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Abstract

Let X be a Markov process with generator A and let Y (t) = γ(X(t)). The con-
ditional distribution πt of X(t) given σ(Y (s) : s ≤ t) is characterized as a solution
of a filtered martingale problem. As a consequence, we obtain a generator/martingale
problem version of a result of Rogers and Pitman on Markov functions. Applications
include uniqueness of filtering equations, exchangeability of the state distribution of
vector-valued processes, verification of quasireversibility, and uniqueness for martin-
gale problems for measure-valued processes. New results on the uniqueness of forward
equations, needed in the proof of uniqueness for the filtered martingale problem are
also presented.
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1 Introduction

Suppose Z is a Markov process with state space E and that γ is a function mapping E
into another space E0. We are interested in characterizing the conditional distribution of
Z given the information obtained by observing the process Y defined by Y (t) = γ(Z(t)).
This problem is, of course, the fundamental problem of filtering theory, but it is also closely
related to such issues as identification of conditions under which Y is a Markov process
and verification of quasireversibility in queueing networks. We approach these questions
at a general level, characterizing the process Z as the solution of a martingale problem.
The fundamental result is the characterization of the desired conditional distribution as the
solution of another martingale problem.

Throughout, E will be a complete, separable metric space, B(E) will denote the bounded,
Borel measurable functions on E, and P(E) the Borel probability measures on E. Let A be
a mapping A : D(A) ⊂ B(E) → B(E), and ν0 ∈ P(E). (Note that we do not assume that
A is linear; however, usually it is or can easily be extended to be linear.) In general, we will
denote the domain of an operator A by D(A) and its range by R(A).

A progressively measurable, E-valued process Z is a solution of the martingale problem
for (A, ν0) if ν0 = PZ(0)−1 and there exists a filtration {Ft} such that

f(Z(t))−
∫ t

0
Af(Z(s))ds

is an {Ft}-martingale for each f ∈ D(A). A measurable P(E)-valued function ν on [0,∞)
is a solution of the forward equation for (A, ν0) if

νtf = ν0f +
∫ t

0
νsAfds

for each f ∈ D(A). (For µ ∈ P(E), we set µf =
∫
E fdµ.) Note that if Z is a solution of the

martingale problem for (A, ν0), then the one-dimensional distributions

νt = PZ(t)−1 (1.1)

give a solution of the forward equation for (A, ν0). A critical aspect of our discussion is
conditions under which the converse of this statement holds, that is, given a solution of the
forward equation ν, when does there exist a solution of the martingale problem Z satisfying
(1.1).

Let E0 be a second complete, separable metric space, and let γ : E → E0 be Borel
measurable. Let Z be a solution of the martingale problem for (A, ν0) defined on a complete
probability space (Ω,F , P ), and define Y (t) = γ(Z(t)). We are interested in the filtering
problem of estimating Z from observations of Y . Because we don’t want to place regularity
assumptions on Z and γ, we formulate this problem as follows: Let F̂Yt be the completion
of σ(

∫ s
0 h(Y (u))du : s ≤ t, h ∈ B(E0)), and define π by πt(Γ) = P{Z(t) ∈ Γ|F̂Yt }. π can be

taken to be an {F̂Yt }-progressive (in fact, {F̂Yt }-optional), P(E)-valued process. (See the
appendix.) Note that

πtf −
∫ t

0
πsAfds (1.2)
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is an {F̂Yt }-martingale for each f ∈ D(A) and that for each t ≥ 0 and h ∈ B(E0),∫ t

0
πsh ◦ γds =

∫ t

0
h(Y (s))ds a.s. (1.3)

Furthermore, if Y is cadlag and has no fixed points of discontinuity, that is, P{Y (t) =
Y (t−)} = 1 for all t ≥ 0, then F̂Yt equals the completion of σ(Y (s) : s ≤ t) for all t ≥ 0 and
(1.3) can be replaced by

πth ◦ γ = h(Y (t)) .

Our primary goal is to give conditions underwhich (1.2) and (1.3) along with the require-
ment that E[π0] = ν0 determine the joint distribution of (Y, π). To be precise, we will say
that (Ỹ , π̃) is a solution of the filtered martingale problem for (A, ν0, γ), if E[π̃0] = ν0, for
each h ∈ B(E) and t ≥ 0, ∫ t

0
π̃sh ◦ γ =

∫ t

0
h(Ỹ (s))ds ,

and for each f ∈ D(A),

π̃tf −
∫ t

0
π̃sAfds (1.4)

is an {F̂ Ỹt }-martingale.
The filtered martingale problem was defined and studied in Kurtz and Ocone (1988)

in the special case of Z of the form Z = (X, Y ) and γ(x, y) = y, following a question
raised to the author by Georgio Koch regarding the use of (1.2) as an approach to studying
nonlinear filtering problems. The primary application of the results of that paper were to
the Zakai and Kushner-Stratonovich equations for filtering of signals observed in Gaussian
white noise. Bhatt, Kallianpar, and Karandikar (1995) extend the results of Kurtz and
Ocone, in particular, eliminating an assumption of local compactness on the state space;
Klieman, Koch and Marchetti (1990) apply the results to filtering problems with counting
process observations; and Fan (1996) considers more general jump process observations.
Other applications include an interesting proof of Burke’s output theorem in the Kliemann,
Koch, and Marchetti paper and a similar application in Donnelly and Kurtz (1996) verifying
the conditional independence of a permutation-valued process from another Markov chain.
The more general results given in the present paper are motivated by applications to proofs
of uniqueness of martingale problems for measure-valued processes in Donnelly and Kurtz
(1997). See Corollaries 3.5 and 3.7.

Throughout, CE[0,∞) will denote the space of continuous, E-valued functions with the
compact uniform topology, DE[0,∞), the space of cadlag, E-valued functions with the Sko-
rohod topology, and ME[0,∞), the space of measurable, E-valued functions topologized by
convergence in measure. Note that the Borel σ-algebra for each of these spaces is gener-
ated by functions of the form x →

∫∞
0 f(x(s), s)ds for f ∈ Cc(E × [0,∞)). Consequently,

any probability distribution on CE[0,∞) uniquely determines a probability distribution on
DE[0,∞) and any probability distribution on DE[0,∞) uniquely determines a probability
distribution on ME[0,∞).
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2 Uniqueness for the forward equation

The primary hypothesis of our main results will be uniqueness for the forward equation
for (A, ν0). There are a variety of conditions that imply this uniqueness, and if D(A)
is separating, uniqueness for the forward equation implies uniqueness for the martingale
problem. (See Ethier and Kurtz (1986), Theorem 4.4.2.) We identify A with its graph
A = {(f, Af) : f ∈ D(A)}. See Ethier and Kurtz (1986) for definitions and results on
generators and semigroups.

Let A ⊂ B(E)×B(E) and letAS be the linear span of A. We will say that A is dissipative
if and only if AS is dissipative, that is, for (f, g) ∈ AS and λ > 0,

‖λf − g‖ ≥ λ‖f‖.

Note that a solution of the martingale problem (forward equation) for A will be a solution
of the martingale problem (forward equation) for AS.

We say that A ⊂ B(E) × B(E) is a pre-generator if A is dissipative and there are
sequences of functions µn : E → P(E) and λn : E → [0,∞) such that for each (f, g) ∈ A

g(x) = lim
n→∞

λn(x)
∫
E

(f(y)− f(x))µn(x, dy) (2.1)

for each x ∈ E. Note that we have not assumed that µn and λn are measurable.
If A ⊂ C̄(E)×C̄(E) (C̄(E) denotes the bounded continuous functions on E) and for each

x ∈ E, there exists a solution νx of the forward equation for (A, δx) that is right-continuous
(in the weak topology) at zero, then A is a pre-generator. In particular, if (f, g) ∈ A, then∫ ∞

0
e−λtνxt (λf − g)dt =

∫ ∞
0

λe−λtνxt fdt −
∫ ∞

0
λe−λt

∫ t

0
νxs gdsdt

= f(x)

which implies ‖λf−g‖ ≥ λf(x) and hence dissipativity, and if we take λn = n and µn(x, ·) =
νx1/n,

n
∫
E

(f(y)− f(x)νx1/n = n(νx1/nf − f(x)) = n
∫ 1

n

0
νxs gds→ g(x).

(We do not need to verify that νxt is a measurable function of x for either of these calcula-
tions.)

If E is locally compact and D(A) ⊂ Ĉ(E) (Ĉ(E), the continuous functions vanishing
at infinity), then the existence of λn and µn satisfying (2.1) implies A is dissipative. In
particular, AS will satisfy the positive maximum principle, that is, if (f, g) ∈ AS and f(x0) =
‖f‖, then g(x0) ≤ 0 which implies

‖λf − g‖ ≥ λf(x0)− g(x0) ≥ λf(x0) = λ‖f‖.

If E is compact, A ⊂ C(E) × C(E), and A satisfies the positive maximum principle,
then A is a pre-generator. If E is locally compact, A ⊂ Ĉ(E) × Ĉ(E), and A satisfies the
positive maximum principle, then A can be extended to a pre-generator on E∆, the one-point
compactification of E. See Ethier and Kurtz (1986), Theorem 4.5.4.
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Suppose A ⊂ C̄(E) × C̄(E). If D(A) is convergence determining, then every solution
of the forward equation is continuous. Of course, if for each x ∈ E there exists a cadlag
solution of the martingale problem for A, then there exists a right continuous solution of the
forward equation, and hence, A is a pre-generator.

Theorem 2.1 (Semigroup conditions.) Let A ⊂ B(E) × B(E) be linear and dissipative.
Suppose that there exists A′ ⊂ A such that R(λ− A′) ⊃ D(A′) for some λ > 0 (where the
closure of A is in the sup norm) and that D(A′) is separating. Let A′ denote the closure
in the sup norm of A′. Then T (t)f = limn→∞(I − 1

n
A′)−[nt]f defines a semigroup of linear

operators on L = D(A′). If ν is a solution of the forward equation for A (and hence for A′),
then νtf = ν0T (t)f , f ∈ D(A′) and uniqueness holds for the forward equation and for the
martingale problem for (A, ν0).

Remark 2.2 Proposition 4.9.18 of Ethier and Kurtz (1986) gives closely related conditions
based on the assumption that R(λ − A) is separating for each λ > 0, but without assuming
that D(A) is separating.

Proof. Existence of the semigroup follows by the Hille-Yosida theorem. Uniqueness for the
martingale problem follows by Theorem 4.4.1 of Ethier and Kurtz (1986), and uniqueness
for the forward equation follows by a similar argument. In particular, integration by parts
gives

ν0f =
∫ ∞

0
e−λs(λνsf − νsA′f)ds. (2.2)

Since if the range condition holds for some λ > 0 it holds for all λ > 0 (see Ethier and Kurtz
(1986), Lemma 1.2.3), (2.2) implies for h ∈ D(A′)

ν0(I − n−1A′)−1h = n
∫ ∞

0
e−nsνshds =

∫ ∞
0

e−sνn−1shds , h ∈ L,

and hence, iterating this identity,

ν0(I − n−1A′)−[nt]h =
∫ ∞

0
· · ·
∫ ∞

0
e−s1−···−s[nt]νn−1(s1+···+s[nt])hds

= E[νn−1S[nt]
h] , h ∈ L,

where S[nt] is the sum of [nt] independent unit exponential random variables. Letting n→∞,
the law of large numbers and the continuity of νth for h ∈ D(A′) implies

ν0T (t)h = νth .

2

The bp-closure of the set H ⊂ B(E) is the smallest set H̄ containing H that is closed
under bounded, pointwise convergence of sequences. A set H is bp-dense in a set G ⊂ B(E)
if G is the bp-closure of H.

Theorem 2.3 Let A ⊂ B(E) × B(E) be linear and dissipative. Suppose that for each
ν0 ∈ P(E), there exists a cadlag solution of the martingale problem for (A, ν0) and that there
exists a λ > 0 for which R(λ−A) is bp-dense in B(E). Then for each ν0 ∈ P(E), uniqueness
holds for the martingale problem for (A, ν0) and for the forward equation for (A, ν0).
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Proof. Let Xx denote a cadlag solution of the martingale problem for (A, δx). Then for
h ∈ R(λ−A), that is for h = λf − g for some (f, g) ∈ A,

f(x) = E[
∫ ∞

0
e−λth(Xx(t))dt] (2.3)

(cf. (4.3.20) in Ethier and Kurtz (1986)). Let Ā denote the bp-closure of A. Note that if
hn = λfn − gn for (fn, gn) ∈ A and bp− limn→∞ hn = h, then bp− limn→∞ fn = f , where f
is given by (2.3). It follows that R(λ− Ā) = B(E). Since Ā is still dissipative, by (2.3), we
must have R(λ − Ā) = B(E) for all λ > 0. Since a process is a solution of the martingale
problem for A if and only if it is a solution of the martingale problem for Ā, we may as well
assume A = Ā.

If h ∈ C̄(E),

λ(λ− Ā)−1h(x) = E[
∫ ∞

0
λe−λth(Xx(t))dt]→ h(x)

as λ → ∞. Consequently, we see that D(Ā) is bp-dense in B(E) and hence is separating.
Consequently, the theorem follows by Theorem 2.1. 2

As noted above, uniqueness for the forward equation typically implies uniqueness for the
martingale problem. The converse of this assertion does not hold in general. For example,
let E = [0, 1],

D(A) = {f ∈ C2[0, 1] : f ′(0) = f ′(1) = 0, f ′(
1

3
) = f ′(

2

3
)},

and Af(x) = 1
2
f ′′(x). Then for any ν0 ∈ P [0, 1], the unique solution of the martingale

problem for (A, ν0) is reflecting Brownian motion on [0, 1]. Note, however, that νt(dx) =
3I[ 1

3
, 2
3

](x)dx is a stationary solution of the forward equation that does not correspond to a
solution of the martingle problem. In particular, the only stationary distribution for the
martingale problem is the uniform distribution on [0, 1]. (See Ethier and Kurtz (1986),
Problem 4.11.4.)

We next consider conditions under which the converse does hold. We will need the
following separability hypothesis.

Hypothesis 2.4 There exists a countable subset {gk} ⊂ D(A) ∩ C̄(E) such that the graph
of A is contained in the bounded, pointwise closure of the linear span of {(gk, Agk)}.

Remark 2.5 If L ⊂ C̄(E) is separable and A ⊂ L× L, Hypothesis 2.4 is satisfied with the
bounded, pointwise closure replaced by the (sup-norm) closure. In particular, if E is locally
compact and A ⊂ Ĉ(E)× Ĉ(E), then the hypothesis is satisfied.

If E = Rd, D(A) = C∞c (Rd) (the infinitely differentiable functions with compact support),

Af(x) =
1

2

∑
i,j

aij(x)
∂2

∂xi∂j
f(x) +

∑
i

bi(x)
∂

∂xi
f(x),

and aij and bi are bounded on compact sets, then the hypothesis is satisfied. (Note that

{f, ∂i, ∂i∂jf : 1 ≤ i, j ≤ d} ⊂ Ĉ(Rd)1+d+d2
.)
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If Hypothesis 2.4 holds and we define A0 = {(gk, Agk) : k = 1, 2, . . .}, then any solution
of the martingale problem (forward equation) for A0 will be a solution of the martingale
problem (forward equation) for A. (See Ethier and Kurtz (1986) Proposition 4.3.1.) For
some of the consequences of Hypothesis 2.4, see Ethier and Kurtz (1986), Theorem 4.6.

Theorem 2.6 (Conditions based on the martingale problem.) Let A ⊂ C̄(E) × C̄(E) be a
pre-generator and satisfy the separability Hypothesis 2.4. Suppose that D(A) is closed under
multiplication (that is, f1, f2 ∈ D(A) implies f1f2 ∈ D(A)) and separates points. Then

a) Each solution of the forward equation for A corresponds to a solution of the martingale
problem for A.

b) If π ∈ P(E) satisfies
∫
E Afdπ = 0 for each f ∈ D(A), (that is, νt ≡ π is a stationary

solution of the forward equation), then there is a stationary solution of the martingale
problem for (A, π).

c) If uniqueness holds for the martingale problem for (A, ν0), then uniqueness holds for
the forward equation for (A, ν0).

Proof. This result is essentially Theorem 4.1 of Bhatt and Karandikar (1993), or if E is
locally compact and A ⊂ Ĉ(E)× Ĉ(E), Proposition 4.9.19 of Ethier and Kurtz (1986). The
technical modifications of the earlier results are discussed in the appendix. 2

Theorem 2.6c can be extended to any situation in which one can show that each solution
of the forward equation corresponds to a solution of the martingale problem in the sense that
the solution of the forward equation gives the one-dimensional distributions of the solution
of the martingale problem. Uniqueness for the martingale problem then implies uniqueness
for the forward equation. As noted previously, uniqueness for the forward equation for every
initial distribution implies uniqueness for the martingale problem (Ethier and Kurtz (1986),
Theorem 4.4.2).

A result of Kurtz and Stockbridge (1997) weakens the continuity hypothesis on the range
of A in Theorem 2.6.

Theorem 2.7 Let E and F be complete and separable, and let A0 ⊂ C̄(E)× C̄(E×F ). Let
η be a transition function η from E to F , and define

Aηf(x) =
∫
F
A0f(x, y)η(x, dy) , f ∈ D(A0).

Suppose that D(A0) is closed under multiplication and separates points, that for each y ∈ F ,
Ayf ≡ A0f(·, y) is a pre-generator, and that Aη satisfies Hypothesis 2.4.

Then

a) Each solution of the forward equation for Aη corresponds to a solution of the martingale
problem for Aη.

b) If π ∈ P(E) satisfies
∫
E Aηfdπ = 0 for each f ∈ D(A0), (that is, νt ≡ π is a stationary

solution of the forward equation), then there is a stationary solution of the martingale
problem for (Aη, π).
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c) If uniqueness holds for the martingale problem for (Aη, ν0), then uniqueness holds for
the forward equation for (Aη, ν0).

Remark 2.8 a) Note that we are not assuming that Aηf is continuous. In particular, any
diffusion operator with bounded coefficients can be represented in this form. (With a little
more care, the boundedness assumption on the coefficients can be relaxed.)

b) Under the above conditions existence for the forward equation implies existence for
the martingale problem and uniqueness for the forward equation for every initial distribution
implies uniqueness for the martingale problem.

Proof. The result extends Theorem 3.1 of Kurtz and Stockbridge (1997) to the setting
of Bhatt and Karandikar (1993) eliminating the assumption of local compactness. See also
Bhatt and Borkar (1996). Technical details are discussed in the appendix. 2

In the development that follows, we will need to supplement the process Z with additional
components obtained by solving differential equations of the form

U̇ (t) = −aU(t) + b ◦ γ(Z(t)) ,

where b ∈ C̄(E0). If we assume that a ≥ 1, 0 ≤ b ≤ 1, and 0 ≤ U(0) ≤ 1, then 0 ≤ U(t) ≤ 1,
and we can take the state space of (Z,U) to be E× [0, 1]. If Z is a solution of the martingale
problem for A, then (Z,U) is a solution of the martingale problem for Â defined as follows:
let

D(Â) = {fg : f ∈ D(A), g ∈ C1[0, 1]}
and set

Â(fg)(z, u) = g(u)Af(z) + f(z)(−au+ b ◦ γ(z))g′(u) .

The following theorem will be needed.

Theorem 2.9 Let µ0 ∈ P(E × [0, 1]) satisfy µ0(· × [0, 1]) = ν0.
a) If uniqueness holds for the martingale problem for (A, ν0), then uniqueness holds for

the martingale problem for (Â, µ0).
b) If A satisfies the conditions of Theorem 2.3, then the linear span of Â satisfies the

conditions of Theorem 2.3 and existence and uniqueness hold for the forward equation for Â
and for the martingale problem for Â.

c) If A satisfies the conditions of Theorem 2.6 and γ is continuous, then Â satisfies the
conditions of Theorem 2.6.

d) If A satisfies the conditions of Theorem 2.6 or if A = Aη where

Aηf(x) =
∫
F
A0f(x, y)η(x, dy)

and A0 and η satisfy the conditions of Theorem 2.7, then (without assuming continuity of
γ) there exists Ã0 and η̃ satisfying the conditions of Theorem 2.7 such that Âf(x, u) =∫
F̃ Ã

0f(x, u, y)η(x, u, dy). In particular, if uniqueness holds for the martingale problem for
(A, ν0) and µ0 ∈ P(E × [0, 1]) has E-marginal ν0, then uniqueness holds for the forward
equation for (Â, µ0).

8



Proof. Let (Z,U) be a solution of the martingale problem for (Â, µ0). By the same argument
used in the proof of Ethier and Kurtz (1986), Theorem 4.3.6, U has a cadlag modification,
which we will continue to denote by U . (Note that the assertions of the theorem only depend
on the finite dimensional distributions of (Z,U).)

For g ∈ C1[0, 1]

E[(g(U(t+ r))− g(U(t)))2]

= E[
∫ t+r

t
(−aU(s) + b ◦ γ(Z(s)))(2g(U(s))g′(U(s))− 2g(U(t))g′(U(s)))ds].

It follows that for each t ≥ 0 and partitions 0 = t0 < t1 < · · · with ti →∞

lim
max |ti+1−ti|→0

E
[∑

(g(X(ti+1 ∧ t))− g(X(ti ∧ t)))2
]

= 0,

and hence U is continuous. A similar calculation shows that

g(U(t)) = g(U(0)) +
∫ t

0
(−aU(s) + b ◦ γ(Z(s)))g′(U(s))ds,

which in turn implies

U(t) = U(0)e−at +
∫ t

0
e−a(t−s)b ◦ γ(Z(s))ds . (2.4)

This identity and Fubini’s theorem imply that

E[h(Z(t0))
k∏
i=1

U(ti)
mi ]

is determined by the finite dimensional distributions of Z, and hence, the finite dimensional
distributions of (Z,U) are determined by the finite dimensional distributions of Z and part
a) follows.

Now consider part b). As in the proof of Theorem 2.3, we may as well assume that
R(λ−A) = B(E). This condition implies that A is the full generator for the semigroup on
B(E) determined by

T (t)f(x) = E[f(Xx(t))]

where Xx is a solution of the martingale problem for (A, δx). (See Ethier and Kurtz (1986),
Section 1.5.) Then (f, g) ∈ A if and only if

T (t)f = f +
∫ t

0
T (s)gds . (2.5)

Existence of cadlag solutions of the martingale problem for Â follows from existence for
A and (2.4). Let ÂS denote the linear span of Â. To complete the proof, we need to verify
that R(λ− ÂS) is bp-dense in B(E × [0, 1]).

Let f ′ denote the partial derivative of f with respect to u. Let Âr be the collection of
(f, g) ∈ B(E× [0, 1])×B(E× [0, 1]) such that f(x, ·) ∈ C1[0, 1] and g(x, ·) ∈ C[0, 1] for each
x, f ′ ∈ B(E × [0, 1]), and

(f(·, u), g(·, u)− (−au+ b ◦ γ(·))f ′(·, u)) ∈ A
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for each u ∈ [0, 1]. We claim that Âr is in the bp-closure of ÂS. To see that this claim holds,
let

g̃(x, u) = g(x, u)− (−au+ b ◦ γ(x))f ′(x, u) ,

approximate f by the Bernstein polynomial

fn(x, u) =
n∑
k=0

f(x,
k

n
)

(
n

k

)
uk(1− u)n−k,

and set

gn(x, u) =
n∑
k=0

g̃(x,
k

n
)

(
n

k

)
uk(1− u)n−k + (−au+ b ◦ γ(x))f ′n(x, u).

Then (fn, gn) ∈ ÂS and bp- limn→∞(fn, gn) = (f, g).
Now let h ∈ B(E × [0, 1]) satisfy h(x, ·) ∈ C1[0, 1] and h′ ∈ B(E × [0, 1]), and set

f(x, u) = E[
∫ ∞

0
e−λth(Xx(t), ue

−at +
∫ t

0
e−a(t−s)b ◦ γ(Xx(s))ds)dt].

We now claim that (f, λf − h) ∈ Âr. It is easy to check that f is differentiable with respect
to u. Let

g̃(x, u) = λf(x, u)− h(x, u)− (−au+ b ◦ γ(x))f ′(x, u) .

We need to show that for each u ∈ [0, 1],

(f(·, u), g̃(·, u)) ∈ A .

By (2.5) we must verify that

E[f(Xx(r), u)] = f(x, u) + E[
∫ r

0
g̃(Xx(s), u)ds] . (2.6)

By the Markov property

E[f(Xx(r), u)] = E[
∫ ∞

0
e−λth(Xx(r + t), ue−at +

∫ t

0
e−a(t−s)b ◦ γ(Xx(r + s))ds)dt]

= E[eλr
∫ ∞
r

e−λth(Xx(t), ue
−a(t−r) +

∫ t

r
e−a(t−s)b ◦ γ(Xx(s))ds)dt] ,

and differentiating by r verifies (2.6).
Finally, the collection of h satisfying the above properties is bp-dense in B(E × [0, 1]), so

R(λ− Âr) (and hence R(λ− ÂS)) is bp-dense in B(E × [0, 1]).
To verify part c), let D(A0) = {fg : f ∈ D(A), g ∈ C1[0, 1]} and note that D(A0) is

closed under multiplication and separates points in E × [0, 1]. Define

A0fg(x, u, y) = g(u)Af(x) + f(x)(−au+ b(y))g′(u)

and
η(x, u, dy) = δγ(x)(dy) .

Then Âf(x, u) = Aηf(x, u) and the conditions of Theorem 2.7 are satisfied.
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The proof of part d) is similar. Assume A = Aη where Aηf(x) =
∫
F A

0f(x, y)η(x, dy)
where A0 and η satisfy the conditions of Theorem 2.7. Define D(Ã0) = {fg : f ∈ D(A0), g ∈
C1[0, 1]},

Ã0fg(x, u, y1, y2) = g(u)A0f(x, y1) + f(x)(−au+ b(y2))g′(u),

and
η̃(x, u, dy) = η(x, dy1)δγ(x)(dy2) .

Then Âf(x, u) = Ãη̃f(x, u) and the conditions of Theorem 2.7 are satisfied. 2

3 Uniqueness for the filtered martingale problem

Let {bk} ⊂ C̄(E0) satisfy 0 ≤ bk ≤ 1, and suppose that the span of {bk} is bounded, pointwise
dense in B(E0). (Existence of {bk} follows from the separability of E0.) Let a1, a2, . . . be an
ordering of the rationals with ai ≥ 1. Let Uki satisfy

Uki(t) = −ai
∫ t

0
Uki(s)ds +

∫ t

0
bk ◦ γ(Z(s))ds . (3.1)

Then

Uki(t) =
∫ t

0
e−ai(t−s)bk ◦ γ(Z(s))ds =

∫ t

0
e−ai(t−s)bk(Y (s))ds. (3.2)

Let U(t) = ((Uki(t) )). By the properties of Laplace transforms, it follows that the completion
of σ(U(t)) equals F̂Yt . Let Ê = E × [0, 1]∞ denote the state space of Ẑ = (Z,Uki : k, i ≥ 1).
Let D(Â) be the collection of functions on Ê given by

D(Â) = {f(x)
m∏

k,i=1

gki(uki) : f ∈ D(A), gki ∈ C1[0, 1], 1 ≤ k, i ≤ m,m = 1, 2, . . .},

and define Â by

Âf
m∏

k,i=1

gki(z, u) =

 m∏
k,i=1

gki(uki)

Af(z)

+
m∑

l,j=1

f(z)

 m∏
k,i=1:(k,i) 6=(l,j)

gk,i(uki)

 (−ajulj + bl ◦ γ(z))g′lj(ulj) .

The proof of the following lemma is essentially the same as the proof of Theorem 2.9.

Lemma 3.1 Let A and Â be as above.

a) If uniqueness holds for the martingale problem for A, then uniqueness holds for the
martingale problem for Â.

b) If A satisfies the conditions of Theorem 2.3, 2.6 or 2.7, then Â will satisfy the conditions
of one of these theorems. In particular, if A satisfies the conditions of Theorem 2.3,
2.6, or 2.7, then each solution of the forward equation for Â corresponds to a solution
of the martingale problem for Â, and hence, uniqueness for the martingale problem
implies uniqueness for the forward equation.

11



Theorem 3.2 Let A ⊂ B(E) × B(E), ν0 ∈ P(E), and γ : E → E0 be Borel measurable.
Suppose that each solution of the forward equation for (Â, ν0 × δ0) corresponds to a solution
of the martingale problem. (This condition will hold if A satisfies the conditions of Theorem
2.3, 2.6 or 2.7.) Let (π̃, Ỹ ) be a solution of the filtered martingale problem for (A, ν0, γ).
The following hold:

a) There exists a solution Z of the martingale problem for (A, ν0), such that Ỹ has the
same distribution on ME0 [0,∞) as Y = γ ◦ Z.

b) For each t ≥ 0, there exists a Borel measurable mapping Ht : ME0[0,∞)→ P(E) such
that πt = Ht(Y ) is the conditional distribution of Z(t) given F̂Yt , and π̃t = Ht(Ỹ ) a.s.
In particular, π̃ has the same finite dimensional distributions as π.

c) If Y and Ỹ have sample paths in DE0 [0,∞), then Y and Ỹ have the same distribution
on DE0[0,∞) and the Ht are Borel measurable mappings from DE0 [0,∞) to P(E).

d) If uniqueness holds for the martingale problem for (A, ν0), then uniqueness holds for
the filtered martingale problem for (A, ν0, γ) in the sense that if (π, Y ) and (π̃, Ỹ ) are
solutions, then for each 0 ≤ t1 < · · · < tm, (πt1, . . . , πtm, Y ) and (π̃t1, . . . , π̃tm, Ỹ ) have
the same distribution on P(E)m ×ME0[0,∞).

Proof. As in (3.2), let

Ũki(t) = −ai
∫ t

0
Ũki(s)ds+

∫ t

0
bk(Ỹ (s))ds =

∫ t

0
e−ai(t−s)bk(Ỹ (s))ds.

Define ν̃t ∈ P(E × [0, 1]∞) by

ν̃th = E[
∫
E
h(z, Ũ(t))π̃t(dz)] .

Note that for a.e. t,
f1(Ỹ (t))π̃tf2 = π̃t(f2f1 ◦ γ) . (3.3)

For fg ∈ D(Â),

ν̃tfg = E[π̃tfg(Ũ (t))]

= E[π̃0fg(Ũ (0))]

+E[
∫ t
0

(
g(Ũ(s))π̃sAf + π̃sf

∑
(−aiŨki(s) + bk(Ỹ (s)))∂kig(Ũ(s))

)
ds]

= ν̃0fg +
∫ t
0 ν̃sÂfgds

where ν̃0 = ν0 × δ0 and the last equality follows from the definition of ν̃ and (3.3). Conse-
quently, ν̃ is a solution of the forward equation for (Â, ν0 × δ0), and by assumption, there
exists a solution (Z,U) of the martingale problem for (Â, ν0 × δ0), such that

E[f(Z(t))
∏m
k,i=1 gki(Uki(t))] = E[πtf

∏m
k,i=1 gki(Uki(t))]

= ν̃tf
∏m
k,i=1 gki

= E[π̃tf
∏m
k,i=1 gki(Ũki(t))] .

(3.4)
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It follows that for each t, U(t) and Ũ(t) have the same distribution. Since F̂Yt equals

the completion of σ(U(t)) and F̂ Ỹt equals the completion of σ(Ũ(t)), there exist mappings
Gt, G̃t : [0, 1]∞ → P(E) such that πt = Gt(U(t)) a.s. and π̃t = G̃t(Ũ(t)) a.s. By (3.4)

E[Gt(U(t))fg(U(t))] = E[G̃t(Ũ(t))fg(Ũ (t))] = E[G̃t(U(t))fg(U(t))] (3.5)

for all g ∈ B([0, 1]∞), where the last equality follows from the fact that U(t) and Ũ (t) have
the same distribution. Applying (3.5) with g = Gt(·)f and with g = G̃t(·)f , we have

E[Gt(U(t))fG̃t(U(t))f ] = E[
(
G̃t(U(t))f)

)2
] = E[(Gt(U(t))f))2]

and it follows that
E[
(
Gt(U(t))f − G̃t(U(t))f

)2
] = 0 .

Consequently, π̃tf = Gt(Ũ(t))f a.s., and hence (πt, U(t)) has the same distribution as
(π̃t, Ũ (t)).

Since U(t) (Ũ(t)) determinesU(s) (Ũ(s)) for s < t, U and Ũ have the same distribution on
C[0,1]∞[0,∞). Consequently, (π, U) and (π̃, Ũ ) have the same finite dimensional distributions,

and (U, Y ) and (Ũ , Ỹ ) have the same distribution on C[0,1]∞[0,∞)×ME0[0,∞). The mapping
F : y ∈ME0[0,∞)→ u ∈ C[0,1]∞[0,∞) determined by

uki(t) =
∫ t

0
e−ai(t−s)bk(y(s))ds

is Borel measurable, and U(t) = F (Y, t) and Ũ (t) = F (Ỹ , t). Consequently, Ht(y) ≡
Gt(F (y, t)) is Borel measurable, πt = Ht(Y ) a.s. and π̃t = Ht(Ỹ ) a.s.

Finally, if uniqueness holds for the martingale problem for (A, ν0), then the distribution
of (Z, Y, π) is uniquely determined and uniqueness holds for the filtered martingale problem
for (A, ν0, γ). 2

We say that the filtered martingale problem for (A, γ) is well-posed if for each ν0 ∈ P(E)
there exists a unique (in the sense of Theorem 3.2(d)) solution of the filtered martingale
problem for (A, ν0, γ).

Corollary 3.3 Let A satisfy the conditions of Theorem 2.3, and let γ : E → E0 be Borel
measurable. Then the filtered martingale problem for A is well-posed.

Proof. For each ν0 ∈ P(E), existence holds for the martingale problem for (A, ν0) by
assumption, so existence holds for the filtered martingale problem for (A, ν0, γ). Theorem
2.3 and Theorem 2.9 imply A satisfies the conditions of Theorem 3.2 which establishes the
corollary. 2

Corollary 3.4 Let A ⊂ B(E) × B(E), let γ : E → E0 be Borel measurable. Suppose A
satisfies the conditions of Theorem 2.6 or A = Aη where

Aηf(x) =
∫
F
A0f(x, y)η(x, dy)
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and A0 and η satisfy the conditions of Theorem 2.7. For each solution (π̃, Ỹ ) of the filtered
martingale problem for (A, γ), there exists a solution Z of the martingale problem for A
such that if Y = γ ◦ Z and πt is the conditional distribution of Z(t) given F̂Yt , then for
each 0 ≤ t1 < · · · < tm, (π̃t1, . . . , π̃tm, Ỹ ) and (πt1, . . . , πtm, Y ) have the same distribution
on P(E)m ×ME0 [0,∞). If uniqueness holds for the martingale problem for (A, ν0), then
uniqueness holds for the filtered martingale problem for (A, ν0, γ).

Proof. Lemma 3.1 implies the conditions of Theorem 3.2 which establishes the corollary.2

The following corollaries address the question of when a function of a Markov process
is Markov. For earlier results on this question, see Cameron (1973) and Rosenblatt (1966),
Rogers and Pitman (1981), Kelly (1982), and Glover (1991). The results given here have
application in proving uniqueness for martingale problems, in particular, for measure-valued
processes.

Corollary 3.5 Let A ⊂ B(E)×B(E), and let γ : E → E0 be Borel measurable. Let α be a
transition function from E0 into E (y ∈ E0 → α(y, ·) ∈ P(E) is Borel measurable) satisfying∫
h ◦ γ(z)α(y, dz) = h(y), h ∈ B(E0), that is, α(y, γ−1(y)) = 1. Define

C = {(
∫
E
f(z)α(·, dz),

∫
E
Af(z)α(·, dz)) : f ∈ D(A)} .

Let µ0 ∈ P(E0), and define ν0 =
∫
α(y, ·)µ0(dy). Suppose that each solution of the forward

equation for (Â, ν0 × δ0) corresponds to a solution of the martingale problem. If Ỹ is a
solution of the martingale problem for (C, µ0), then there exists a solution Z of the martingale
problem for (A, ν0) such that Ỹ has the same distribution on ME0 [0,∞) as Y = γ ◦ Z and
for Γ ∈ B(E),

P{Z(t) ∈ Γ|F̂Yt } = α(Y (t),Γ). (3.6)

a) If, in addition, uniqueness holds for the martingale problem for (A, ν0), then uniqueness
holds for the ME0[0,∞)-martingale problem for (C, µ0). If Ỹ has sample paths in
DE0 [0,∞), then uniqueness holds for the DE0 [0,∞)-martingale problem for (C, µ0).

b) If uniqueness holds for the martingale problem for (A, ν0) then Y is a Markov process.

Remark 3.6 Part b) is essentially a generator/martingale problem version of Theorem 2 of
Rogers and Pitman (1981). Let P (t, z, ·) be a transitition function corresponding to A. They
define

Q(t, y,Γ) =
∫
E
P (t, z, γ−1(Γ))α(y, dz), Γ ∈ B(E0)

and assume ∫
E
P (t, z,Γ)α(y, dz) =

∫
E0

α(w,Γ)Q(t, y, dw), Γ ∈ B(E).

In particular, (3.6) is just (1) of Rogers and Pitman (1981).

Proof. Define π̃t = α(Ỹ (t), ·). Then (π̃, Ỹ ) is a solution of the filtered martingale problem
for (A, ν0, γ). Except for part (b), the theorem then follows from Theorem 3.2.
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The assumptions of part (b) imply Z is a Markov process (see Appendix A.4). By (3.6),
P{Z(t) ∈ Γ|FYt } = P{Z(t) ∈ Γ|Y (t)}, and since Z is Markov,

E[f(Y (t+ s))|FYt ] = E[E[f(γ(Z(t+ s))|FZt ]|FYt ]

= E[E[f(γ(Z(t+ s))|Z(t)]|FYt ]

= E[E[f(γ(Z(t+ s))|Z(t)]|Y (t)]

= E[f(Y (t+ s))|Y (t)]

which is the Markov property for Y 2

In the next corollary we consider martingale problems with “side conditions”, that is, in
addition to requiring

f(Z(t))−
∫ t

0
Af(Z(s))ds

to be a martingale for all f ∈D(A) we require

E[h(Z(t)] = 0 , t ≥ 0, h ∈ H,

for a specified collectionH ⊂ B(E). We will refer to this problem as the restricted martingale
problem for (A,H, ν0) (cf. Dawson (1993), Section 5). Of course, ν0 must satisfy

∫
hdν0 = 0,

h ∈ H. We will denote the collection of probability measures satisfying this condition
PH(E). The restricted forward equation has the obvious definition. The motivation for
introducing this notion is a family of problems in infinite product spaces in which we want
the coordinate random variables to be exchangeable. (See Dawson (1993), Donnelly and
Kurtz (1996, 1997).)

Note that if A satisfies the conditions of Theorem 2.6 or 2.7, then Â satisfies the conditions
of Theorem 2.7 and, consequently, if there exists a solution {µt} of the restricted forward
equation for (Â,H), then there exists a solution (Z,U) of the martingale problem for Â that
satisfies E[h(Z(t), U(t))] = µth for all h ∈ B(E× [0, 1]∞). It follows that (Z,U) is a solution
of the restricted martingale problem for (Â,H), and if uniqueness holds for the restricted
martingale problem for (Â,H, µ0), then uniqueness holds for the restricted forward equation.

Corollary 3.7 Let H ⊂ B(E), and let γ : E → E0 be Borel measurable. Let α be a transi-
tion function from E0 into E satisfying α(y, ·) ∈ PH(E), y ∈ E0, and

∫
h ◦ γ(z)α(y, dz) =

h(y), h ∈ B(E0), that is α(y, γ−1(y)) = 1. Define

C = {(
∫
E
f(z)α(·, dz),

∫
E
Af(z)α(·, dz)) : f ∈ D(A)} .

Let µ0 ∈ P(E0), and define ν0 =
∫
α(y, ·)µ0(dy). (Note that ν0 ∈ PH(E).) Suppose that each

solution of the restricted forward equation for (Â, ν0 × δ0) corresponds to a solution of the
restricted martingale problem. If Ỹ is a solution of the martingale problem for (C, µ0), then
there exists a solution Z of the restricted martingale problem for (A,H, ν0) such that Ỹ has
the same distribution on ME0 [0,∞) as Y = γ ◦ Z and for Γ ∈ B(E),

P{Z(t) ∈ Γ|FYt } = α(Y (t),Γ) (3.7)
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a) If, in addition, uniqueness holds for the restricted martingale problem for (A,H, ν0),
then uniqueness holds for the ME0 [0,∞)-martingale problem for (C, µ0). If Ỹ has
sample paths in DE0[0,∞), then uniqueness holds for the DE0 [0,∞)-martingale problem
for (C, µ0).

b) If uniqueness holds for the restricted martingale problem for (A,H, ν0) and there exists
a solution with sample paths in DE [0,∞) or if uniqueness holds for the restricted
martingale problem for (A,H, µ) for each µ ∈ PH(E), then Y is a Markov process.

Proof. Let π̃t = α(Ỹ (t), ·), and let Ũ be defined as in the proof of Theorem 3.2.
Then (π̃, Ỹ , Ũ) is a solution of the filtered martingale problem for (Â, ν0 × δ0, γ) and ν̂t =
E[π̃t × δŨ(t)] defines a solution of the restricted forward equation for (Â,H, ν0 × δ0). By

the hypotheses on A and Â, there exists a solution (Z,U) of the martingale problem for
(Â, ν0 × δ0) satisfying E[h(Z(t), U(t))] =

∫
hdν̂t (so it is also a solution of the restricted

martingale problem), and as in the proof of Corollary 3.5, Ỹ has the same distribution on
ME0[0,∞) as γ ◦ Z. The proof of Part b) is the same as in Corollary 3.5. 2

4 Applications.

The original motivation for studying the filtered martingale problem comes from classical
filtering theory, and the uniqueness theorem has been used to prove uniqueness for a variety
of filtering equations. (See Kurtz and Ocone (1988), Kliemann, Koch and Marchetti (1990),
Bhatt, Kallianpur, and Karandikar (1995), and Fan (1996).) Theorem 3.2 and Corollary 3.4
can be used to improve slightly on these results. For example, the continuity assumption on
h in Theorems 4.1, 4.2, 4.5, and 4.6 of Kurtz and Ocone (1988) can be dropped.

Corollaries 3.5 and 3.7, however, provide the motivation for the present work, and the
following examples illustrate their application.

4.1 Exchangeability.

LetAn be the generator of a Markov process with state space En. Let Pn(E) = {n−1∑n
k=1 δxk :

x ∈ En} and γn(x) = n−1 ∑n
k=1 δxk . Define

αn(n−1
n∑
k=1

δxk , dz) =
1

n!

∑
σ∈Σn

δ(xσ1 ,...,xσn)(dz),

where Σn is the collection of permutations of (1, . . . , n), and

Cn = {(αnf, αng) : (f, g) ∈ An} ⊂ B(Pn(E))×B(Pn(E))}. (4.1)

Theorem 4.1 Suppose An satisfies the conditions of Theorem 2.6 or Theorem 2.7. For
µ0 ∈ P(Pn(E)), define

ν0(dx) =
∫
E0

αn(z, dx)µ0(dz) ∈ P(En).
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If there exists a solution of the martingale problem for (Cn, µ0), then there exists a solution X
of the martingale problem for (An, ν0). If the solution of the martingale problem for (An, ν0)
is unique, then the solution for (Cn, µ0) is unique and X satisfies

E[h(X1(t), . . . , Xn(t))|Fγ(X)
t ] =

1

n!

∑
σ∈Σn

h(Xσ1(t), . . . , Xσn(t)), . (4.2)

In particular, (4.2) implies that for each t ≥ 0, (X1(t), . . . , Xn(t)) is exchangeable.

Proof. The result is an immediate application of Corollary 3.5. 2

We illustrate Theorem 4.1 with the following simple application. Let B be the generator
of a Markov process with state space E, let D(An

0 ) = {∏n
i=1 fi(xi) : fi ∈ D(B)}, and for

f ∈ D(An
0 ), define

Bif(x) = Bfi(xi)
∏
j 6=i

fj(xj)

and

An
0f(x) =

n∑
i=1

Bif(x) +
1

2
λ

∑
1≤i6=j≤n

(f(ηij(x))− f(x))

where ηij(x) is the element of En obtained by replacing xj by xi in x = (x1, . . . , xn). An
0

models a system of n particles that move independently in E according to the Markov
process with generator B, live independent, exponentially distributed lifetimes, and at death
are instantaneously replaced by a copy of one of the remaining n − 1 particles, selected at
random. By symmetry, if (X1, . . . , Xn) is a solution of the martingale problem for An

0 , then
(Xσ1 , . . . , Xσn) is a solution, and if we define Cn as in (4.1), it is easy to check that γn(X)
is a solution of the martingale problem for Cn.

The generator

Anf(x) =
n∑
i=1

Bif(x) + λ
∑

1≤i<j≤n
(f(ηij(x))− f(x)) (4.3)

is not symmetric; however,

Cn = {(αnf, αng) : (f, g) ∈ An
0} = {(αnf, αng) : (f, g) ∈ An}. (4.4)

If the martingale problem for B is well-posed, then the martingale problems for An
0 and An

will be well-posed. Theorem 4.1 implies that if X̃ is a solution of the martingale problem for
An and X̃(0) = (X̃1(0), . . . , X̃n(0)) is exchangeable, then for each t ≥ 0 X̃(t) is exchangeable
and

E[h(X̃1(t), . . . , X̃n(t))|Fγ(X̃)
t ] =

1

n!

∑
σ

h(X̃σ1(t), . . . , X̃σn(t)).

In addition, if X is a solution of the martingale problem for An
0 , and X(0) has the same

exchangeable distribution as X̃(0), then γn(X) and γn(X̃) have the same distribution. See
Donnelly and Kurtz (1996, 1997) for further discussion and motivation for models of this
type.
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4.2 Uniqueness for measure-valued processes.

As above, letB be the generator of a Markov process with state space E. Let D(A) ⊂ B(E∞)
be given by D(A) = {∏n

i=1 fi(xi) : fi ∈ D(B), n = 1, 2, . . .}, and define

Af(x) =
∞∑
i=1

Bif(x) + λ
∑

1≤i<j<∞
(f(ηij(x))− f(x)). (4.5)

Note that since f ∈ D(A) depends on only finitely many components of x ∈ E∞, the sums
in (4.5) are, in fact, finite. In addition, if X = (X1, X2, . . .) is a solution of the martingale
problem for A, then Xn = (X1, . . . , Xn) is a solution of the martingale problem for An given
by (4.3). Consequently, by the above results on exchangeability, if X(0) = (X1(0), X2(0), . . .)
is exchangeable, then for each t ≥ 0, X(t) = (X1(t), X2(t), . . .) is exchangeable. (The
(finite) exchangeability of (X1(t), . . . , Xn(t)) for each n implies the (infinite) exchangeability
of X(t).) Let

Zn =
1

n

n∑
i=1

δXi.

If X(0) is exchangeable (so X(t) is exchangeable of all t ≥ 0), then by deFinetti’s theorem

Z(t) = lim
n→∞

Zn(t) a.s.

where convergence is in the weak topology on P(E). Recall that Zn is a solution of the
martingale problem for Cn given by (4.4), and it follows that Z is a solution of the martingale
problem for C ⊂ B(P(E))×B(P(E)) given by

C = {(〈f, µ∞〉, 〈Af, µ∞〉) : f ∈ D(A)},

where 〈f, µ∞〉 denotes integration of f by the product measure µ∞. Since the martingale
problem for A is well-posed (assuming the martingale problem for B is well-posed) and
exchangeability of X(0) implies exchangeability of X(t), it follows that the restricted mar-
tingale problem for (A,H) is well-posed, where H ⊂ B(E∞) is the collection of all functions
h of the form

h(x1, x2, . . .) = f(x1, . . . , xm)− f(xσ1 , . . . , xσm)

for some f ∈ ∪∞m=1B(Em) and some permutation (σ1, . . . , σm). Note that the restriction is
just the requirement of the exchangeability of X(t). Fix η0 ∈ P(E), and define γ : E∞ →
P(E) by

γ(x) = lim
n→∞

1

n

n∑
i=1

δxi

if the limit exists and γ(x) = η0 otherwise. Define πt = Z∞(t). It follows that (Z, π) is a
solution of the filtered martingale problem for (A, γ), and by Corollary 3.7, the solution of
the martingale problem for C is well-posed. In particular, we have

E[f(X1(t), . . . , Xm(t))|FZt ] = 〈f, Zm(t)〉.

Note that C is the generator for the Fleming-Viot process with mutation operator B.
(See, for example, Ethier and Kurtz (1993).) For further applications of Corollary 3.7 to
proofs of uniqueness of martingale problems for measure-valued processes, see Donnelly and
Kurtz (1997).
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4.3 Burke’s theorem and quasireversibility.

One of the motivating examples for Corollary 3.5 is the proof of Burke’s output theorem given
by Kliemann, Koch, and Marchetti (1990). For the simplest example, let Q be an M/M/1
queue length process and D the corresponding departure process. Then the generator for
X = (Q,D) is

Af(k, l) = λ(f(k + 1, l)− f(k, l))

+µI[1,∞)(k)(f(k − 1, l + 1)− f(k, l)).

Assuming λ < µ, the stationary distribution for Q is given by

π0 =
∞∑
k=0

(
1− λ

µ

)(
λ

µ

)k
δk.

Define γ(k, l) = l and α(l, ·) = π0 × δl. Then αAf(·, l) = λ(π0f(·, l + 1) − π0f(·, l)), and we
see that C in Corollary 3.5 is just the generator of the Poisson process with parameter λ.
Consequently, if D is a Poisson process with parameter λ, then (π0, D) is a solution of the
filtered martingale problem for (A, π0, γ), and we have Burke’s theorem.

Theorem 4.2 Let (Q,D) be the solution of the martingale problem for (A, π0 × δ0). Then
D is a Poisson process with intensity λ, Q is stationary, and Q(t) is independent of D(· ∧ t).

This theorem has been generalized in a variety of ways. For example, Serfozo (1989)
gives conditions under which a variety of counting process functionals of a Markov chain are
Poisson. Serfozo’s arguments are based on time-reversal and Watanabe’s characterization of
a Poisson process. To see how these results can be obtained using Corollary 3.5, let

A1f(x) = λ(x)
∫
E

(f(y)− f(x))µ(x, dy)

be the generator of a pure-jump Markov process on E with stationary distribution π0. Let
Φ ⊂ E ×E −{(x, x) : x ∈ E} and ϕ : Φ→ E′. Let J(E′) be the collection of integer-valued
measures on E′. For a solution X of the martingale problem for A1, define a J(E′)-valued
process by

N(Γ, t) =
∑
s≤t

IΦ(X(s−), X(s))δϕ(X(s−),X(s))(Γ),

that is, N(Γ, t) counts the number of times (X(s−), X(s)) ∈ Φ and ϕ(X(s−), X(s)) ∈ Γ.
Then (X,N) is a solution of the martingale problem for

Af(x, z) = λ(x)
∫
E

(f(y, z + IΦ(x, y)δϕ(x,y))− f(x, z))µ(x, dy).

As above, let γ(x, z) = z and α(z, ·) = π0 × δz. Then

αAf(z) =
∫
E
λ(x)

∫
E

(f(y, z + IΦ(x, y)δϕ(x,y)) − f(x, z))µ(x, dy)π0(dx)

=
∫
E
λ(x)

∫
E

(f(y, z + IΦ(x, y)δϕ(x,y)) − f(y, z))µ(x, dy)π0(dx)

+
∫
E
λ(x)

∫
E

(f(y, z)− f(x, z))µ(x, dy)π0(dx).
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Note that the second term on the right is zero since π0 is a stationary distribution for A1.
Suppose that there exists a measure β on E′ such that for each h ∈ B(E ×E′),∫

E×E
λ(x)IΦ(x, y)h(y, ϕ(x, y))µ(x, dy)π0(dx) =

∫
E×E′

h(y, u)π0(dy)β(du). (4.6)

Then
αAf(z) =

∫
E′

(π0f(z + δu)− π0f(z))β(du).

Consequently, if X is a solution of the martingale problem for (A1, π0), then (N, π0) is a
solution of the filtered martingale problem for (A, π0 × δ0, γ) which implies N is a solution
of the martingale problem for A2 given by

A2f(z) =
∫
E′

(f(z + δu)− f(z))β(du).

It follows that ξ(Γ× [0, t]) = N(Γ, t) defines a Poisson random measure on E′× [0,∞) with
mean measure β(du)× dt and X(t) is independent of σ(N(Γ, s) : s ≤ t,Γ ∈ B(E′)).

Note that (4.6) is essentially the condition α∗(x,B) = aF (B) in Theorem 3.2 of Serfozo
(1989). Serfozo also shows that this condition is necessary for N to be Poisson and the
independence property to hold.

4.4 Reflecting Brownian motion.

Harrison and Williams (1990, 1992) have considered analogues of the Poisson output theo-
rems for Brownian network models. Here we give a version of their result for a single service
station.

Let W = (W1, . . . ,Wm)T be standard Brownian motion, and letX be the one-dimensional
reflecting Brownian motion satisfying the Skorohod equation

X(t) = X(0) +
m∑
i=1

aiWi(t)− bt+ Λ(t).

Let C be a d×m matrix, c ∈ Rd, and D = CCT . Define

Y (t) = Y (0) + CW (t) + cΛ(t)

By Itô’s formula

f(X(t), Y (t)) = f(X(0), Y (0)) +MG

+
∫ t

0
Af(X(s), Y (s))ds

+
∫ t

0
Bf(0, Y (s))dΛ(s)

where

Af =
1

2

∑
a2
i fxx +

∑
j

(
∑
i

cjiai)fxyj +
1

2

∑
jk

djkfyjyk − bfx
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and
Bf = fx +

∑
cjfyj .

Consequently, if we take D(A) = {f ∈ C2
c (Rd+1) : Bf = 0}, then (X, Y ) is a solution for the

martingale problem for A.
For β = 2b/

∑
a2
i , let π0(dx) = βe−βxdx. Then π0 is the stationary distribution for X.

As above, define α(y, ·) = π0 × δy. Then

αAf(y) =
1

2

∑
j,k

djkπ0fyjyk(y) +
∑
j

(β
∑
i

cjiai)π0fyj (y) (4.7)

−β
1

2

∑
i

a2
ifx(0, y) +

∑
j

(
∑
i

cjiai)fyj (0, y)


If c, C, and the ai satisfy

cj =
2
∑
i cjiai∑
i a

2
i

,

then the second term on the right of (4.7) is zero by the boundary condition Bf = 0. Let Ỹ
be a solution of the martingale problem for

A0f(y) =
1

2

∑
j,k

djkfyjyk(y) +
∑
j

(α
∑
i

cjiai)fyj (y)

with Ỹ (0) = 0. Then (Ỹ , π0) is a solution of the filtered martingale problem for (A, π0×δ0, γ),
γ(x, y) = y. It follows that if (X, Y ) is a solution of the martingale problem for (A, π0× δ0),
then Y is Brownian motion with generator A0 and X(t) is independent of σ(Y (s) : s ≤ t).

A Appendix

A.1 Proof of Theorem 2.6

Let A satisfy the conditions of Theorem 2.6. Since A is a pre-generator, we can assume
(1, 0) ∈ A. The domain of the linear span of A is then an algebra that separates points
and vanishes nowhere. In addition, we can assume that {gk} is closed under multiplication.
Let I be the collection of finite subsets of positive integers, and for I ∈ I, let k(I) satisfy
gk(I) =

∏
i∈I gi. For each k, there exists ak ≥ |gk|. Let

Ê = {z ∈
∞∏
i=1

[−ai, ai] : zk(I) =
∏
i∈I
zi, I ∈ I}.

Note that Ê is compact. Following Bhatt and Karandikar (1993), define G : E → Ê by

G(x) = (g1(x), g2(x), . . .).

Then G has a measurable inverse defined on the (measurable) set G(E). We will need the
following lemma.
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Lemma A.1 Let ν ∈ P(E). Then there exists a unique measure µ ∈ P(Ê) satisfying∫
E gkdν =

∫
Ê zkµ(dz). In particular, if Z has distribution µ, then G−1(Z) has distribution ν.

Proof. Existence is immediate. Take µ = νG−1. Since Ê is compact, {∏i∈I zi : I ∈ I} is
separating. Consequently, uniqueness follows from the fact that∫

Ê

∏
i∈I
ziµ(dz) =

∫
Ê
zk(I)µ(dz) =

∫
E
gk(I)dν.

2

Suppose that µ ∈ P(E) satisfies∫
E
Afdµ = 0, f ∈ D(A).

Then there exists a stationary process that is a solution of the martingale problem for (A, µ).
This assertion is essentially Theorem 3.1 of Bhatt and Karandikar (1993) with the assumption
of existence of solutions of the DE[0,∞) martingale problem replaced by the assumption that
A is a pre-generator (which is, as we noted previously, implied by the existence of cadlag
solutions). The proof of the earlier result only needs to be modified using the fact that a
pre-generator is dissipative (needed in the definition of An) and the following generalization
of Lemma 4.9.16 of Ethier and Kurtz (1986) (needed to show that Λ is a positive functional).

Lemma A.2 Let A ⊂ B(E) × B(E) be a pre-generator. Suppose that ϕ is continuously
differentiable and convex on D ⊂ Rm, that f1, . . . , fm ∈ D(A) and (f1, . . . , fm) : E → D,
and that (ϕ(f1, . . . , fm), h) ∈ A. Then

h ≥ ∇ϕ(f1, . . . , fm) · (Af1, . . . , Afm).

Proof. Since A is a pre-generator, there exists λn and µn such that

h(x) = lim
n→∞

λn(x)
∫
E

(ϕ(f1(y), . . . , fm(y))− ϕ(f1(x), . . . , fm(x))µn(x, dy)

≥ lim
n→∞

∇ϕ(f1(x), . . . , fm(x)) · λn(x)
∫
E

(f1(y)− f1(x), . . . , fm(y)− fm(x))µn(x, dy)

= ∇ϕ(f1(x), . . . , fm(x)) · (Af1(x), . . . , Afm(x))

2

To complete the proof of Theorem 2.6, let ν be a solution of the forward equation, that
is

νtf = ν0f +
∫ t

0
νsAfds, f ∈ D(A). (A.1)

Fix α > 0, and define the generator Ã on E0 = [0,∞)×E by

Ã(ϕf)(s, x) = ϕ(s)Af(x) + ϕ′(s)f(x) + α

[
ϕ(0)

∫
E
f(y)ν0(dy)− ϕ(s)f(x)

]
(A.2)

for f ∈ D(A) and ϕ ∈ Ĉ1[0,∞), and observe that Ã also satisfies the conditions of Theorem
2.6.
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Define the measure π ∈ P([0,∞)× E) by∫
[0,∞)×E

h(s, x)π(ds× dx) = α
∫ ∞

0
e−αs

∫
E
h(s, x)νs(dx)ds (A.3)

for h ∈ B([0,∞) × E). Then, using (A.1), one can show
∫

[0,∞)×E Ãfdπ = 0 for f ∈ D(Ã),
and hence, by the construction of Bhatt and Karandikar, there exists a cadlag, stationary
process (S, Z) with values in [0,∞)× Ê, such that (S, Y ) = (S,G−1(Z)) is a solution of the
martingle problem for (Ã, π). In particular, for k = 1, 2, . . .

ϕ(S(t))Zk(t)−
∫ t

0
[ϕ(S(u))Agk(Y (u)) + ϕ′(S(u))Zk(u)

+α
(
ϕ(0)

∫
E
gkdν0 − ϕ(S(u))Zk(u)

)
]du

is a martingale.
We assume, without loss of generality, that (S, Z) is defined for all t ∈ (−∞,∞) on a

probability space (Ω,F , P ), and define Gt = σ(S(s), Z(s) : s ≤ t). Let τ−1 = sup{t < 0 :
S(t) = 0}, τ1 = inf{t > 0 : S(t) = 0}, and τ2 = {t > τ1 : S(t) = 0}. Taking ϕn(s) = e−ns

and applying the optional sampling theorem, it is easy to check that

E[Zk(τ1)] = lim
n→∞

E[ϕn(S(τ1))Zk(τ1)] = E[τ1]α
∫
E
gkdν0 =

∫
E
gkdν0.

By Lemma A.1, it follows that P{Z(τ1) ∈ G(E)} = 1 and Y (τ1) has distribution ν0.
For t ≥ 0, set Z̃(t) = Z(τ1 + t), X(t) = Y (τ1 + t), L(t) = [α(τ1 − τ−1)]−1eαtI[0,τ2−τ1](t),

and Ft = Gτ1+t. Then L is an {Ft}-martingale with E[L(t)] = 1, and for k = 1, 2, . . .,

Z̃k(t)−
∫ t

0

[
Agk(X(s)) + α

(∫
E
fdν0 − Z̃k(s)

)]
ds

is an {Ft}-martingale. Let P̂ be given by P̂ (C) = E[ICL(t)] for C ∈ Ft. Then, under P̂ , we
claim that X is a solution of the martingale problem for A and νt = P̂X−1(t).

Following the argument in the proof of Theorem 4.1 in Kurtz and Stockbridge (1997),

L(t)Z̃k(t)−
∫ t

0
L(s)Agk(X(s))ds

is an {Ft}-martingale under P and

Z̃k(t)−
∫ t

0
Agk(X(s))ds

is an {Ft}-martingale under P̂ . Finally, as in (4.8) in Kurtz and Stockbridge (1997),

EP̂
[
α
∫ ∞

0
ϕ(t)Z̃k(t)dt

]
= α

∫ ∞
0

e−αtϕ(t)
∫
E
gkdνtdt.

By the right continuity of Z̃k and the continuity of
∫
E gkdνt, for each t > 0,

E[Z̃k(t)] =
∫
E
gkdνt.

As before, it follows that P{Z̃(t) ∈ G(E)} = 1 and that X(t) has distribution νt which
completes the proof of Theorem 2.6. 2
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A.2 Proof of Theorem 2.7

The argument is similar to Section A.1, again following the proof of Theorem 4.1 of Stock-
bridge and Kurtz (1997). We now take

Ã0(ϕf)(s, x, y) = ϕ(s)A0f(x, y) + ϕ′(s)f(x) + α

[
ϕ(0)

∫
E
fdν0 − ϕ(s)f(x)

]
(A.4)

for f ∈ D(A0) and ϕ ∈ Ĉ1[0,∞), and observe that Ã0 also satisfies the conditions of Theorem
2.7. Define the measure π ∈ P([0,∞)× E × F ) by∫

[0,∞)×E
h(s, x, y)π(ds× dx × dy) = α

∫ ∞
0

e−αs
∫
E

∫
F
h(s, x, y)η(x, dy)νs(dx)ds. (A.5)

As before,
∫

[0,∞)×E×F Ã0fdπ = 0, and we can use the controlled martingale problem results
of Bhatt and Borkar (1996) and Kurtz and Stockbridge (1997) with modifications similar to
those outlined in Section A.1. 2

A.3 Optional projections.

The following is essentially a result of Yor (1977). We do not, however, assume that the
filtrations are right continuous. See Lenglart (1983) for more general results of this type.

Theorem A.3 Let (Ω,F , P ) be a complete probability space, let E be a complete, separable
metric space, and let η be a measurable, P(E)-valued process. Let {Ft} be a complete fil-
tration. Then there exists an {Ft}-optional, P(E)-valued process π such that for each finite
(that is, P{τ < ∞} = 1) {Ft}-stopping time τ and each A ∈ B(E), E[ητ(A)|Fτ ] = πτ (A)
a.s. If, in addition, {Ft} is right continuous and η is right continuous (cadlag), then π is
right continuous (cadlag).

Proof. We follow the proof of Morando’s theorem. (See for example, Ethier and Kurtz
(1986), Appendix 8.) Let {xi, i ≥ 1} be a countable dense subset of E. Let C1, C2, . . . be
some ordering of the collection of balls {Bk−1(xi) : i, k = 1, 2, . . .}. Let Bn be the (finite)
σ-algebra generated by C1, . . . , Cn, and let Pn be the collection of probability measures
defined on Bn. The optional projection theorem (see Ethier and Kurtz (1986) Theorem 2.4.2
for a version not requiring right continuity of {Ft}) implies the existence of an optional,
Pn-valued process π̂n satisfying E[ητ(A)|Fτ ] = π̂nτ (A) a.s. for each A ∈ Bn, and each finite
{Ft}-stopping time τ . The sequence can be constructed to be consistent in the sense that
π̂n(A) = π̂n+1(A) for A ∈ Bn. Let An

1 , . . . , A
n
mn be the partition generating Bn and let

xni ∈ An
i . Then π̂n can be extended to a measure on B(E) by defining

π̂n(A) =
mn∑
i=1

δxn
i
(A)π̂n(An

i ) , A ∈ B(E).

Taking the usual weak topology on P(E), the setO = {(t, ω) : limn→∞ π̂
n
t (·, ω) exists in P(E)}

is optional. Define πt(·, ω) = limn→∞ π̂
n
t (·, ω) for (t, ω) ∈ O and πt(·, ω) = π∗ for (t, ω) ∈ Oc

for some fixed π∗ ∈ P(E). Then π is an optional, P(E)-valued process. We will show that
π satisfies the conclusion of the theorem.
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For each compact K ⊂ E and each ε > 0, there exists nK,ε and A ∈ BnK,ε such that K ⊂
A ⊂ Kε. Then for any finite stopping time τ and n ≥ nK,ε we have π̂nτ (Kε) ≥ E[ητ(K)|Fτ ]
a.s. Since E[ητ ] is a probability measure, there exists an increasing sequence of compact sets
K1 ⊂ K2 ⊂ · · · such that limk→∞ E[ητ(Kk)] = 1 and hence limk→∞E[ητ(Kk)|Fτ ] = 1 a.s. It
follows that the sequence {π̂nτ } is almost surely relatively compact. The consistency on ∪Bn
ensures that there can be at most one limiting measure, so we must have limn→∞ π̂

n
τ = πτ

a.s. For any open set G ∈ ∪Bn, we have E[ητ(G)|Fτ ] = limn→∞ π̂
n
τ (G) ≥ πτ (G). But

any open set can be written as an increasing union of open sets in ∪Bn, so the inequality
E[ητ(G)|Fτ ] ≥ πτ(G) a.s. holds for all open sets. Taking decreasing intersections, the
inequality holds for all closed sets, that is for Gc for each open G, so in fact equality holds.
The monotone class theorem gives equality for all Borel sets.

If {Ft} is right continuous, then the optional projection of a right continuous (cadlag)
process is right continuous (cadlag) (Dellacherie (1972), Theorem V-T20). Consequently, if
η is right continuous (cadlag) and f ∈ C̄(E), then

πtf = E[ηtf |Ft]

is right continuous (cadlag). Since there is a countable convergence determining subset of
C̄(E), it follows that π must be right continuous (cadlag). 2

Corollary A.4 Let X be an E-valued, measurable, {Ft}-adapted process. Then there exists
an {Ft}-optional process X̂ such that X(t) = X̂(t) a.s. for each t ≥ 0.

Proof. By the previous theorem, there exists a P(E)-valued optional process π such that
E[IA(X(t))|Ft] = πt(A). But since X is {Ft}-adapted, πt = δX(t) a.s. The set D = {(t, ω) :

πt(·, ω) is degenerate} is optional. Fix x0, and define X̂(t, ω) so that πt(·, ω) = δX̂(t,ω) on D

and X̂(t, ω) = x0 on Dc. It follows that X̂ is optional and that X̂(t) = X(t) a.s. for each t.
2

A.4 Uniqueness for martingale problem implies Markov property.

Let A ⊂ B(E) × B(E) and let ν0 ∈ P(E). A measurable process X is a solution of the
martingale problem for (A, ν0) if X(0) has distribution ν0 and there exists a filtration {Ft}
such that X is {Ft}-adapted and

f(X(t)) −
∫ t

0
g(X(s))ds (A.6)

is an {Ft}-martingale for each (f, g) ∈ A. We say that the solution of the martingale problem
for (A, ν0) is unique if any two solutions have the same finite dimensional distributions. Ethier
and Kurtz (1986), Theorem 4.4.2, states that if uniqueness holds for every ν0 ∈ P(E), then
every solution is a Markov process. In fact, uniqueness for a fixed initial distribution implies
the solution with that initial distribution is Markov. Recall that we are assuming the (E, r)
is complete and separable. (The author thanks Ely Merzbach for helpful communications
regarding the results on bimeasures in Karni and Merzbach (1990).)
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Theorem A.5 Let A ⊂ B(E)×B(E) and ν0 ∈ P(E), and assume that uniqueness holds for
the martingale problem for (A, ν0). Suppose that X is a solution of the martingale problem
for (A, ν0) with respect to the filtration

Ft = σ(X(s) : s ≤ t)∨ σ(
∫ s

0
h(X(r))dr : s ≤ t, h ∈ B(E)). (A.7)

Then X is an {Ft}-Markov process.

Remark A.6 Let FXt = σ(X(s) : s ≤ t). If X is cadlag, or more generally, if X is
progressive with respect to {FXt }, then Ft = FXt , t ≥ 0.

Proof. Suppose that the solution X is defined on the probability space (Ω,F , P ). We must
show that for each r, s ≥ 0, f ∈ B(E),

E[f(X(r + s))|Fr] = E[f(X(r + s))|X(r)],

or, equivalently, for each bounded Fr-measurable random variable H

E[f(X(r + s))H] = E[E[f(X(r + s))|X(r)]H]. (A.8)

Fix r ≥ 0, and define

Qr(F ∩G) = EP [IFE
P [IG|X(r)]], F,G ∈ F .

Since the argument will involve more than one probability measure, we use EP to denote the
expectation (or conditional expectation) under P . Then Qr is a bimeasure on (Ω,F)×(Ω,F),
which by Theorem 2.8b of Karni and Merzbach (1990) extends to a countably additive
probability measure on the product σ-algebra F × F . Define X̃r on (Ω× Ω,F × F , Qr) by

X̃r(s, ω1, ω2) =

{
X(s, ω1), s ≤ r
X(s, ω2), s > r.

Define Xi(s, ω1, ω2) = X(s, ωi), and note that for Γ ∈ B(E),

Qr(X1(r) ∈ Γ, X2(r) ∈ Γ) = EP [IΓ(X(r))EP [IΓ(X(r))|X(r)]] = P{X(r) ∈ Γ}

and it follows that
Qr{X1(r) = X2(r)} = 1.

We claim that X̃r is a solution of the martingale problem for (A, ν0). Since Qr{X̃r(0) ∈
Γ)} = EP [IΓ(X(0))] = ν0(Γ), X̃r has the correct initial distribution. We need to show that
for f ∈ D(A), t1 < . . . < tm+1 and gi ∈ B(E),

EQr [(f(X̃r(tm+1)− f(X̃r(tm))−
∫ tm+1

tm
Af(X̃r(s))ds)

m∏
i=1

gi(X̃r(ti))] = 0. (A.9)
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If tm+1 ≤ r, the equality is immediate. Suppose tm ≥ r. Then

EQr [(f(X̃r(tm+1)− f(X̃r(tm))−
∫ tm+1

tm
Af(X̃r(s))ds)

m∏
i=1

gi(X̃r(ti))]

= EP [EP [(f(X(tm+1)− f(X(tm)) −
∫ tm+1

tm
Af(X(s))ds)

∏
ti≥r

gi(X(ti))|X(r)]
∏
ti<r

gi(X(ti)]

= 0.

If tm < r < tm+1, write

f(X̃r(tm+1)− f(X̃r(tm))−
∫ tm+1

tm
Af(X̃r(s))ds

= f(X̃r(tm+1)− f(X̃r(r)) −
∫ tm+1

r
Af(X̃r(s))ds

+f(X̃r(r) − f(X̃r(tm))−
∫ r

tm
Af(X̃r(s))ds,

and check the identity for each term separately.
The identity (A.9) actually only verifies

E[f(X̃r(tm+1)− f(X̃r(tm))−
∫ tm+1

tm
Af(X̃r(s))ds|F X̃rtm ] = 0

where F X̃rt = σ(X̃r(s) : s ≤ t). The conditioning for the (possibly) larger σ-algebra

F̃t = σ(X̃r(s) : s ≤ t) ∨ σ(
∫ s

0
h(X̃r(u))du : s ≤ t, h ∈ B(E))

can be obtained by including factors of the form g(
∫ t

0 h(X̃r(s))ds) for t ≤ r and g(
∫ t
r h(X̃r(s))ds)

for t ≥ r in the product.
Since X̃r is a solution of the martingale problem for (A, ν0), X̃r and X have the same finite

dimensional distributions. Note that the finite dimensional distributions of X determine the
joint distribution of any collection of random variables of the form

(X(t1), . . . , X(tm),
∫ t1

0
h1(X(s))ds, . . . ,

∫ tm

0
hm(X(s))ds),

h1, . . . , hm ∈ B(E). (Compute joint moments of gi(X(ti)) and the integral terms.) Conse-
quently, if

H = H(X(t1), . . . , X(tm),
∫ t1

0
h1(X(s))ds, . . . ,

∫ tm

0
hm(X(s))ds),

where t1, . . . , tm ≤ r, and Hr is defined similarly with X replaced by Xr, then

EP [f(X(r + s))H] = EQr [f(Xr(r + s))Hr] = EP [EP [f(X(r + s))|X(r)]H],

which gives (A.8). 2
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