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Abstract

In this paper we consider a branching particle system consisting of particles moving
according to an Ornstein-Uhlenbeck process in Rd and undergoing binary, supercrit-
ical branching with a constant rate λ > 0. This system is known to fulfil a law of
large numbers (under exponential scaling). In the paper we prove the corresponding
central limit theorem. The limit and the CLT normalization fall into three qualitatively
different classes. In what we call the small branching rate case the situation resem-
bles the classical one. The weak limit is Gaussian and normalization is the square
root of the size of the system. In the critical case the limit is still Gaussian, but the
normalization requires an additional term. Finally, when branching has a large rate
the situation is completely different. The limit is no longer Gaussian, the normalization
is substantially larger than the classical one and the convergence holds in probability.
We also prove that the spatial fluctuations are asymptotically independent of the
fluctuations of the total number of particles (which is a Galton-Watson process).
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1 Introduction

We consider a branching particle system {Xt}t≥0 as follows. The system starts off

at time t = 0 from a single particle located at x ∈ Rd. The particle moves according
to an Ornstein-Uhlenbeck process in Rd and branches after an exponential time with
parameter λ > 0. Before describing the branching mechanism, let us recall that the
Ornstein-Uhlenbeck process with parameters σ, µ > 0 is a time homogenous Markov
process with the infinitesimal operator

L :=
1

2
σ2∆− µx ◦ ∇, (1.1)

where ◦ denotes the standard scalar product in Rd and ∇ = (∂/∂x1, . . . , ∂/∂xd), ∆ =∑d
i=1 ∂

2/∂x2i , stand for the gradient and Laplacian operators respectively.
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CLT for Ornstein-Uhlenbeck branching particle system

We consider binary branching with parameter p > 1/2, i.e. at each splitting time the
particle has two or zero offspring with probability p and 1− p respectively. We recall that
for binary branching mechanisms the condition p > 1/2 is equivalent to supercriticality.
Thus with positive probability our system does not become extinct.

The offspring particles follow the same dynamics independently. This system will
be referred to as the OU branching process. Formally, the system is identified with the
empirical process, i.e. X is a measure-valued process such that for a Borel set A, Xt(A)

is the (random) number of particles at time t in A. The existence of such a process is
guaranteed by general results in [11, 12]; see also further comments in Section 4.1.

Systems of this type may be regarded as consisting of two components, namely
the genealogy part and the diffusion part (for this reason they are sometimes called
“branching diffusions”). The genealogy part, being the celebrated Galton-Watson process,
is well-studied. In our case (p > 1/2), the expected total number of particles grows
exponentially at rate

λp := (2p− 1)λ. (1.2)

The Ornstein-Uhlenbeck process has a unique equilibrium measure ϕ (to be described
later). After a long time the positions of two “randomly picked” particles are “almost
independent” random variables distributed approximately according to ϕ, which suggests
the following law of large numbers

|Xt|−1 〈Xt, f〉 → 〈ϕ, f〉 1Extc , a.s. (1.3)

where Extc is the event that the system does not become extinct, |Xt| denotes the
number of particles at time t and f is a bounded, continuous function. This is indeed the
case as follows from [13]. In Theorem 3.1 we obtain (1.3) in probability for a slightly
more general class of functions. This is, however, only a preparatory step towards our
main goal which is the corresponding central limit theorem. It turns out that the second
order behaviour depends qualitatively on the sign of λp − 2µ. Roughly speaking, this
condition reflects the interplay of two antagonistic forces, the growth which is local and
makes the system more coarse and the movement which tends to smooth the system
(higher µ implies “a stronger attraction of particles towards 0”). Now we describe the
behaviour of the spatial fluctuations:

F−1t (〈Xt, f〉 − |Xt| 〈ϕ, f〉) , (1.4)

where Ft is some, not necessarily deterministic, normalising function.
Our results are quite involved from the notational point of view, therefore we postpone

their rigorous formulation to Section 3 and at this point we will only provide their
somewhat informal description. We present the situation on the set of non-extinction
Extc.

Small branching rate: λp < 2µ. Our main result is contained in Theorem 3.3. In this
case “the movement part prevails” and the result resembles the standard CLT. For
large t,

〈Xt, f〉 − |Xt|〈ϕ, f〉√
|Xt|

d→ σfG,

where
d→ denotes convergence in distribution, G is a standard Gaussian variable

and σf is a parameter depending on the function f , but independent of the initial
conditions.

Let us note that a random normalization Ft = |Xt|1/2 is quite natural as it “filters”
out the fluctuation of the total number of particles and thus allows for a Gaussian
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limit. We remark that almost surely for large t, |Xt| exp(−λpt)→ V∞ for a certain
random variable V∞, so one can easily replace our random normalization with a
deterministic one. However the limit in this case will be no longer Gaussian; by
using the full strength of Theorem 3.3 one can show that it is a mixture of Gaussian
distributions.

Critical branching rate: λp = 2µ. Our main result is given in Theorem 3.8. In this
case “the branching prevails”. The behaviour of the fluctuations slightly diverges
from the classical setting, namely

〈Xt, f〉 − |Xt|〈ϕ, f〉√
t|Xt|

d→ σfG,

where G is again a standard Gaussian variable and σf a constant depending on the
function f (different from σf in the subcritical regime). Let us briefly comment on
the differences between the critical and subcritical cases. First of all, in the critical
case the normalization is bigger: Ft = t1/2|Xt|1/2. Moreover, although the limit still
does not depend on the starting condition and is Gaussian, its variance depends
on the distributional derivatives of f (contrary to the small branching case). To
explain this at a heuristic level we note that in the critical case the branching is
so fast that the fluctuations are no longer smoothened by the motion and become
essentially local.

Large branching rate: λp > 2µ. Our main result is presented in Theorem 3.12. In this
case not only does the branching “prevail” but also “the motion badly fails to make
any smoothing”. In this case it is more natural to use deterministic normalization
Ft = e(λp−µ)t, which is even bigger than in the critical case (note that in this range
of λp, exp((λp − µ)t)�

√
t exp(λpt/2) while the later quantity is of the same order

as
√
t|Xt|).

We have
〈Xt, f〉 − |Xt|〈ϕ, f〉

e(λp−µ)t
→ 〈ϕ,∇f〉 ◦ J,

where ∇f is the distributional gradient of f and J is a certain d-dimensional
random vector (obtained as the limit of some martingale related to the system),
depending on the starting position of the system. It turns out that the limit is no
longer Gaussian. What is perhaps surprising, the convergence holds in probability.
The first term, 〈ϕ,∇f〉, means that like in the critical situation the branching is
fast enough so that the fluctuations are local. Even more, it is so fast that the
limit depends on the starting condition and in fact, up to some extent, the system
“remembers its whole evolution”, which is encoded in J .

In either case we also prove that the spatial fluctuations become independent of fluctua-
tions of the total number of particles as time increases.

Until recently most of the research activity was concentrated on proving laws of large
numbers for more and more general branching systems. Before our work the only CLT
result we are aware of was contained in [6, Proposition 6.4]. Their setting is somewhat
different, see Remark 3.17. During the review process of the current paper an extension
of our results appeared in [24] . We shortly comment on their result in Remark 3.16 and
in Remark 3.18 we discuss a few open questions natural in view of our results.

At this moment we would like to announce our parallel paper [1]. In [1] we consider
U -statistics of the OU branching system, namely expressions of the form

Unt (f) :=

|Xt|∑
i1,i2,...in=1
ik 6=ij if k 6=j

f(Xt(i1), Xt(i2), . . . , Xt(in)). (1.5)
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We obtain both the law of large numbers (i.e. an analogue of (1.3)) and CLTs, which
also fall into three categories corresponding to the cases described above. Moreover, at
this point we also advertise a forthcoming work of the second named author [21], which
is devoted to studies of the CLT for superprocesses based on the Ornstein-Uhlenbeck
process (see also related [25]). Qualitatively the results of [21] are the the same as the
ones presented in this paper.

Our proofs utilise a mixture of techniques used for branching systems (e.g. the
Laplace transform and the log-Laplace equation, coupling and decoupling). Although
the proof schemes loosely resemble known techniques (e.g. are similar to proofs in [5,
Section 1.13]) they required many improvements. In our proofs we used also the fact
that the Ornstein-Uhlenbeck process has a particularly explicit and tractable structure.

The study of branching models of various types has a long history, we refer the reader
to [12, 14, 5, 9] (the list is by no means exhaustive). It has been known for a long
time that the behaviour of branching systems differs qualitatively for (sub)critical and
supercritical cases. The former become extinct almost surely, their limit properties are
studied after conditioning on non-extinction event (e.g. Yaglom type theorems) or as a
part of larger infinite structures (e.g. Galton-Watson forests, random snakes, continuum
trees – see e.g. [17]). The latter grow exponentially fast (on the set of non-extinction),
which makes it possible to study them using laws of large numbers, starting with the
celebrated Kesten-Stigum theorem ([5, Theorem I.10.1]). Such theorems were also
proved for branching particle systems, they go back to [3, 4] and more recently [13]
(the latter being the main inspiration for our paper). This paper presents a law of large
numbers for a large class of supercritical branching diffusions and admits unbounded
space-dependent branching intensity. Also we would like to mention again the paper [6]
in which systems with non-local branching (i.e. particles may jump upon an event of
branching) were studied. The article [6] presents a law of large numbers as well as a
central limit theorem, though in a different spirit than ours (see comparison in Remark
3.17). Due to its extensive introduction [6] is also an excellent resource of biological
motivations for study of branching diffusions.

The article is organised as follows. The next section presents notation and basic facts
required further. Section 3 is devoted to the presentation of the results. Proofs are
deferred to Section 4 and the Appendix.

2 Notation and preliminaries

Notation For a branching system {Xt}t≥0, we denote by |Xt| the number of particles
at time t, and by Xt(i) - the position of the i-th (in a certain ordering) particle at time
t. Typically, we use Ex or Px to stress the fact that we consider the system starting
from a particle located at x. Sometimes we use also E and P when this location is not
relevant (e.g. if we calculate the number of particles in the system). We will refer to
the system starting from a single particle at time t = 0 located at x ∈ Rd shortly, as
the OU branching system starting from x ∈ Rd.
For a function f : Rd → R and a measure µ on Rd we denote 〈µ, f〉 :=

∫
Rd
f(x)µ(dx).

Thus in particular we have

〈Xt, f〉 =

|Xt|∑
i=1

f(Xt(i)).

By→d we denote convergence in law. We use . to denote the situation when an inequality
holds up to a (multiplicative) constant c > 0 not depending on running parameters, which
is irrelevant for calculations. E.g. f(x) . g(x) means that there exists a constant c > 0
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such that f(x) ≤ cg(x).
Let x ◦ y =

∑d
i=1 xiyi denote the standard scalar product of x, y ∈ Rd. Moreover,

‖x‖ =
√
x ◦ x is the standard Euclidean norm in Rd.

In the paper we use the space

P = P (Rd) :=

{
f : Rd 7→ R : f is continuous and ∃n such that lim

‖x‖→+∞
|f(x)|/‖x‖n = 0

}
,

that is the space of continuous functions which grow at most polynomially.
Given a function f ∈ P (Rd) we implicitly understand its derivatives (e.g. ∂f

∂xi
) in the

space of tempered distributions (see e.g. [26, p. 173]).
For a probability measure µ and a random variable X we write X ∼ µ to express the

fact that X is distributed according to µ.

Basic facts on the Galton-Watson process The number of particles {|Xt|}t≥0 is the
celebrated Galton-Watson process. We present basic properties of this process used in
the paper. The main reference in this section is [5]. We already introduced the growth
rate (1.2) (e.g. [5, Section 1.6]). The process becomes extinct with probability pe := 1−p

p .

(see [5, Theorem I.5.1]). We denote the extinction and non-extinction events by Ext and
Extc respectively. The process

Vt := e−λpt|Xt|

is a positive martingale. Therefore it converges (see also [5, Theorem 1.6.1])

Vt → V∞, a.s. as t→ +∞. (2.1)

Proposition 2.1. We have {V∞ = 0} = Ext and conditioned on non-extinction V∞ has
the exponential distribution with parameter 2p−1

p . We have E(V∞) = 1 and Var(V∞) =
1

2p−1 . Ee−4λpt|Xt|4 is uniformly bounded, i.e. there exists C > 0 such that for any t ≥ 0

we have Ee−4λpt|Xt|4 ≤ C. Moreover, all moments are finite, i.e. for any n ∈ N and t ≥ 0

we have E|Xt|n < +∞.

The proof is deferred to the Appendix. We denote the variable V∞ conditioned on
non-extinction by W .

Basic facts on the Ornstein-Uhlenbeck process The particle movement in our
model is governed by the Ornstein-Uhlenbeck process with parameters σ, µ > 0. Let us
recall again that this process is a time homogenous Markov process with the infinitesimal
operator

L :=
1

2
σ2∆− µx ◦ ∇. (2.2)

The invariant measure of the Ornstein-Uhlenbeck process with parameters σ, µ is
a mean zero Gaussian distribution on Rd with covariance matrix σ2

2µ Id. We denote this
measure by ϕ. Since in the proofs we will use extensively the exact form of its density,
we recall that it is equal to

ϕ(x) :=
( µ

πσ2

)d/2
exp

(
− µ

σ2
‖x‖2

)
. (2.3)

For simplicity we denote the measure and its density with the same letter, which should
not lead to a misunderstanding.

The semigroup of the Ornstein-Uhlenbeck process is denoted by T. It is well known
that T is a strongly continuous semigroup on L2(ϕ) (see e.g. Sections 8.3. and 9.4. in [8]
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for a much more general exposition in the context of infinite-dimensional spaces). It can
be calculated with the following formula (see formula (8.13) in [8] or Section 5.2. of [2])

Ttf(x) = (gt ∗ f)(xt), xt := e−µtx, (2.4)

where

gt(x) =

(
µ

πσ2
t

)d/2
exp

{
− µ

σ2
t

x2
}
, σ2

t := σ2(1− e−2µt).

We denote ou(t) :=
√

1− e−2µt and let G ∼ ϕ. Similarly to (2.4) we can express T using

Ttf(x) =

∫
Rd
f(xt − y)gt(y)dy =

∫
Rd
f
(
xe−µt + ou(t)y

)
ϕ(y)dy = Ef(xe−µt + ou(t)G).

(2.5)
For a function f ∈ P (Rd) we will denote

f̃(x) := f(x)− 〈ϕ, f〉 . (2.6)

3 Results

This section is devoted to the presentation of our results. The proofs are deferred
to Section 4. Our first aim is to present a central limit theorem corresponding to the
following law of large numbers (closely related to [13, Theorem 6] or [6, Theorem 4.2]).

Theorem 3.1. Let {Xt}t≥0 be the OU branching system starting from x ∈ Rd. Let us

assume that f ∈ P (Rd). Then

lim
t→+∞

e−λpt 〈Xt, f〉 = 〈ϕ, f〉V∞ in probability,

and thus (by the definition of V∞ and Proposition 2.1) on the set of non-extinction, Extc,
we have

lim
t→+∞

|Xt|−1 〈Xt, f〉 = 〈ϕ, f〉 in probability. (3.1)

Moreover, if f is bounded then almost sure convergence holds.

Remark 3.2. We believe that the almost sure convergence holds above also for f ∈
P (Rd). However, as in this paper we concentrate on the CLT, we do not pursue this
question here. We expect that methods used in the proof of [13, Lemma 18] might be of
use.

3.1 Small branching rate: λp < 2µ

We denote

σ2
f :=

〈
ϕ, f̃2

〉
+ 2λp

∫ +∞

0

〈
ϕ,
(
e(λp/2)sTsf̃

)2〉
ds, (3.2)

where f̃ is defined by (2.6).
Let us also recall (2.1) and that W is V∞ conditioned on Extc. The main result of this

section is

Theorem 3.3. Let {Xt}t≥0 be the OU branching system starting from x ∈ Rd. Let

us assume λp < 2µ and f ∈ P (Rd). Then σ2
f < +∞ and conditionally on the set of

non-extinction Extc there is the convergence(
e−λpt|Xt|,

|Xt| − etλpV∞√
|Xt|

,
〈Xt, f〉 − |Xt| 〈ϕ, f〉√

|Xt|

)
→d (W,G1, G2), (3.3)

where G1 ∼ N (0, 1/(2p − 1)), G2 ∼ N (0, σ2
f ) and W,G1, G2 are independent random

variables.
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Remark 3.4. As we already mentioned in the Introduction this is the most classical case.
By conditioning one can check that the theorem is still valid when the first particle is
distributed according to ϕ. With this assumption Xt(i) ∼ ϕ for any i. If these random
variables were independent conditionally on |Xt|, then the third term, written in the

form |Xt|−1/2
∑|Xt|
i=1 (f(Xt(i))− 〈ϕ, f〉), would converge to N (0, σ̃2

f ), where σ̃2
f =

〈
ϕ, f̃2

〉
(the random number of elements in the sum is only a minor obstacle). Therefore, the
additional integral term in (3.2) reflects the dependence between Xt(i)’s.

Remark 3.5. An important feature of our result is the factorisation of the fluctuations
of the total mass process {|Xt|}t and the spatial fluctuations process i.e. {〈Xt, f〉}t.
Using this fact we can easily prove a central limit theorem corresponding to (3.1) with
deterministic normalization. Namely

e−λpt/2 (〈Xt, f〉 − |Xt| 〈ϕ, f〉)→d G2

√
V∞,

where G2 are the same as in Theorem 3.3 and V∞ is given by (2.1).

Remark 3.6. The convergence of the spatial fluctuations can also be regarded as
convergence of random fields. It is technically convenient to embed the space of point
measures into the space of tempered distributions S ′(Rd) (i.e. the dual of the space of
rapidly decreasing functions S(Rd)). The following S ′(Rd)-valued random variable:

Mt :=
Xt − |Xt|ϕ(x)dx

|Xt|1/2
= |Xt|1/2

(
Xt

|Xt|
− ϕ

)
, (3.4)

converges to a Gaussian random field M with covariance structure given by

Cov(〈M,f1〉 , 〈M,f2〉) =
〈
ϕ, f̃1f̃2

〉
+ 2λp

∫ +∞

0

〈
ϕ,
(
e(λp/2)sTsf̃1

)(
e(λp/2)sTsf̃2

)〉
ds,

(3.5)
where f̃i(x) = fi(x)− 〈ϕ, fi〉. The convergence holds in S ′(Rd) space. In order to justify
it one first applies the Mitoma theorem [22]. This theorem states that the tightness of
{Mt}t≥0 is equivalent to tightness of 〈Mt, f〉 for all f ∈ S(Rd), which obviously holds
by Theorem 3.3. Let us thus consider any convergent subsequence Mtn and denote
by M its weak limit. Note that by Theorem 3.3 and the Cramer-Wold device for all
f1, . . . , fm ∈ S(Rd), the finite dimensional marginals (〈Mtn , f1〉, . . . , 〈Mtn , fm〉) converge
to a Gaussian vector with the covariance structure given by (3.5). This implies that the
distribution of M on the cylindrical σ-field of S ′(Rd) is uniquely determined. However,
due to the separability of the Schwartz class S(Rd), the cylindrical σ-field of S ′(Rd)
coincides with the Borel σ-field (see the remark following Definition 2.3.1 in [20]) and
so the distribution of M is uniquely determined. Together with tightness this ends the
proof of convergence of Mt as random elements of S ′(Rd).
Remark 3.7. The formula (3.2) for the variance of the limiting Gaussian variable be-
comes perhaps less cryptic when expressed in the basis of the Hermite polynomials.
Let {hn}n≥0 be the probabilistic Hermite polynomials (see. e.g. [19, page 5]). We
recall that in the case of d = 1 and σ2 = 2, µ = 1 they are eigenfunctions of the
Ornstein-Uhlenbeck semigroup, more precisely Tthn = exp(−nt)hn. Moreover they form
an orthonormal basis in the space L2(ϕ). Still for d = 1, but for general σ2 and µ, let
h̃n(x) = hn(

√
2µx/σ). By an appropriate change of variables one easily obtains that

{h̃n}n≥0 is an orthonormal basis in L2(ϕ) and Tth̃n = exp(−µnt)h̃n. Passing to general d
and using the product structure of the Ornstein-Uhlenbeck process in Rd one obtains
that the family {h̃i1,...,id}∞i1,...,id=0 given by

h̃i1,...,id = (x1, . . . , xd) = h̃i1(x1) · · · h̃id(xd), (3.6)
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is an orthonormal basis in L2(ϕ) and Tth̃i1,...,id = exp(−µ(i1 + . . . + id)t)h̃i1,...,id . The
elements of this basis are often referred to as multivariate Hermite polynomials. If we
now define fi1,i2,...,id :=

∫
Rd
f̃(x)h̃i1,...,id(x)ϕ(x)dx, then (3.2) together with basic Hilbert

space theory yield

σ2
f :=

+∞∑
i1=0,i2=0,...,id=0

f2i1,i2,...,id

(
1 +

2λp

2(i1 + i2 + . . .+ id)µ− λp

)
. (3.7)

3.2 Critical branching rate: λp = 2µ

We denote

σ2
f :=

λpσ2

µ

d∑
i=1

〈
ϕ,

∂f

∂xi

〉2

. (3.8)

Note that the same symbol σ2
f has already been used to denote the asymptotic variance in

the small branching case. However, since these cases will always be treated separately,
this should not lead to ambiguity. Analogously as in (3.7) we can expresses σ2

f nicely
using the Hermite expansion:

σ2
f = 2λp

(
f21,0,...,0 + f20,1,...,0 + f20,0,...,1

)
. (3.9)

Let us also recall (2.1) and that W is V∞ conditioned on Extc. The main result of this
section is

Theorem 3.8. Let {Xt}t≥0 be the OU branching system starting from x ∈ Rd. Let us

assume that λp = 2µ and f ∈ P (Rd). Then σ2
f < +∞ and conditionally on the set of

non-extinction Extc there is the convergence(
e−λpt|Xt|,

|Xt| − etλpV∞√
|Xt|

,
〈Xt, f〉 − |Xt| 〈ϕ, f〉

t1/2
√
|Xt|

)
→d (W,G1, G2),

where G1 ∼ N (0, 1/(2p − 1)), G2 ∼ N (0, σ2
f ) and W,G1, G2 are independent random

variables.

Remark 3.9. We continue the discussion from Remark 3.4. This time the theorem is
less classical as the normalization is larger. We interpret this as the fact that Xt(i)’s
become more dependent as λp increases relatively to µ. In other words the branching is
so fast that any particle has many relatives which are still close to it. This also explains,
at least on an intuitive level, the appearance of the derivative in (3.8).

3.3 Large branching rate: λp > 2µ

Let us introduce the process {Ht}t≥0

Ht := e(−λp+µ)t
|Xt|∑
i=1

Xt(i). (3.10)

Let us also recall the martingale Vt := e−λpt|Xt|. We have

Proposition 3.10. The process {Ht}t≥0 is a martingale with respect to the filtration of
the OU branching system. Moreover, if λp > 2µ, then we have supt≥0Ex‖Ht‖2 < +∞.
Thus, there exists

H∞ := lim
t→+∞

Ht,

where the convergence holds a.s. and in L2. When the OU branching system starts from
0, the martingales Vt and Ht are orthogonal.
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The distribution of H∞ depends on the starting conditions.

Proposition 3.11. Let {Xt}t≥0 and {X̃t}t≥0 be two OU branching systems, the first one
starting from 0 and the second one from x. Let us denote the limit of the corresponding
martingales by H∞, H̃∞ respectively. Then

H̃∞ =d H∞ + xV∞,

where V∞ is given by (2.1) for the system X.

Let us denote by J the random variable H∞ conditioned on Extc.

Theorem 3.12. Let {Xt}t≥0 be the OU branching system starting from x ∈ Rd. Let us

assume that λp > 2µ and f ∈ P (Rd). Then conditionally on the set of non-extinction Extc

there is the convergence(
e−λpt|Xt|,

|Xt| − etλpV∞√
|Xt|

,
〈Xt, f〉 − |Xt| 〈ϕ, f〉

exp ((λp − µ)t)

)
→d (W,G, 〈ϕ,∇f〉 ◦ J), (3.11)

where G ∼ N (0, 1/(2p− 1)) and (W,J), G are independent. Moreover(
e−λpt|Xt|,

〈Xt, f〉 − |Xt| 〈ϕ, f〉
exp ((λp − µ)t)

)
→ (V∞, 〈ϕ,∇f〉 ◦H∞), in probability. (3.12)

Remark 3.13. As we noted in the Introduction this case hardly resembles the classical
CLT. The convergence in probability is perhaps its most unexpected feature. This
phenomenon seems to be closely related to the fact that the branching is so fast that the
system is “not able to forget” the starting condition and in fact, up to some degree, it
“remembers” its whole evolution (encoded in the martingale H).

Remark 3.14. We were not able to derive any explicit formula for the law of H∞.
However we calculated some of its moments (for d = 1). As the formulas become lengthy,
we assume that p = 1 and present only:

E0H
2
∞ = 2γ, E0H

4
∞ =

96γ2
(
16 + 39γ + 30γ2 + 8γ3

)
9 + 27γ + 26γ2 + 8γ3

,

E0H
6
∞ =

1440γ3
(
36847 + 285675γ + 948012γ2 + 1760420γ3 + 2005408γ4 + 1441120γ5 + 642112γ6 + 163584γ7 + 18432γ8

)
(1 + γ)2(3 + 2γ)(5 + 4γ)(5 + 6γ)(5 + 8γ)

(
6 + 17γ + 12γ2

) ,

where γ = (λp/µ− 2)−1. The odd moments are 0 as the distribution is symmetric. One
can now check that H∞ is never Gaussian. Moreover, V∞ and H∞ are not independent
(even though uncorrelated). Their dependence is not trivial. By similar calculations of
the fourth moment of xV∞+H∞ we also checked that H∞ is not of the form V∞G, where
G is some random variable (not necessarily normal) independent of V∞.

Remark 3.15. We suspect that the convergence in (3.12) is in fact almost sure. Similarly
as in the case of the law of large numbers we expect that the methods of [13, Lemma 18]
might be of use. Let us note however that in this case situation is much more delicate
since the norming is much smaller. This potentially gives raise to additional technical
problems.

General remarks

Now we will present general remarks common for all cases.

Remark 3.16. We would like to draw attention to an extension of our work with appeared
in [24]. The authors consider a branching system with particles moving according to a
Markov process fulfilling certain spectral properties. The particles branch according to a
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space-dependant branching law (with uniformly bounded second moment) and bounded
branching intensity. Under this quite general conditions they provide CLT result akin
to ours. Notably, they use the spectral theory to describe the limits. This, in particular
allows, to treat cases for which our results are not sharp (e.g. in the case λp ≥ 2µ the
limit in our result is degenerated for functions orthogonal to Hermite polynomials of
degree at most one and in this case one can find a different normalization yielding a
non-trivial limit).

Remark 3.17. A result close to ours was presented in [6]. The authors consider a model
more general then ours in dimension d = 1. Particles move on a real line according to
some diffusion process. Moreover, each particle carries some mass. Upon a split event
the offspring are assigned new positions and masses in some, possibly random, fashion
depending on the position and mass of the ancestor.

For the sake of notational simplicity, we skip the full generality, and sketch the results
of [6] on the example of the Ornstein-Uhlenbeck branching process X studied in our
paper. We define a measure-valued processes

{
ηTt
}
t≥0 by

〈
ηTt , f

〉
:= eλp(t+T )/2

(
〈Xt+T , f〉
eλp(t+T )

− 〈XT , Ttf〉
eλpT

)
.

In a carefully chosen functional space they prove [6, Proposition 6.4] that ηT →d η, as
T →∞, where η is a solution of the following stochastic equation

〈ηt, f〉 =

∫ t

0

∫
R

(Lf(x) +Kηs(dx))ds+
√
WWt(f),

where W is an analogue of our V∞,W is a certain Gaussian martingale with values in
a functional space and K is a certain operator related to the branching. As already
mentioned in the Introduction their approach differs from ours. They always consider
two finite times t, t+T while we examine fluctuations between some finite time t and the
limit at infinity (recall the third coordinate in (3.3) and that by Theorem 3.1 for T large
〈XT , f〉 is of the same order as |XT |〈ϕ, f〉). Our result is more classical in a sense that it
studies fluctuations from the limiting object. While theirs diverges from this schema, it
captures also some temporal aspects of the convergence.

Remark 3.18. Now we list other possible extensions of our results. The first has already
been obtained, a parallel paper [1] contains the corresponding results for U -statistics
(as it was described in the Introduction). Secondly, corresponding results were also
obtained for superprocesses in [21]. Another natural extension would be to consider
more general branching laws. The first problem to consider is a law of large numbers.
The statement of the Kesten-Stigum theorem suggest the weakest possible conditions
and the Seneta-Heyde theorem suggests further extensions (we refer the reader to [7]
and references therein).

The paper [24] treated a very general case of systems allowing space-dependent
branching law under the natural condition of the existence of the second moment.
Moreover, this paper assumed that the branching intensity is bounded. We suspect that
the last condition can be relaxed (e.g. it is known, see [13], that the law of large numbers
holds for certain unbounded branching intensity functions).

It is natural to expect that there are analogues of our results for systems with the
branching laws with infinite variance. One should expect different normalisation and a
stable law in the limit.

Other interesting lines of research are the large deviation principle and functional
convergence.
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4 Proofs

4.1 Laplace transform and moments

Following [11] the branching system model is formalised as a Markov process in
the spaceM of integer-valued measures on Rd, endowed with the σ-field Σ generated
by all the functions of the form M 3 ν 7→ ν(A), where A is a Borel subset of Rd. By
the assumption that the evolution of distinct particles is independent, to describe the
transition probabilities it is enough to consider systems starting from a single particle.
By [11, (1.3)], its Laplace transform

w(x, t, θ) := Ex exp (−〈Xt, θf〉) , (4.1)

where θ ≥ 0, f : Rd → R+ is bounded and measurable, satisfies the following equation

w(x, t, θ) = e−λtTte−θf (x) + λ

∫ t

0

e−λ(t−s)Tt−sF (w(·, s, θ))(x)ds, (4.2)

where F is the generating function of the branching law, given by

F (s) := ps2 + (1− p) (4.3)

and λ is the branching intensity. We note that we consider a time homogenous transition
probability hence our equation is a little bit simpler that the one in [11] (e.g. we
do not need the parameter r). Moreover, the additive functional K of [11] is simply
K(s, t) = λ(t− s).

Transition probabilities for a general point measure ν are determined by the following
rule, which ‘encodes’ the independence of subsystems starting from distinct particles

Eν exp(−〈θf,Xt〉) =

n∏
i=1

Eνi exp(−〈θf,Xt〉), (4.4)

whenever ν =
∑n
i=1 νi (see equation (1.1) in [11]).

We will now use the trivial identity e−λtTtf = Ttf −
∫ t
0
Ts(λe−λ(t−s)Tt−sf)ds and the

Fubini theorem to transform (4.2). We have

w(x, t, θ) = e−λtTte−θf (x) + λ

∫ t

0

e−λsTsF (w(·, t− s, θ))(x)ds

= e−λtTte−θf (x) + λ

∫ t

0

TsF (w(·, t− s, θ))(x)ds

− λ
∫ t

0

(∫ s

0

Tuλe−λ(s−u)Ts−uF (w(·, t− s, θ))(x)du

)
ds.

Applying the Fubini theorem to the third summand and using (4.2) we get

λ

∫ t

0

Tu
(
λ

∫ t

u

e−λ(s−u)Ts−uF (w(·, t− s, θ))(x)ds

)
du

= λ

∫ t

0

Tu
(
λ

∫ t−u

0

e−λsTsF (w(·, t− u− s, θ))(x)ds

)
du

= λ

∫ t

0

Tu
(
w(·, t− u, θ)− e−λ(t−u)Tt−ue−θf

)
(x)du

= e−λtTte−θf (x)− Tte−θf (x) + λ

∫ t

0

Tuw(·, t− u, θ)(x)du.
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Putting the last two expressions together we conclude that w fulfils

w(x, t, θ) = Tte−θf (x) + λ

∫ t

0

Tt−s
[
pw2(·, s, θ)− w(·, s, θ) + (1− p)

]
(x)ds, (4.5)

Let now w(k) denote the k-th derivative of w with respect to θ. By differentiating (4.5)
we get for k ≥ 1,

w(k)(x, t, θ) =(−1)kTt
[
fk(·)e−θf (·)

]
(x)

+ λ

∫ t

0

Tt−s

[
p

k∑
l=0

(
k

l

)
w(l)(·, s, θ)w(k−l)(·, s, θ)− w(k)(·, s, θ)

]
(x)ds.

Note that this differentiation is valid by Proposition 2.1 and properties of the Laplace
transform (e.g. [16, Chapter XIII.2]). We evaluate this expression at θ = 0 and write
simply w(k)(x, t) instead of w(k)(x, t, 0). Further we use the fact that w(x, t) = 1 to get

w(k)(x, t) =(−1)kTtfk(x)

+ λ

∫ t

0

Tt−s

[
p

k−1∑
l=1

(
k

l

)
w(l)(·, s)w(k−l)(·, s) + (2p− 1)w(k)(·, s)

]
(x)ds.

We recall that λp = (2p− 1)λ. By a simple variation of the argument leading to (4.5) one
checks that

w(k)(x, t) = (−1)keλptTtfk(x) + λ

∫ t

0

eλp(t−s)Tt−s

[
p

k−1∑
l=1

(
k

l

)
w(l)(·, s)w(k−l)(·, s)

]
(x)ds.

(4.6)
By the properties of the Laplace transform the moments are given by

Ex (〈Xt, f〉)n = (−1)nw(n)(x, t). (4.7)

The equation (4.2), and therefore our equations so far, are valid for f being positive
and bounded. Using standard measure-theoretic techniques one can show that (4.6) still
holds for f ∈ P if we use (4.7) as the definition of w(n)(x, t) (note that for general f ∈ P
the Laplace transform may not be well defined). In order to do that one has to know that
the moments are finite. This follows by Hölder’s inequality, conditioning and Proposition
2.1, viz.

Ex| 〈Xt, f〉 |n ≤ Ex|Xt|n−1〈Xt, |f |n〉 = (E|Xt|n)Tt|f |n(x) <∞,

4.2 Weak convergence facts

In this section we gather simple facts concerning weak convergence. Let us denote
by ‖ · ‖TV the total variation norm on the set of probability measures. We have a simple
lemma

Lemma 4.1. Let (Ω,F ,P) be a probability space and A1 ⊂ A2 ∈ F be such that P (A1) >

0. Let X be a random variable and ν1, ν2 be its law conditioned on A1, A2 respectively.
Then

‖ν1 − ν2‖TV ≤ 2
P (A2)− P (A1)

P (A1)
.
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Proof. Let B be a Borel set, then

|P (X ∈ B|A1)− P (X ∈ B|A2) | =
∣∣∣P ({X ∈ B} ∩A1)

P (A1)
− P ({X ∈ B} ∩A2)

P (A2)

∣∣∣
=
∣∣∣P ({X ∈ B} ∩A1) (P (A2)− P (A1)) + (P ({X ∈ B} ∩A1)− P ({X ∈ B} ∩A2))P (A1)

P (A1)P (A2)

∣∣∣
≤2
P (A2)− P (A1)

P (A1)
.

Taking supremum over B we obtain the lemma.

Let µ1, µ2 be two probability measures on R, and Lip(1) be the space of continuous
functions R 7→ [−1, 1] with the Lipschitz constant smaller or equal to 1. We define

m(µ1, µ2) := sup
g∈Lip(1)

| 〈µ1, g〉 − 〈µ2, g〉 |. (4.8)

It is well known that m is a distance metrizing the weak convergence (see e.g. [10,
Theorem 11.3.3]). One easily checks that when µ1, µ2 are, respectively, the laws of
random variables X1, X2 on the same probability space then we have

m(µ1, µ2) ≤ ‖X1 −X2‖1 ≤
√
‖X1 −X2‖2. (4.9)

4.3 Couplings

The aim of this section is to define a coupling of two OU-branching processes, which
will be the main tool in proofs of the limit theorems.

We begin by defining a coupling of two Ornstein-Uhlenbeck processes. Let us first
recall that the Ornstein-Uhlenbeck process starting from x ∈ Rd is a solution to the
stochastic differential equation

dηt = σdβt − µηtdt, η0 = x,

where (βt)t≥0 is a standard d-dimensional Brownian motion. This property (sometimes
taken as the definition of the Ornstein-Uhlenbeck process) is an immediate consequence
of the relation between the infinitesimal operator of a diffusion and the coefficients of
the defining SDE (see e.g. Theorem 7.3.3. in [23]). The following coupling will be very
useful for further analysis.

Proposition 4.2. Let x, y ∈ Rd and let {γt}t≥0 be an R2d-valued process defined by

γt := (η1t , η
2
t ),

where η1, η2 are Ornstein-Uhlenbeck processes starting from x, y respectively and satis-
fying dηit = σdβt − µηitdt with the same d-dimensional Brownian motion β. Then γ is a
strong Markov process, moreover

η1t − η2t = (x− y)e−µt, a.s.

Proof. The strong Markov property follows from general facts about diffusions (see
e.g. Theorem 7.2.4 in [23]). The second part of the proposition follows by subtraction.
Namely,

d(η1t − η2t ) = −µ(η1t − η2t )dt, η10 − η20 = x− y,

which implies the equality in question.

Now we transfer the coupling to the level of branching systems.
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Proposition 4.3. Let {Xt}t≥0 be an OU-branching particle system starting from x ∈ Rd.
Let y ∈ Rd and define a new system {Yt}t≥0 such that |Yt| = |Xt| and

Yt(i) := (y − x)e−µt +Xt(i),

for any particle i of the system. Then Y is an OU-branching particle system starting from
y.

Although the above proposition is intuitively clear, its formal proof is quite lengthy
and hence is deferred to the Appendix.

4.4 Rate of convergence to the invariant measure and approximations

We will need also estimates of the speed of convergence to the invariant measure.
Recall the definition of f̃ given by (2.6). In proofs below it will be convenient to have
some additional regularity conditions. Therefore given f ∈ P and u > 0 we define

lu(x) = Tuf̃(x). (4.10)

The reason for introducing the function lu is that it is smooth and for u → 0 it
approximates the function f̃ . In the following simple lemma we gather a couple of
properties of the function lu which later will be used to show that the approximation
carries on to the level of branching systems.

Lemma 4.4. If f ∈ P (Rd) and u > 0, then lu given by (4.10) is a C∞(Rd) function.
Moreover, 〈ϕ, lu〉 = 0, and there exist C, n > 0 such that∣∣∣∣ ∂lu∂xi

∣∣∣∣ ≤ C(1 + ‖x‖)n,
∣∣∣∣ ∂2lu
∂xi∂xj

∣∣∣∣ ≤ C(1 + ‖x‖)n,

for any i, j ∈ {1, 2, . . . , d}.

Proof. The first two statements are trivial and left to the reader. To prove the bound for
derivatives we recall (2.4) and (2.5) and write∣∣∣∣ ∂lu∂xi (x)

∣∣∣∣ =

∣∣∣∣ ∂∂xi
∫
Rd
f(y)gu(xu − y)dy

∣∣∣∣ ≤ ∫
Rd
|f(y)|

∣∣∣∣ ∂∂xi gu(xu − y)

∣∣∣∣dy.
One checks that

∣∣∣ ∂∂xi gu(xu − y)
∣∣∣ ≤ C1 exp(−C2‖xu − y‖) for some C1, C2 > 0. Using this

together with the assumption f ∈ P yields the first estimate. The second one goes along
the same lines.

Lemma 4.5. Let f ∈ P(Rd) and f̃ be defined as above. Then there exist constants
C, n > 0 such that for any t ≥ 0 we have

|Ttf̃(x)| ≤ C(1 + ‖x‖n)e−µt, |Ttf̃(0)| ≤ Ce−2µt. (4.11)

Moreover
lim

t→+∞
eµtTtf̃(x) = x ◦ 〈ϕ,∇f〉 ,

where ∇f is understood in a weak sense. There exist C̃, ñ > 0 such that for any t ≥ 0 we
have ∣∣∣eµtTtf̃(x)− x ◦ 〈ϕ,∇f〉

∣∣∣ ≤ C̃(1 + ‖x‖ñ)e−µt. (4.12)

Moreover, there exists a function c : R+ 7→ R+ such that c(u)→ 0 as u↘ 0 and for any
t ≥ 0 we have ∣∣∣Tt(lu − f̃)(x)

∣∣∣ ≤ c(u)(1 + ‖x‖n)e−µt. (4.13)
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Proof. Let us recall equation (2.5) and that 〈ϕ, lu〉 = 0 and |1− ou(t)| . e−2µt. We write

eµ(t+u)Tt+uf̃(x) = eµueµtTtlu(x) = eµu
∫
Rd
eµt(lu(xe−µt + ou(t)y)− lu(y))ϕ(y)dy. (4.14)

Using the mean value theorem we get

h(x, y, t) := eµt(lu(xe−µt + ou(t)y)− lu(y)) = (x+ eµt(ou(t)− 1)y) ◦ ∇lu(x0), (4.15)

where x0 is some point on the interval joining y and xe−µt + ou(t)y. From this repre-
sentation and Lemma 4.4 we obtain |h(x, y, t)| . 1 + max(‖x‖n, ‖y‖n) and |h(0, y, t)| .
e−µt(1 + ‖y‖n). This is enough to show (4.11) for t ≥ 1 by setting e.g. u = 1/2. Note that
for t < 1, (4.11) follows easily from the fact that Ttf is again of polynomial growth.

We notice that h(x, y, t)→ x ◦ ∇lu(y) point-wise as t→ +∞. This, together with the
Lebesgue dominated convergence yields

I := lim
t→+∞

eµtTtf̃(x) = eµu
d∑
i=1

xi

〈
ϕ,
∂lu
∂yi

〉
= −eµu

d∑
i=1

xi

〈
lu,

∂ϕ

∂yi

〉
.

The calculations above are valid for any choice of u, in particular, letting u↘ 0 we obtain

I = −
d∑
i=1

xi

〈
f̃ ,
∂ϕ

∂yi

〉
=

d∑
i=1

xi

〈
∂f

∂yi
, ϕ

〉
= x ◦ 〈ϕ,∇f〉 .

For the sake of notational simplicity (4.12) will be proved for d = 1. By the above
calculations

eµ(t+u)Tt+uf̃(x)− x 〈ϕ, f ′〉 = eµu
(
eµtTtlu(x)− x 〈ϕ, l′u〉

)
.

Let us now treat the inner expression using (2.5):

eµtTtlu(x)− x 〈ϕ, l′u〉 = E
(
eµt
(
lu(xe−µt + ou(t)G)− lu(G)

)
− xl′u(G)

)
= E

(
eµt
∫ xe−µt+ou(t)G

G

l′u(y)dy − xl′u(G)

)

= E

(
eµt
∫ xe−µt+ou(t)G

G

(l′u(y)− l′u(G))dy

)
+ eµt(ou(t)− 1)EGl′u(G).

By Lemma 4.4 the second term is easily bounded from above by Ce−µt, for some C > 0.
The first one can be estimated as

II :=

∣∣∣∣∣Eeµt
∫ xe−µt+ou(t)G

G

∫ y

G

l′′u(z)dzdy

∣∣∣∣∣ ≤ Eeµt(xe−µt+(ou(t)−1)G)2 sup
z∈[G,xe−µt+ou(t)G]

|l′′u(z)|.

By Lemma 4.4 we know that l′′u grows polynomially, so there exists n such that

II . e−µtE(x+ eµt(ou(t)− 1)G)2(‖x‖ + ‖G‖)n . e−µt(1 + ‖x‖n+2).

This is enough to prove (4.12), again by setting e.g. u = 1/2 (as with (4.11), the case
t < 1 is straightforward).

Now, we need an estimate on eµtTt(lu − f̃)(x) which takes into account u. For t > 1,
using the same argument as before it is enough to prove an estimate for eµtTt(lu+1−l1)(x).
We denote ku(x) := lu+1(x) − l1(x) and notice that 〈ϕ, ku〉 = 0. Further, we recall that
〈ϕ, Ttf〉 = 〈ϕ, f〉 and thus

eµtTtku(x) =

∫
Rd
eµt(ku(xe−µt + ou(t)y)− ku(y))ϕ(y)dy,

EJP 20 (2015), paper 42.
Page 15/35

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-4233
http://ejp.ejpecp.org/


CLT for Ornstein-Uhlenbeck branching particle system

where we used that 〈ϕ, ku〉 = 0. Using the mean value theorem we get

h(x, y, t) := eµt(ku(xe−µt + ou(t)y)− ku(y)) = (x+ eµt(ou(t)− 1)y) ◦ ∇ku(x0),

where x0 is some point on the interval joining xe−µt + ou(t)y and y. Further, following
arguments used in (4.14) and (4.15) and after them we conclude that in order to obtain
(4.13) we need to estimate ∇(lu+1 − l1). For simplicity we will provide the details for
d = 1. We have

III := ((lu+1 − l1)(x))
′

=

(∫
R

(l1(x− w)− l1(x))gu(w)dw

)′
=

∫
R

(l′1(x− w)− l′1(x))gu(w)dw.

Using the mean value theorem, there exists a function x0(x,w) such that x0(x,w) ∈
[x− w, x] ∪ [x, x− w] and

III =

∫
R

wl′′1 (x0(x,w))gu(w)dw.

The function l′′1 grows at most polynomially. Therefore, for some c, n we have

|III| ≤ c
∫
Rd
|w|(1 + ‖x‖n + ‖w‖n)gu(w)dw ≤ c1(u)(1 + ‖x‖n),

where c1(u) is some function fulfilling c1(u)→ 0 as u↘ 0. It remains to prove (4.13) for
t ≤ 1. Since the semigroup Tt preserves polynomial growth of a function, it is enough to
consider the case t = 0. Using the easy fact that lu converges to f̃ uniformly on compact
sets and considering balls of increasing radia, one can easily construct a function c2(u)

such that c2(u)→ 0 as u→ 0 and |lu(x)− f̃(x)| ≤ c2(u)(1 + ‖x‖n) for some n ∈ N.

4.5 LLN and CLT for small branching rate

First we prove the following

Proposition 4.6. Let {Xt}t≥0 be the OU branching system and λp < 2µ and let f ∈ P .
Then

Ex

(
e−(λp/2)t

〈
Xt, f̃

〉)
→ 0, as t→ +∞, (4.16)

Ex

(
e−(λp/2)t

〈
Xt, f̃

〉)2
→ σ2

f , Varx

(
e−(λp/2)t

〈
Xt, f̃

〉)
→ σ2

f , as t→ +∞, (4.17)

where σ2
f is the same as in (3.2). Moreover,

sup
t≥0

Ex

(
e−(λp/2)t

(〈
Xt, f̃

〉
− Ex

〈
Xt, f̃

〉))4
< +∞. (4.18)

Proof. We will use the notation from Section 4.1, in particular equations (4.6) and (4.7)
(with f̃ instead of f ). First we note that by (4.6) and Lemma 4.5 (ineq. (4.11)),

|w′(x, t)| . e(λp−µ)t(1 + ‖x‖n) ≤ e(λp/2)t(1 + ‖x‖n),

which, by (4.7), implies the first assertion. Using (4.6) and (4.7) again we calculate the
second moment

Ex

(
e−(λp/2)t

〈
Xt, f̃

〉)2
= Ttf̃2(x) + 2λpe−λpt

∫ t

0

eλp(t−s)Tt−s
[(
eλpsTsf̃(·)

)2]
(x)ds

= Ttf̃2(x) + 2λp

∫ t

0

Tt−s
[(
e(λp/2)sTsf̃(·)

)2]
(x)ds.
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By (4.11) in Lemma 4.5 the integrand in the last expression can be estimated as follows

Tt−s
[(
e(λp/2)sTsf̃(·)

)2]
(x) . e(λp−2µ)sTt−s

[
(1 + ‖ · ‖n)2

]
(x).

Using (2.4) it can be checked that for any t ≥ 0 we have Tt
[
(1 + ‖ · ‖n)2

]
(x) . (1+‖x‖2n).

The dominated Lebesgue theorem implies (4.17) (note that the second assertion is an
immediate consequence of the first one and (4.16)). We also conclude that for any t ≥ 0,

|w′′(x, t)| . eλpt(1 + ‖x‖2n).

Similarly we investigate w′′′(x, t). By (4.6) we have

|w′′′(x, t)| . eλptTt|f̃ |3(x) +

∫ t

0

eλp(t−s)Tt−s [w′′(·, s)w′(·, s)] (x)ds.

Using the estimates obtained already and the fact that Tt
[
(1 + ‖ · ‖n)3

]
(x) . (1 + ‖x‖3n)

|w′′′(x, t)| . (1 + ‖x‖3n)eλpt + eλpt
∫ t

0

eλp/2sTt−s
[
1 + ‖ · ‖3n

]
(x)ds . e(3/2)λpt(1 + ‖x‖3n).

Finally, we will also need the fourth moment. By (4.6) and the estimates above we get

Ex

(
e−(λp/2)t

〈
Xt, f̃

〉)4
. e−λptTtf̃4(x) + e−2λpt

∫ t

0

eλp(t−s)Tt−s
[
w′′(·, s)2 + w′′′(·, s)w′(·, s)

]
(x)ds

. e−λpt(1 + ‖x‖4n) + e−λpt
∫ t

0

eλpsTt−s
[
(1 + ‖ · ‖4n)

]
(x)ds . (1 + ‖x‖4n).

It is now easy to get the last assertion of the proposition.

Now we will prove the representation (3.7). We recall (3.6) and that

Tsh̃i1,i2,...,id(x) = e−(i1+i2+...+id)µth̃i1,i2,...,id(x).

Therefore

σ2
f =

〈
ϕ,

 +∞∑
i1=0,i2=0,...,id=0

fi1,i2,...,id h̃i1,i2,...,id

2〉

+ 2λp

∫ +∞

0

〈
ϕ,

e(λp/2)s +∞∑
i1=0,i2=0,...,id=0

e−µ(i1+i2+...+id)sfi1,i2,...,id h̃i1,i2,...,id(·)

2〉
ds

=

+∞∑
i1=0,i2=0,...,id=0

f2i1,i2,...,id + 2λp

+∞∑
i1=0,i2=0,...,id=0

f2i1,i2,...,id

∫ +∞

0

e(λp−2(i1+i2+...+id)µ)sds.

Now (3.7) follows easily. We are ready for

Proof of Theorem 3.1 (sketch). The proof of [13, Theorem 6] can be checked to hold also
for the branching mechanism introduced in our paper. We will show now that the almost
sure convergence holds also for bounded functions which are not compactly supported.
We decompose f = f+−f−, where f+(x) = f(x)1{f(x)≥0} and f+(x) = −f(x)1{f(x)<0}. It
is enough to prove the claim separately for f+ and f−, hence we assume that f ≥ 0. For
n ∈ N we consider functions hn(x) := min(max(n− x, 0), 1) and gn : Rd 7→ [0, 1] given by
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gn(x) := hn(‖x‖). By [13, Theorem 6] we know that e−λpt 〈Xt, gn〉 → V∞ 〈ϕ, gn〉 a.s., we
know also that e−λpt|Xt| → V∞ a.s. Therefore e−λpt 〈Xt, (1− gn)〉 → V∞ 〈ϕ, (1− gn)〉 a.s.
Now we estimate

〈Xt, fgn〉 ≤ 〈Xt, f〉 ≤ 〈Xt, fgn〉+ ‖f‖∞ 〈Xt, (1− gn)〉 .

Using the previous considerations and the fact that fgn has compact support we get
with probability one

〈ϕ, fgn〉V∞ ≤ lim inf
t↗+∞

e−λpt 〈Xt, f〉

≤ lim sup
t↗+∞

e−λpt 〈Xt, f〉 ≤ 〈fgn, ϕ〉V∞ + ‖f‖∞ 〈ϕ, (1− gn)〉V∞.

To conclude, we observe that 〈ϕ, fgn〉 → 〈ϕ, f〉 and 〈ϕ, fgn〉+ ‖f‖∞ 〈ϕ, (1− gn)〉 → 〈ϕ, f〉
as n→ +∞.
Let now f ∈ P and f̃ := f − 〈ϕ, f〉. By (4.17) we have

Ex

(
e−λpt

〈
Xt, f̃

〉)2
→ 0.

Therefore e−λpt
〈
Xt, f̃

〉
→P 0, and further e−λpt 〈Xt, f〉 − e−λpt|Xt| 〈ϕ, f〉 →P 0, which

concludes the proof.

In the proofs below we say “X is asymptotically equivalent to Y” meaning that
Xt − Yt → 0 in probability (equivalently in law) as t→ +∞. Now we are ready for

Proof of Theorem 3.3. Before presenting technical details let us briefly describe the
overall strategy of the proof. We will explore the fact that for t1 < t2, when conditioned on
Xt1 , the random measure Xt2 is a sum of independent random measures corresponding
to subsystems originating from distinct particles alive at time t1. When t2 is large enough
with respect to t1, thanks to the coupling construction given in Proposition 4.3, we can
approximate each such subsystem by a system starting from zero, thus obtaining an
approximation of Xt2 by a sum of conditionally i.i.d. random variables, which allows for
an application of Lindeberg’s CLT. Although formally we do not condition on Extc but on
{|Xt1 | 6= 0}, for t1 →∞ these two events become close, which results in a limit theorem
with respect to Px(·|Extc), by Lemma 4.1.

Let us also remark that throughout the proof we will often change the normalization
of the random vector we consider. As already mentioned in the Introduction, since
Xt/ exp(λpt)→ V∞ a.s., weak convergence results with the normalization by

√
|Xt| and

exp(λpt/2) can be translated into one another. However for some parts of the proof, due
to algebraic or probabilistic reasons one of the normalisations will be more convenient.
We will therefore start with the following random vector

Z1(t) :=
(
e−λpt|Xt|, e−(λp/2)t(|Xt| − eλptV∞), e−(λp/2)t

〈
Xt, f̃

〉)
. (4.19)

Consider n ∈ N to be fixed later and let us write

Z1(nt) =

e−nλpt 〈Xnt, 1〉 , e−(nλp/2)t(|Xnt| − enλptV∞), e−(nλp/2)t
|Xt|∑
i=1

〈
Xi,t

(n−1)t, f̃
〉 ,

where
{
Xi,s
t

}
t

denotes the subsystem originating from the particle Xs(i).

We know that with probability one, e−λpt|Xt| → V∞. Therefore

e−nλpt|Xnt| − e−λpt|Xt| → 0 a.s. (4.20)
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as t→ +∞. Let us consider the second term

|Xnt| − enλptV∞ = |Xnt| − enλpt lim
s→+∞

e−λp(nt+s)|Xnt+s|

= |Xnt| − enλpt lim
s→+∞

e−λp(s+nt)
|Xnt|∑
i=1

|Xi,nt
s |

= |Xnt| −
|Xnt|∑
i=1

lim
s→+∞

e−λps|Xi,nt
s | =

|Xnt|∑
i=1

(
1− V i∞

)
,

where V i∞ are independent (conditionally on Xnt) copies of V∞ (note that formally they
depend on t, however we will suppress this fact in the notation).

For any i ≤ |Xt| we define

X̃i,t
s (j) := Xi,t

s (j)−Xt(i)e
−µs, s ≥ 0, (4.21)

where j iterates over all particles of Xi,t
s alive at time s.

By Proposition 4.3, the Markov property and the fact that the evolution of subsystems
stemming from different particles is conditionally (on Xt) independent we obtain that
X̃i,t’s are conditionally i.i.d. OU-branching particle systems starting from 0.

We are going to show the asymptotic behaviour of Z1(nt) does not change when we
replace Xi,t’s by X̃i,t’s. To this end we write

I(t) :=

∣∣∣∣∣∣e−(nλp/2)t
|Xt|∑
i=1

〈
Xi,t

(n−1)t, f̃
〉
− e−(nλp/2)t

|Xt|∑
i=1

〈
X̃i,t

(n−1)t, f̃
〉∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣e−(nλp/2)t
|Xt|∑
i=1

1‖Xt(i)‖<t

|Xi,t
(n−1)t

|∑
j=1

(
f̃(Xi,t

(n−1)t(j))− f̃(X̃i,t
(n−1)t(j))

)∣∣∣∣∣∣∣
+ e−(nλp/2)t

|Xt|∑
i=1

1‖Xt(i)‖≥t

∣∣∣〈Xi,t
(n−1)t, f̃

〉
+
〈
X̃i,t

(n−1)t, f̃
〉∣∣∣ .

At this moment we make an additional assumption that f and consequently f̃ belong to
C1 and that

‖∇f̃‖ . (1 + ‖x‖)k, (4.22)

for some k ∈ N. By (4.21) and the mean value theorem we have |f̃(Xi,t
(n−1)t(j)) −

f̃(X̃i,t
(n−1)t(j))|1‖Xt(i)‖≤t . te−(n−1)µt(1 + ‖Xi,t

(n−1)t(j)‖)
k. Using the conditional expecta-

tion with respect to Xt, (4.7) and Tt(1 + ‖ · ‖k)(x) . (1 + ‖x‖k) we get

ExI(t) .e−(nλp/2)tEx

|Xt|∑
i=1

(1 + ‖Xt(i)‖)kte−(n−1)µte(n−1)λpt

+ e−(nλp/2)tEx

|Xt|∑
i=1

1‖Xt(i)‖≥t(1 + ‖Xt(i)‖)ke(n−1)λpt

.e(nλp/2)tte−(n−1)µt + e(nλp/2)tTt((1 + ‖ · ‖)k1‖·‖>t)(x).

There exists n0 > 0 such that for any n > n0 we have nλp < 2µ(n−1). Using the Schwarz

inequality, the second term can be estimated by
√
Tt(1 + ‖ · ‖k)2(x)

√
Tt1‖·‖>t(x). The

Ornstein-Uhlenbeck process has Gaussian marginals with bounded mean and variance
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therefore Tt1‖·‖>t(x) . e−ct
2

for a certain c > 0. We may conclude that for n > n0 we
have

lim
t→+∞

ExI(t) = 0. (4.23)

Let us denote Zit := e−((n−1)λp/2)t
〈
X̃i,t

(n−1)t, f̃
〉

and zit := E0Z
i
t (we write E0 to underline

the fact that X̃i,t starts from 0).
By (4.7) and Lemma 4.5 one checks that for n > n0 we have

Exe
−(λp/2)t

|Xt|∑
i=1

|zit| = e(λp/2)t|E0Z
1
t | . e(nλp/2)te−2(n−1)µt → 0, as t→ +∞. (4.24)

Let us now fix some n > n0. By (4.20), (4.23) and (4.24) and Slutsky’s lemma we
conclude that Z1(nt) is asymptotically equivalent to

Z2(t) :=

e−λpt|Xt|, e−(nλp/2)t
|Xnt|∑
i=1

(
1− V i∞

)
, e−(λp/2)t

|Xt|∑
i=1

(Zit − zit)

 .

Our next aim is to apply the CLT for independent summands. To this end we define
Z3, which is a “version” of Z2 with a different (random) normalization. This will be
useful when applying standard CLT results since the new normalization corresponds
more directly to the number of summands. Let thus

Z3(t) :=

e−λpt|Xt|, |Xnt|−1/2
|Xnt|∑
i=1

(
1− V i∞

)
, |Xt|−1/2

|Xt|∑
i=1

(Zit − zit)

 ,

which we will consider conditionally on the event {|Xt| 6= 0} (here and below we adopt
the convention that a/0 = 0, the second component of Z3 is well defined then). The
corresponding expected value is denoted by Ex,|Xt|6=0.

Let us denote the characteristic function of Z3

χ1(θ1, θ2, θ3; t) :=

Ex,|Xt|6=0 exp

iθ1e−λpt|Xt|+ iθ2|Xnt|−1/2
|Xnt|∑
i=1

(
1− V i∞

)
+ iθ3|Xt|−1/2

|Xt|∑
i=1

(Zit − zit)

 .

Conditioning on Xnt and using the Markov property we check that variables 1 − V i∞
are i.i.d, moreover they are independent of the system before time nt. We denote their
common characteristic function by h.

We have

χ1(θ1, θ2, θ3; t)

= Ex,|Xt|6=0 exp

iθ1e−λpt|Xt|+ iθ3|Xt|−1/2
|Xt|∑
i=1

(Zit − zit)

h
(
θ2/
√
|Xnt|

)|Xnt|
.

By Proposition 2.1 and the central limit theorem for any θ2 we have h(θ2/
√
m)m →

e−σ
2
V θ

2
2/2 as m→∞, where σ2

V = 1
2p−1 . Further we will work with

χ2(θ1, θ2, θ3; t) :=

Ex,|Xt|6=0 exp

iθ1e−λpt|Xt|+ iθ3|Xt|−1/2
|Xt|∑
i=1

(Zit − zit)

h

(
θ2/
√
e(n−1)λpt|Xt|

)e(n−1)λpt|Xt|

.
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The limit of χ1 is the same as the one of χ2 providing that any of them exists. Indeed

|χ2(θ1, θ2, θ3; t)− χ1(θ1, θ2, θ3; t)|

≤ Ex,|Xt|6=0

∣∣∣∣∣h
(
θ2/
√
e(n−1)λpt|Xt|

)e(n−1)λpt|Xt|

− h
(
θ2/
√
|Xnt|

)|Xnt|∣∣∣∣∣
= Ex,|Xt|6=0 |. . .| 1Ext + Ex,|Xt|6=0 |. . .| 1Extc .

The sequence of events {|Xt| 6= 0} decreases to Extc and P (Extc) > 0. We have
|h| ≤ 1 hence the first summand converges to 0. By Proposition 2.1 on Extc we have

|Xnt|
|Xt|e(n−1)λpt

→ 1 a.s., therefore the second summand converges to 0 as well. Now we

recall that conditionally on Xt, the processes X̃i,t
(n−1)t and thus also the variables Zit are

i.i.d. Conditioning with respect to |Xt| we get

χ2(θ1, θ2, θ3; t) =

Ex,|Xt|6=0 exp
{
iθ1e

−λpt|Xt|
}
hZ1

t−z1t

(
θ3/|Xt|1/2

)|Xt|
h

(
θ2/
√
e(n−1)λpt|Xt|

)e(n−1)λpt|Xt|

,

(4.25)

where hZ1
t−z1t denotes the characteristic function of Z1

t − z1t . We will now investigate the
second term of the product above. To this end we fix two sequences {tm} and {am} such
that tm → +∞, am → +∞, as m→ +∞ and consider

Sm :=
1

sm

am∑
i=1

(Zitm − ztm),

where Zitm are i.i.d. copies as described above and s2m := am Var0(Z1
tm). From Proposition

4.6 we easily see that s2m is of the same order as am. In order to use CLT for triangular
arrays, we will now verify the Lindeberg condition. Let us calculate

Lm(r) :=
1

s2m

am∑
i=1

E0

(
(Zitm − z

i
tm)21|Zitm−z

i
tm
|>rsm

)
=
am
s2m
E0

(
(Z1

tm − z
1
tm)21|Zitm−z

i
tm
|>rsm

)
.

Further using inequality 1x>a ≤ x2/a2 and Proposition 4.6 we get

Lm(r) .
am
s2m

E0(Zitm − z
i
tm)4

(rsm)2
.
am
s2m

1

(rsm)2
→ 0,

as m → +∞. Thus the CLT holds, i.e. Sm →d N (0, 1). By Proposition 4.6 we obtain
s2m
am
→ σ2

f , where σf is given by (3.2). We conclude that

hZtm−ztm (θ3/
√
am)am → e−σ

2
fθ

2
3/2. (4.26)

Now we go back to χ2

χ2(θ1, θ2, θ3; t) = Ex,|Xt|6=0(. . .)1Ext + Ex,|Xt|6=0(. . .)1Extc .

Arguing as before we get that the first summand converges to 0. The second one is

Ex,|Xt|6=0(. . .)1Extc = Px,|Xt|6=0(Extc)Ex,Extc(. . .),

where Ex,Extc denotes the conditional probability with respect to Extc. We observe
that P|Xt|6=0(Extc)→ 1. We proved (4.26) for arbitrary sequences, therefore the second
factor in (4.25) converges (on the set of non-extinction) as follows

hZ1
t−z1t

(
θ3/|Xt|1/2

)|Xt|
→ e−σ

2
fθ

2
3/2, a.s., as t→ +∞.
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We know that e−λpt|Xt| → W a.s. (recall that W denotes V∞ conditioned on Extc). By
the Lebesgue dominated convergence theorem we get

χ2(θ1, θ2, θ3; t)→ e−σ
2
V θ

2
2/2e−σ

2
fθ

2
3/2Ex exp {iθ1W} , as t→ +∞.

We know that {|Xt| 6= 0} is a decreasing sequence of events and
⋂∞
t=1 {|Xt| 6= 0} = Extc.

Moreover P (Extc) > 0, therefore by Lemma 4.1 with A1 = Extc and A2 = {|Xt| 6= 0},
the limit of Z3(t) is the same if considered conditioned with respect to {|Xt| 6= 0} or
conditioned with respect to Extc. In this way we have proved that conditionally on Extc

Z3(t)→d (W,G1, G2) ,

where (W,G1, G2) is the same as in the statement of Theorem 3.3.
Now, by standard arguments we can "transfer" the convergence of Z3 to Z2 (and thus

to Z1, which as we proved, is asymptotically equivalent to Z2). Indeed, consider the
continuous functions

g1, g2 : R+×R2 7→ R+×R2, g1(z1, z2, z3) := (z1, z2, z
1/2
1 z3), g2(z1, z2, z3) := (z1, z

1/2
1 z2, z3).

We have

Z2(t) = g2

(
g1(Z3(t)) + (e−λpnt|Xnt| − e−λpt|Xt|, 0, 0)

)
+
(
e−λpt|Xt| − e−λpnt|Xnt|, 0, 0

)
,

and so convergence of Z3 together with (4.20), Slutsky’s lemma and the continuous
mapping theorem yield

Z2(t)→d
(
W,
√
WG1,

√
WG2

)
and thus also Z1(t)→d

(
W,
√
WG1,

√
WG2

)
. (4.27)

We recall that so far we have been working under the additional assumption (4.22),
which we will now dispense of. Recall the definition (4.10). By Lemma 4.4 for any u > 0

the assumption (4.22) holds for lu (instead of f ) hence so does the convergence of (4.27)
(with an obvious modification of the law of G2). Functions lu approximate f̃ as u ↘ 0.
Using this fact together with some metric theoretic considerations we will now extend
the convergence of Z1 to the general case. To this end we make the dependence on the
test function explicit. Let Yt(lu) be the third coordinate of Z1 (see (4.19)) with lu instead
of f̃ . Further, let Lt(lu) be the law of Yt(lu) and L(lu) be the law of the limit. By (4.17)
and (3.2) we have

e(u) := lim sup
t→+∞

E
(
Yt(f̃)− Yt(lu)

)2
≤
〈
ϕ, (f̃ − lu)2

〉
+ 2λp

∫ +∞

0

〈
ϕ,
(
e(λp/2)sTs(f̃ − lu)

)2〉
ds =: I1(u) + I2(u).

Using the dominated Lebesgue converge theorem we easily get I1(u)→ 0 as u↘ 0. Now,
using (4.13) we obtain that for some k > 0

I2(u) ≤ c(u)2
∫ +∞

0

e(λp−2µ)s
〈
ϕ,
(
1 + ‖x‖k

)2〉
ds→ 0, as u↘ 0.

Thus e(u)→ 0 as u→ 0.
Let us recall (3.2). We have

σ2
lu − σ

2
f =〈

ϕ, (l2u − f̃2)
〉

+ 2λp

∫ +∞

0

〈
ϕ,
(
e(λp/2)sTslu

)2
−
(
e(λp/2)sTsf̃

)2〉
ds =: I3(u) + I4(u).
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By (4.11) and (4.13) and the Cauchy-Schwarz inequality we get

I4(u)2 .

(∫ +∞

0

〈
ϕ,
(
e(λp/2)sTs(lu − f̃)

)2〉
ds

)(∫ +∞

0

〈
ϕ,
(
e(λp/2)sTs(lu + f̃)

)2〉
ds

)
. c(u)2

(∫ +∞

0

〈
ϕ,
(
e(λp/2)se−µs(1 + ‖x‖)n

)2〉
ds

)2

,

for some n. One can now show that I4(u) → 0 as u ↘ 0. One also easily checks that
I3(u) → 0 as u ↘ 0. Using the fact that the limiting distributions L(lu) and L(f) are
centred Gaussians we get

m(L(lu), L(f̃))→ 0, as u↘ 0.

Let us fix ε > 0 and choose u > 0 such that e(u) ≤ ε2 and m(L(lu), L(f̃)) ≤ ε. Since
Lt(lu) →d L(lu) for t → ∞, we can choose T > 0 such that for any t > T we have
m(L(lu), Lt(lu)) ≤ ε and (by the definition of e(u))

E
(
Yt(f̃)− Yt(lu)

)2
≤ 4ε2.

Now, for t > T we have m(L(f̃), Lt(f̃)) ≤ 4ε and thus the convergence (4.27) holds for
any f ∈ P . By the continuous mapping theorem this ends the proof.

Remark 4.7. We remark that the proof of convergence of the fluctuations of the total
number of particles |Xt| given above did not use the assumption λp < 2µ and is valid for
arbitrary λ. Clearly this is also true for the convergence of e−λpt|Xt|. For this reason
and to avoid unnecessary repetitions in the proofs for the critical and supercritical
branching rate cases we will focus on spatial fluctuations and only indicate how they can
be extended to joint convergence asserted in corresponding theorems.

4.6 CLT for large branching rate

In this section we present the proof of Theorem 3.12, deferring to the next section
the proof of the CLT in the critical case, which will combine arguments used for small
and large branching rates. We start with

Proof of Proposition 3.10. The fact that H is a martingale with respect to the filtration
of the OU branching system follows by its branching property and easy calculations
using (4.6), (4.7) and (2.5). Consider now fi(x) = xi (for any 1 ≤ i ≤ d). Notice that
Ttfi = e−µtfi. Using (4.6) and (4.7) we get

e2(−λp+µ)tEx〈Xt, fi〉2 . e2(−λp+µ)teλptTtf2(x)

+ e2(−λp+µ)t
∫ t

0

eλp(t−s)Tt−s
[
e2λps(Tsfi(·))2

]
(x)ds

. e(−λp+2µ)t(1 + ‖x‖2) + e(−λp+2µ)t

∫ t

0

eλpsTt−s
[
e−2µsf2i

]
(x)ds

. (1 + ‖x‖2)

(
1 +

∫ t

0

e(−λp+2µ)(t−s)ds

)
≤ C(1 + ‖x‖2).

This proves that supt≥0Ex‖Ht‖2 = supt≥0
∑d
i=1Ex〈Xt, fi〉2 <∞.

To check that V and H are orthogonal one can use (4.7) and the standard polarization
formula for inner products in Hilbert spaces. We leave this task to the reader, just
mentioning that this result is somehow expected as 1, x are orthogonal with respect to
densities gt defining (2.4).
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Proof of Proposition 3.11. The proof follows easily by Proposition 4.3. Indeed it is
enough to notice that, if we couple X and X̃ we may write

H̃t −Ht = e(−λp+µ)txe−µt|Xt| = e−λptx|Xt|,

where H̃,H are defined according to (3.10). The proof is concluded by (2.1).

It will be useful to know that the range of the OU branching system grows at most
linearly. This is a well-known fact for the branching Brownian motion. It is rather obvious
that it also holds for the OU branching motion as the Ornstein-Uhlenbeck process is
“better concentrated” than the Brownian motion. However, we were not able to find a
proof in the literature hence we provide one.

Lemma 4.8. Let X be the OU branching system starting from x. There exists a constant
C > 0 and a random variable T such that with probability one

∀t>T∀i∈{1,2,...,|Xt|}Xt(i) ∈ B(xe−µt, Ct),

where B(x, r) denotes a ball of radius r centred at x.

Proof. By the coupling argument (Proposition 4.3) it is enough to prove the lemma
for x = 0. We can also assume that p = 1. Let us denote by An the event that X up
to time n is contained in B(0, C(n − 1)) for some constant C. By the Borel–Cantelli
lemma to show our claim it is enough to prove

∑
n≥1P (Acn) < +∞. By the result from

[18] and the Gaussian concentration inequality we know that the supremum of the
Ornstein-Uhlenbeck process on the interval [0, n] can be stochastically dominated by
C1(
√

log(n)+ |G|), where C1 > 0 is a certain constant and G is a standard normal random
variable. Let us fix any γ > λ and estimate

P (A′n) ≤ P (A′n ∩ {|Xn| ≤ eγn}) + P (|Xn| > eγn)

= P

(
∃i∈{1,2,...,|Xn|} sup

s∈[0,n]
‖Xs(i)‖ > C(n− 1) ∩ {|Xn| ≤ eγn}

)
+ P (|Xn| > eγn)

≤ P
(
C1(
√

log(n) + |G|) > C(n− 1)
)
eγn + P (|Xn| > eγn) ,

where Xs(i) denotes the position of the particle i or its ancestor at time s ∈ [0, n].
The proof is concluded by using the estimates of the Gaussian tail in the first term
(giving an upper bound of the order exp(γn − cn2)) and Proposition 2.1 together with
the Chebyshev inequality for handling the second one (yielding an upper bound exp((λ−
γ)n) ≤ exp(−cn)).

We will also need

Proposition 4.9. Let {Xt}t≥0 be the OU branching system starting from x and λp > 2µ.

Moreover, let f ∈ P (Rd). Then

sup
t≥0

Ex

(
e−(λp−µ)t

〈
Xt, f̃

〉)2
< +∞.

Moreover there exists c : R+ 7→ R+ such that c(u)→ 0 as u↘ 0 and

lim sup
t→+∞

Ex

(
e−(λp−µ)t

(〈
Xt, f̃

〉
− 〈Xt, lu〉

))2
< c(u), (4.28)

where lu is given by (4.10).
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Proof. We recall (4.6) and (4.7), which we will apply for f̃ instead of f . By Lemma 4.5
(formula (4.11)) one sees that w′(x, t) . (1 + ‖x‖n)e(λp−µ)t. Now we check that

|w′′(x, t)| . eλptTtf̃2(x) +

∫ t

0

eλp(t−s)Tt−s
[(

(1 + ‖ · ‖n)e(λp−µ)s
)2]

(x)ds

. eλptTtf̃2(x) + eλpt
∫ t

0

e(λp−2µ)sTt−s
[
(1 + ‖ · ‖2n)

]
(x)ds . e2(λp−µ)t(1 + ‖x‖2n),

which implies the first assertion of the proposition. Inequality (4.28) follows by (4.13)
and the above calculations. Indeed, repeating the above argument for lu − f̃ instead of f̃
one easily checks that

Ex

(
e−(λp−µ)t

(〈
Xt, f̃

〉
− 〈Xt, lu〉

))2
= e−2(λp−µ)tw′′(x, t)

. e(2µ−λp)tTt(lu − f̃)2(x) + e−2(λp−µ)t
∫ t

0

eλp(t−s)Tt−s[eλpsTs(lu − f̃)(·)]2(x)ds.

Since λp > 2µ and Tt(lu − f̃)2(x) . 1 + ‖x‖n for some positive integer n, the first
summand on the right hand side above converges to 0 as t→∞. Moreover, the integrand
in the second term is bounded by Ceλp(t+s)(1 + ‖x‖n) for some positive integer n, so

e−2(λp−µ)t
∫ 1

0

eλp(t−s)Tt−s[eλpsTs(lu − f̃)(·)]2(x)ds . e(2µ−λp)t → 0

as t→∞. On the other hand, for s > 1, by (4.13), we have |Ts(lu − f̃)(·)| . c(u)(1 + ‖ ·
‖n)e−µs and thus

e−2(λp−µ)t
∫ t

1

eλp(t−s)Tt−s[eλpsTs(lu − f̃)(·)]2(x)ds . e−(λp−2µ)tc(u)2
∫ t

1

e(λp−2µ)s(1 + ‖x‖2n)ds

. Cc(u)2(1 + ‖x‖2n),

which together with the previous estimates proves (4.28).

Proof of Theorem 3.12. Our first aim will be to prove the convergence of the spatial
fluctuations. To this end we denote

Y1(t) := e−(λp−µ)t (〈Xt, f〉 − |Xt| 〈ϕ, f〉) = e−(λp−µ)t
〈
Xt, f̃

〉
. (4.29)

We recall that f̃(x) = f(x)− 〈ϕ, f〉. We have

Y1(t+ s) = e−(λp−µ)(t+s)
|Xt+s|∑
i=1

f̃(Xt+s(i)) = e−(λp−µ)t
|Xt|∑
i=1

e−(λp−µ)s
|Xi,ts |∑
j=1

f̃(Xi,t
s (j))

= e−(λp−µ)t
|Xt|∑
i=1

e−(λp−µ)s

|Xi,ts |∑
j=1

(
f̃(Xi,t

s (j))− f̃(X̃i,t
s (j))

)
+ f̃(X̃i,t

s (j))

 ,

where as in the proof of Theorem 3.3, {Xi,t
s }s denotes the subsystem starting from Xt(i)

and {X̃i,t
s }s is defined by (4.21). We write

Y1(t+s) = e−(λp−µ)t
|Xt|∑
i=1

e−(λp−µ)s
|Xi,ts |∑
j=1

(f̃(Xi,t
s (j))−f̃(X̃i,t

s (j)))+e−(λp−µ)(t+s)
|Xt|∑
i=1

〈
X̃i,t
s , f̃

〉
.

(4.30)
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Let us first deal with the second term

Y2(t+ s) := e−(λp−µ)(t+s)
|Xt|∑
i=1

〈
X̃i,t
s , f̃s

〉
+ e−(λp−µ)(t+s)γs|Xt+s|,

where f̃s(x) := f(x) − Tsf(0) and γs := Tsf(0) − 〈ϕ, f〉. By Lemma 4.5 we know that
|γs| . e−2µs and therefore

Ex|e−(λp−µ)(t+s)γs|Xt+s|| . eµ(t+s)−2µs.

From now on, whenever we prove convergence, we will assume that s = 2t. With this
convention the above expression converges to 0. We denote the first summand of Y2 by
Y3. As we explained in the proof of Theorem 3.3 the systems X̃i,t are i.i.d. conditionally
on Xt. Moreover their only connection with Xt is via the number of particles |Xt|. Below,
we will use the conditional expectation given Xt which is denoted as EXt . To ease
the notation we will sometimes write simply E0X̃

i,t instead of EXtX̃
i,t (recall that the

systems X̃t,i start from a single particle located at 0). Using the conditional expectation
and the fact that thanks to the particular choice of f̃s we have E0〈X̃i,t

s , fs〉 = 0, we
calculate

Ex (Y3(t+ s))
2

= e−2(λp−µ)(t+s)Ex

|Xt|∑
i=1

|Xt|∑
j=1

EXt

(〈
X̃i,t
s , f̃s

〉〈
X̃j,t
s , f̃s

〉)

= e−2(λp−µ)(t+s)Ex

|Xt|∑
i=1

E0

〈
X̃i,t
s , f̃s

〉2
.

By Proposition 4.9 and Proposition 2.1 we have

E0

〈
X̃i,t
s , f̃s

〉2
= E0

(〈
X̃i,t
s , f̃

〉
− γs|X̃i,t

s |
)2
≤ 2E0

〈
X̃i,t
s , f̃

〉2
+ 2γ2sE0|X̃i,t

s |2 ≤ e2(λp−µ)t.

Therefore
Ex (Y3(t+ s))

2 . e(−λp+2µ)t → 0.

In this way we proved that Y2(s + t) → 0 in probability. Thus the second term on the
right hand side of (4.30) is negligible.

From now on let us assume additionally that f has the second derivative which is
bounded by a polynomial. At the end of the proof we will argue that the result can be
easily extended to the whole class P (Rd).

Now we decompose the first term of (4.30) into Y5(t+ s) + Y6(t+ s) where

Y5(t+ s) := e−(λp−µ)(t+s)
|Xt|∑
i=1

|Xi,ts |∑
j=1

E(i, j, t, s), (4.31)

with E(i, j, t, s) := f̃(Xi,t
s (j))− f̃(X̃i,t

s (j))−∇f(X̃i,t
s (j)) ◦ (Xi,t

s (j)− X̃i,t
s (j)) and

Y6(t+ s) := e−(λp−µ)(t+s)
|Xt|∑
i=1

|Xi,ts |∑
j=1

∇f(X̃i,t
s (j)) ◦ (Xi,t

s (j)− X̃i,t
s (j)). (4.32)

Let At,s denote the event that Xi,t
s (j), X̃i,t

s (j) belong to the ball B(0, R) of radius R =

2(C(t+ s) + ‖x‖e−µt) for all i ≤ |Xt|, j ≤ |X̃i,t
s |, where C is the constant from Lemma 4.8.

On the event At,s, using (4.21) and the assumptions on the second derivative of f , we
obtain

|E(i, j, t, s)| . Rn(‖Xt(i)‖e−µs)2.
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By Proposition 2.1 and the convention s = 2t we thus prove

Ex|Y5(t+ s)|1At,s . eµ(s+t)((t+ s) + e−µt‖x‖)3ne−2µs → 0.

By Lemma 4.8 and (4.21) we have P (At,s) → 1, hence it follows that Y5(t + s) → 0 in
probability (recall the convention s = 2t). Now, using (4.21) we decompose Y6 as follows

Y6(t+ s) =e−(λp−µ)t
|Xt|∑
i=1

Xt(i) ◦
(
Zis − zs

)
+ zs ◦

e−(λp−µ)t |Xt|∑
i=1

Xt(i)

 (4.33)

+ 〈ϕ,∇f〉 ◦

e−(λp−µ)t |Xt|∑
i=1

Xt(i)(e
−λps|Xi,t

s | − 1)


+ 〈ϕ,∇f〉 ◦

e−(λp−µ)t |Xt|∑
i=1

Xt(i)


=:Y7(t+ s) + Y8(t+ s) + Y9(t+ s) + Y10(t+ s),

where h(x) = ∇f(x)−〈ϕ,∇f〉, Zis := e−λps
〈
X̃i,t
s , h

〉
and zs := E0Z

i
s = Ts(∇f)(0)−〈ϕ,∇f〉

(this does not depend on i since Zis are i.i.d.). Simple calculations using (4.6) and Lemma
4.5 (second estimate in (4.11)) reveal that ‖zs‖ . e−2µs. Moreover by Proposition 4.9 the
covariance matrix Cov0(Zis) is bounded by some C (in a sense that each entry is bounded).
Using conditioning with respect to |Xt| and the fact that Zis are i.i.d. conditionally on Xt

we have

ExY7(t+ s)2 = e−2(λp−µ)tEx

|Xt|∑
i=1

Xt(i)
T Cov0 (Zis)Xt(i)

. e−2(λp−µ)tEx

|Xt|∑
i=1

‖Xt(i)‖2 . e(−λp+2µ)t(1 + |x|2)→ 0,

where T denotes the transposition and the convergence holds by the assumption that
λp > 2µ. The convergence: Ex(Y9(t+ s))2 → 0 follows in a very similar fashion with use
of Proposition 2.1 and is left to the reader.

Now by Proposition 3.10 and the estimate ‖zs‖ . e−2µs one easily checks that Y8(t+

s)→ 0 a.s. and Y10 converges to 〈ϕ,∇f〉 ◦H∞. By the already established convergence
to zero of Yi(t + s), i = 5, 7, 8, 9 together with (4.31), (4.32) and (4.33) this shows that
the first summand on the right hand side of (4.30) converges to the same limit. Since the
second summand has already been shown to be negligible, this gives the convergence in
probability

Y1(t)→ 〈ϕ,∇f〉 ◦H∞
and together with (2.1) implies the second part of the theorem.

Clearly the above convergence gives also weak convergence of the third component
on the left hand side of (3.11) to 〈ϕ,∇f〉 ◦ J (conditionally on Extc).

We recall that so far the proof works with the additional assumption that f̃ is C2 and
its second derivative is bounded by a polynomial. We recall also the definition (4.10). By
Lemma 4.4 for any u > 0 the function lu satisfies our additional smoothness assumptions,
moreover l0 = f̃ . As in the proof of Theorem 3.3, this suffices to reduce the general
case to the one of smooth functions. Let Yt(lu) be Y1(t) (see (4.29)) with lu instead of
f̃ . Further, let Y (lu) be its limit (its existence follows from the smooth case considered
above and smoothness properties of lu asserted by Lemma 4.4). Let m be any metric
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which metrises convergence in probability and such that for any random variables X,Y ,
m(X,Y ) ≤ ‖X −Y ‖2. We recall (3.11). Using integration by parts it is easy to check that
〈ϕ,∇lu〉 → 〈ϕ,∇f〉 as u↘ 0, therefore

m(Y (lu), Y (f̃))→ 0, as u↘ 0.

Let us fix ε > 0 and choose u > 0 such that m(Y (lu), Y (f̃)) ≤ ε. By (4.28), decreasing u if
necessary we can find T such that for any t > T

m(Yt(lu), Yt(f̃)) ≤ ε.

Finally, we choose t large enough so that m(Yt(lu), Y (lu)) < ε. Applying the triangle
inequality, for these t’s we get m(L(f̃), Lt(f̃)) ≤ 4ε and so the convergence holds for any
f ∈ P .

We have thus proved the convergence in probability of the spatial fluctuations. The
convergence in probability of the first coordinate of the vector considered in Theorem
3.12 is just (2.1). As for the joint convergence of the whole triple, it can be obtained in
the same way as in Theorem 3.3, i.e. by considering the characteristic function of the
triple and consecutive conditioning. Since the only difference from the slow branching
rate case is the already established convergence of the third summand (see Remark 4.7
following the proof of Theorem 3.3), we leave the details to the reader.

4.7 CLT for critical branching rate

Proposition 4.10. Let {Xt}t≥0 be the OU branching system and λp = 2µ. Moreover, let

f ∈ P (Rd), then there exists a constant C > 0 such that

Ex

(
e−(λp/2)tt−1/2

〈
Xt, f̃

〉)
→ 0 as t→ +∞,

Ex

(
e−(λp/2)tt−1/2

〈
Xt, f̃

〉)2
→ σ2

f , Varx

(
e−(λp/2)tt−1/2

〈
Xt, f̃

〉)
→ σ2

f , as t→ +∞,
(4.34)

where σ2
f is the same as in (3.8). Moreover,

sup
t≥δ

Ex

(
e−(λp/2)tt−1/2

〈
Xt, f̃

〉)4
< +∞ (4.35)

for any δ > 0.

Proof. The first convergence follows easily by (4.11) in Lemma 4.5. Using (4.6) and (4.7)
we calculate the second moment

Ex

(
e−(λp/2)tt−1/2

〈
Xt, f̃

〉)2
= t−1Ttf̃2(x) + 2λpe−λptt−1

∫ t

0

eλp(t−s)Tt−s
[(
eλpsTsf̃(·)

)2]
(x)ds

= t−1Ttf̃2(x) + 2λpt−1
∫ t

0

Tt−s
[(
e(λp/2)sTsf̃(·)

)2]
(x)ds. (4.36)

We recall that λp/2 = µ. Using Lemma 4.5 (equation (4.12)) and elementary con-
siderations, we obtain that the limit of the above expression is the same as the one
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of

2λpt−1
∫ t

0

Tt−s

( d∑
i=1

xi

〈
ϕ,

∂f

∂xi

〉)2
 (x)ds =

2λp

d∑
i=1

(〈
ϕ,

∂f

∂xi

〉2

t−1
∫ t

0

Tt−s
[
x2i
]

(x)ds

)

+ 2λp
∑
i 6=j

(〈
ϕ,

∂f

∂xi

〉〈
ϕ,

∂f

∂xj

〉
t−1

∫ t

0

Tt−s [xixj ] (x)ds

)
.

By (2.4) one easily checks that Tt[xixj ](x)→ 0, hence the second term disappears in the

limit. We also have Tt[x2i ](x)→ σ2

2µ and so the whole expression converges to σf given by
(3.8).

Obviously the limit of variances is the same. We also conclude that for any t ≥ 0

w′′(x, t) . (1 + ‖x‖2n)eλptt.

Similarly we investigate w′′′(x, t). By (4.6) we have

|w′′′(x, t)| . eλptTt|f̃ |3(x) +

∫ t

0

eλp(t−s)Tt−s [w′′(·, s)w′(·, s)] (x)ds.

Using the fact that by (4.11) |w′(x, t)| . e(λp−µ)t(1 + ‖x‖n), together with the above
estimate on w′′ and the fact that Tt

[
(1 + ‖ · ‖n)3

]
(x) . (1 + ‖x‖3n), we get

|w′′′(x, t)| . (1+‖x‖3n)eλpt+eλpt
∫ t

0

e(λp/2)ssTt−s
[
1 + ‖ · ‖3n

]
ds . e((3/2)λp)tt(1+‖x‖3n).

Finally, we will also need the fourth moment. By (4.6) and the estimates above we get

Ex

(
e−(λp/2)tt−1/2

〈
Xt, f̃

〉)4
. e−λptt−2Ttf̃4(x)

+ e−2λptt−2
∫ t

0

eλp(t−s)Tt−s
[
w′′(·, s)2 + w′′′(·, s)w′(·, s)

]
(x)ds

. e−λptt−2(1 + ‖x‖4n) + e−λptt−2
∫ t

0

eλpss2Tt−s
[
(1 + ‖ · ‖4n)

]
(x)ds . (1 + ‖x‖4n).

It is now easy to check that for t > δ,

Ex

(
e−(λp/2)tt−1/2

(〈
Xt, f̃

〉
− Ex

〈
Xt, f̃

〉))4
. (1 + ‖x‖4n).

We have yet to prove (3.9). By (2.3) we have ∂
∂xi

ϕ(x) = −2(µ/σ2)xiϕ(x). Therefore,〈
ϕ,

∂f

∂x1

〉
= −

〈
∂ϕ

∂x1
, f

〉
=
〈
2(µ/σ2)x1ϕ, f

〉
= (
√

2µ/σ)f1,0,...,0.

Other coordinates can be treated in the same way, giving (3.9).

Now we are ready for
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Proof of Theorem 3.8. In this proof we will use both ideas of the proof of Theorem
3.3 and Theorem 3.12. We start with the following random vector

Z1(t) :=
(
e−λpt|Xt|, e−(λp/2)t(|Xt| − eλptV∞), e−(λp/2)tt−1/2

〈
Xt, f̃

〉)
.

Let n ∈ N. This parameter will be used in a different way than in the previous proofs.
We will comment on it later on. We observe that

Z1(nt) =

e−nλpt 〈Xnt, 1〉 , e−(nλp/2)t(|Xnt| − enλptV∞), e−(nλp/2)t(nt)−1/2
|Xt|∑
i=1

〈
Xi,t

(n−1)t, f̃
〉 ,

where
{
Xi,s
t

}
t

denotes the subsystem originating from the particle Xs(i). Analogously as

in the proof of Theorem 3.3 the second term is equal to e−(nλp/2)t
∑|Xnt|
i=1

(
1− V i∞

)
, where

V i∞ are independent (conditionally on Xnt) copies of V∞ arising from the i-th particle
alive at time nt. Next, we couple each Xi,t with the branching system X̃i,t starting from
one particle located at 0 using (4.21) and Proposition 4.3. We write

In(t) := e−(nλp/2)t(nt)−1/2

|Xt|∑
i=1

〈
Xi,t

(n−1)t, f̃
〉
−
|Xt|∑
i=1

〈
X̃i,t

(n−1)t, f̃
〉 .

Our immediate aim is to prove that

lim
n→∞

lim sup
t→∞

E
|In(t)|

1 + |In(t)|
= 0.

Recall that ρ(X,Y ) = E
|X−Y |

1+|X−Y | is a metric on the space of all random variables,
which metrizes convergence in probability. Thus the above convergence will give us
control on the distance between the original process and the one obtained via coupling,
which will enable us to establish the limit theorem for the original process. Contrary to
previous cases, it will not be enough to consider a fixed parameter n, instead we will
prove a limit theorem for the process obtained via coupling evolving through time nt for
each n and then we will let n→∞.

We will assume additionally that f has a second derivative which is bounded by a
polynomial. At the end of the proof we will argue that the result can be easily extended
to the whole class P (Rd).

The expression In(t) is harder to analyse compared to the case of the small branching
rate. To deal with it we will use the methods and notation of the proof of the large
branching rate case (i.e. Theorem 3.12). Recalling that λp = 2µ one notices that In(t) is
the same expression as

(nt)−1/2 (Y5(t+ (n− 1)t) + Y6(t+ (n− 1)t))

when one puts s = (n− 1)t (see (4.31) and (4.32)). Y5 can be then handled in the same
way as in the proof of Theorem 3.12, if only n > 2 (we skip the corresponding estimates
which are completely analogous). Thus we obtain Y5(nt) → 0 in probability as t → ∞.
Next, we denote s := (n − 1)t. Using the coupling property (4.21) and the equality
λp = 2µ, we decompose Y6 in the following way

(nt)−1/2Y6(nt) = (nt)−1/2e−(λp/2)t
|Xt|∑
i=1

Xt(i)◦Ki
s = (nt)−1/2e−(λp/2)t

|Xt|∑
i=1

Xt(i)◦ (Ki
s−ks)

+ ks ◦

(nt)−1/2e−(λp/2)t
|Xt|∑
i=1

Xt(i)

 , (4.37)
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where this time Ki
s := e−λps

〈
X̃i,t
s ,∇f

〉
and ks := E0K

i
s (this is independent of i as Ki

s

are i.i.d). Note that ks = Ts∇f(0) and so, by the assumption on the derivatives of f , it
is uniformly bounded in s. Also E0‖Ki

s − ks‖2 are uniformly bounded in s which follows
easily by (4.7). Using conditioning in a similar manner as in the estimation of Y7 in the
proof of Theorem 3.12 we obtain

Ex

(nt)−1/2e−(λp/2)t
|Xt|∑
i=1

Xt(i) ◦ (Ki
s − ks)

2

= (nt)−1e−λptEx

|Xt|∑
i=1

Xt(i)
T Cov0 (Ki

s)Xt(i)

(4.38)

. (nt)−1e−λptEx

|Xt|∑
i=1

‖Xt(i)‖2 . (nt)−1(1 + ‖x‖2)→ 0,

where again we used (4.6) and (4.7) and Proposition 4.10. Further, we notice also that
for all i = 1, . . . , d, 〈ϕ, xi〉 = 0. Therefore by (4.34) of Proposition 4.10 (applied to each
coordinate separately) and the fact that ks is bounded in s we obtain that the second
moment of the second term of (4.37) is bounded by c/(2

√
n), where c > 0 is a certain

constant. Thus, using (4.37), (4.38) and the convergence of Y5, we may conclude that
for any n there exists tn such that for any t ≥ tn,

E
|In(t)|

1 + |In(t)|
≤ 2c/

√
n. (4.39)

We recall that conditionally on Xt, X̃i,t’s are i.i.d. branching particle systems. Let us
denote

Zit := e−((n−1)λp/2)t(nt)−1/2
〈
X̃i,t

(n−1)t, f̃
〉

=

(
n− 1

n

)1/2 (
e−((n−1)λp/2)t((n− 1)t)−1/2

〈
X̃i,t

(n−1)t, f̃
〉)

(4.40)

and zt := E0Z
i
t . By Lemma 4.5 one checks that |zt| = e((n−1)λp/2)t(nt)−1/2|Ttf̃(0)| .

e((n−1)(λp/2−2µ))t. Therefore for n > 2, using λp = 2µ we get

Ee−(λp/2)t
|Xt|∑
i=1

|zit| = e(λp/2)t|z1t | . e(λp/2)te((n−1)(λp/2−2µ))t → 0, as t→ +∞.

Using the definitions and considerations above we conclude that for any fixed n > 2 the
asymptotic behaviour of Z1(nt) is the same as the one of

Zn2 (t) :=

e−λpt|Xt|, e−(nλp/2)t
|Xnt|∑
i=1

(
1− V i∞

)
, In(t) + e−(λp/2)t

|Xt|∑
i=1

(Zit − zit)

 .

This expression differs from the analogous one in the proof of Theorem 3.3 only by
the additional "error" term In(t). We note that unlike the previous proofs we do not
prove that this error, stemming from replacing Xi,t with X̃i,t, converges to 0. The
proof strategy is to ignore it for a moment. After having proved the convergence of the
modified variables we will be able to cope with it using (4.39). We thus define

Z̃n2 (t) :=

e−λpt|Xt|, e−(nλp/2)t
|Xnt|∑
i=1

(
1− V i∞

)
, e−(λp/2)t

|Xt|∑
i=1

(Zit − zit)

 . (4.41)
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Returning to the flow of the proof of Theorem 3.3, one can prove that

Z̃n2 (t)→d

(
W,
√
WG1,

(
n− 1

n

)1/2√
WG2

)
, (4.42)

conditionally on Extc. In order to achieve it one considers the characteristic function of
Z̃n2 and follows consecutive steps of the proof of Theorem 3.3, using (4.35) of Proposition
4.10 instead of (4.18) of Proposition 4.6 to check the Lindeberg condition. The additional

term
(
n−1
n

)1/2
originates from the same term in (4.40).

We are going to show now how (4.42) implies the convergence of Z1(t). We recall
(4.8) and denote the law of the triple on the right hand side of (4.42) by Ln and the one
of (W,

√
WG1,

√
WG2) by L∞. For any ε > 0, there exists n such that m(Ln,L∞) ≤ ε and

c/
√
n ≤ ε, where c is the constant in (4.39). Now we choose T large enough to have

m(L(Z̃n2 (t)), Ln) ≤ ε, m(L(Zn2 (t)), Z̃n2 (t))) ≤ ε and m(L(Zn2 (t)),L(Z1(nt))) ≤ ε for any
t ≥ T . By applying the triangle inequality we get m(L∞,L(Z1(nt))) ≤ 4ε for any t ≥ T .
The proof (in the case of smooth function f ) can be now concluded by the continuous
mapping theorem and Slutsky’s lemma, analogously as in the proof of Theorem 3.3.

We note that the proof so far is valid for f with additional assumption, that the second
order derivatives exist and are bounded by some polynomial. Using exactly the same
technique as in proof of Theorem 3.3 (i.e. approximating f̃ by lu with u→ 0 and using
(4.13) of Lemma 4.5 to control the distance between corresponding processes) one can
easily extend the result to any f ∈ P . We omit the standard details.

Appendix

Proof of Proposition 2.1. Using (4.2) with f(x) = 1 we get (we drop the argument x)

d

dt
w(t, θ) = (λp)w(t, θ)2 − λw(t, θ) + λ(1− p), w(0, θ) = e−θ.

The solution of this equation is (see e.g. [5, Section III.5])

w(t, θ) =
λ(1− p)(e−θ − 1)− e−λpt(λpe−θ − λ(1− p))
λp(e−θ − 1)− e−λpt(λpe−θ − λ(1− p))

.

Now we want to investigate convergence of e−λpt|Xt|. Its Laplace transform is

L(t, θ) :=
λ(1− p)(e−θe−λpt − 1)− e−λpt(λpe−θe−λpt − λ(1− p))
λp(e−θe

−λpt − 1)− e−λpt(λpe−θe−λpt − λ(1− p))
. (4.43)

Using the first order Taylor expansion and dropping terms of lower order we get

L(t, θ) =
λ(1− p)

(
−θe−λpt + o(θe−λpt)

)
− e−λpt

(
−λpθe−λpt + o(e−λpt) + λp

)
λp (−θe−λpt + o(θe−λpt))− e−λpt (−λpθe−λpt + o(e−λpt) + λp)

≈ −λ(1− p)θe−λpt − λpe−λpt

−λpθe−λpt − λpe−λpt
.

Therefore

L(t, θ)→ λ(1− p)θ + λp
λpθ + λp

=
θ − p(−2 + θ)− 1

+p(2 + θ)− 1
=: L(θ) as t→ +∞.

Taking θ → +∞ it is easy to check that P (V∞ = 0) = pe (we recall that pe = 1−p
p ),

therefore V∞ > 0 on the set of non-extinction Extc. Let us now calculate the law of V∞
on the set of non-extinction

L(θ) = Ee−θV∞ = Ee−θV∞1Ext + Ee−θV∞1Extc = pe + (1− pe)E
(
e−θV∞ |Extc

)
.
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Therefore

E
(
e−θV∞ |Extc

)
=

λp
λpθ + λp

=
(2p− 1)

pθ + (2p− 1)
.

Further

E|Xt|4 =
∂4w(x, t, 0)

∂θ4

=
etλp

(
−1 + 2

(
−4 + 7etλp

)
p+

(
8 + 16etλp − 36e2tλp

)
p2 + 8etλp

(
−2 + 3e2tλp

)
p3
)

(−1 + 2p)3
.

Now the second part of the proposition follows. In order to prove that all moments are
finite we notice that derivatives of (4.43) are of the form

dn

dθn
L(t, θ) =

l(t, θ)

(λp(e−θ − 1)− e−λpt(λpe−θ − λ(1− p)))2n
,

where l(t, θ) is a certain expression. Obviously the denominator is finite for θ = 0 hence
the proof is concluded by the properties of the Laplace transform (e.g. [16, Chapter
XIII.2]).

Proof of Proposition 4.3. Recall from Section 4.1 that we consider branching systems
as Markov processes in the space (M,Σ) of integer valued measures. Since in what
follows we will deal with branching processes in Rd and R2d we will sometimes use the
notation (M(Rd),Σ(Rd)) or (M(R2d),Σ(R2d)) to distinguish the corresponding spaces
of measures.

We define projections π1, π2 : Rd×Rd 7→ Rd by π1((x, y)) := x and π2((x, y)) := y. Let
us consider a branching particle system {Xt}t≥0 with particles evolving in R2d according

to the Markov process defined in Proposition 4.2 and starting from x = (x, y) ∈ R2d (we
denote its semigroup by T).

Its existence, just like in the case of the OU-branching particle system follows from
the general theory in [11, 12]. The branching intensity is λ and the branching mechanism
given by (4.3). By discussion in Section 4.1 the transition probabilities of {Xt}t≥0 as a
measure-valued Markov process are determined by the solutions of equations

w(x, t, θ) = e−λtTte
−θf (x) + λ

∫ t

0

e−λ(t−s)Tt−sF (w(·, s, θ))(x)ds, (4.44)

where x ∈ R2d, f : R2d 7→ R is a smooth, bounded function and

w(x, t, θ) = Ex exp(−〈Xt, θf〉). (4.45)

Further, we define new branching systems
{
X1
t

}
t≥0,

{
X2
t

}
t≥0,

{
X3
t

}
t≥0 by

X1
t (i) := π1(Xt(i)), X2

t (i) := π2(Xt(i)), X3
t (i) := X1

t (i)−X2
t (i).

where i runs over all particles of X at time t. By the construction and Proposition 4.2 we
have X3

t (i) = (x− y)e−µt.
Consider now an arbitrary smooth, bounded function g : Rd → R+ and let w(x, t, θ) :=

Ex exp(−〈Xt, θg〉). Set also f(x) = g(x) for x = (x, y). Note that the function w̃(x, t, θ) =

w(x, t, θ) satisfies

w̃(x, t, θ) = e−λtTte
−θf (x) + λ

∫ t

0

e−λ(t−s)Tt−sF (w̃(·, s, θ))(x)ds.
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Indeed, by definition the semigroup T acts on functions depending only on the variable
x as the semigroup Tt, so the above equation is just (4.2), written in the language of T.
Together with (4.44) this gives (via a standard application of Gronwall’s inequality, see
e.g. Appendix 5.1. in [15]) w̃(x, t, θ) = w(x, t, θ) = Ex exp(−〈X1, θg〉). This implies that
for all initial conditions x, y and times t, the distribution of the branching system X1

t is
the same as the distribution of Xt and in particular does not depend on the coordinate y,
(a fact which is intuitively obvious, when considered at the level of particle movements).

Using (4.4) we now obtain that the same is true for general starting measures, i.e.
for any A ∈ Σ(Rd) and any integer valued measure X0 on R2d we have

PX0
(X1

t ∈ A) = PX1
0
(Xt ∈ A). (4.46)

Now, using the Markov property of the system X combined with the fact that Px-a.e.
for every t, X2

t (i) = X1
t (i) + (y − x)e−µt, we get that X1 has the Markov property and for

every measurable set A we have Px-a.e.

Px(X1
t ∈ A|(X1

u)u≤s) = Pt−s(Xs, A),

where for ν ∈M(R2d), Pt(ν,A) := Pν(X1
t ∈ A). By (4.46) this implies that

Px(X1
t ∈ A|(X1

u)u≤s) = PX1
s
(Xt−s ∈ A),

i.e. X1 is an OU-branching particle system.
An analogous argument proves the same property for X2. This ends the proof since

the fact thatX is distributed asX1 together with the equalitiesX2(i) = X1
t (i)+(y−x)e−µt

and Yt(i) = Xt(i)+(y−x)e−µt implies that Y is distributed as X2, i.e. is an OU-branching
system starting from y.
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