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Abstract

Suppose X is a time-homogeneous diffusion on an interval IX ⊆ R and let µ be a
probability measure on IX . Then τ is a solution of the Skorokhod embedding problem
(SEP) for µ in X if τ is a stopping time and Xτ ∼ µ.

There are well-known conditions which determine whether there exists a solution
of the SEP for µ in X. We give necessary and sufficient conditions for there to exist
an integrable solution. Further, if there exists a solution of the SEP then there exists a
minimal solution. We show that every minimal solution of the SEP has the same first
moment.

When X is Brownian motion, there exists an integrable embedding of µ if and only
if µ is centred and in L2. Further, every integrable embedding is minimal. When X is
a general time-homogeneous diffusion the situation is more subtle. The case with drift
can be reduced to the local martingale case by a change of scale. If Y is a diffusion in
natural scale, and if the target law is centred, then as in the Brownian case, there is an
integrable embedding if the target law satisfies an integral condition. However, unlike
in the Brownian case, there exist integrable embeddings of target laws which are not
centred. Further, there exist integrable embeddings which are not minimal. Instead,
if there exists an integrable embedding, then the set of minimal embeddings is the set
of embeddings such that the mean equals a certain quantity, which we identify.
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1 Introduction

Let X be a regular, time-homogeneous diffusion on an interval IX ⊆ R, with X0 = x ∈
int(IX), and let µ be a probability measure on IX . Then τ is a solution of the Skorokhod
embedding problem (Skorokhod [24]) for µ in X if τ is a stopping time and Xτ ∼ µ. We
call such a stopping time an embedding (of µ in X).

For a general Markov process Rost [22] gives necessary and sufficient conditions
which determine whether a solution to the Skorokhod embedding problem (SEP) exists
for a given target law. The conditions are expressed in terms of the potential. When
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applied to Brownian motion (where we include the case of Brownian motion on an interval
subset of R, provided the process is absorbed at finite endpoints) these conditions lead
to a characterisation of the set of measures which can be embedded in Brownian
motion. Then, in the case of a regular, one-dimensional, time-homogeneous diffusion
with absorbing endpoints, necessary and sufficient conditions for the existence of a
solution to the SEP can be derived via a change of scale. Let s be the scale function of X;
then Y = s(X) is a local martingale, and in particular a time-change of Brownian motion.
Further, let I = s(IX) be the state space of Y . Then the set of probability measures for
which a solution of the SEP exists depends on both I and the relationship between the
starting value of Y and the mean of the image under s of the target law, see Theorem 2.1
below.

Apart from the existence result above, most of the literature on the SEP has concen-
trated on the case where X is Brownian motion in one dimension. Exceptions include
Bertoin and LeJan [4] who consider embeddings in any time-homogeneous Markov pro-
cess with a well-defined local time, Grandits and Falkner [10] (drifting Brownian motion),
Hambly et al [12] (Bessel process of dimension 3) and Pedersen and Peskir [18] and
Cox and Hobson [8] (these last two consider embeddings in a general, one dimensional,
time-homogenenous diffusion).

In the Brownian setting many solutions of the SEP have been described; see Obloj
[16] or Hobson [13] for a survey. Given there are many solutions, it is possible to look
for criteria which characterise ‘small’ or ‘good’ solutions. In both the Brownian case and
more generally, there is a natural class of good solutions of the SEP, namely the minimal
embeddings (Monroe [15]). An embedding τ is minimal (for µ in X) if whenever σ ≤ τ is
another embedding (of µ in X) then σ = τ almost surely.

Another criteria for a good solution might be that it is integrable, or as small as
possible in the sense of expectation. In this article we are interested in the integrability
or otherwise of solutions of the SEP, and the relationship between integrability and
minimality in the case where X is a time-homogeneous diffusion in one dimension.

Consider the case where X is Brownian motion null at zero and write W for X. By
the results of Rost [22] there exists a solution of the SEP for µ in W for any probability
measure µ on R. If we require integrability of the embedding then the story is also
well-known:

Theorem 1.1 (Shepp [23], Monroe [15]). There exists an integrable solution of the SEP
for µ in W if and only if µ is centred and in L2. Further, in the case of centred square-
integrable target measures, τ is minimal for µ if and only if τ is an embedding of µ and
E[τ ] <∞.

Our goal in this paper is to consider the case where X is a regular time-homogeneous
diffusion on an interval IX with absorbing endpoints. Let x ∈ int(IX) denote the initial
value of X, and let µ be a probability measure on IX .

Our main result is as follows (note that the explicit form for EX(x;µ) is given in (5.1)
below):

Theorem 1.2. There exists an integrable solution of the SEP for µ in X if and only if
EX(x;µ) < ∞ where EX(x;µ) is a function of the scale function, speed measure and
initial value of X and target law µ. Further, in the case where EX(x;µ) < ∞ then τ is
minimal for µ if and only if τ is an embedding of µ and E[τ ] = EX(x;µ).

In the Brownian case if µ is not centred, or if it is centred but not in L2, then there is
no intregrable embedding. If µ is centred and in L2 then there is a dichotomy, and for
any embedding either E[τ ] =

∫
x2µ(dx) or E[τ ] =∞. Hence, if the target law is centred

and square integrable then minimality of an embedding is equivalent to integrability.
This is not true in general for diffusions: we can have integrable embeddings which are
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not minimal. The converse is also true: both in the Brownian case and more generally
we can have minimal embeddings which are not integrable. This will be the case if
EX(x;µ) =∞.

For a general, regular, time-homogeneous diffusion, the first step is to switch to
natural scale. Hence, much of our analysis considers the case of a diffusion Y = (Yt)t≥0

in natural scale. If Y0 = y and if the target law has mean y, then the first result is that
there exists an embedding which is integrable if and only if the target law ν satisfies an
integral condition

∫
q(x)ν(dx) <∞, generalising the L2 condition for the Brownian case.

Here q is a function with the property that q(Yt)− t is a local martingale, see (2.3) for a
definition. The second result is that in the case where an integrable embedding exists,
an embedding τ of ν is minimal if and only if E[τ ] =

∫
q(x)ν(dx).

In the centred case the proofs of Root [21] and Monroe [15] extend with only minor
modification, see Sections 3.1 and 3.2. So, the main innovation of this paper is to
cover the non-centred case. (Consideration of a process like upward drifting Brownian
motion started at zero, and a target law which is a point mass at z > 0, shows that the
non-centred case is not a pathological situation, but rather the generic case.) In the
non-centred case for Brownian motion there are no integrable embeddings and so there
are no results which our formulae must nest as special cases. Instead we find that the
condition on the target law for the existence of an integrable embedding has two parts:
an integral element as in the centred case, and a growth condition at infinity which
depends on ν only through its mean. If this condition is satisfied then an embedding is
minimal if and only if its expected value is equal to an expression EY (y; ν) which depends
on the target law and the speed measure.

This article makes two further contributions. First, we consider the existence or
otherwise of integrable embeddings in a diffusion started at an entrance-not-exit point,
and conditional on the existence of an integrable embedding, give a necessary and
sufficient condition for minimality.

Second, we outline a technique for proving minimality even when integrability fails.
This technique is useful in the Brownian case for a target law ν ∈ L1 which is not
centred. The idea is that minimality of an embedding τW of ν in W is preserved under
time-change. Hence, after a change of speed measure, we can consider the minimality or
otherwise of τY which is modification of τW , in a process Y which is a time-change of W .
Since we make no change of scale τY is an embedding of ν in Y . Since ν ∈ L1, for some
choice of process Y we will have EY (0; ν) < ∞. We have a criteria for the minimality
of τY , and hence τW is minimal for ν in W if and only if τY is minimal in Y if and only
if E[τY ] = EY (0; ν). We illustrate this method of proving minimality by considering the
extension of the Azéma-Yor [3] stopping time to non-centred target laws due to Cox and
Hobson [8].

The remainder of the paper is structured as follows. In the next section we state the
main results, focussing on the case of a diffusion in natural scale started at an interior
point. Section 3 is devoted to a proof of these results. In Section 4 we extend the
analysis to include processes started at a boundary point. Then in Section 5 we show
how the conclusions can be adapted to the case of diffusions not in natural scale. Finally
in Section 6 we explain our ideas about proving minimality of embeddings even when
integrability fails.

We close the introduction by considering a quartet of illuminating and motivating
examples.

Example 1.3. Let Z = (Zt)t≥0 be Brownian motion on R+ absorbed at zero, and with
Z0 = z > 0. Then there exists an embedding of µ if and only if

∫
xµ(dx) ≤ z. Moreover,

there exists an integrable embedding of µ in Z if and only if
∫
xµ(dx) = z and

∫
x2µ(dx) <

∞ and then an embedding τ is minimal if and only if E[τ ] < ∞ if and only if E[τ ] =
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∫
(x − z)2µ(dx). Note that Z is a supermartingale so the necessity of

∫
xµ(dx) ≤ z is

clear.

Example 1.4. Let V = (Vt)t≥0 be upward drifting Brownian motion with V0 = v. In
particular, suppose V solves Vt = v + aWt + bt with b > 0 and W0 = 0, and set β = 2b/a2.
Then there exists an embedding of µ if and only if

∫
e−β(u−v)µ(du) ≤ 1. (Upward drifting

Brownian motion is transient to +∞ and so there will be an embedding of µ provided µ
does not place too much mass at values far below v.) Moreover, there exists an integrable
embedding of µ if and only if

∫
e−β(u−v)µ(du) ≤ 1 and

∫
u+µ(du) <∞. If there exists an

integrable embedding then an embedding τ is minimal if and only if E[τ ] = E(v;µ) where

E(v;µ) =
1

b

(∫
uµ(du)− v

)
<∞.

Example 1.5. Let P = (Pt)t≥0 be a Bessel process of dimension 3 started at P0 = p > 0.
Then there exists an embedding of µ if and only if

∫
x−1µ(dx) ≤ p−1. Moreover, there

exists an integrable embedding of µ if and only if
∫
x−1µ(dx) ≤ p−1 and

∫
x2µ(dx) <∞

and then an embedding τ is minimal for µ if and only if τ is an embedding and E[τ ] =

E(p;µ) where

E(p;µ) =
1

3

∫
x2µ(dx)− p2

3
. (1.1)

Note that a Bessel process is transient to infinity, and so for there to exist an embedding
of µ, µ cannot place too much mass near zero. For an integrable embedding then in
addition we cannot have too much mass far from zero as the process takes a long time
to get there. Note also that Y = P−1 is a diffusion in natural scale and that Y is the
classical Johnson-Helms example of a local martingale which is not a martingale.

The results extend to the case p = 0. Then any µ on R+ can be embedded in P . There
exists an integrable embedding if and only if µ is square integrable.

Example 1.6. Let Q = (Qt)t≥0 solve dQt = (1 + Q2
t )dWt subject to Q0 = 0. Let µ =

1
2δ1 + 1

2δ−1. Let τ = max[inf{u : Qu = −1}, inf{u : Qu = 1}]. Then τ is an embedding of µ
and τ is integrable, but τ is not minimal.

2 Preliminaries and main results for diffusions in natural scale

For a diffusion process Z = (Zt)t≥0, let HZ
z = inf{s ≥ 0 : Zs = z}, and let HZ

a,b =

HZ
a ∧HZ

b . Where the process Z involved is clear, the superscript may be dropped.
Let Y be a diffusion in natural scale with state space I and with Y0 = y ∈ int(I).

Denote the endpoints of I by {`, r} with −∞ ≤ ` < y < r ≤ ∞. Suppose that if Y can
reach an endpoint of I, then such an endpoint is absorbing. Suppose that Y is regular,
ie for all y′ ∈ int(I) and y′′ ∈ I, Py′(HY

y′′ < ∞) > 0. The diffusion Y in natural scale is
characterised by its speed measure which we denote by m. Recall that if Y solves the
SDE dYt = η(Yt)dBt for a continuous diffusion coefficient η then m(dy) = dy/η(y)2.

Let ν denote a probability measure on I. Provided ν ∈ L1, write ν for the mean of ν,
with a similar convention for other measures.

We reserve the labels X and µ for a diffusion which is not in natural scale, and the
corresponding target distribution, see Section 5.

Theorem 2.1 (Pedersen and Peskir [18], Cox and Hobson [8]). (i) Suppose I is a finite
interval. Then ν can be embedded in Y if and only if y =

∫
xν(dx).

(ii) Suppose I = (`,∞) or [`,∞) for ` > −∞. Then ν can be embedded in Y if and only
if y ≥

∫
xν(dx).

(iii) Suppose I = (−∞, r) or (−∞, r] for r < ∞. Then ν can be embedded in Y if and
only if y ≤

∫
xν(dx).

EJP 20 (2015), paper 83.
Page 4/26

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-4121
http://ejp.ejpecp.org/


Integrability of solutions of the Skorokhod embedding problem

(iv) Suppose I = R. Then any ν can be embedded in Y .

The idea behind the proof is to write Y as a time-change of Brownian motion, Yt = WΓt .
Then, since Y is absorbed at the endpoints we must have that Γt ≤ HW

`,r for each t.
In the first case of the theorem Y is a bounded martingale and E[Yτ ] = y for any τ . In

the second case Y is a local martingale bounded below and hence a supermartingale for
which E[Yτ ] ≤ y. In the third case Y is a submartingale.

2.1 Discussion of the Brownian case and Theorem 1.1

For W a Brownian motion null at 0, W 2
t∧τ − (t ∧ τ) is a martingale and

E[τ ] = lim inf E[t ∧ τ ] = lim inf E[W 2
t∧τ ] ≥ E[lim inf W 2

t∧τ ] = E[W 2
τ ]. (2.1)

Moreover, from Doob’s L2 submartingale inequality we know that E[τ ] <∞ if and only if
E[(max0≤s≤τ |Ws|)2] <∞, and then (Wt∧τ )t≥0 and (W 2

t∧τ )t≥0 are uniformly integrable. It
follows that if E[τ ] <∞ then

0 = limE[Wt∧τ ] = E[Wτ ] =

∫
xµ(dx)

and

E[τ ] = limE[t ∧ τ ] = limE[W 2
t∧τ ] = E[W 2

τ ] =

∫
x2µ(dx),

so that µ is centred and in L2.
Conversely, if µ is centred and in L2 then there are several classical constructions

which realise an integrable embedding, including those of Skorokhod [24] and Root [21].
See Obloj [16] or Hobson [13] for a discussion.

The final statement of Theorem 1.1 is deeper, and follows from Theorem 5 of Mon-
roe [15]. One of the main goals of this work is to extend the work of Monroe to general
diffusions. Note that the arguments above yield that in the Brownian case if τ is an
embedding of µ and E[τ ] < ∞ then E[τ ] =

∫
x2µ(dx), so that if µ is centred and in L2

then every integrable embedding is minimal.

2.2 Diffusions in natural scale

Consider now the case of a general diffusion Y in natural scale. Suppose Y0 = y =

0 and that ν is centred. Then to determine whether there might exist a integrable
embedding we might expect to replace the condition

∫
x2µ(dx) < ∞ of the Brownian

case with some other integral test depending on the speed measure m of Y and the
target measure ν. Indeed we find this is the case with x2 replaced by a convex function
q defined in (2.3) below.

But what if ν is not centred? In the Brownian case there is no hope that the target law
can be embedded in integrable time, not least because E[HW

x ] =∞ for each non-zero x,
but what if Y is some other diffusion?

Suppose the state space I of Y is unbounded above. Suppose Y0 = y and ν ∈ L1 with
ν =

∫
xν(dx) < y. One candidate way to embed ν is to first wait until HY

ν = inf{t : Yt = ν}
and then to embed ν in Y started at ν, ie to set

τ = HY
ν + τν,ν ◦ΘHYν

(2.2)

where Θ is the shift operator Θt(ω(·)) = ω(t + ·) and τν,ν is some embedding of ν
in Y started at ν. Note that since I is unbounded above and Y is a time-change of
Brownian motion, it follows that HY

ν is finite almost surely. The embedding in (2.2) will
be integrable if both HY

ν and τν,ν are integrable, and we can decide if it is possible to
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choose τν,ν integrable using the integral test of the centred case. Our results show
that although embeddings of ν need not be of the form given in (2.2), nonetheless there
exist integrable embeddings if and only if both E[HY

ν ] < ∞ and there is an integrable
embedding τν,ν of ν in Y started at ν. In that case every minimal embedding has the
same first moment.

Definition 2.2. Let Y be a regular diffusion in natural scale on I ⊆ R. Suppose Y0 = y.
Let m denote the speed measure of Y . Define qu via

qu(z) = 2

∫ z

u

dv

∫ v

u

m(dw) = 2

∫ z

u

m((u, v))dv (2.3)

and let q = qy.

Note that an alternative expression for qu is qu(z) = 2
∫ z
u

(z − w)m(dw). Further,
q(Yt)− t is a local martingale, null at zero.

Definition 2.3. If ν /∈ L1 set EY (y; ν) =∞. For ν ∈ L1 define

EY (y; ν) =

∫
qy(z)ν(dz) + lim

n→∞
|y − ν|qy(y + nsign(y − ν))

n
(2.4)

In the centred case the limit in (2.4) is necessarily zero, and it does not matter what
convention we use for sign(0). In the non-centred case, if ν < y then if there is to be

an embedding of ν we must have that I is not bounded above. Then limn→∞
qy(y+n)

n =

2m((y,∞)) exists in (0,∞] by the convexity of qy. If ν < y and I is bounded above then
we cannot take the limit in (2.4), and E is not defined (we could define it to be infinite),
but this does not matter since it is not possible to embed ν in Y started from y. From
the remarks above we have that EY (y, ν) has an alternative representation

EY (y; ν) =

∫
qy(z)ν(dz) + 2(y − ν)m((y,∞))I{y>ν} + 2(ν − y)m((−∞, y))I{y<ν} (2.5)

where IA denotes the indicator function of A.
The second term in (2.4) arises as the difference between the two sides in an applica-

tion of Fatou’s Lemma, and is a consequence of the non-uniform integrability of (Yt∧τ )t≥0

in the non-centred case.
In the case of a diffusion in natural scale, the main result of this paper is the following:

Theorem 2.4. There exists an integrable solution of the SEP for ν in Y if and only if
EY (y; ν) <∞. Further, in the case where EY (y; ν) <∞ we have that τ is minimal for ν
if and only if τ is an embedding and E[τ ] = EY (y; ν).

3 Every minimal embedding has the same first moment

Our goal is to prove Theorem 2.4. We begin with a useful lemma which gives two
simple sufficient criteria for minimality. The second one has a stronger hypothesis, but
leads to stronger conclusions which cover both minimality and integrability.

Lemma 3.1. Suppose −∞ ≤ ` < L < y < R < r ≤ ∞.

(i) Suppose that at most one endpoint of I is infinite. If τ < HY
`,r then τ is minimal for

L(Yτ ).

(ii) Suppose τ ≤ HY
L,R. Then τ is minimal for L(Yτ ) and E[τ ] = E[q(Yτ )] = EY (y,L(Yτ )).

(iii) If ρ is any embedding of ν then E[ρ] ≥
∫
qy(z)ν(dz). If also ν is centred then

E[ρ] ≥ EY (y, ν).
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Proof. (i) We prove the result in the case I = (`,∞) or [`,∞) with ` > −∞. The other
cases are similar.

Since I has a finite endpoint, Y is transient. Further, Y is a supermartingale.
Let ν ∼ L(Yτ ) so that τ is an embedding of ν. Then ν ≤ y. Let σ ≤ τ be another

embedding. Then, from the supermartingale property, E[Yτ ;Yσ ≤ x] ≤ E[Yσ;Yσ ≤ x] and
since Yσ and Yτ are equal in law,

E[x− Yτ ;Yσ ≤ x] ≥ E[x− Yσ;Yσ ≤ x] = E[x− Yτ ;Yτ ≤ x] = sup
A
E[x− Yτ ;A]

Then, modulo null sets (Yτ ≤ x) = (Yσ ≤ x) and hence Yσ = Yτ almost surely.
Suppose σ ≤ η ≤ τ . Then

Yη ≥ E[Yτ |Fη] = E[Yσ|Fη] = Yσ,

almost surely. But also E[Yη − Yσ] ≤ 0 since Y is a supermartingale, and hence Yη = Yσ
almost surely. It follows that Y is almost surely constant over the interval [σ, τ ]. But Y is
a time change of Brownian motion Yt = WΓt for some strictly increasing time-change Γ.
Brownian motion has no intervals of constancy, and hence nor does Y . It follows that
σ = τ almost surely and hence τ is minimal.

(ii) If τ ≤ HL,R then we have Yt∧τ is bounded and E[Yτ ] = y. Also q is bounded on
[L,R]. Hence EY (y,L(Yτ )) = E[q(Yτ )] and

E[q(Yτ )] = lim
t
E[q(Yt∧τ )] = lim

t
E[t ∧ τ ] = E[τ ].

If τ ≤ HL,R and ρ ≤ τ and both ρ and τ are embeddings of L(Yτ ), we must have
E[ρ] = E[τ ] and hence ρ = τ almost surely. Hence τ is minimal. See also Proposition 4 in
[1].

(iii) Let (Ln)n≥1 and (Rn)n≥1 be monotonic sequences with Ln < y < Rn and Ln ↓ `,
Rn ↑ r. Then from Fatou’s Lemma we have

E[ρ] = lim
n
E[ρ ∧HLn,Rn ] = lim inf

n
E[q(Yρ∧HLn,Rn )] ≥ E[q(Yρ)] =

∫
q(x)ν(dx).

3.1 The centred bounded case

Suppose ν is a measure with mean ν = y and support in a subset [L,R] ⊂ (`, r) of I
where L < y < R.

Suppose that σ is an embedding of ν. Our goal is to show that there exists an
embedding σ̃ of ν such that σ̃ ≤ σ ∧HL,R. Then σ̃ is minimal and E[σ̃] =

∫
q(x)ν(dx). It

follows that if σ is minimal, then σ = σ̃ and E[σ] =
∫
q(x)ν(dx).

Following a definition of Root [21], we define a barrier to be a closed subset B of
G = [0,∞]× [−∞,∞] such that:
• (∞, x) ∈ B for all x ∈ [−∞,∞],
• (t, `) ∪ (t, r) ∈ B for all t ∈ [0,∞],
• if (0, x) ∈ B for x > y then (0, x′) ∈ B for x′ > x, similarly if (0, x) ∈ B for x < y then
(0, x′) ∈ B for x′ < x and finally
• if (t, x) ∈ B then (s, x) ∈ B for all s > t.
Let B be the space of all barriers and given L,R with ` ≤ L < y < R ≤ r let B[L,R] be
the set of all barriers B with (0, L) and (0, R) in B. Then (t, x) ∈ B for (t ≥ 0, x ≤ L) and
(t ≥ 0, x ≥ R).

Root [21] describes a topology such that B (and hence also B[L,R]) is compact. For
B ∈ B define

τB = inf{t : (t, Y (t)) ∈ B}.
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Lemma 3.2. Suppose ν has mean y and support in [L,R]. Suppose that σ is an em-
bedding of ν. Then there is a barrier B ∈ B[L,R] such that σ ∧ τB ≤ HL,R is a minimal
embedding of ν and E[σ ∧ τB ] =

∫
qy(x)ν(dx).

Proof. The proof follows the proof of Lemma 4 in Monroe [15] which in turn is based on
the proof of Lemma 2.2 in Root [21].

The idea is first to consider the case where ν has finite support, and to construct a
barrier B ∈ B[L,R] such that σ ∧ τB ≤ HL,R is a minimal embedding of ν.

We can then deduce the result for general, centred ν with support in [L,R] by
approximation, using a sequence of measures (νn)n≥1 with finite support, with associated
barriers (Bn)n≥1. From the fact that B[L,R] is compact we find a barrier B∞ such that
σ ∧ τB∞ ≤ HL,R is a minimal embedding of ν.

In the modified proof we make use of the fact that Y is continuous and E[HY
L,R] <∞.

Otherwise the main change relative to Lemma 4 of [15] is that we make use of Lemma 3.1
to argue that for any embedding τ with τ ≤ HY

L,R we have E[τ ] = EY (y, ν).

For a diffusion Y with state space I, speed measure m and initial value Y0 = y,
and for a law ν on [L,R] with mean y, we have that EY (y; ν) =

∫
qy(x)ν(dx). Clearly

EY (y; ν) <∞ under the present conditions on ν.

Corollary 3.3. Suppose ν has mean y and support in [L,R] ⊂ (`, r). Then an embedding
σ of ν is minimal if and only if E[σ] = EY (y; ν).

Proof. By the first case of Theorem 2.1 there exists an embedding σ of ν in Y , and then
by Lemma 3.2 there exists a minimal embedding σ̃ = σ ∧ τB with E[σ̃] = EY (y; ν). If σ
is minimal then σ = σ̃ and E[σ] = EY (y; ν). Conversely, by the arguments at the end
of Lemma 3.1, for any embedding E[σ] ≥ EY (y; ν) and so if E[σ] = EY (y; ν) then σ is
minimal.

3.2 The general centred case

Now suppose that ν is centred but that there is no subset [L,R] ⊂ (`, r) for which
ν([L,R]) = 1. We cannot follow the proof in Monroe [15] exactly, since that proof makes
use of the fact that Brownian motion is recurrent. Instead we construct a sequence of
measures (νn)n≥n0 with supports in bounded intervals [Ln, Rn] ⊂ (`, r) and such that
(νn)n≥n0 converges to ν. Hence, given σ and νn there is a barrier Bn with associated
stopping time σ̃n = τBn ∧ σ such that Yσ̃n has law νn. For our choice of approximating
sequence of measures we argue that the sequence of stopping times τBn is monotonic
increasing with limit τ∞. Finally we show that σ ∧ τ∞ is minimal and embeds ν.

The main issue is to show that the barriers have a monotonicity property, and hence
that the stopping times τBn are monotonic, and have a limit. Again we are guided by the
proof of Lemma 4 in Monroe [15].

Recall that our current hypothesis is that ν is a measure on I such that ν ∈ L1 and
Y0 = y = ν.

For a measure η ∈ L1 with mean c and support in [`, r] define the potential Uη :

[`, r] 7→ R+ via Uη(x) = EZ∼η[|Z − x|]. Let Vc be the set of convex functions f : [`, r] 7→ R

satisfying f(x) ≥ |x− c|, together with limx↓`{f(x)− (c−x)} = 0 = limx↑r{f(x)− (x− c)}.
Then Uη ∈ Vc and there is a one-to-one correspondence between elements of Vc and
probability measures on [`, r] with mean c, see, for example, Chacon and Walsh [7]. For a
pair of probability measures ηi with support in [`, r] we have that η1 is less than or equal
to η2 in convex order, and write η1 ≤cx η2 if and only if Uη1(x) ≤ Uη2(x) for all x ∈ [`, r].

Given ν, fix n0 ≥ 1/Uν(ν). For n ≥ n0 define Un : [`, r] 7→ R+ via

Un(x) = max{Uν(x)− 1/n, |x− ν|},
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and let νn be the probability measure with potential Un. Then there exist {an, bn}
such that [an, bn] ⊂ (`, r), νn(A) = ν(A) for all measurable subsets A ⊂ (an, bn) and
νn([`, an)) = 0 = νn((bn, r]). Then νn has atoms at an and bn and mean ν, see, for example
Chacon and Walsh [7]. Further (an)n≥n0

and (bn)n≥n0
are monotonic sequences and the

family (νn)n≥n0
is increasing in convex order.

Theorem 3.4. Suppose ν ∈ L1 and Y0 = y = ν. Let σ be an embedding of ν. There
exists an barrier B such that τB ∧ σ also has law ν and E[τB ∧ σ] = EY (y; ν) where
EY (y; ν) =

∫
q(z)ν(dz).

Proof. For each n, fix νn as above. From our study of the bounded case we know there
is a barrier Bn which we can assume contains {(t, x), x ≤ an or x ≥ bn} such that YτBn∧σ
has law νn.

It follows from arguments in Monroe [15, p1296-7] that if p > n then we may assume
Bp ⊆ Bn. Define B∞ = ∩Bn and set τ∞ = τB∞ . Then τBn ↑ τ∞. Also τBn ∧ σ ↑ τ∞ ∧ σ and

L(Yτ∞∧σ) = limL(YτBn∧σ) = lim νn = ν.

It only remains to prove that E[σ ∧ τ∞] = EY (y; ν). But from the monotonicity in
convex order of νn,

E[σ ∧ τ∞] = limE[σ ∧ τBn ] = limEY (y; νn) = lim

∫
q(z)νn(dz) =

∫
q(z)ν(dz).

3.3 The uncentred case

Without loss of generality we may assume that the mean of ν satisfies ν < y. Then for
there to be an embedding of ν we must have that I is unbounded above.

The idea is to construct a sequence of measures (νn)n≥n0 with supports in bounded
intervals [Ln, Rn] ⊂ (`,∞) and such that (νn)n≥n0 converges to ν, and then to use results
from the bounded, centred case to deduce results for the general case.

Recall that ν is a measure on I such that ν ∈ L1. Let Fν be the distribution function
of ν and let F−1

ν denote the right inverse. In particular, if U ∼ U [0, 1] then F−1
ν (U) has

law ν.

Lemma 3.5. Suppose y > ν. There exists a family of probability measures (νn)n≥n0
with

the properties that

1. for each n ≥ n0, νn has support in [an, bn] ⊆ (`,∞) and mean y, and νn(A) = ν(A)

for all A ⊆ (an, bn);

2. (νn)n≥n0 is increasing in convex order with νn → ν, and bnνn({bn})→ y − ν.

Proof. Suppose first that ` = −∞ or more generally that ν places no mass at `. We look
for a solution with bn = n.

Fix n0 > max{y, (y − ν)−1} and for n ≥ n0 let vn = Fν(n−). Define Hn : [0, vn] 7→ R

via

Hn(w) =

∫ vn

w

F−1
ν (u)du+ n(w + 1− vn).

Then Hn(0) =
∫ vn

0
F−1(u)du+ n(1− vn) ≤

∫ 1

0
F−1(u)du = ν < y, Hn(vn) = n > y and Hn

is strictly increasing and continuous. Hence there exists a unique value un > 0 such that
Hn(un) = y. Set an = F−1

ν (un) > `. Then Zn := F−1
ν (U)I{un<U≤vn} + nI{(U≤un)∪(U>vn)}

has mean y. Let νn be the law of Zn. For A ⊆ (an, bn) we have νn(A) = ν(A) and moreover
νn([`, an)) = 0 = νn((n,∞]). The measure νn has an atom at n of size un + (1− vn) (and
potentially an atom at an) and mean ν.
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Now we argue that Hn+1(un) > y and hence that un+1 < un. We have

Hn+1(un) =

∫ vn+1

un

F−1
ν (u)du+ (n+ 1)(un + 1− vn+1)

=

∫ vn

un

F−1
ν du+ n(un + 1− vn)

+

∫ vn+1

vn

F−1
ν (u)du− n(vn+1 − vn) + (un + 1− vn)

≥ y + un + (1− vn) > y.

From the definition of un we have

y =

∫
xνn(dx) =

∫ vn

un

F−1
ν (u)du+ n(1 + un − vn)

and hence limn n(1+un−vn) exists and is equal to y−
∫ 1

u∞
F−1
ν (u)du where u∞ = limn un.

In particular lim supnun < ∞ and hence u∞ = 0. Then limn n(1 + un − vn) = y − ν.
Further, (an)n≥n0

is a decreasing sequence with limit equal to the lower limit on the
support of ν.

It remains to show that (νn)n≥n0
is increasing in convex order. This will follow if

E[(z − Zn)+] is increasing in n for each z. For z ≤ n,

E[(z − Zn+1)+] =

∫ Fν(z)

un+1

dw(z − F−1
ν (w)) >

∫ Fν(z)

un

dw(z − F−1
ν (w)) = E[(z − Zn)+],

whereas for z > n > y, since Zn ≤ n,

E[(z − Zn+1)+] ≥ E[(z − Zn+1)] = z − y = E[(z − Zn)+].

Now suppose that the target law has an atom at `. In that case, since we require
an > ` we need to extend the construction slightly.

Fix n1 > max{y, 4(y − ν)−1} and for n ≥ n1 let vn = Fν(n−). Modify the definition of
Hn : [0, vn] 7→ R to

Hn(w) =

∫ vn

w

max{F−1
ν (u), `+ 1/n}du+ n(w + 1− vn).

Then Hn(0) ≤
∫ 1

0
[F−1(u) + 1/n]du = ν + 1/n < y, and as before there exists a unique

value un such that Hn(un) = y. Set an = max{F−1
ν (un), ` + 1/n} > `. Then Zn :=

max{F−1
ν (U), ` + 1/n}I{un<U≤vn} + nI{(U≤un)∪(U>vn)} has mean y. As before let νn be

the law of Zn.
We begin by finding a bound on un. Let n2 be such that

∫ 1

vn2
dw(F−1

ν (w) − n2) <

(y − ν)/2, and then this inequality holds for all n ≥ n2. We have, for n ≥ n2,

y ≥
∫ vn

un

F−1
ν (u)du+ n(un + 1− vn)

=

∫ 1

un

F−1
ν (u)du+ nun −

∫ 1

vn

[F−1
ν (u)− n]du

> ν −
∫ un

0

F−1
ν (u)du+ nun −

y − ν
2

.

Note that Ψ(w) =
∫ w

0
F−1
ν (u)du is convex and satisfies Ψ(0) = 0 and Ψ(1) = ν and hence

Ψ(w) ≤ νw. We conclude y > ν + (n− ν)un − y−ν
2 and hence un <

(y−ν)
2(n−ν) .
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Let ε be such that
∫ ε

0
(y−F−1

ν (w))dw < y−ν
4 , and let n3 be such that y−ν

2(n3−ν) < ε. Then

for n ≥ max{n2, n3} we have
∫ un

0
(y − F−1

ν (w))dw < y−ν
4 .

Now we argue that for n ≥ n0 = max{n1, n2, n3, n4} we have Hn+1(un) > y and hence
that un+1 < un. This follows as in the previous case:

Hn+1(un) ≥
∫ vn+1

un

F−1
ν (u)du+ (n+ 1)(un + 1− vn+1) ≥ y + un + (1− vn) > y.

It follows that (an)n≥n0
is a decreasing sequence. Further, from the definition of un we

have

y =

∫
xνn(dx) =

∫ vn

un

max{F−1
ν (u), `+ 1/n}du+ n(1 + un − vn)

from which we conclude limn n(1 + un − vn) exists and is equal to y − ν.

Finally, for z ≤ n,

E[(z − Zn+1)+] =

∫ Fν(z)

un+1

dw

(
z −max

{
F−1
ν (w)), `+

1

(n+ 1)

})
>

∫ Fν(z)

un

dw

(
z −max

{
F−1
ν (w), `+

1

n

})
= E[(z − Zn)+],

and it follows that (νn)n≥n0
is increasing in convex order.

Recall the definition of EY (y; ν) in (2.4), or (2.5). Since we are assuming that ν ∈ L1

and ν < y, and since limn→∞
qy(y+n)

n = 2m((y,∞)), this simplifies to

EY (y; ν) =

∫
qy(z)ν(dz) + 2(y − ν)m((y,∞)). (3.1)

Theorem 3.6. Suppose ν ∈ L1. Let σ be an embedding of ν. There exists an barrier B
such that τB ∧ σ also has law ν and E[τB ∧ σ] = EY (y; ν).

Proof. It only remains to cover the case where Y0 = y 6= ν.

For each n, fix νn as above. From our study of the bounded, centred case we know
there is a barrier Bn which we can assume contains {(t, x), x ≤ an or x ≥ bn ≡ n} such
that YτBn∧σ has law νn. Moreover, exactly as in the proof of Theorem 3.4 (or more
precisely, the proof of Lemma 4 in Monroe [15]), if p > n then we may assume Bp ⊂ Bn.
Then τBn ↑ τ∞ and τ∞ ∧ σ embeds ν.

Finally we show that E[σ ∧ τ∞] = EY (y; ν).

Observe that q is convex and so limn q(n)/n exists in (0,∞]. Then, as beforeE[σ∧τ∞] =

limE[σ ∧ τBn ] = limEY (y; νn) = lim
∫
q(z)νn(dz) but in this case∫

q(x)νn(dx) =

∫ vn

un

q(max{F−1
ν (u), (`+ 1/n)})du+ q(n)(1− un − vn)

→
∫ 1

0

q(F−1
ν (u))du+ lim

n

{
q(n)

n
n(1 + un − vn)

}
=

∫
q(x)ν(dx) + (y − ν) lim

n

{
q(n)

n

}
= EY (y; ν).
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Proof of Theorem 2.4 in the case ν ∈ L1. If EY (y; ν) = ∞ then since any embedding
has E[σ] ≥ E[σ ∧ τ∞] = EY (y; ν) there are no integrable embeddings. Conversely, if
EY (y; ν) <∞, then by Theorem 3.4 or Theorem 3.6 there exists an embedding σ̃ with
E[σ̃] = EY (y; ν).

Now suppose EY (y; ν) <∞ and σ is an embedding of ν.
Suppose σ is minimal. Choose νn as in the discussion before Theorem 3.4 or Theo-

rem 3.6 as appropriate. In both of these theorems it was shown that we could choose a
sequence of decreasing barriers Bn such that τBn ∧ σ → τB∞ ∧ σ and τB∞ ∧ σ embeds ν.
By minimality of σ, τB∞ ∧ σ = σ. Then, since τBn ∧ σ is increasing,

E[σ] = E[τB∞ ∧ σ] = lim
n
E[τBn ∧ σ] = lim

n

∫
q(x)νn(dx) = EY (y; ν).

Conversely, if σ is not minimal then there is an embedding σ̂ of µ with σ̂ ≤ σ,
P(σ̂ < σ) > 0 and σ̂ integrable. Then E[σ] > E[σ̂] ≥ E(y; ν).

Example 3.7. The following example shows that unlike in the Brownian case, in general
integrability alone is not sufficient for minimality.

Suppose the diffusion Y solves dYt = (1+Y 2
t )dWt subject to Y0 = 0. Let ν = 1

2δ1+ 1
2δ−1

so that ν is uniform measure on {±1}. Let Ĥ = HY
1 ∨ HY

−1. Then Ĥ embeds ν and

E[Ĥ] <∞, but Ĥ is not minimal since Ĥ > HY
1 ∧HY

−1 which is also an embedding of ν.

Example 3.8. This example gives another circumstance in which integrability is not
sufficient to guarantee minimality.

Let Y be a time-homogeneous martingale diffusion on I = [`, r] with −∞ < ` < y <

r <∞. Suppose ` and r are exit boundaries and that E[HY
`,r] <∞. We take ` and r to be

absorbing boundaries. (A simple example is obtained by taking Brownian motion started
at y and absorbed at ` and r.) Let ν = (r−y)

(r−`) δ` + (y−`)
(r−`) δr. Then for c > 0, HY

`,r + c is an
integrable embedding which is not minimal.

However, examples of this type are degenerate and may easily be excluded by
restricting the class of embeddings to those satisfying σ ≤ HY

`,r.

Example 3.9. Now we give an example which shows that minimality alone is not suffi-
cient for integrability.

Let Y be geometric Brownian motion so that Y solves dYt = YtdWt. Let Y have initial
value Y0 = 1. It is easy to see that for a ∈ (0, 1] we have

E[Ha] = 2

∫ ∞
a

[(z ∧ 1)− a]
dz

z2
= 2 log

(
1

a

)
.

Let ν = δ0. Then τ =∞ is the minimal stopping time that embeds ν in Y . Obviously τ is
not integrable.

More generally, let ν be any probability measure on (0, 1) with
∫

log y ν(dy) = −∞,
and let Z be a random variable such that L(Z) ∼ ν. Let the filtration F = (Ft)t≥0 be such
that Z is F0-measurable, and let W be a F-Brownian motion which is independent of Z.

Let τ = inf{u ≥ 0 : Yu = Z}. Then τ is an embedding of ν. Note that τ is a stopping
time with respect to F but not with respect to the smaller filtration generated by Y alone.
Moreover,

E[τ ] = −2

∫
log z ν(dz) =∞.

Observe that q1(x) =
∫ x

1

∫ y
1

2
z2 dzdy = 2(x − 1) − 2 log(x). Hence limx→∞ q1(x)/x = 2.

Therefore, for any law ν on (0, 1), for a minimal embedding

E[τ ] = 2

∫
(z − 1)ν(dz)− 2

∫
log z ν(dz) + 2(1− ν) = −2

∫
log z ν(dz).
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We give another example of a minimal non-integrable embedding which does not
require independent randomisation in the section on the Azéma-Yor stopping time.

Another feature of this example, is that Y is a martingale and yet it is easy to construct
examples with ν < y for which there is an integrable embedding. Hence integrability
and minimality of τ is not sufficient for uniform integrability of (Yt∧τ )t≥0.

3.4 Alternative characterisations of E for the uncentred case

In the comments at the end of Section 2 we argued that in the non-centred case a
natural family of embeddings was those which first involved waiting for the process to
hit ν and then to embed ν in Y started at ν. For a stopping rule τ as given in (2.2) we
have from the analysis of the centred case that

E[τ ] = Ey[Hν ] + EY (ν; ν). (3.2)

Now we want to show that the right hand side of (3.2) is equivalent to the expression
given in (2.4).

More generally, for v ∈ [ν, y] we could imagine waiting for the process to hit v and
then using a minimal embedding time to embed ν in Y started at v. Then we find

E[τ ] = Ey[Hv] + EY (v; ν). (3.3)

We want to show that the right-hand-side of (3.3) does not depend on v.

Lemma 3.10. Suppose ν < y and define G : [ν, y] 7→ R via

G(v) = 2

∫ ∞
v

(y ∧ z − v)m(dz) +

∫
qv(z)ν(dz) + (v − ν) lim

n↑∞

qv(v + n)

n

Then G does not depend on v. In particular, for all v ∈ [ν, y], EY (y, ν) = Ey[Hv]+EY (v; ν).
If this expression is finite for any (and then all) v ∈ [ν, y] then for any embedding τ of ν
we have that E[τ ] = Ey[Hv] + EY (v; ν).

Proof. For any u, v,
qu(z) = qu(v) + qv(z) + q′u(v)(z − v).

Then, with u = ν, qv(z) = qν(z)− qν(v) + q′ν(v)(v − z) and for v ∈ [ν, y]

G(v) = 2

∫ y

v

(z − v)m(dz) + 2(y − v)

∫ ∞
y

m(dz) +

∫
qν(z)ν(dz)− qν(v)

+(v − ν)q′ν(v) + 2(v − ν)

∫ ∞
v

m(dz)

= 2(y − ν)

∫ ∞
y

m(dz) +

∫
qν(z)ν(dz) + 2

∫ y

ν

(z − ν)m(dz)

which does not depend on v.

3.5 Non-integrable target laws

We have seen that if ν ∈ L1 then there exists an integrable embedding of ν if Ey[Hν ]

and
∫
qν(x)ν(dx) are both finite. In this short section we argue that if Y0 = y ∈ (`, r) and

ν /∈ L1 then there does not exist an integrable embedding of ν.
Note first that q = qy is non-negative and convex, and hence q(x) ≥ α|x− y| − β for

some pair of finite positive constants α, β. Let Tn be a localising sequence for the local
martingale {q(Yt∧σ)− (t ∧ σ)}t≥0. Then, by an argument similar to that in the proof of
Lemma 3.1

E[σ] = lim
n
E[σ ∧ Tn] = lim inf E[q(Yσ∧Tn)] ≥ E[lim inf q(Yσ∧Tn)] =

∫
q(z)ν(dz) =∞.
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4 Diffusions started at entrance points

In the proofs of the main results we assumed that Y started at an interior point in
(`, r). Now we consider what happens if we start at a boundary point. The motivating
example is a Bessel process in dimension 3 started at zero.

After a change of scale we may assume that we are working with a diffusion in natural
scale. Then, if the boundary point is finite and an entrance point, it must also be an exit
point (for terminology, see Borodin and Salminen [6, Section II.6]). We have assumed
exit boundary points to be absorbing. It follows that an entrance point must be infinite;
without loss of generality we assume that Y starts at +∞ and that I = [`,∞] or I = (`,∞]

where we may have ` = −∞.

So suppose that∞ is an entrance-not-exit point. In particular, E∞[Hz] <∞ for some
z ∈ (`,∞) or equivalently

∫∞
zm(dz) < ∞. We suppose the initial sigma algebra F0 is

sufficiently rich as to include an independent, uniformly distributed random variable.

Define EY (∞, ν) by

EY (∞; ν) := 2

∫ ∞
`

ν(dx)

∫ ∞
x

m(dz)(z − x). (4.1)

Theorem 4.1. Suppose Y is a diffusion in natural scale and suppose Y0 =∞, where∞
is an entrance-not-exit point.

(i) There exists an integrable embedding of ν if and only if EY (∞; ν) is finite.

(ii) Every minimal embedding σ of ν in Y has E[σ] = EY (∞; ν).

Remark 4.2. Note that EY (∞; ν) can be rewritten as

EY (∞; ν) = 2

∫ ∞
`

m(dz)

∫ z

`

ν(dx)(z − x)

It follows that if ` = −∞ and
∫ 0

−∞ |x|ν(dx) =∞ then EY (∞; ν) =∞.

However, it is easily possible to have ν /∈ L1 and still have EY (∞; ν) < ∞ and
the existence of integrable embeddings. For example, suppose Y solves dYt = Y 2

t dBt
subject to Y0 = ∞ and suppose ν is a measure on (0,∞) with

∫∞
0
xν(dx) = ∞ and∫∞

0
ν(dx)/x2 < ∞, eg ν([x,∞)) = x−1 ∧ 1. Then EY (∞; ν) =

∫
x−2ν(dx)/3 < ∞ but

ν /∈ L1.

Remark 4.3. Suppose that ν ∈ L1. Then as in Section 3.4 we can rewrite EY (∞; ν) as

EY (∞; ν) = 2

∫ ∞
ν

(y − ν)m(dy) +

∫
qν(y)ν(dy). (4.2)

Occupation time arguments (Rogers and Williams [20, Section V.51]) imply that 2
∫∞
ν

(y−
ν)m(dy) = E∞[HY

ν ] and hence the right-hand-side of (4.2) has a clear interpretation as
the sum of the expected time to hit the mean of the target law and the expected time to
embed law ν in Y started at ν using a minimal embedding. It follows that if ν ∈ L1 and
there exists an integrable embedding of ν started at ν then the stopping time ‘run until
Y hits the mean, and then use a minimal embedding to embed ν in Y started from the
mean’ is a minimal and integrable embedding.

Proof of Theorem 4.1. Here we prove the theorem in the case that ν ∈ L1. A proof in
the case ν /∈ L1 is given in the Appendix.

(i) Suppose first that EY (∞; ν) is finite.
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If ν ∈ L1 then we do not need F0 to be non-trivial. In this case both E∞[Hν ] and∫
qν(y)ν(dy) are finite (since EY (∞; ν) is). Then there exists a minimal, integrable,

non-randomised embedding τν,ν of ν in Y started at ν and

τ = Hν + τν,ν ◦ΘHν

is an integrable embedding.

Now suppose there is an integrable embedding. The finiteness of EY (∞, ν) is a
corollary of the following lemma. Note that we do not need to assume ν ∈ L1.

Lemma 4.4. Suppose L > ` and suppose τ ≤ HL. Then τ is minimal for L(Yτ ) in Y

started at∞ and E[τ ] = E[q(Yτ )] = EY (∞,L(Yτ )) <∞.

Suppose ρ is an embedding of ν. Then E[ρ] ≥ EY (∞, ν).

Proof. The result is an analogue of Lemma 3.1, and the proof follows using similar ideas
and the facts that q∞ is bounded on [L,∞] and EY (∞, ν) =

∫
q∞(y)ν(dx) by definition.

Return to the proof of Theorem 4.1(ii). If EY (∞, ν) =∞ then there is nothing to prove.
Suppose that EY (∞, ν) <∞ and σ is minimal. We want to show that E[σ] = EY (∞, ν).

Let σ̃n = max{σ,Hn} and let νn = L(Yσ̃n). Write σ̃n = Hn + σ̂n where σ̂n = (σ−Hn)+.
Set ν̂n = L(Y nσ̂n) where here the superscript reflects the fact that Y starts at n. Then
ν̂n = νn.

We want to argue that νn ≤ n for sufficiently large n. To see this, first note that
νn = ν on (−∞, 0) so that

∫ 0

`
|x|νn(dx) < ∞ and νn exists in (−∞,∞], and second note

that for n ≥ ν we have νn ≤ ν ≤ n.

To complete the proof of the theorem we need the following lemma.

Lemma 4.5. For each n, σ̂n is minimal for νn in Y started at n.

Proof. Suppose ρ̂n ≤ σ̂n also embeds νn in Y started from n. If ρ is defined by

ρ =

{
σ σ < Hn

Hn + ρ̂n ◦ΘHn σ ≥ Hn

then ρ ≤ σ. We show that Yρ ∼ Yσ; then by minimality of σ we conclude that ρ = σ.
Hence ρ̂n = σ̂n and σ̂n is minimal as required.

By hypothesis, L(Y nσ̂n) = L(Y nρ̂n). On σ < Hn we have that σ̂n = 0 and hence ρ̂n = 0

and

L(Y nσ̂n ;σ < Hn) = L(Y nρ̂n ;σ < Hn), (4.3)

since in both cases this law is a point mass of size P(σ < Hn) at n. Then

L(Y nσ̂n ;σ < Hn) + L(Y nσ̂n ;σ ≥ Hn) = L(Y nσ̂n) = L(Y nρ̂n) = L(Y nρ̂n ;σ < Hn) + L(Y nρ̂n ;σ ≥ Hn)

Then (4.3) means that we also have L(Y nσ̂n ;σ ≥ Hn) = L(Y nρ̂n ;σ ≥ Hn) and it follows that

L(Yρ) = L(Yσ;σ < Hn) + L(YHn+ρ̂n◦ΘHn ;σ ≥ Hn)

= L(Yσ;σ < Hn) + L(Y nρ̂n ;σ ≥ Hn)

= L(Yσ;σ < Hn) + L(Y nσ̂n ;σ ≥ Hn)

= L(Yσ;σ < Hn) + L(YHn+σ̂n◦ΘHn ;σ ≥ Hn) = L(Yσ).
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Return to the proof of Theorem 4.1. Since σ̂n is minimal and νn ≤ ν, we have that for
n ≥ ν, En[σ̂n] = EY (n, νn) =

∫
qn(x)νn(dx) + 2(n− νn)m((n,∞)). Then

E∞[σ] = lim
n
E[(σ −Hn)+]

= 2 lim
n

{∫ ∞
`

νn(dx)

∫ x

n

m(dz)(x− z) + (n− νn)m((n,∞))

}
(4.4)

Since ∞ is an entrance boundary
∫∞

ym(dy) < ∞ and hence limn nm((n,∞) = 0. In
particular, limn(n− νn)m(n,∞)→ 0.

For the first term in (4.4), since νn = ν on (`, n),

2 lim
n

{∫ ∞
`

νn(dx)

∫ x

n

m(dz)(x− z)
}
≥ 2 lim

n

{∫ n

`

ν(dx)

∫ n

x

m(dz)(z − x)

}
= 2

∫ ∞
`

ν(dx)

∫ ∞
x

m(dz)(z − x)

= EY (∞, ν),

and conversely, since νn ≤ ν on (n,∞),

2 lim
n

{∫ ∞
`

νn(dx)

∫ x

n

m(dz)(x− z)
}
≤ 2 lim

n

{∫ ∞
`

ν(dx)

∫ x

n

m(dz)(x− z)
}

= 2

∫ ∞
`

ν(dx)

∫ ∞
x

m(dz)(z − x).

Hence E[σ] = EY (∞, ν) <∞.

5 Recovering results for general diffusions

Let X = (Xt)t≥0 be a regular, time-homogeneous diffusion with state space IX ,
started at x ∈ int(IX), and suppose that if X can reach an endpoint of IX , then such an
endpoint is absorbing. Then, see Rogers and Williams [20, Section V.44-47] or Borodin
and Salminen [6], X has a scale function s = sX and speed measure mX such that if
Y = (Yt)t≥0 is given by Yt = s(Xt), then Y is a diffusion in natural scale with state space
I = s(IX). For example, if X solves dX = a(Xt)dWt + b(Xt)dt then provided b/a2 and
1/a2 are locally integrable,

s′(z) = exp

(
−
∫ z 2b(v)

a(v)2
dv

)
, mX(dz) =

dz

a(z)2s′(z)
.

It follows that Y has speed measure

m(dy) = mX(ds−1(y)) =
dy

a(s−1(y))2s′(s−1(y))2
,

so that for [L,R] ⊂ I, m((L,R)) = mX((s−1(L), s−1(R))).

Let µ be a law on IX and define ν = µ ◦ s−1 so that for a Borel subset of I, ν(A) =

µ(s−1(A)). Then τ is an embedding of µ in X if and only if τ is an embedding of ν in Y .
Moreover, the integrability of τ is also unaffected by a change of scale. Minimality is
another property which is preserved under a change of scale.

We have that ν :=
∫
I
vν(dv) =

∫
IX
s(z)µ(dz) and

∫
I
qs(x)(v)ν(dv) =

∫
IX
qs(x)(s(z))µ(dz).

Moreover, qy(z) = 2
∫ z
y

(z − w)m(dw) = 2
∫ s−1(z)

s−1(y)
(z − s(v))mX(dv).
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For definiteness suppose s(x) > ν, and denote by r the upper limit of I and by rX the
upper limit of IX . Then r =∞ and

EY (s(x), ν) =

∫
I

qs(x)(z)ν(dz) + 2(s(x)− ν)m((s(x), r))

=

∫
IX
qs(x)(s(z))µ(dz) + 2(s(x)− ν)mX((x, rX))

= 2

∫
IX

{∫ z

x

(s(z)− s(v))mX(dv)

}
µ(dz) + 2(s(x)− ν)mX(x, rX)).

In general therefore, for x ∈ int(IX) set EX(x;µ) = ∞ if
∫
IX
|s(z)|µ(dz) = ∞ and

otherwise

EX(x;µ) = 2

∫
IX

{∫ z

x

(s(z)− s(v))mX(dv)

}
µ(dz) (5.1)

+2|s(x)− ν|
(
mX((x, rX))I{s(x)>ν} +mX((lX , x))I{s(x)<ν}

)
.

As in the case for diffusions in natural scale, there is a second representation of EX in
terms of the expected value of first hitting time of the weighted mean of the target law
together with the expected value of an embedding in a process started at the weighted
mean, namely

EX(x;µ) = Ex[HX
s−1(ν)] +

∫
qν(s(z))µ(dz). (5.2)

Note that in this expression q is defined for the transformed process in natural scale.

Proof of Theorem 1.2. τ is minimal for µ in X started at x if and only if τ is minimal for
ν in Y started at y = s(x). Furthermore, τ is an integrable embedding of µ if and only
if τ is an integrable embedding of ν. Then E[τ ] = EY (s(x); ν) = EX(x;µ), where EX is
defined in either (5.1) or (5.2).

Example 5.1. Suppose P is a Bessel process of dimension 3, started at p > 0. Then the
scale function is s(x) = −x−1 and I = (−∞, 0). The speed measure is mP (dp) = p2dp.
There exists an embedding of µ in Y if and only if ν ≥ −p−1 where ν = −

∫∞
0
x−1µ(dx).

Further, there exists an integrable embedding of µ if and only if EP (p;µ) <∞ where

EP (p;µ) =

∫ ∞
0

µ(dz)2

∫ z

p

(
1

v
− 1

z

)
v2dv + 2

(
1

p
+ ν

)
p3

3

=
1

3

∫ ∞
0

z2µ(dz)− p2

3

Example 5.2. Suppose X is given by Xt = aWt + bt where b > 0 and W is standard
Brownian motion, null at zero. Then s(z) = −e−2bz/a2 and mX(dz) = dxe2bz/a2/2b. Set
ν = −

∫
R
e−2bz/a2µ(dz) and suppose ν ∈ [−1, 0], else there is no embedding. Then
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s−1(ν) = −a
2

2b log |ν| and exp(− 2b
a2 s
−1(ν)) = |ν|. Hence∫

µ(dz)qν(s(z)) =

∫
µ(dz)2

∫ z

s−1(ν)

(s(z)− s(v))mX(dv)

=

∫
µ(dz)2

∫ z

s−1(ν)

(e−2bv/a2 − e−2bz/a2)
dv

2b
e2bv/a2

=

∫
µ(dz)2

∫ z

s−1(ν)

(1− e2b(v−z)/a2)
dv

2b

=

∫
µ(dz)

{
z

b
− s−1(ν)

b
− a2

2b2
+

a2

2b2
e2b(s−1(ν)−z)/a2

}
=

1

b

∫
zµ(dz) +

a2

2b2
log |ν| − a2

2b2
+

a2

2b2
1

|ν|

∫
e−2bz/a2µ(dz)

=
1

b

∫
zµ(dz) +

a2

2b2
log |ν|.

Suppose X0 = x. For w > x we have Ex[HX
w ] = (w − x)/b. Then, using (5.2),

EX(x;µ) = Ex[HX
s−1(ν)] +

∫
qν(s(z))µ(dz) =

1

b

(∫
zµ(dz)− x

)
.

Recall from Lemma 3.1(ii) that every embedding of µ is minimal. Then, for drifting
Brownian motion, every embedding of µ has the same expected value.

Remark 5.3. Drifting Brownian motion was the subject of Grandits and Falkner [10],
and the conclusion of the previous example is contained in their Proposition 2.2. Note
that in the case Xt = x + aBt + bt, if E[τ ] < ∞ then E[Xτ ] − x = bE[τ ]. Hence, for an
embedding τ of µ the result E[τ ] = EX(x;µ) = (

∫
zµ(dz)− x)/b is not unexpected, and

can be proved directly by other means.

6 Minimality and Integrability of the Azéma-Yor embedding

Azéma and Yor [3, 2] (see also Rogers and Williams [20, Theorem VI.51.6] and Revuz
and Yor [19, Theorem VI.5.4]), give an explicit construction of a solution of the SEP for
Brownian motion. The original paper [3] assumes the target law is centred and square
integrable, but the L2 condition is replaced with a uniform integrability condition in
[2], see also [19]. Azéma and Yor [3] also indicate how the results can be extended to
diffusions, provided that the process is recurrent and provided that once the process has
been transformed into natural scale, the mean of the target law is equal to the initial
value of the diffusion.

The Azéma-Yor stopping time for a centred target law ν in Brownian motion W null
at zero is

τWAY,ν = inf{u : Wu ≤ βν(JWu )}, (6.1)

where JW is the maximum process JWu = sups≤uWu, and βν is the left-continuous inverse
barycentre function, ie βν = b−1

ν where for a centred distribution η, bη(x) = EZ∼η[Z|Z ≥
x]. The Azéma-Yor embedding has become one of the canonical solutions of the SEP
because it does not involve independent randomisation and because it is possible to
give an explicit form for the stopping time. Further, amongst uniformly integrable (or
equivalently minimal) solutions of the SEP for Brownian motion, the Azéma-Yor solution
has the property that it maximises the law of the stopped maximum, ie for all increasing
functions H, E[H(JWτ )] is maximised over minimal embeddings τ of ν in W by τWAY,ν .

In the case where ν ∈ L1 but ν is not centred, Pedersen and Peskir [18] make the
simple observation that we can embed ν by first running the Brownian motion until it
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hits ν and then embedding ν in Brownian motion started at ν using the classical centred
Azéma-Yor embedding, ie they propose

τWPP,ν = HW
ν + τWAY,ν ◦ΘHWν

.

However, if the Brownian motion is null at zero, and ν < 0, then the embedding τPP,ν no
longer maximises the law of the stopped maximum. Instead Cox and Hobson [8] introduce
an alternative modificiation of the Azéma-Yor stopping time which does maximise the law
of the stopped maximum, and it is this embedding which we will study here. In fact the
expected value of any embedding of the form HY

ν + τν,ν ◦ΘHYν
can be found very easily,

and our aim here is to analyse an embedding which is not of this form.
Suppose W0 = w and ν ∈ L1. Define Dν(x) = EZ∼ν [(Z−x)+]+(w−ν)+ and for z ≥ w

set

βν(z) = arg inf
v<z

{
Dν(v)

z − v

}
. (6.2)

(Here the arg inf may not be uniquely defined, but we can make the choice of βν unique by
adding a left-continuity requirement.) Then the Cox-Hobson extension of the Azéma-Yor
embedding is to set

τWCH,ν = inf{u : Wu ≤ βν(JWu )}. (6.3)

Note that if ν ≥ w, then for z ∈ [w, ν] we have βν(z) = −∞. In this case the Cox-Hobson
and Pedersen-Peskir embeddings are identical. However, if ν < w then the Cox-Hobson
and Pedersen-Peskir embeddings are distinct.

To ease the exposition we assume that ν has a density ρ. (The general case can be
recovered by approximation, or by taking careful consideration of atoms.) Then b = β−1

ν

solves
(b(y)− y)ν((y,∞)) = Dν(y), (6.4)

b is differentiable and ν((y,∞))b′(y) = (b(y)− y)ρ(y). Then, writing τ for τWCH,ν and L(ν)

for the lower limit of the support of ν and using excursion-theoretic arguments,

P(Wτ > y) = P(JWτ > b(y)) = exp

(
−
∫ b(y)

w

dz

z − β(z)

)

= exp

(
−
∫ b(y)

w∨ν

dz

z − β(z)

)

= exp

(
−
∫ y

L(ν)

b′(v)

b(v)− v
dv

)

= exp

(
−
∫ y

L(ν)

ρ(v)

ν((v,∞))
dv

)
= ν((y,∞))

and hence τWCH,ν is an embedding of ν.
Cox and Hobson [9] prove that the embedding in (6.3) is minimal. A bi-product of the

subsequent arguments in this section is a proof of minimality by different means. Note
that this is only relevant in the case I = R, else every embedding is minimal.

Let Y be a regular diffusion in natural scale. Then by the Dambis-Dubins-Schwarz
theorem Y can be written as a time-change of Brownian motion: Yt = W[Y ]t for some
Brownian motion (on a filtration and probability space constructed from the original
space supporting Y ). Then if we set Q = [Y ]−1 we have Wt = YQt . Conversely, let
W be Brownian motion and let (LWt (z))t≥0,z∈R be its family of local times. Given a
measure m on I (with a strictly positive density with respect to Lebesgue measure), set
As =

∫
I
m(dz)LWs (z). Then A is strictly increasing and continuous (at least until W hits
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an endpoint of I) and we can define an inverse Γ = A−1. Finally set Yt = WΓt ; then Y is
a diffusion in natural scale with speed measure m.

It follows that if τ is a solution of the SEP for ν in W then Qτ is a solution of the SEP
for ν in Y . Similarly, if σ is the solution of the SEP in Y , then Γσ is a solution of the SEP
in W . Hence there is a one-to-one correspondence between solutions of the SEP for ν in
W and solutions for ν in Y .

Recall that we are supposing that ν ∈ L1. (Note that if ν /∈ L1 then it is not possible
to define Dν(·), and the Azéma-Yor solution is not defined.) Suppose also that w > ν,
which is the interesting case in which the Pedersen-Peskir and Cox-Hobson embeddings
are distinct. By analogy with (6.3) define

τYCH,ν = inf{u : Yu ≤ βν(JYu )} (6.5)

where βν is as defined in (6.2). Then τ = τYCH,ν inherits the embedding property from
τWCH,ν and is a solution of the SEP for ν in Y .

Now consider the question of minimality. It is clear that τWCH,ν is minimal for ν in W
if and only if τ is minimal for ν in Y . If ν 6= y then τWCH,ν is not integrable, but τ may be
integrable. Further, if τ is integrable for ν in Y started at w and if EY (w; ν) <∞ then
τ is minimal if and only if E[τ ] = EY (w; ν). In particular, if we choose the diffusion Y

so that its speed measure satisfies m(R) < ∞, then necessarily EY (w; ν) < ∞ (recall
ν ∈ L1). The minimality of τ for ν in Y and hence the minimality of τWAY,ν will follow if we
can show E[τ ] = EY (w; ν).

We have, (recall w > ν),

E[τ ] =

∫ ∞
w

dzP(JYτ ≥ z)
∫ z

β(z)

2(x− β(z))

z − β(z)
m(dx)

= 2

∫
R

b′(y)

(b(y)− y)
dyP(Yτ ≥ y)

∫ b(y)

y

(x− y)m(dx)

= 2

∫
R

ρ(y)dy

∫ b(y)

y

(x− y)m(dx)

= 2

∫ w

−∞
m(dx)

∫ x

−∞
(x− y)ρ(y)dy + 2

∫ ∞
w

m(dx)

∫ x

β(x)

(x− y)ρ(y)dy.

Here we use excursion theory and the fact that

Ex[HY
a,b] = 2

∫ b

a

(x ∧ z − a)(b− x ∨ z)m(dz) a < x < b

for the first line (see also Pedersen and Peskir [17, Theorem 4.1]), (JYτ ≥ z) = (Yτ ≥ β(z))

for the second line, b′(y) = ρ(y)(b(y)− y)/ν((y,∞)) almost everywhere for the third, and
the fact that b(y) ≥ w for the final line.

Observe that

2

∫ w

−∞
m(dx)

∫ x

−∞
(x− y)ν(dy) = 2

∫ w

−∞
ν(dy)

∫ w

y

(x− y)m(dx) =

∫ w

−∞
ν(dy)qw(y).

Note that it is no longer true that b = bν = β−1
ν satisfies b(y) = EY∼ν [Y |Y ≥ y] but rather

b(y) = {(w− ν) +
∫∞
y
zν(dz)}/(ν(y,∞)) and then (x−β(x))

∫∞
β(x)

ν(dz) = w− ν+
∫∞
β(x)

(z−
β(x))ν(dz). Thus∫ x

β(x)

(x− y)ν(dy) =

∫ ∞
β(x)

(x− y)ν(dy) +

∫ ∞
x

(y − x)ν(dy) = (w − ν) +

∫ ∞
x

(y − x)ν(dy),
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and

2

∫ ∞
w

m(dx)

∫ x

β(x)

(x− y)ν(dy) = 2(w − ν)m((w,∞)) +

∫ ∞
w

qw(y)ν(dy).

Finally then,

E[τ ] = 2(w − ν)m((w,∞)) +

∫
qw(y)ν(dy) = EY (w; ν)

and hence τ and τWCH,ν given in (6.3) are minimal.

6.1 An example

In this example we suppose Y is a non-negative, regular, local-martingale diffusion
started at 1 with state space unbounded above and absorbed at zero (if Y can hit zero
in finite time, else Y is assumed to be transient to zero). We suppose further that ν is
given by ν((y,∞)) = (1 + θy)−φ with θ, φ > 0 and φ ≥ 1 + 1/θ. If φ = 1 + 1/θ then ν = 1,
otherwise if φ > 1 + 1/θ then ν < 1. (Note that if φ < 1 + 1/θ, then ν > 1 and there is no
embedding of ν in Y .)

Our first goal is to find the function βν in the Cox-Hobson extension of the Azéma-Yor
embedding and the associated stopping times. In fact we find a family of solutions
parameterised by ψ ∈ [ν, 1] for which the stopping time with parameter ψ corresponds to
running Y until it hits ψ and then embedding ν in Y started at ψ using the Cox-Hobson
embedding. In particular this stopping time can be written as

HY
ψ + τψ ◦ΘHYψ

where
τψ = inf{u ≥ 0;Y ψu ≤ βν,ψ(JY

ψ

u )}
and Y ψ satisfies Y ψ0 = ψ. Here, for ψ ∈ [ν, 1], Dν,ψ(z) = EZ∼ν [(Z−x)+] + (ψ− ν) is given
by

Dν,ψ(z) = ψ − 1

θ(φ− 1)

{
1− (1 + θy)−(φ−1)

}
and b = β−1

ν,ψ given by (6.4) has expression

b(y) = (1 + θy)φ
(
ψ − 1

θ(φ− 1)

)
+

φy

φ− 1
+

1

θ(φ− 1)
.

Now suppose m(dy) = y−2cdy (with c ∈ (0,∞) \ {1/2, 1}) so that Y solves dY = Y cdW .

Then q = q1 is given by q(x) = x2−2c−1
(1−c)(1−2c) −

2(x−1)
(1−2c) . We have

EY (1; ν) =

∫ ∞
0

q(y)ν(dy) + 2(1− ν)m((1,∞))

Suppose φ > 1 + 1/θ. Then ν < 1 and there exists an integrable embedding of ν if and
only if each of the three integrals∫ ∞

x−2cdx,

∫ ∞
x2−2cx−(φ+1)dx,

∫
0

x2−2cdx

is finite or equivalently c > 1/2, c > 1− φ/2 and c < 3/2. However, since φ ≥ 1 + 1/θ > 1

this reduces to 1/2 < c < 3/2.
If φ = 1 + 1/θ then there is no requirement for m((1,∞)) to be finite, the condition

c > 1/2 is not needed and there exists an integrable embedding of ν if and only if
1− φ/2 < c < 3/2.

These statements are consistent with the case c = 0 of absorbing Brownian motion.
Then ν can be embedded in integrable time if and only if ν = 1 and ν ∈ L2, or equivalently
φ = 1 + 1/θ and φ > 2.

EJP 20 (2015), paper 83.
Page 21/26

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-4121
http://ejp.ejpecp.org/


Integrability of solutions of the Skorokhod embedding problem

6.2 An example of Pedersen and Peskir

Pedersen and Peskir [18] give the expected time for a Bessel process to fall below a
constant multiple of the value of its maximum, ie they find E[τPAY ] where τPAY = inf{u >
0 : Pu ≤ λJPu } and λ < 1. They find the answer by solving a differential equation subject
to boundary conditions and a minimality principle. We can recover their result directly
using our methods.

Let P be a Bessel process of dimension α 6= 2, started at 1. Then Y = P 2−α is a
diffusion in natural scale. Then P solves dYt = (2− α)Y bt dWt where b = (1− α)/(2− α).
Then m(dy) = (2− α)−2y−2bdy and

q1(y) =
1

(2− α)2

[
y2(1−b)

(1− b)(1− 2b)
+

1

1− b
− 2y

1− 2b

]
.

Suppose first α < 2. We find, with Ju = JYu = sups≤u Yu,

τPAY = inf{u > 0;Y 1/(2−α)
u ≤ λJ1/(2−α)

u } = inf{u > 0;Yu ≤ γJu} =: τγ

where γ = λ2−α. Then, by excursion theoretic arguments, see for example Rogers and
Williams [20, Section VI.51], for y ≥ γ,

P(Yτγ ≥ y) = P(Jτγ ≥ y/γ) = exp

(
−
∫ y/γ

1

dj

(j − γj)

)
= (y/γ)−1/(1−γ).

Then, if ν = L(Yτγ ) we have ν = 1 and

E[τγ ] =

∫ ∞
γ

q1(y)ν(dy) =
λα(2− α)

α(2− αλα−2)
− 1

α

provided αλα−2 < 2, and otherwise τγ is not integrable.
If α > 2 then set Y = −P 2−α. Then τPAY = inf{u > 0 : Yu ≤ γJu} =: τγ where

γ = λ2−α > 1. Then for y ∈ (−γ, 0), P(Yτγ ≥ y) = (|y|/γ)1/(γ−1). Again we find that
ν ∼ L(Yτγ ) has unit mean and

E[τγ ] =
λα(α− 2)

α(αλα−2 − 2)
− 1

α
,

provided αλα−2 > 2, else τγ is not integrable.
Finally, if α = 2, we set Y = logP and then τPAY = inf{u > 0 : Yu ≤ Ju − γ} =: τγ

where γ = − log λ > 0. Then, for y ≥ −γ, P(Yτ ≥ y) = e−(y/γ)−1. Further, dYt = e−YtdBt
and if P0 = 1 then Y0 = 0. Then m(dy) = e2ydy and q0(y) = {e2y − 2y − 1}/2. Hence

E[τγ ] =

∫ ∞
−γ

q0(y)ν(dy) =

∫ ∞
−γ

e2y−(y/γ)−1

2γ
dy − 1

2
=

λ2

2 + 4 log λ
− 1

2

provided λ > e−1/2, and otherwise τγ is not integrable.
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Integrability of solutions of the Skorokhod embedding problem

A Proof of Theorem 4.1 when the target measure is not inte-
grable

The proof of the theorem in the case ν /∈ L1 will follow from the results of this section,
and especially Lemma A.1 and Corollary A.9.

We begin with the forward implication in (i). Since Lemma 4.4 does not require ν ∈ L1,
Theorem 4.1(i) is then proved in the general case. When we discuss Theorem 4.1(ii) we
will use two approaches. In the first approach we give simple sufficient conditions such
that νn ≤ n, whence we can deduce the result using the reasoning in the main text. The
second approach works in general, but needs a new style of argument.

Lemma A.1. If ν /∈ L1 but EY (∞, ν) <∞, then there exists an integrable embedding.

Proof. By assumption F0 is sufficiently rich as to include a uniform random variable.
Then there exists a random variable Z with law ν and setting σ = HY

Z , where HY
Z =

inf{u ≥ 0;Yu ≤ Z} is the first hitting time by Y of the random level Z, we have Yσ ∼ ν

and

E[σ] =

∫
ν(dz)E∞[HY

z ] = 2

∫
ν(dz)

∫ ∞
z

(y − z)m(dy) = EY (∞; ν).

Remark A.2. Note that if ν includes an atom at ∞ then independent randomisation
at t = 0 will always be necessary to construct an embedding. However, if ν has no
atom at infinity, then if b∞ν (x) :=

∫
[`,x]

yν(dy)/
∫

[`,x]
ν(dy) (with b∞ν (x) = ` when the

denominator in this expression is zero), if β∞ν is the right-continuous inverse of b∞ν and if
τ := inf{u > 0 : Yu ≥ β∞ν (infs≤u Ys)} then τ is a non-randomised, minimal embedding of
ν. This construction is an analogue of the Azéma-Yor embedding, adapted to the current
context.

Recall the definition of σ̂n and law νn from the proof of Theorem 4.1.

Lemma A.3. Suppose there exists an integrable embedding of ν. Then
∫ 0

`
|x|ν(dx) <∞

and hence νn exists in (−∞,∞].

Proof. We only need consider the case ` = −∞. By Lemma 4.4, EY (∞, ν) < ∞. Since
q∞(x) ≥ Cx− for all x < 0 for some C > 0, the first part of the lemma follows.

The final statement follows from the fact that νn = ν on (−∞, 0).

Recall the setting that Y is a regular diffusion in natural scale with state space an
interval with endpoints ` ≥ −∞ and∞ and speed measure m, started at the entrance
boundary∞. Hence

∫∞
xm(dx) <∞ and therefore also

∫∞
m(dx) <∞.

Lemma A.4. Suppose ` > −∞ or m(R) =∞. Then Y started from n is a supermartin-
gale.

Proof. If the local martingale Y is bounded below then it follows from Fatou’s Lemma
that it is a supermartingale. Otherwise, since∞ is an entrance boundary, m(R+) <∞
and we must have m(R−) =∞. Then the fact that Y is a supermartingale follows from
Kotani [14], and more especially Theorem 2 of Gushchin et al [11].

Proposition A.5. Suppose ` > −∞ or m(R) =∞. If there exists an integrable embed-
ding of ν in Y then σ is minimal for ν in Y if and only if E[σ] = EY (∞, ν).

Proof. The proof follows the proof in the case ν ∈ L1, except that we use the super-
martingale property of Y to conclude that νn ≤ n for each n.
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Now we turn to the general case. Our proof is inspired by the ideas of Root [21]
and Monroe [15], but is completely different in character. The proof uses independent
randomisation.

The idea in Root [21] and Monroe [15] is to construct a barrier B such that σ ∧ τB
has certain integrability properties and has the same law as Yσ. Then if σ is minimal
we deduce that σ has those same integrability properties. Our aim is to construct a
random level Z, independent of Y and σ, such the randomized stopping time σ ∧HY

Z is
minimal, has the same law as σ, and has expectation EY (∞, ν). Then if σ is minimal we
can conclude that E[σ] = EY (∞, ν).

Lemma A.6. Suppose ν has finite support contained in (`,∞], and that σ is an embedding
of ν. Then there exists a F0-measurable random variable Z, taking values in the support
of ν, such that σ ∧HY

Z is minimal, Yσ∧HYZ has law ν and E[σ ∧HY
Z ] = EY (∞, ν).

Proof. Suppose ν has support {xk+1, xk, . . . x1} with ` < xk+1 < xk < . . . < x1 ≤ ∞. Let
g = (g1, . . . gk) be a vector in the non-negative orthant Rk+. Set gk+1 = ∞. Let Zg be a
random variable such that P(Zg < z) = exp(−

∑
j:xj≥z gj). Then Zg is a random variable

with support contained in the support of ν and such that P(Zg = xj) = e−
∑
i<j gi(1−e−gj ).

Let Gν be the set of vectors g such that P∞(Yσ∧HYZg
= xj) ≤ ν({xj}) for 1 ≤ j ≤ k.

(Note there is no restriction on the mass at xk+1.) Clearly the zero vector in Rk+ is an
element of Gν . Let νg = L(Yσ∧HYZg

); then for 1 ≤ j ≤ k + 1,

νg({xj}) = E[exp(−
∑

i:HYxi
<σ

gi);Yσ = xj ] + P(Hxj ≤ σ)e−
∑
i<j gi(1− e−gj ).

Suppose ĝ and g̃ are both elements of Gν . We show that the componentwise maximum
g = ĝ ∨ g̃ is also an element of Gν . Fix j with 1 ≤ j ≤ k. Without loss of generality
gj = ĝj ≥ g̃j . Then, since (1− e−gj ) = (1− e−ĝj ), and e−gj′ ≤ e−ĝj′ for all j′,

νg({xj}) ≤ E[exp(−
∑

i:HYxi
<σ

ĝi);Yσ = xj ] + P(Hxj < σ)e−
∑
i<j ĝi(1− e−ĝj ) = ν({xj})

Hence g ∈ Gν .
It follows that Gν has a maximal element g∗. It must be the case that νg∗ = ν. If not,

then there must be some paths which reach xk+1, and increasing gj strictly increases
νg({xj}) whilst at the same time not increasing νg({xj′}) for any j′ 6= j, contradicting
the maximality of g∗.

Suppose xk+2 < xk+1 and let ν̃ be a measure on {xk+2, xk+1, . . . , x1} with ν̃({xj}) =

ν({xj}) for 1 ≤ j ≤ k. (In other words ν̃ is obtained from ν by splitting the mass at the
lowest point, and moving some of it to the even lower point xk+2.) If g̃ = (g̃1, . . . , g̃k+1) ∈
Gν̃ then it follows that (g̃1, . . . , g̃k) ∈ Gν : increasing g̃k+1 to infinity can only decrease
the probability of stopping at xj for j ≤ k. Hence, if Zν and Zν̃ are the random
variables arising in Lemma A.6 for ν and ν̃ respectively, then P(Zν ≤ z) ≤ P(Zν̃ ≤ z)

for all z. Further there is a coupling such that Zν̃ ≤ Zν : we simply take Zν = F−1
Zν

(U)

and Zν̃ = F−1
Zν̃

(U) for the same uniform random variable U in each case. Then also
HY
Zν
≤ HY

Zν̃
, almost surely.

Lemma A.7. Suppose ν has support on the interval [L,∞], with L > ` and that σ is an
embedding of ν. Then there exists a F0-measurable random variable Z taking values in
[L,∞] such that σ ∧HY

Z is minimal, Yσ∧HYZ has law ν and E[σ ∧HY
Z ] = EY (∞, ν).

Proof. Without loss of generality we suppose L is a dyadic rational of the form L =

kL2−κL for kL ∈ Z− and κL ∈ Z+.
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Let J ≥ κL be a positive integer. Let νJ be given by νJ({J}) = ν([J,∞]) and
νJ({r2−J}) = ν([r2−J , (r + 1)2−J)) for L2J ≤ r ≤ J2J − 1.

Then νJ is a distribution on SJ = {r2−J ;L2J ≤ r ≤ J2J}, and if σJ = inf{u ≥ σ :

Yu ∈ SJ and Yu ≤ Yσ} then νJ = L(YσJ ).
From Lemma A.6 there exists a random variable ZJ such that L(YσJ∧HZJ ) = νJ .

Let F J denote the cumulative distribution function of ZJ ; then by the Helly Selection
Theorem (Billingsley [5, Theorem 25.9]) down a subsequence F J converges at continuity
points of the limit to an increasing, right-continuous function F , which we may consider
as the distribution function of an extended random variable (ie. one taking values in
[−∞,∞], or in this case [L,∞]).

We may assume ZJ = (F J)−1(U) and then we have ZJ → Z almost surely. On Z =∞
we set HY

Z = 0. With this convention (and taking as implicit the qualifier almost surely)
HY
ZJ → HY

Z and σJ ↓ σ. Then σJ ∧HY
ZJ → σ ∧HY

Z and YσJ∧HY
ZJ
→ Yσ∧HYZ . Hence

L(Yσ∧HYZ ) = lim
J
νJ = ν.

Since Z ≥ L we have that σ ∧HY
Z ≤ HY

L and, by Lemma 4.4, σ ∧HY
Z is minimal and

satisfies E[σ ∧HY
Z ] = EY (∞, ν).

For L of the form L = kL2−κL as in the lemma, let σL = inf{u ≥ σ : Yu ≥ L} and let
νL = L(YσL). Then νL is the law of XL = max{X,L} where X has law ν. Using a super-
script to denote the fineness of the partition, and a subscript to denote the lower bound on
the distribution, let νJL be the law of YσJL where σJL = inf{u ≥ σL;Y ∈ SJL and Yu ≤ YσL},
and let ZJL with distribution function F JL be the random variable which arises in the Jth
level intermediate step in Lemma A.7. Finally let ZL be the random variable constructed
as the limit of ZJL.

Suppose M is also a dyadic rational of the form M = kK2−κM with M < L. Use a
similar set of conventions to define stopping times, distributions and random variables
with subscript M . Suppose J ≥ max{κL, κM}. By the remarks after Lemma A.6 (applied
2J(L−M) times) ZJM ≤ ZJL. Now letting J ↑ ∞ we find that this property is inherited by
the limit variables and hence we may assume ZM ≤ ZL.

Proposition A.8. Suppose σ is an embedding of ν. There exists a F0-measurable random
variable Z taking values in [−∞,∞] such that σ ∧HY

Z is minimal, Yσ∧HYZ has law ν, and

E[σ ∧HY
Z ] = EY (∞, ν).

Proof. By Lemma A.7, for any dyadic L there exists a random variable ZL such that
σ ∧HY

ZL
is minimal, YσL∧HYZL

has law νL, and E[σL ∧HY
ZL

] =
∫
q∞(z)νL(dz).

Now consider a sequence of dyadic rationals (L(j))j≥1 with L(j) ↓ `. By the arguments
before the proposition ZL(j) is monotonic, ZL(j) → Z almost surely (where Z is an
extended random variable) and HY

ZL(j)
→ HY

Z almost surely. Since σL(j) ↓ σ we have

YσL(j)∧HYZL(j)

→ Yσ∧HYZ almost surely, and hence L(Yσ∧HYZ ) = lim νL(j) = ν.

We have E[σ ∧HZ ] = limE[σ ∧HZL(j)
]. Then since E[σ ∧HZL(j)

] ≤ E[σL ∧HZL(j)
] =

EY (∞, νL) ↑ EY (∞, ν) by the monotnicity of q∞ we have E[σ ∧ HZ ] ≤ EY (∞, ν). Con-
versely, by Lemma 4.4, for any embedding ρ of ν we have E[ρ] ≥ EY (∞, ν). Hence
E[σ ∧HZ ] = EY (∞, ν) and σ ∧HZ is minimal as required.

Corollary A.9. Suppose σ is an embedding of ν. Suppose EY (∞, ν) <∞. If σ is minimal
then E[σ] = EY (∞, ν).

Proof. By Proposition A.8, there exists Z such that E[σ ∧HY
Z ] = EY (∞, ν). But, if σ is

minimal then σ = σ ∧HY
Z and the result follows.
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