simple random walk we can calculate explicitly that:

E[τ−1] = h−1, Var [τ−1] = h−3(1− h2) <∞.(4.69)

Consider the event

DK
x,T = {τx ∈ [−xh−1 −K

√
|x|, −xh−1 +K

√
|x|]}.(4.70)

By the central limit theorem we can choose both K0 and T0 large enough such that for K ≥ K0.

inf
T≥T0

inf
x∈Iε1,T

P[DK
x,T ] ≥ 1− ε/4.(4.71)

Next for ε2 > 0 we choose L = L(ε2) large enough such that

E[τ∗x − τx; τ
∗
x − τx ≥ L] ≤ ε2.(4.72)

We will in the sequel focus on the event DK
x,T intersected with {τ∗x−τx ≤ L} for the construction

of a minorant of the Kallenberg population ξ̂Tt .

Step 3 The minorant ζTt of the population ξ̂Tt is constructed on the event Cγx,T for all x ∈ Iε1,T
by the following additional rules (recall that the C

γ
x,T are disjoint as family in x):
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– offspring from the backbone after time τx + L is suppressed

– particles of ξTt which visit x after time τx + 2L are killed.

The construction implies in particular, that on the event Cγx,T ∩ D
K
x,T every particle of the

population (ζTt )t≥0 has left the site x forever at a time

t ∈ [−xh−1 −K
√
|x|, −xh−1 +K

√
|x|+ 2L].(4.73)

Since after this time every particle evolves simply a random walk with transition kernel b, we
conclude by the central limit theorem that the probability of every such particle to be in 0 at
time T is bounded below uniformly in x and T by

c/
√
T for some c > 0.(4.74)

This implies by the law of large numbers that for every ε3 > 0 (recall that the dynamics of ζTt
depends on x through Cγx,T ):

lim
δ→0

lim sup
T→∞

sup
x∈Iε1,T

P
[
ζTT ({0}) ≤ δ

√
T
∣∣∣ζTT (Z) ≥ ε3T, C

γ
x,T ∩D

K
x,T

]
= 0.(4.75)

Therefore if we return to the Kallenberg population ξ̂TT (0) then we can conclude:

lim
δ→0

lim sup
T→∞

sup
x∈Iε1,T

P
[
ξ̂TT (0) ≤ δ

√
T
∣∣∣Cγx,T ](4.76)

≤ lim sup
T→∞

sup
x∈Iε1,T

P[(DK
x,T )c] + lim

δ→0
lim sup
T→∞

sup
x∈Iε1,T

P
[
ζTT (0) ≤ δ

√
T
∣∣∣Cγx,T ∩DK

x,T

]
≤ ε/4 + lim sup

T→∞
sup

x∈Iε1,T

P
[
ζTT (Z) ≤ ε3T

∣∣∣Cγx,T ∩DK
x,T

]
.

Hence it remains in order to conclude the proof to show that by choosing ε3 small enough:

lim sup
T→∞

sup
x∈Iε1,T

P
[
ζTT (Z) ≤ ε3T

∣∣∣Cγx,T ∩DK
x,T

]
≤ ε/4.(4.77)

Step 4 We will verify the relation (4.77) by finding a majorant ZT of ζTT such that we can
make the quantity E[ZT − ζTT (Z)] small and apply to ZT the limit theorem Lemma 4.4.

On the event Cγx,T ∩D
K
x,T the population of (ζTt )t≥0 does not change if we replace the catalyst

(ηTt )t≥0 (recall 4.51) by

η̄Tt (x) = γT1Cγx,T
, t ∈ [0,∞).(4.78)

Consider the (ordinary) reactant process (ζ̄Tt )t≥0 which starts at time 0 with one particle at ȲT .
Since branching only happens during the time which Ȳt spends in x up to time T and since b is
the kernel of a transient random walk we have that the weak limit of ζ̄Tt (Z) exists:

L[ζ̄Tt (Z)]=⇒
t→∞
L[ζ̄T∞(Z)].(4.79)
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Let ZT have the size–biased distribution of L[ζ̄T∞(Z)]. Then by the evolution rule for (ζTt )t≥0

it is clear that

L[ZT ] ≥ L[ζTT (Z)].(4.80)

On the other hand the difference is due to the additional killing we have for ζTt . By the definition
of this additional killing and by (4.72) we estimate as follows. The probability that τ∗x − τx ≥ L
is at most ε2 and in this event the bound is given by the expected total population at time T ,
i.e. γT . If τ∗x − τx ≤ L then the expected number of particles produced and returning to x after
a time which is now at least L is at most γTε2. Altogether

E[ZT ]−E[ζTT (Z)|Cγx,T ∩D
K
x,T ] ≤ 2γTε2.(4.81)

In order to study the distribution of ZT we note the following fact. The probability that a
particle of ζ̄Tt starting in the catalyst site branches before it leaves the catalyst site x forever is
given by the probability that the occupation time of (Yt)t≥0 in its starting point is larger than
an independent exponentially distributed random variable with parameter γT . The occupation
time is exponentially distributed (jump rate of Y is 1) with a parameter given by the probability
of (Yt)t≥0 to jump to the right and never return. This probability is h. Hence the random variable

ZT has the distribution (recall (4.59) for Z%) of Ẑ%, the size biased version of Z% with

% =
h

h + γT
.(4.82)

Note that % is independent of x. Therefore by (4.61) (uniformly in x):

L[(h/γT )ZT ] =⇒
T→∞

Gamma(1/2).(4.83)

Therefore we can choose ε3 such that the interval

[0,
2γ

h
ε3](4.84)

has under the Gamma(1/2) distribution probability at most ε/16. Then for T ≥ T0 for suffi-
ciently large T0 we get by combining (4.83) and (4.84):

P[ZT ≤ 2ε3T ] ≤ ε/8.(4.85)

With these estimates we can continue (using Chebyshev and (4.81)):

lim sup
T→∞

sup
x∈Iε1,T

P[ζTT (Z) ≤ ε3T |C
γ
x,T ∩D

K
x,T ](4.86)

≤ lim sup
T→∞

sup
x∈Iε1,T

P[ZT ≤ 2ε3T ] + (ε3T )−1(E[ZT ]− E[ζTT (Z)|Cγx,T ∩D
K
x,T ])

≤ ε/8 + ε/8 = ε/4,

if we choose

ε2 ≤
( εε3

16γ

)
.(4.87)

This proves (4.77) and hence completes the proof of Theorem 2 (b). �
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5 Catalysts locally dying out: Proof of Theorem 3

The proof of Theorem 3 is based on the two key ingredients, namely Proposition 1.5 showing
there are empty space time cylinders on a macroscopic scale and Proposition 1.4 where we pass
to the diffusion limit. These key propositions are proved in Subsections 5(a) and 5(b) while 5(c)
contains the proof of Theorem 3 up to some technical lemmas proved in 5(d).

(a) Empty space-time cylinder: Proof of Proposition 1.5 and Corollary 1.6

We begin with Proposition 1.5. The main idea is to use scaling to get the result from path
properties of the diffusion limit and then transport the result to the particle system studied
here by approximation. In order to be able to pass to the diffusion limit we need to control
contributions from far away, which are not covered when passing to the diffusion limit in the
usual topology of vague convergence on the space of measures. We break the proof into four
main steps for greater transparency.

Step 1 (Decomposition of the initial state)
Let R > 0 and let (recall that B(R) = [−R,R]2 ∩ Z2):

M(R) = H1

∣∣∣
B(R)

and M ′(R) = H1

∣∣∣
B(R)c

(5.1)

the restrictions of the Poisson fieldH1 toB(R) and its complement. Because of the independence
of the evolution of different families in branching systems it suffices to check (1.39) instead for
the initial state H1 separately for the initial states M(RT 1/2) and M ′(RT 1/2). We verify (1.39)
for M ′ in Step 2 and for M in the two Steps 3 and 4 since in the latter case we have to bring
into play the diffusion limit.

Step 2 (Contribution from the outside)
Now think of a system starting in M ′(RT 1/2). Let 0 < 2r < R < ∞. Let Er,T denote the
following event

Er,T =

{
sup

0≤s≤T
ηs(B(rT 1/2)) > 0

}
.(5.2)

We will show that

lim
R→∞

lim sup
T→∞

PM ′(RT 1/2)[Er,T ] = 0(5.3)

For ` ∈ N and T > 0 define

p1
T,` = Pδ0

[
sup

0≤s≤T
ηs({±`,±(`+ 1), . . .} × Z) > 0

]
,

p2
T,` = Pδ0

[
sup

0≤s≤T
ηs(Z× {±`,±(`+ 1), . . .}) > 0

]
.

(5.4)
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Then for R ≥ 2r

PM ′(RT 1/2)[Er,T ] ≤
∑

|x|≥RT 1/2

Pδx[Er,T ]

≤ 2
∑

`≥RT 1/2

`
(
p1
T,`−rT 1/2 + p2

T,`−rT 1/2

)
≤ 4

∑
`≥(R−r)T 1/2

`
(
p1
T,` + p2

T,`

)
.

(5.5)

Now we use Kesten’s result on the evolution of the rightmost particle in branching random
walks (Kesten (95), Theorem 1.1) in the continuous time version (Proposition 1.3). Recall that
α fulfills (1.35). By maybe making α > 6 a little bit smaller we can assume that even (1.25)
holds. Using symmetry, Proposition 1.3 implies that there exists a C <∞ such that for T ≥ 1
and ` ≥ 2T 1/2

piT,` ≤
C

8

(
T−1(`T−1/2)−α/2 + T (2−α)/4(`T−1/2)(1−α)/2

)
, i = 1, 2.(5.6)

Hence for some C′ <∞,

PM ′(RT 1/2)[Er,T ] ≤ C
∑

`≥(R−r)T 1/2

`[T−1(`T−1/2)−α/2 + T (2−α)/4(`T−1/2)(1−α)/2]

= C
∑

`≥(R−r)T 1/2

T−1+α/4`(2−α)/2 + T 1/4`(3−α)/2

≤
C′

2

(
(R− r)(4−α)/2 + (R− r)(5−α)/2 T (6−α)/4

)
≤ C′(R− r)(4−α)/2.

(5.7)

Hence (5.3) holds and therefore we have proved (1.39) (with δ = 1) for the initial condition
M ′(RT 1/2), instead of H1. �

Step 3 (Diffusion Limit)
In order to treat now (1.39) for the contributions from inside the box that is for the initial state
M(RT 1/2), we consider in this step first the corresponding property for the super Brownian
motion X% on R2 and then return later to the particle problem via a theorem by Dawson,
Hochberg and Vinogradov (96).

Let ` denote the Lebesgue measure on R2 and let `R = ` · 1B(R), R > 0, the restriction of `
to the finite box B(R) = [−R,R]2 ⊂ R2. Let (%t)t≥0 be a super Brownian motion in R2 and Pν

its law if %0 = ν a.s. We will prove that for r > 0 small enough the super catalyst satisfies

sup
δ∈(0,1/4)

P`R [%1−2δ(B(2r)) > 0] < ε/4.(5.8)

(The appropriate choice of δ ∈ (0, 1/4) will be made later.)

To prove this result note that by the scaling property of super Brownian motion in R2 we get
for s > 0 and r > 0,

P`R [%s(B(r)) > 0] = P`R/s [%1(B(r/s)) > 0].(5.9)
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Hence by the monotonicity of the set function %1(·) and by the stochastic monotonicity of %1 in
the initial state

sup
1/2≤s≤1

P`R [%s(B(r)) > 0] ≤ P`2R [%1(B(2r)) > 0].(5.10)

Denote by St the closed support of %t. From Perkins (89), Corollary 1.3, we know that for all
R > 0 and t > 0

P`R [`(St) = 0] = 1.(5.11)

Hence for `-a.a. x ∈ R2

P`R [x ∈ St] = 0.(5.12)

Let x ∈ B(1) be such that P`R+1
[x ∈ St] = 0. Let `xR = ` · 1x+B(R). By translation invariance of

the super Brownian motion and by monotonicity we get

P`R [0 ∈ St] = P`xR
[x ∈ St] ≤ P`R+1

[x ∈ St] = 0.(5.13)

By σ-continuity of P from above, for R > 0 and ε > 0 we find r > 0 such that

P`2R [%1(B(2r)) > 0] < ε.(5.14)

Fix R > 0 and ε > 0. By combining (5.10) and (5.14) we know that we can choose r > 0
small enough so that (5.8) holds.

We come back to our original situation, i.e. the particle model. From Dawson, Hochberg
and Vinogradov (96), Theorem 1.1, we know that

LM(RT 1/2)[(T
−1ηtT (T 1/2 ·))t≥0] =⇒

T→∞
L`R [(%t)t≥0](5.15)

in the Skorohod topology. In particular we can conclude from their result and (5.8) that for
γ > 0,

lim sup
T→∞

PM(RT 1/2)

[
η(1−2δ)T (B(2rT 1/2)) > γT

]
≤ P`R [%1−2δ(B(2r)) > 0] < ε/4.(5.16)

We continue the study of the contribution from inside the box B(R). We have now in (5.16)
a statement close to what we want except that we have on the l.h.s. the bound γT instead of 0.
That is we know that the intensity of the catalyst in B(2rT 1/2) is small, but we need the box
to be completely empty for T large. To deal with this problem is the content of the next step.

Step 4. (Decomposition at time (1− 2δ)T )
In order to improve (5.16) we decompose (ηt)t≥(1−2δ)T according to the positions of the particles
at time (1− 2δ)T , namely whether they are in the large box or not. Let

ηt = η1
t + η2

t , t ≥ (1− 2δ)T,(5.17)
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where both (η1
t )t≥(1−2δ)T and (η2

t )t≥(1−2δ)T are branching random walks on Z2 and such that

η1
(1−2δ)T = η(1−2δ)T1B(2rT 1/2)

η2
(1−2δ)T = η(1−2δ)T1B(2rT 1/2)c .

(5.18)

Define the event DT = {‖η1
(1−2δ)T‖ ≤

εδ
8 T}. From (5.16) we know that

lim sup
T→∞

PM(RT 1/2)[D
c
T ] < ε/4.(5.19)

On DT however (recall Lemma 2.5) we can estimate the probability of positive total population
of η1 at time (1− δ)T :

PM(RT 1/2)[‖η
1
(1−δ)T‖ > 0; DT ] ≤ EM(RT 1/2)[(1 + Tδ/2)−1‖η1

(1−2δ)T‖; DT ].

≤ ε/4.
(5.20)

Hence we can estimate η1
s in a box for all later times:

lim sup
T→∞

PM(RT 1/2)

[
sup

(1−δ)T≤s≤T
η1
s(B(2rT 1/2)) > 0

]
< ε/2.(5.21)

With the contribution η2 from the outside (from the point of view of time (1 − δ)T ) we
proceed as in Step 2. Analogously to (5.7) we get (for δ > 0 small enough)

PM(RT 1/2)

[
sup

(1−2δ)T≤s≤T
η2
s(B(rT 1/2)) > 0

]
≤ 2C′

(√
δ

r

)(α−4)/4

< ε/2.(5.22)

Now we can combine (5.22) with (5.21) to get:

lim sup
T→∞

PM(RT 1/2)

[
sup

(1−δ)T≤s≤T
ηs(B(rT 1/2)) > 0

]
< ε,(5.23)

which completes the proof of Proposition 1.5. �

Proof of Corollary 1.6 The proof is based on Proposition 1.5 via a soft argument and an
additional variance estimate.

For δ, r > 0 let

Aδ, r(T ) =

{
sup

(1−δ)T≤s≤T
ηs(B(rT 1/2)) = 0

}
.(5.24)

According to (1.39) in Proposition 1.5 we can choose for ε > 0 numbers δ, r > 0 such that

lim inf
T→∞

P[Aδ,r(T )] ≥ 1− ε.(5.25)
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Next we come to the variance estimate. Let

Kδ, r(T ) := E

[
2

∫ T

0

∑
x∈Z2

ηs(x) bT−s(0, x) bT−s(x, 0) ds;Aδ,r(T )

]
.(5.26)

Note that from the definition above it is clear that

Kδ, r(T ) ≤ 2θη

∫ T

δT

∑
x∈Z2

bs(0, x)bs(x, 0) ds+ 2θη

∫ δT

0

∑
x∈B(rT 1/2)c

bs(0, x)bs(x, 0) ds.(5.27)

It is easy to show that Kδ,r := supT≥1Kδ,r(T ) < ∞. In order not to interrupt the flow of the
proof here the proof of this statement is deferred to Part (d) of this section (Lemma 5.1).

We combine this latter statement with (5.25) and use the second moment formula (2.13) and
Chebyshev’s inequality to conclude that

lim sup
T→∞

P[Var[ξT (0)|η]≥ Kδ, r/ε](5.28)

= lim sup
T→∞

P

[ ∑
x∈Z2

2θη

∫ T

0
ηs(x) bT−s(0, x) bT−s(x, 0) ds≥ Kδ, r/ε

]
≤ ε+ lim sup

T→∞
P[Aδ, r(T )c] ≤ 2ε.

We continue with an argument taken from Etheridge and Fleischmann (98). Let tn → ∞
such that

L[L[ξtn(0)|η]]=⇒
n→∞
L[L[(ξ∞(0)|η]].

Since trivially P[E[ξ∞(0)|η] ≤ θξ] = 1, it suffices to prove for every ε > 0 that P[E[ξ∞(0)|η)] ≤
θξ − ε] ≤ 2ε in order to get (1.40). We calculate as follows:

P[E[ξ∞(0)|η]≤ θξ − ε](5.29)

≤ P[E[ξ∞(0) ∧ (2Kδ, r/ε
2)|η] ≤ θξ − ε]

≤ lim inf
n→∞

P[E[ξtn(0) ∧ (2Kδ, r/ε
2)|η]≤ θξ − ε]

≤ lim inf
n→∞

P[E[(ξtn(0)− 2Kδ, r/ε
2)+|η] ≥ ε/2]

≤ lim inf
n→∞

P[Var[ξtn(0)|η] ≥ Kδ, r/ε]

≤ 2ε. �

(b) Diffusion limit: Proof of Proposition 1.4

The main idea for the proof is to compare first the particle system to super random walk
(diffusion limit only of the branching mechanism) and then use moment calculations to show
the convergence of super random walk quantities to the ones of the super Brownian process. The
proof is presented in three steps and the proofs of some technical facts are deferred to Subsection
5(d). For notational convenience we will assume throughout the proof that θη = θξ = 1.
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Step 1 (Reduction of η to B(RT 1/2))
In this step we establish for branching random walk in a catalytic medium the fact that in
branching processes the population at time T in a finite window is made up of the descendents of
the ancestors in B(RT 1/2) which in time T never have left the box if we make R large (compare
Proposition 1.3). Hence for many arguments below we can work with a “finite system”, i.e.
finitely many particles on a large finite box, which is essential when we want to pass to the
diffusion limit. Here are the formal arguments.

Start with the catalyst. Let R > 0. Recall that B(R) = [−R,R]2 ∩ Z2. We decompose

η = η1 + η2,(5.30)

where

η1,R
0 (A) = η0(A ∩B(R)), η2,R

0 (A) = η0(A ∩B(R)c), A ∈ B(R2).(5.31)

It is well known (see [DHV], Theorem 1) that

L

[(
T−1η1,RT 1/2

tT (T 1/2·)
)
t≥0

]
=⇒
T→∞
LR [(%t)t≥0] ,(5.32)

where the superscript indicates that LR[%0] = δ`1B(R)
. The point in showing (a) is to deal

with the infinite initial condition. We do so by showing that the contribution from η2,RT 1/2
is

negligible for largeR.

Let

ER,T,t :=

{
sup

0≤s≤tT
η2,RT 1/2

s (B(RT/2)) > 0

}
.(5.33)

From (5.3) we know that for t ∈ (0, 1):

lim
R→∞

lim sup
T→∞

P[ER,T,t] = 0.(5.34)

Together with (5.32) this yields the assertion (a).

Now we turn to the proof of assertion (b). Let (ξ1,R
s )s≥0 be the reactant process associated

with the catalyst process (η1,R
s )s≥0. Our aim is to show that

T−1ξ1,RT 1/2

tT (T 1/2·) and T−1ξtT (T 1/2·)(5.35)

are close. Similarly, as in the proof of Theorem 2(a) (Step 2 in Section 4(a)) we can couple
both (ξs) and (ξ1,R

s ) with a new reactant process (ξ2,R
s )s≥0. In (ξ2,R) particles branch w.r.t. the

catalyst (ηs1B(R/2))s≥0 and are killed instantaneously on B(R/2)c. This process satisfies

ξ2,R
t ≤ ξt, ξ2,R

t ≤ ξ1,R
t .(5.36)
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If we let (Wt) = ((W 1
t ,W

2
t )) be a standard Brownian motion on R2 and use Donsker’s theorem

we get for r > 0 and R > max(4r, 2t)

lim sup
T→∞

T−1E[ξtT (B(rT 1/2))− ξ2,RT 1/2

tT (B(rT 1/2))]

≤ 4θξr
2 P0[Ws 6∈ [r − (R/2), (R/2)− r]2 for some s ∈ [0, t]].

(5.37)

Using the reflection principle this inequality can be continued by

≤ 32θξr
2 P0[W 1

t ≥ R/2]

≤ 32θξr
2 exp

(
−R2/8t

)
.

(5.38)

Hence

lim
R→∞

lim sup
T→∞

E
[
|T−1ξtT (B(rT 1/2))− T−1ξ2,RT 1/2

tT (B(rT 1/2))|
]

= 0(5.39)

Analogously we get

lim
R→∞

lim sup
T→∞

E
[
T−1(ξ1,RT 1/2

tT (B(rT 1/2))− ξ2,RT 1/2

tT (B(rT 1/2)); Ec
R,T,t

]
= 0.(5.40)

Combining (5.34),(5.39) and (5.40) we get for ε > 0

lim
R→∞

lim sup
T→∞

P
[
E[|T−1ξ1,RT 1/2

tT (B(rT 1/2))− T−1ξtT (B(rT 1/2))|η] > ε
]

= 0.(5.41)

A similar statement holds for X% and % since the couplings can be defined on the super
process level as well (see Klenke (97), Lemma 3.3). Hence it suffices to show in the next step
that

LRT
1/2

[L[T−1ξtT (T 1/2·)|η]] =⇒
T→∞
LR[L[X%|%]],(5.42)

where the superscripts indicate that LRT
1/2

[η0] =H(` · 1B(RT 1/2)) and LR[%0] = δ`1B(R)
. (Recall

that ` is the Lebesgue measure on R2 respectively counting measure on Z2 and H(m) is the
distribution of a Poisson point process with intensity measure m.)

Step 2 (Comparison with super random walk)
In order to go from the particle system to the super process we proceed in two steps. In the
first step we perform the diffusion limit only for the branching on the reactant level that is we
pass to super random walk. That is reactant particles get mass ε, the initial state gets intensity
ε−1θξ` and the branching rate is ε−1ηt and then we let ε → 0. This enables us to use in the
next step the simpler moment formulas ((5.48) below) of super random walk to carry out the
remaining diffusion limits in the particle motions and the catalytic branching.

Let (ζs)s≥0 be super random walk in the catalytic medium (ηs)s≥0 started in L[ζ0] = δ`.
In this step we use the close connection between our model and super random walk in the
catalytic medium. The latter is a system {(ζs(x))s≥0, x ∈ Z2} of interacting Feller diffusions
with branching rate given by η. As initial configuration we choose L[ζ|η] = δ` and L[ξ0|η] = H1.
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In terms of Laplace transforms the relation between ζ and ξ for given η reads as follows (see,
e.g., [GRW]), Lemme 1, for the non–catalytic situation).

E[exp(−〈ζs, 1− e
−f 〉)|η] = E[exp(−〈ξs, f〉)|η], f ∈ C+

c (R2).(5.43)

Since the law at fixed time is uniquely determined by the Laplace functional, the fact that
‖T (1 − e−f/T ) − f‖∞ → 0 as T → ∞, implies via (5.43) that it suffices now to consider the
relation (1.38) with ξ replaced by ζ. Since the estimates (5.39) - (5.41) hold on the super–process
level it suffices in fact to show instead of (5.42):

LRT
1/2

[L[T−1ζtT (T 1/2·)|η]] =⇒
T→∞
LR[L[X%|%]],(5.44)

where on the l.h.s. LRT
1/2

[ζ0] = δ`1
B(RT1/2)

.

Step 3 (Diffusion limit of super random walk)
We now need to introduce the space–time rescaling of the pair (ηt, ζt), that produces the diffusion
limit. This is very intuitive but the proof is a bit technical.

Denote by ηTs the rescaled catalyst process defined by T−1ηsT (T 1/2 · ), where the mass is
smeared out uniformly in the squares T−1/2(x+ [−1

2 ,
1
2)2), x ∈ Z2, i.e.,

ηTs (A) = T−1
∑
x∈Z2

|(T 1/2A) ∩ (x+ [−1
2 ,

1
2)2)| · ηsT ({x}).(5.45)

Similarly we define ζT and the rescaled transition probabilities (bTs )s≥0 associated with the
“motion” in ζT ,

bTs (x, y) = T · bsT (x0, y0),(5.46)

where x0, y0 ∈ Z2 are such that x ∈ T−1/2(x0 + [−1
2 ,

1
2)2) and y ∈ T−1/2(y0 + [−1

2 ,
1
2)2). (Recall

that (bs)s≥0 is the transition semigroup associated with the motion part of (ηs).)

In order to show (5.44) it turns out that it is enough to show

LR[E[〈ζTt , f〉
n|ηT ]] =⇒

T→∞
LR[E[〈X%

t , f〉
n|%]], f ∈ C+

c (R2), n ∈ N.(5.47)

Namely, we need that the conditioned moments 〈ζTt , f〉
n are finite and that these moments for

X% satisfy a growth condition in n in order to give a well posed moment problem. The finiteness
of the moments is immediate from (5.44) below and the growth condition for the moments of
X% is in [DF5], Section 3.3.

The proof of (5.47) will be based on the analysis of the moments and convergence results
for these objects. The key to the analysis of moments is the fact that the n-th moments can
be obtained from lower order moments via recursion formulas. For the rest of the proof we fix
f ∈ C+

c (R2). According to [DF5], Lemma 13.

E[〈ζTt , f〉
n|ηT ] =

n−1∑
k=0

(
n− 1

k

)
〈`, uTn−k(0, t, · )〉E[〈ζTt , f〉

k|ηT ],(5.48)
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where

uTn (s, t, x) =


(bTt−sf)(x)1s≤t, n = 1

1

2

n−1∑
j=1

(
n

j

)∫ t

s

dr

∫
R2
ηTr (dy) bTr−s(x, y) uTj (r, t, y) uTn−j(r, t, y), n ≥ 2.

(5.49)

If we set b∞t (x, y) = (2πs)−1 exp(−‖y − x‖2/2s) and define u∞ by replacing in (5.49) bT by
b∞, we get the moment formulas for the super process in catalytic medium X% (see again [DF5],
Lemma 13),

E[〈X%
t , f〉

n|%] =
n−1∑
k=0

(
n− 1

k

)
〈`, u∞n−k(0, t, · )〉E[〈X%

t , f〉
k|%].(5.50)

The relations (5.48) and (5.50) tell us that we need to compare uTn and u∞n as T →∞, based
on information on the rescaled transition kernel (bTs )s≥0 and the defining recursion relation
(5.49). To carry this out we next give a more convenient representation of uTn as a kernel
applied to a polynomial functional of the occupation measure of the catalyst.

Define the space–time catalytic occupation measure

κT (dy, ds) = ηTs (dy)ds.(5.51)

We can write for n ≥ 2, uTn as:

uTn (s, t, x) =

∫
(R2×[0,t])n−1

KT
n (s, t, x; y, r) (κT)⊗(n−1)(dy, dr).(5.52)

For this relation to be true we have to define KT
n (s, t, x,y, r), y = (y1, . . . , yn−1) ∈ (R2)n−1,

r = (r1, . . . , rn−1) ∈ [0, 1]n−1, inductively in terms of (bTs )s≥0 as follows:

KT
1 (s, t, x) = (bTt−sf)(x)1s≤t,(5.53)

KT
n (s, t, x; (y1, . . . , yn−1), (r1, . . . , rn−1))(5.54)

= bTr1−s(x, y1)
n−1∑
j=1

(
n

j

)
KT
j (r1, t, y1, (y2, . . . , yj), (r2, . . . , rj))

×KT
n−j(r1, t, y1; (yj+1, . . . , yn−1), (rj+1, . . . , rn−1)).

Furthermore abbreviate:

K̃T
n (s, t; y, r) = 〈`, KT

n (s, t; ·, y, r)〉.(5.55)

Analogously we define K∞n (s, t, x; y, r) and K̃∞n (s, t; y, r) based on the Brownian transition prob-
abilities.

68



It can be show that (see Lemma 5.2 in Part (d) of this section)

sup{|(bTt f)(x)− (b∞t f)(x)|; t ≥ 0, x ∈ R2} −→
T→∞

0,(5.56)

(recall that f is bounded and uniformly continuous). In other words, (recall (5.53)) K̃T
1 and KT

1

converge to K̃∞1 and K∞1 . An induction (carried out in Part (d) of this section in Lemma 5.2
and 5.3) yields that for every n ≥ 2

KT
n (s, t, x; ·, ·)−→

T→∞
K∞n (s, t, x; ·, ·) in L∞((R2)n−1 × [0,∞)n−1)(5.57)

and

K̃T
n (s, t, x; ·, ·)−→

T→∞
K̃∞n (s, t, x; ·, ·) in L∞((R2)n−1 × [0,∞)n−1).(5.58)

In order to transfer this information to the moment measures, note that by (5.48) and (5.52)
we can define for i = 0, . . . , n− 1 multinomials of K̃T

j (0, t), which we call JTn,i(t; y, r), y ∈ (R2)i,

r ∈ [0,∞)i such that

E[〈ζTt , f〉
n|ηT ] =

n−1∑
i=0

∫
JTn,i(t; y, r) (κT)⊗i(dy, dr).(5.59)

(We interpret
∫
Jn,0(t)d(κT )⊗0 as equal to Jn,0(t) ∈ R.) A similar statement is true for X% with

integral kernels J∞n,i(t). To get the convergence of the n-th moments as claimed in (5.47) we have

to estimate two things, namely how far both ingredients JT and κT are from their respective
limits.

We start with JT . By (5.58) clearly,

JTn,i(t)−→
T→∞

J∞n,i(t) in L∞((R2)i × [0,∞)i).(5.60)

Note that for the space–time occupation measure ER[‖κT‖] = 4R2t, T ∈ (0,∞). Hence for ε > 0
we obtain with Chebyshev’s inequality that

PR[

∫
|JTn,i(t)− J

∞
n,i(t)| d(κT )⊗i > ε] ≤ PR[‖JTn,i(t)− J

∞
n,i(t)‖∞ · ‖κ

T‖i > ε](5.61)

≤ 4R2tε−1/i‖JTn,i(t)− J
∞
n,i(t)‖

1/i
∞ −→

T→∞
0.

Using the same estimate we see that for each n ∈ N and i ≤ n,{∫
J∞n,i(t)d(κT )⊗i, T ≥ 1

}
is uniformly integrable w.r.t. PR.(5.62)

Next comes κT out and we have to bring into play the convergence of the process ηT as
T →∞. According to [DHV] we have the convergence of ηT to % in path space. This we use in
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the following way. Define in view of (5.59) the following functional of the catalyst process: For
γ ∈ D([0, t],Mf(Rd)) (= space of càdlàg functions equipped with the Skorohod topology) let

mn(γ) :=
n−1∑
i=0

∫
ds1 · · ·dsi−1 J

∞
n,i(t; (y1, . . . , yi), (s1, . . . , si)) γs1(dy1) · · ·γsi(dyi).(5.63)

Note that mn is a continuous functional of γ. Thus using (5.62) we get from [DHV, 1997],
Theorem 1.1, that

LR[mn(ηT )] =⇒
T→∞
LR[mn(%)].(5.64)

Together with (5.61) this implies (5.47). Hence the proof of Proposition 1.4 is complete. �

(c) The reactant is asymptotically Mixed Poisson: Proof of Theorem 3

The idea of the proof is to use the empty space–time cylinder (Proposition 1.5) to construct
a coupling of the reactant (ξt)t≥(1−δ)T with a system of independent random walks starting in
ξ(1−δ)T . The latter systems have Poisson states as extremal equilibria. Hence by rescaling the
Proposition 1.4 (diffusion limit) will yield the conclusion. Here are the details.

We start with a random walk estimate. Recall that at(·, ·) is the transition function of the
random walk Xt. For R > 0 and x, y ∈ B(R) define the transition function of random walk with
killing at the complement of B(R),

ãt,R(x, y) = Px[Xt = y : Xs ∈ B(R), 0 ≤ s ≤ t].(5.65)

Using Donsker’s theroem, aδT (x, y)− ãδT,rT 1/2(x, y) is asymptoticallly as T →∞ the probability

that a standard two–dimensional Brownian motion (Wt), started in x/
√
δT hits (y+[0, 1]2)/

√
δT

at time δT without leaving [−r, r]2 Hence using symmerty and the reflection principle we get

lim sup
T→∞

[
T sup

{
aδT (x, y)− ãδT,rT 1/2(x, y) : x, y ∈ B((r/2)T 1/2)

}]
= sup

x,y∈[−r/2,r/2]2
Px[Wδ ∈ dy; Ws 6∈ [−r, r]2 for some s ∈ (0, δ)]/dy(5.66)

≤
2

πδ
exp

(
−r2/2δ

)
.

We introduce the following coupling between three processes (ξit)t≥0, i = 1, 2, 3, which all start
in a configuration living on B(2rT 1/2) which later we choose to be the configuration (ξ(1−δ)T )

restricted to B(rT 1/2). Let (ξ1
t )t≥0 be branching random walk on Z2 with branching rate given

by the catalyst (η(1−δ)T+t)t≥0. Let (ξ2
t )t≥0 be independent simple random walks on Z2. Finally

we define (ξ3
t )t≥0 by introducing in (ξ2

t )t≥0 for each particle a killing at the boundary ofB(rT 1/2).
Denote by τ the first killing time of ξ3

t ,

τ = inf{t ≥ 0, ξ3
t < ξ2

t }.
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For initial state µ (concentrated in B(rT 1/2)) we can construct (ξ1
t , ξ

2
t , ξ

3
t )t≥0 on one probability

space Pµ such that Pµ[ξ1
0 = ξ2

0 = ξ3
0 = µ] = 1 and such that for 0 ≤ t ≤ δT (recall the definition

of Aδ,r(T ) from (5.24)),

Aδ,r(T ) ∩ {τ > t} ⊂ {ξ1
t = ξ2

t = ξ3
t }.(5.67)

Note that for x, y ∈ B((r/2)T 1/2) and 0 ≤ t ≤ δ,

Eδx [|ξ1
t (y)− ξ2

t (y)|; Aδ,r(T )] ≤ Eδx[|ξ1
t (y)− ξ3

t (y)|; Aδ,r(T )] + Eδx[|ξ3
t (y)− ξ2

t (y)|]

≤ 2
[
at(x, y)− ãt,rT 1/2(x, y)

]
.

(5.68)

Hence by (5.66)

lim sup
T→∞

[
T sup

{
Eδx

[
|ξ1
δT (y)− ξ2

δT (y)|; Aδ,r(T )
]

: x, y ∈ B((r/2)T 1/2)
}]

≤
2

πδ
exp(−r2/2δ).

(5.69)

On the other hand for y ∈ B((r/4)T 1/2) we get from the central limit theorem that for r > 0
fixed and T sufficiently large that∑

x∈(B((r/2)T1/2))c

Eδx
[
|ξ1
δT (y)− ξ2

δT (y)|
]
≤

∑
x∈(B((r/2)T 1/2))c

2aδT (x, y)

≤
∑

x∈B((r/4)T1/2)c

2aδT (0, x)(5.70)

≤ 4P0[Wδ 6∈ [−r/4, r/4]2]

≤ 4 exp(−r2/32δ).

Now we apply the above estimates to our situation, that is we assume ξ1
0 = ξ2

0 = ξ(1−δ)T and
ξ(1−δ)T+t = ξ1

t . Hence for f : Z2 → R with finite support, for T large enough, (5.69) and (5.70)
give

Eθη,θξ [|〈ξT − ξ
2
δT , f〉|]

= Eθη,θξ [|〈ξ
1
δT − ξ

2
δT , f〉|; Aδ,r(T )] + 2θξPθη [(Aδ,r(T ))c] · ‖f‖1(5.71)

≤ 4θξ exp

(
−
r2

32δ

)
‖f‖1

+ 2θξ‖f‖1

(
1

πδ
exp(−r2/2δ)T−1|B((r/2)T 1/2)|+ Pθη [(Aδ,r(T ))c]

)
.

Thus (e.g., for r = δ1/4),

lim sup
T→∞

Eθη,θξ

[
|〈ξT − ξ

2
δT , f〉|

]
= ‖f‖1 · o(δ).(5.72)
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Recall Proposition 2.1 on Poisson equilibria and note that for y ∈ Z,

E[ξ2
δT (y)|ξ(1−δ)T ] = (pδT ∗ ξ(1−δ)T )(y).(5.73)

Hence for T →∞ (by Proposition 2.1) the distribution of ξ2
δT given ξ(1−δ)T is close to a Poisson

field with intensity measure pδT ∗ ξ(1−δ)T (which of course depends on η). Hence by the diffusion
limit Proposition 1.4 (and the central limit theorem for pδT ),

Lθη ,θξ

[
Lθη ,θξ

[
ξ2
δT |η

]]
=⇒
T→∞
Lθη ,θξ

[
Eθη,θξ

[
H
(

(pBδ ∗X
%
1−δ)(0)

)
|(%)

]]
.(5.74)

However by (5.72) and (1.32) we can let δ → 0 on both sides to obtain the assertion (1.36). �

(d) Some technical lemmas

In this section we give further details for technical parts from the moment calculations in the
proof of Theorem 3. Recall that B(R) = [−R,R]2 ∩ Z2.

Lemma 5.1 For 0 < δ < 1 and r > 0 the following quantity is bounded for T ≥ 1∫ T

δT

∑
x∈Z2

bs(0, x)bs(x, 0) ds+

∫ δT

0

∑
x∈B(rT 1/2)c

bs(0, x)bs(x, 0) ds. 3(5.75)

Proof For the first term in (5.76) note that
∑

x∈Z2 bs(0, x)bs(x, 0) is the probability that the
difference of two indepepndent random walks according to (bt) hit 0 at time s. Hence the local
central limit theorem gives

lim
T→∞

∫ T

δT

∑
x∈Z2

bs(0, x)bs(x, 0) ds=
1

4π
log(δ−1).(5.76)

The other integral in (5.75) can be estimated as follows. First we make use of the following
standard estimate for non–degenerate two–dimensional random walk

C := sup
s≥1

sup
x∈Z2

sbs(0, x) <∞.(5.77)

Next we apply Chebyshev’s inequality to the coordinates of x = (x1, x2)∑
x∈B(rT 1/2)c

bs(0, x) ≤
2s

r2T
.(5.78)

Putting together (5.77) and (5.78) we get∫ δT

0

∑
x∈B(rT 1/2)c

bs(0, x)bs(x, 0) ds≤
2Cδ

r2
+ 1.(5.79)

�

Recall from (5.46) that bT is the rescaled simple random walk kernel and that b∞ is the heat
kernel.
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Lemma 5.2 Let F = {fi, i ∈ I} be a bounded uniformly continuous family of real valued
functions, indexed by some index set I, i.e., for ε > 0 there exists δ = δ(ε) > 0 such that for
x, y ∈ Rd with |x− y| < δ and for all i ∈ I we have

|fi(x)− fi(y)| < ε.(5.80)

Then F ′ := {(b∞t fi), t ≥ 0, i ∈ I} is a bounded uniformly continuous family and

sup
t,i,x
|(bTt fi − b

∞
t fi)(x)| −→

T→∞
0. 3(5.81)

Proof Clearly F ′ is bounded. Also F ′ is uniformly continuous with the same δ(ε) as F .

Now we show that (5.81) holds. Let ε > 0 and define

M := sup
i,x
|fi(x)| <∞.

Note that by Chebyshev’s inequality, e.g., we can find t0 > 0 such that

bTt 1([−δ,δ]2)c(0) ≤
ε

2M
, t ∈ [0, t0], T ∈ [1,∞].(5.82)

Hence for t ≤ t0 and x ∈ Rd,

|(bTt fi − b
∞
t fi)(x)| ≤ ‖fi‖∞ ·

(
(bTt + b∞t )1([−δ,δ]2)c(0)

)
+ sup
y:|y−x|<δ

|fi(y)− fi(x)|

≤ 2ε
(5.83)

On the other hand for t ≥ t0 by the central limit theorem (and uniform continuity of F)

sup
t>t0, i∈I

‖bTt fi − b
∞
t fi‖∞ −→

T→∞
0. �(5.84)

In order to state the next lemma let f ∈ C+
c (Rd) and recall the definition of KT and K∞ from

(5.53) and (5.54).

Lemma 5.3 For n ≥ 1,

Fn :=
{
K∞n (s, t, · ; y, r); s, t ≥ 0, y ∈ (R2)n−1, r ∈ [0,∞)n−1

}
(5.85)

is a bounded uniformly continuous family. Furthermore, if we let

αTn = sup
s,t,x,y,r

|KT
n (s, t, x; y, r)−K∞n (s, t, x; y, r)|,(5.86)

α̃Tn = sup
s,t,y,r

|K̃T
n (s, t; y, r)− K̃∞n (s, t; y, r)|,(5.87)

then

αTn −→
T→∞

0(5.88)

and

α̃Tn −→
T→∞

0. 3(5.89)
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Proof From Lemma 5.2 (with F = {f}) we know that the claim of the lemma holds for n = 1.

Now assume that n ≥ 2 and that the claim of the lemma has been shown for n′ < n. Note
that

{ n−1∑
j=1

(
n

j

)
K∞j (s, t, · ; (y2, . . . , yj), (r2, . . . , rj)) K

∞
n−j(s, t, · ; (yj+1, . . . , yn−1), (rj+1, . . . , rn−1));

s, t > 0, y ∈ (R2)n−1, r ∈ [0,∞)n−1
}(5.90)

is a bounded uniformly continuous family. Hence, by Lemma 5.2, Fn is a bounded and uniformly
continuous family. Let βn = sup{‖k‖∞, k ∈ Fn}. Then

sup
t,r,y

∣∣∣KT
j (r1, t, y1; (y2, . . . , yj), (r2, . . . , rj))K

T
n−j(r1, t, y1; (yj+1, . . . , yn−1), (rj+1, . . . , rn−1))

−K∞j (r1, t, y1; (y2, . . . , yj), (r2, . . . , rj))K
∞
n−j(r1, t, y1; (yj+1, . . . , yn−1), (rj+1, . . . , rn−1))

∣∣∣
≤ (αTj + βj)α

T
n−j + αTj βn−j −→

T→∞
0.

(5.91)

Hence∣∣∣KT
n (s, t, x; y, r)−K∞n (s, t, x; y, r)

∣∣∣(5.92)

≤
∣∣∣(bTr1−s(x, y1)− b∞r1−s(x, y1))

n−1∑
j=1

(
n

j

)
K∞j ((r1, t, y1; (y2, . . . , yj), (r2, . . . , rj))

×K∞n−j(r1, t, y1; (yj+1, . . . , yn−1), (rj+1, . . . , rn−1))
∣∣∣

+(bTr1,s(x, y1) + b∞r1,s(x, y1))
n−1∑
j=1

(
(αTj + βjα

T
n−j + αTβn−j

)
.

By Lemma 5.2 (and the induction hypothesis) and by (5.91) the r.h.s. of (5.92) tends to 0 as
T →∞, uniformly in s, t, x,y and r, which takes care of (5.88). Note that the sum in the last
summand of the r.h.s. of (5.92) is also an upper bound for α̃Tn . Hence also (5.89) follows. �

6 Appendix

In this appendix we prove Proposition 1.3.

Proof First note that statement (1.26) is an immediate consequence of (1.27).

The idea of the proof of (1.27) is to relate (φt) to its embedded genealogical tree and to make
use of recent results of Kesten (95) for discrete time branching random walks.

We settle the scene for applying Kesten’s result by introducing the embedded tree. Let T be
an ordinary (critical binary) Galton–Watson tree. For v ∈ T let |v| denote the generation of v,
i.e. the distance to the root ∅ ∈ T , and write Tn = {v ∈ T : |v| ≤ n} for the restriction of T to
the first n generations.
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We recover the continuous–time tree T c belonging to φ from T by attaching independent
exp(1) distributed lifetimes L(v) to all individuals v of T . The random displacement X(v) of
an individual v during its lifetime has the distribution

L[X(v)] = L
[ Gv∑
i=1

Zv,i

]
,

where Gv has geometric distribution with parameter 1
2 ,

P[Zv,i = x] = a(0, x), x ∈ Z,

and the Gv and Zv,i are independent.

The “real time” τ(v) and position S(v) at the end of the life of individual v arise as

τ(v) :=
∑
w≤v

L(w)

and

S(v) :=
∑
w≤v

X(v),

where “w ≤ v” stands for “w is an ancestor of v in T ”. As in Kesten (95), we write

Mn := max
v∈Tn

S(v).

Moreover, let us denote by ∆v the maximal displacement of individual v during its lifetime, and
note that

L[∆v] = L
[

max
j=1,...,Gv

∣∣∣ j∑
i=1

Zv,i

∣∣∣].
Finally, let us abbreviate

MT := sup
0≤s≤T

supp φs.

We write ζ for the generation number at which T goes extinct.

Kesten (95) shows in his Theorem 1.1 that the family {L[n−1/2Mn|ζ > n], n ∈ N} is tight
(and converges weakly) and he gives uniform upper bounds for the tails of distributions. We
will make use of these bounds only. Using that our random variables Xv have moments of order
α > 4, we get from Kesten’s Theorem 1.1 that there exists a C > 0 such that for all z > 0 and
n ∈ N:

P[n−1/2Mn > z|ζ ≥ n] ≤ Cz−α.(6.1)
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Note that the same bound holds if we condition on {ζ = n}:

P[n−1/2Mn > z|ζ = n] ≤ Cz−α.(6.2)

We will need Kesten’s result also to get estimates on the lifetimes of the individuals. For this
purpose we attach to each v a real valued (mean zero) displacement X ′(v) = 1 − L(v). Since
X ′(v) has all moments, Kesten’s theorem applies and we get that there exists C such that for
z > 0 and n ∈ N.

P[max
v∈Tn
|v| − τ(v) ≥ zn1/2|ζ = n] ≤ Cz−α.(6.3)

We are now ready to estimate the tail ofMT . Fix z > 0. In the sequel C, C′ and so on denote
constants that may depend on α but not on z or T . We decompose the event {MT ≥ zT 1/2}:

P[MT ≥ zT 1/2] =
∞∑
n=1

P[ζ = n, MT ≥ zT 1/2](6.4)

≤

[zT ]∑
n=1

P
[
ζ = n, Mn ≥

z

2
T 1/2

]
+

[zT ]∑
n=1

P
[
ζ = n, max

v∈Tn
∆v >

z

2
T 1/2

]
+P
[
ζ > zT, M[zT ] ≥

z

2
T 1/2

]
+ P

[
ζ > zT, max

v∈T[zT ]

∆v >
z

2
T 1/2

]
+P[ζ > [zT ], ∃v ∈ T \ T[zT ] : τ(v) ≤ T ]

=: A1 +A2 + A3 +A4 +A5.

We start with estimating A1. Here and later we will tacitly make use of the fact

sup{n2P[ζ = n], n ∈ N} <∞.(6.5)

(See e.g. Athreya and Ney (72), Corollary I.9.1, for the stronger result n2P[ζ = n]→ 2, n→∞).

Using (6.2) and (6.5) we get for α > 0

A1 =

[zT ]∑
n=1

P
[
Mn ≥

z

2
T 1/2, ζ = n

]
≤ C

[zT ]∑
n=1

1

n2
P
[
Mn ≥

z

2
(n−1T )1/2n1/2|ζ = n

]
(6.6)

≤ C′
[zT ]∑
n=1

(z
2

(n−1T )1/2
)−α

n−2

≤ C′′
1

T
z−1−α/2.

In order to estimate A2, we first note that

E[|Tn|
∣∣∣ζ = n] ≤ E[|Tn|

∣∣∣ζ ≥ n] ≤ n2,

hence

P[|Tn| ≥ kn
2
∣∣∣ζ = n] ≤

1

k
for all k > 0.
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Note that by the maximum inequality, ∆v has a moment of order α. Hence

A2 =

[zT ]∑
n=1

P[ζ = n, max
v∈Tn

∆v >
z

2
T 1/2](6.7)

≤

[zT ]∑
n=1

(
P[ζ = n, |Tn| > kn2] + P[ζ = n] · kn2P[∆ ≥

z

2
T 1/2]

)

≤ C

[zT ]∑
n=1

( 1

n2

1

k
+

1

n2
kn2C′z−αT−

α
2

)
≤ C′′

(1

k
+ kz−α+1T−

α
2

+1
)
.

With the choice k = z(α−1)/2 T (α−2)/4, we get

A2 ≤ C
′′z(1−α)/2 T (2−α)/4.(6.8)

Next we estimate A3.

A3 = P[ζ > zT, M[zT ] ≥
z

2
T 1/2](6.9)

= P[M[zT ] ≥
z1/2

2
(zT )1/2|ζ > zT ]P[ζ > zT ]

≤ Cz−
α
2 · (zT )−1,

where we used Kesten (95), Theorem 1.1, in the last inequality.

Turning to A4, arguing as for A2 (with k = z(α−2)/2 T (α−4)/4) we obtain

A4 = P[ζ > zT ; max
v∈T[zT ]

∆v ≥
z

2
T 1/2](6.10)

≤ P[ζ > zT ; |T[zT ]| > k · z2 · T 2] + P[ζ > zT ] · k · z2T 2Cz−αT−α/2

≤
1

zT

[1

k
+ kz2−αT 2−α/2

]
≤ z−α/2 T−α/4.

Finally, in order to estimate A5, we make use of (6.3). Assume that z ≥ 2 and note that for
v ∈ T[zT ]+1 \ T[zT ] the inequality τ(v) ≤ T implies |v| − τ(v) ≥ zT

2 . Hence using (6.3) we get

A5 = P[ζ > zT, ∃v ∈ T[zT ]+1 \ T[zT ] : τ(v) ≤ T ](6.11)

≤ P

[
ζ > zT, ∃v ∈ T[zT ]+1 : |v| − τ(v) ≥

1

2

√
zT
√
zT

]
≤ C′(zT )−

α
2

+1.

Putting together (6.6) - (6.11) we get C > 0 such that for z ≥ 2 and T ≥ 1

P[MR ≥ zT 1/2] ≤ C(z−α/2 T−1 + z(1−α)/2 T (2−α)/4). �
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