
E l e c t r o n i
c

J
o

u
r n a l

o
f

P
r

o b a b i l i t y

Electron. J. Probab. 20 (2015), no. 76, 1–47.
ISSN: 1083-6489 DOI: 10.1214/EJP.v20-4077

Computing cutoff times of birth and death chains
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Abstract

Earlier work by Diaconis and Saloff-Coste gives a spectral criterion for a maximum
separation cutoff to occur for birth and death chains. Ding, Lubetzky and Peres gave
a related criterion for a maximum total variation cutoff to occur in the same setting.
Here, we provide complementary results which allow us to compute the cutoff times
and windows in a variety of examples.
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1 Introduction

Let X be a finite set and K be the transition matrix of a discrete time Markov chain
on X . For t ∈ [0,∞), set

Ht = e−t(I−K) = e−t
∞∑
i=0

ti

i!
Ki.

If (Xm)∞m=0 is a Markov chain on X with transition matrix K and Nt is a Poisson process
independent of (Xm)∞m=0 with parameter 1, then Ht(x, ·) is the distribution of XNt given
X0 = x. It is well-known that if K is irreducible with stationary distribution π, then

lim
t→∞

Ht(x, y) = π(y), ∀x, y ∈ X .

If K is assumed further aperiodic, then

lim
m→∞

Km(x, y) = π(y), ∀x, y ∈ X .

For simplicity, we use the triple (X ,K, π) to denote a discrete time irreducible Markov
chain on X with transition matrix K and stationary distribution π and use (X , Ht, π) to
denote the associated continuous time chain introduced above.
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Computing cutoff times

In this paper, we consider the convergence of Markov chains in both total variation
distance and separation. Let µ, ν be two probabilities on X . The total variation distance
between µ, ν and separation of µ w.r.t. ν are defined by

‖µ− ν‖TV := max
A⊂X
{µ(A)− ν(A)}, sep(µ, ν) := max

x∈X
{1− µ(x)/ν(x)}.

With initial state x, the total variation distance and separation are defined by

dTV(x,m) := ‖Km(x, ·)− π‖TV, dsep(x,m) := sep(Km(x, ·), π).

As these quantities are non-increasing in m, it is reasonable to consider the correspond-
ing mixing time, which are defined by

TTV(x, ε) := min{m ≥ 0|dTV(x,m) ≤ ε}

and

Tsep(x, ε) := min{m ≥ 0|dsep(x,m) ≤ ε},

for any ε ∈ (0, 1). We define the maximum total variation distance and maximum
separation by

dTV(m) := max
x∈X

dTV(x,m), dsep(m) := max
x∈X

dsep(x,m).

The corresponding mixing times are defined in a similar way and are denoted by TTV(ε)

and Tsep(ε). For the associated continuous time chains, we use d(c)
TV , d(c)

sep , T (c)
TV and T (c)

sep .
The inequalities,

dTV(m) ≤ dsep(m) ≤ 1− (1− 2dTV(m))2,

provide comparisons between the maximum total variation distance and maximum
separation. As a consequence, one has

TTV(ε) ≤ Tsep(ε) ≤ 2TTV(ε/4), ∀ε ∈ (0, 1).

Those results also apply for the continuous time chain and we refer the reader to [1] for
detailed discussions and to [17] for various techniques in estimating the mixing times.

A birth and death chain on {0, 1, ..., n} with transition rates pi, qi, ri is a Markov chain
with transition matrix K satisfying

K(i, i+ 1) = pi, K(i, i− 1) = qi, K(i, i) = ri, ∀0 ≤ i ≤ n,

where pi + qi + ri = 1 and pn = q0 = 0. Conventionally, pi, qi, ri are called the birth,
death and holding rates at i. In the above setting, it is easy to see that K is irreducible
if and only if piqi+1 > 0 for 0 ≤ i < n and the unique stationary distribution π satisfies
π(i) = c(p0 · · · pi−1)/(q1 · · · qi), where c is a normalizing constant such that

∑
i π(i) = 1.

Ding et al. proved in [14] that, over all initial states, separation is maximized when the
chain starts at 0 or n and Diaconis and Saloff-Coste provided a formula for maximum
separation in [12]. As a consequence, the mixing time for maximum separation (and then
for the maximum total variation distance) is comparable with the sum of reciprocals of
non-zero eigenvalues of I −K. In [9], Chen and Saloff-Coste showed that both mixing
times are of the same order as the maximum expected hitting time to the median of π
over all initial distributions concentrated on the boundary points.

The cutoff phenomenon was first observed by Aldous and Diaconis in 1980s. For a
formal definition, if d is the total variation distance or separation either in the maximum
case or with a specified initial state, a family of irreducible Markov chains (Xn,Kn, πn)∞n=1
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Computing cutoff times

is said to present a cutoff in d, or a d-cutoff, if there is a sequence of positive integers
(tn)∞n=1 such that

∀ε ∈ (0, 1), lim
n→∞

Tn,d(ε)

tn
= 1,

where Tn,d is the mixing time in d of the nth chain. A family that presents a cutoff in d is
said to have a (tn, bn) cutoff in d or a (tn, bn) d-cutoff if tn > 0, bn > 0, bn/tn → 0 and

∀ε ∈ (0, 1), lim sup
n→∞

|Tn,d(ε)− tn|
bn

<∞.

In either case, the sequence (tn)∞n=1 is called a cutoff time and, in the latter case, the
sequence (bn)∞n=1 is called the window with respect to (tn)∞n=1. The definition of cutoffs
for families of continuous time chains is similar and we refer the reader to [11, 6] for
an introduction and a detailed discussion of cutoffs. As this article considers the total
variation and separation, we refer the reader to [7] for the computation of cutoff times in
the L2-distance and to [3] for a refinement of the L2-cutoff locations and window sizes.

Return to birth and death chains. To avoid the confusion of the total variation
distances (resp. separation) in the maximum case and with a specified initial states, we
use F and Fc for families of birth and death chains without starting states specified and
write FL,FLc and FR,FRc respectively for families of chains started at the left and right
boundary states. Diaconis and Saloff-Coste obtained in [12] a spectral criterion for the
existence of the separation cutoff and we cite part of their results in the following.

Theorem 1.1. [12, Theorems 5.1-6.1] For n = 1, 2, ..., let Kn be the transition matrix
of an irreducible birth and death chain on {0, 1, ..., n} and λn,1, ..., λn,n be the non-zero
eigenvalues of I −Kn. Set

tn =

n∑
i=1

1

λn,i
, λn = min

1≤i≤n
λn,i, σ2

n =

n∑
i=1

1

λ2
n,i

, ρ2
n =

n∑
i=1

1− λn,i
λ2
n,i

.

Let F be the family (Kn)∞n=1 and Fc be the family of associated continuous time chains.

(1) FLc has a separation cutoff if and only if tnλn →∞.

(2) Suppose Kn(i, i+ 1) +Kn(i+ 1, i) ≤ 1 for all i, n. Then, FL has a separation cutoff
if and only if tnλn →∞.

Furthermore, if tnλn → ∞, then FLc has a (tn, σn) separation cutoff and, under the
assumption of (2), FL have a (tn,max{ρn, 1}) separation cutoff.

Remark 1.1. In Theorem 1.1, the (tn,max{ρn, 1}) separation cutoff of FL is not discussed
in [12] but is an implicit result of the techniques therein. We give a proof of this fact
in the appendix for completion. In the proof that there is a (tn,max{ρn, 1}) separation
cutoff, we show that

FL has a cutoff ⇔ ρn = o(tn) ⇔ max{ρn, 1/λn} = o(tn).

Remark 1.2. For any irreducible birth and death chain, it was proved in [14] that the
maximum separation of the associated continuous time chain is attained when the initial
state is any of the boundary states. This is also true for the discrete time case if the
transition matrix K satisfies miniK(i, i) ≥ 1/2. As a result, if F ,Fc and tn, λn are as in
Theorem 1.1, then

(1) Fc has a maximum separation cutoff if and only if tnλn →∞.

(2) Assuming that infi,nKn(i, i) ≥ 1/2, F has a maximum separation cutoff if and only
if tnλn →∞.
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For cutoffs in the maximum total variation, Ding, Lubetzky and Peres provide the
following criterion in [14].

Theorem 1.2. [14, Corollary 2 and Theorem 3] Let F ,Fc, λn be as in Theorem 1.1 and
let Tn,TV, T

(c)
n,TV be the maximum total variation mixing time of the nth chains.

(1) Fc has a maximum total variation cutoff if and only if T (c)
n,TV(ε)λn → ∞ for some

ε ∈ (0, 1).
(2) Assume that infi,nKn(i, i) > 0. Then, F has a maximum total variation cutoff if and

only if Tn,TV(ε)λn →∞ for some ε ∈ (0, 1).

Remark 1.3. For any birth and death chain, the total variation distance for chain started
at the left boundary state can be different from that for chain started at the right
boundary state and a biased random walk with constant birth and death rates is a typical
example. Further, the maximum total variation distance over all initial states is not
necessarily attained at boundary states and a birth and death chain with valley stationary
distribution, a distribution which is non-increasing on {0, ...,M} and non-decreasing
on {M, ..., n} for some 0 < M < n, could illustrate this observation. For instance, let’s
consider a birth and death chain on {0, ..., 2n} with transition rates pi = qi = 1/2 for
0 < i < 2n and p0 = q2n = ε ∈ (0, 1). It is easy to check that the stationary distribution π
is given by π(i) = c for 0 < i < 2n and π(0) = π(2n) = c/(2ε) with c = (ε−1 + 2n − 1)−1.
Referring to the notation dTV(x,m) introduced before, it is easy to check that

dTV(0,m) = dTV(2n,m) ≤ dTV(0, 0) = 1− π(0), ∀m ≥ 0,

and
dTV(n,m) ≥ π({0, 2n}) = 2π(0), ∀0 ≤ m < n.

For ε < 1/(4n− 2), one has 3π(0) > 1, which leads to

dTV(0,m) < dTV(n,m), ∀0 ≤ m < n.

This is very different from the case of separation and we refer the readers to Sections 5
and 6 for more discussions.

To state our main results, we need the following notation. For n ∈ N, let Xn =

{0, 1, ..., n} and (X
(n)
m )∞m=0 be an irreducible birth and death chain on Xn with transition

matrix Kn and stationary distribution πn. Let Nt be a Poisson process independent of
(X

(n)
m ) with parameter 1. For i ∈ Xn, set

τ
(n)
i = inf{m ≥ 0|X(n)

m = i}, τ̃
(n)
i = inf{t ≥ 0|X(n)

Nt
= i}. (1.1)

For j ∈ Xn, let Ej and Varj denote the conditional expectation and variance given

X
(n)
0 = j.

Remark 1.4. It follows from the definition of τ (n)
i , τ̃

(n)
i that Ejτ

(n)
i = Ej τ̃

(n)
i for all

i, j ∈ Xn. See [1] for more information of the hitting times τ (n)
i , τ̃

(n)
i .

Theorem 1.3. Let F ,Fc, λn be as in Theorem 1.1 and τ (n)
i , τ̃

(n)
i be the hitting times in

(1.1). For n ≥ 1, let Mn ∈ {0, 1, ..., n} and set

sn = E0τ̃
(n)
Mn

+ Enτ̃
(n)
Mn

= E0τ
(n)
Mn

+ Enτ
(n)
Mn

and
b2n = Var0τ̃

(n)
Mn

+ Varnτ̃
(n)
Mn

, c2n = Var0τ
(n)
Mn

+ Varnτ
(n)
Mn

.

Suppose that
inf
n≥1

πn([0,Mn]) > 0, inf
n≥1

πn([Mn, n]) > 0. (1.2)

In separation, the following properties hold.
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(1) FLc has a cutoff if and only if snλn →∞; FLc has a cutoff if and only if sn/bn →∞.
Furthermore, if sn/bn →∞, then FLc has a (sn, bn) cutoff.

(2) Assume that Kn(i, i + 1) + Kn(i + 1, i) ≤ 1 for all i, n. Then, FL has a cutoff if
and only if snλn → ∞; FL has a cutoff if and only if sn/cn → ∞. Furthermore, if
sn/cn →∞, then FL has a (sn,max{cn, 1/λn}) cutoff.

Remark 1.5. Let σn, ρn be the constants in Theorem 1.1. Let Mn,M
′
n ∈ {0, 1, ..., n}

and bn, cn, b′n, c
′
n be the constants in Theorem 1.3 defined accordingly. Suppose Mn,M

′
n

satisfy (1.2). Then,

bn � b′n � σn, max{cn, 1/λn} � max{c′n, 1/λn} � max{ρn, 1/λn},

where un � vn means that both sequences, un/vn and vn/un, are bounded. See Corollary
2.3 for a proof. Comparing Theorems 1.1 and 1.3, one can see that the cutoff window for
FLc is unchanged up to some universal multiples but the cutoff window for FL can have
a bigger order in Theorem 1.3 due to the change of the cutoff time.

In total variation, we have the following result.

Theorem 1.4. Let F ,Fc, λn be as in Theorem 1.1 and τ (n)
i , τ̃

(n)
i be the hitting times in

(1.1). Let Mn ∈ {0, 1, ..., n} and set

θn = max
{
E0τ

(n)
Mn

,Enτ
(n)
Mn

}
= max

{
E0τ̃

(n)
Mn

,Enτ̃
(n)
Mn

}
and

α2
n = max

{
Var0τ̃

(n)
Mn

,Varnτ̃
(n)
Mn

}
and

β2
n = max

{
Var0τ

(n)
Mn

,Varnτ
(n)
Mn

}
.

Suppose
inf
n≥1

πn([0,Mn]) > 0, inf
n≥1

πn([Mn, n]) > 0. (1.3)

In the maximum total variation distance:

(1) Fc has a cutoff if and only if θnλn →∞; Fc has a cutoff if and only if θn/αn →∞.
Furthermore, if Fc has a cutoff, then Fc has a (θn, αn) cutoff.

(2) Assume that infi,nKn(i, i) > 0. Then, F has a cutoff if and only if θnλn →∞; F has
a cutoff if and only if θn/βn → ∞. Furthermore, if F has a cutoff, then F has a
(θn, βn) cutoff.

Remark 1.6. In Theorem 1.4, if δ = infi,nKn(i, i), then δα2
n ≤ β2

n ≤ α2
n. See Remark 5.5

for details.

Remark 1.7. Let F = (Xn,Kn, πn)∞n=1 be a family of irreducible birth and death chains
with Xn = {0, 1, ..., n}. For a ∈ (0, 1), set Mn(a) be a state in Xn satisfying

πn([0,Mn(a)]) ≥ a, πn([Mn(a), n]) ≥ 1− a.

By Theorem 1.1 and Remark 1.2, if Fc has a cutoff in maximum separation, then

lim
n→∞

E0τ̃
(n)
Mn(a) + Enτ̃

(n)
Mn(a)

E0τ̃
(n)
Mn(b) + Enτ̃

(n)
Mn(b)

= 1, ∀0 < a < b < 1. (1.4)

From Theorem 1.4, if Fc has a cutoff in the maximum total variation, then

lim
n→∞

max{E0τ̃
(n)
Mn(a),Enτ̃

(n)
Mn(a)}

max{E0τ̃
(n)
Mn(b),Enτ̃

(n)
Mn(b)}

= 1, ∀0 < a < b < 1. (1.5)
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But, the converse of these statements are not necessarily true. For example, let

Kn(i, i+ 1) = Kn(i+ 1, i) = 1/2, ∀0 < i < n, Kn(n, n) = 1/2,

and
Kn(0, 1) = Kn(1, 0) = ξn, Kn(0, 0) = 1− ξn, Kn(1, 1) = 1/2− ξn,

where ξn ∈ (0, 1/2). Note that Kn can be regarded as the transition matrix of a simple
random walk on Xn with specific transitions at the boundary states and a bottleneck
between 0 and 1 when ξn is small. It is clear that the stationary distribution satisfies
πn(i) = 1/(n+ 1) for all 0 ≤ i ≤ n. After some computations, one has, for n large enough,

Mn(a) � n � (n−Mn(a)).

This implies

E0τ̃
(n)
Mn(a) =

1

ξn
+Mn(a)(Mn(a) + 1)− 2 � 1

ξn
+ n2

and
Enτ̃

(n)
Mn(a) = (n−Mn(a))[n−Mn(a) + 1] � n2.

Let pn,i, qn,i, rn,i and λn be the transition rates and the spectral gap of Kn. By Theorem
1.2 in [9], we have

1

λn
� max

 max
j:j<Mn

Mn−1∑
k=j

πn([0, j])

πn(k)pn,k
, max
j:j>Mn

j∑
k=Mn+1

πn([j, n])

πn(k)qn,k

 , (1.6)

where Mn = bn/2c. This implies
1

λn
� 1

ξn
+ n2.

As a consequence of Theorems 1.3 and 1.4, Fc has neither a maximum separation cutoff
nor a maximum total variation cutoff. Let sn and θn be the constants in Theorems 1.3
and 1.4. If n2ξn → 0, then

sn ∼ θn ∼ E0τ̃
(n)
Mn(a) ∼

1

ξn
, ∀a ∈ (0, 1).

The above example illustrates that (1.4) and (1.5) are necessary but not sufficient for the
existence of the corresponding cutoffs.

One can see from Theorems 1.3 and 1.4 that, in general, the cutoff phenomenon
occurs when the first hitting times to some large sets are concentrated on their expected
values. We refer the reader to [4] for more general results in similar heuristics and to
[16] for some other relationship between the cutoffs and the hitting times.

The following theorem describes one of the main applications of Theorems 1.3-1.4.

Theorem 1.5. Consider a family F = (Xn,Kn, πn)∞n=1 of irreducible birth and death
chains with Xn = {0, 1, ..., n}. For n ≥ 1, let (Ωn,P

(n)) be a probability space and
Cn,1, ..., Cn,n : Ωn → (0, 1) be independent and identically distributed random variables.

For ωn ∈ Ωn and 0 ≤ i ≤ n, let (Xn, L(ωn)
n , πn) be a Markov chain given by

L
(ωn)
n (i, i+ 1) = Kn(i, i+ 1)Cn,i+1(ωn),

L
(ωn)
n (i+ 1, i) = Kn(i+ 1, i)Cn,i+1(ωn),

L
(ωn)
n (i, i) = 1− L(ωn)

n (i, i+ 1)− L(ωn)
n (i, i− 1),

and, for ω = (ω1, ω2, ...) ∈
∏∞
n=1 Ωn, let F (ω) = (Xn, L(ωn)

n , πn)∞n=1. Let Fc,F (ω)
c be

the continuous time families associated with F ,F (ω). For n ≥ 1, set µn = E(1/Cn,1),
ν2
n = Var(1/Cn,1) and let θn, αn, βn be the constants in Theorem 1.4.
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(1) If Fc has a maximum total variation cutoff and νnαn = o(µnθn), then there is a

sequence En ⊂ Ωn such that P(n)(En) → 1 and, for any ω ∈
∏∞
n=1En, F (ω)

c has a
maximum total variation cutoff with cutoff time µnθn.

(2) Assuming infn,iKn(i, i) > 0 and replacing αn by βn, the statement in (1) also holds
for the families F ,F (ω).

Remark 1.8. In Theorem 1.5, Ln can be regarded as a random birth and death chain
obtained by applying i.i.d. random slowdowns on Kn without changing the stationary
distribution.

Remark 1.9. Theorem 1.5 also holds in maximum separation.

The remaining of this article is organized in the following way. Sections 2 and 3
contain the proofs of Theorems 1.3 and 1.4 respectively. The proof of Theorem 1.5 is
given in Section 4. We also introduce another randomization of simple random walks on
paths and discuss its cutoff and mixing time. In Section 5, we consider families of chains
started at one boundary states and provide criteria for the existence of a total variation
cutoff and formulas for the cutoff time. We discuss the distinction between maximum
total variation cutoffs and cutoffs from a boundary state and illustrate this with several
examples in Section 6. The main results of Section 5 are proved in Section 7. In Section
8, we apply the developed theory to compute the cutoff time of some classical examples.
As some of the illustrated examples might be interesting to some readers, we would like
to highlight this section, though it is placed after those long proofs in Section 7. Some
useful lemmas and auxiliary results are gathered in the appendix.

2 Cutoff in separation

This section is dedicated to the proof of Theorem 1.3 and we need the following two
lemmas. The first lemma concerns the mean and variance of hitting times and the second
lemma provides a comparison of spectral gaps.

Lemma 2.1. Let K be the transition matrix of an irreducible birth and death chain on
{0, 1, ..., n}. For 1 ≤ i ≤ n, let β(i)

1 , ..., β
(i)
i be the eigenvalues of the submatrix of I −K

indexed by {0, ..., i− 1} and set

τi = min{m ≥ 0|Xm = i}, τ̃i = inf{t ≥ 0|XNt = i}, (2.1)

where (Xm)∞m=0 is a Markov chain with transition matrix K and Nt is a Poisson process

independent of Xm with parameter 1. Then, β(i)
j ∈ (0, 2) for all 1 ≤ j ≤ i and

E0τi = E0τ̃i =

i∑
j=1

1

β
(i)
j

, (2.2)

and

Var0(τi) =

i∑
j=1

1− β(i)
j(

β
(i)
j

)2 ,
Var0(τ̃i) =

i∑
j=1

1(
β

(i)
j

)2 . (2.3)

Proof. Let K̃ be the submatrix of K indexed by {0, 1, ..., i− 1}. Let β be an eigenvalue of
K̃ and x = (x0, ..., xi−1) be a left eigenvector associated with β. That is,

βxj = K(j − 1, j)xj−1 +K(j, j)xj +K(j + 1, j)xj+1, ∀0 < j < i− 1,

βx0 = K(0, 0)x0 +K(1, 0)x1,

βxi−1 = K(i− 2, i− 1)xi−2 +K(i− 1, i− 1)xi−1.
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By the irreducibility of K, if xi−1 = 0, then xj = 0 for all 0 ≤ j < i. This implies xi−1 6= 0

and then

|β|
i−1∑
j=0

|xj | ≤
i−1∑
j=0

|xj | −K(i− 1, i)|xi−1| <
i−1∑
j=0

|xj |.

Since x is an eigenvector of K,
∑
j |xj | > 0 and thus |β| < 1. This proves that β(i)

j ∈ (0, 2)

for all 1 ≤ j ≤ i. For (2.2) and (2.3), note that the distribution of τ̃i was given by Brown
and Shao in [5] and the technique therein also applies for τi. This leads to the desired
identities, where we refer the reader to their work for details.

Remark 2.1. In Lemma 2.1, the first equality of (2.3) implies

i∑
j=1

1

(β
(i)
j )2

≥
i∑

j=1

1

β
(i)
j

, ∀j ≥ 1.

Lemma 2.2. Let K be the transition matrix of an irreducible birth and death chain on
{0, 1, ..., n} with stationary distribution π. For 0 ≤ i ≤ n, let Li be the sub-matrix of K
obtained by removing the row and column of K indexed by state i. Let λ1 < · · · < λn
be the non-zero eigenvalues of I −K and λ(i)

1 ≤ · · · ≤ λ
(i)
n be the eigenvalues of I − Li.

Then,

λ
(i)
j ≤ λj ≤ λ

(i)
j+1 ≤ λj+1, ∀1 ≤ j < n,

and (
min{π([0, i]), π([i, n])}

4

)
λ1 ≤ λ(i)

1 ≤ λ1.

In particular, if M is a median of π, i.e. π([0,M ]) ≥ 1/2 and π([M,n]) ≥ 1/2, then

λ1/8 ≤ λ(M)
1 ≤ λ1.

The proof of Lemma 2.2 is based on a weighted Hardy inequality obtained in [9] and
is discussed in the appendix. In what follows, for any two sequences of positive reals
an, bn, we write an = o(bn) if an/bn → 0 and write an = O(bn) if an/bn is bounded. In the
case that an = O(bn) and bn = O(an), we write an � bn instead.

Proof of Theorem 1.3. Let λn,i, λn, tn, σn, ρn be constants in Theorem 1.1. Note that, for
n ≥ 2,

max{ρ2
n, 1/λ

2
n} ≤ σ2

n =

n∑
i=1

1

λ2
n,i

≤ tn
λn
.

This implies √
tnλn ≤

tn
σn
≤ tn

max{ρn, 1/λn}
≤ tnλn. (2.4)

As a consequence, we have

tnλn →∞ ⇔ σn = o(tn) ⇔ max{ρn, 1/λn} = o(tn). (2.5)

Next, let sn, bn, cn be constants in Theorem 1.3. Observe that

1/λn ≤ max{ρn, 1/λn} ≤ σn.

Set an = min{πn([0,Mn]), πn([Mn, n])}. By Lemmas 2.1 and 2.2, one has

tn ≤ sn ≤ tn +
4

anλn
≤ tn +

4σn
an
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and

σ2
n ≤ b2n ≤ σ2

n +

(
4

anλn

)2

≤ 17σ2
n

a2
n

.

According to the assumption of (1.2), we have an � 1 and this implies

tnλn →∞ ⇔ snλn →∞

and
|tn − sn| = O(σn), |tn − sn| = O(max{ρn, 1/λn}), bn � σn. (2.6)

As a consequence of (2.5) and (2.6), we obtain

tnλn →∞ ⇔ bn = o(sn) ⇔ max{cn, 1/λn} = o(sn). (2.7)

The first equivalence of (2.7) proves the criterion for cutoff in (1). For (2), if FL has a
separation cutoff, then Theorem 1.1 implies tnλn →∞. By the last identity in (2.7), we
obtain cn = o(sn). To see the inverse direction, observe that the mapping u 7→ (1− u)/u2

is decreasing on (0, 2] and λn,i ∈ (0, 2) for all 1 ≤ i ≤ n. In the same reasoning as before,
Lemmas 2.1 and 2.2 yield

ρ2
n ≤ c2n ≤ ρ2

n +
1− anλn/4
(anλn/4)2

+
λn,n − 1

λ2
n,n

≤ ρ2
n +

17

a2
nλ

2
n

. (2.8)

By the first inequality of (2.8), if cn = o(sn), then ρn = o(sn). Accompanied with the facts,

sn = tn +
4

anλn
≤
(

1 +
4

an

)
tn, an � 1,

we obtain ρn = o(tn). By Remark 1.1, FL has a separation cutoff.
To see a window, we recall Corollary 2.5(v) of [6], which says that if a family has a

(tn, σn) cutoff and

bn = o(tn) (or bn = o(sn)), |tn − sn| = O(bn), σn = O(bn),

then the family has a (sn, bn) cutoff. By Theorem 1.1, the desired cutoff for FLc is given
by the first and third identities in (2.6), while the desired cutoff for FL is provided by
the second identity in (2.6), the third identity in (2.7) and the following observations

max{ρn, 1/λn} � max{cn, 1/λn}, max{ρn, 1} = O(max{cn, 1/λn}),

which are implied by (2.8) and the fact λn ≤ 2.

In the following corollary, we summarize some useful comparison between the vari-
ances of hitting times and the windows of cutoffs obtained in the proof of Theorem
1.3.

Corollary 2.3. Let K be the transition matrix of an irreducible birth and death chain on
{0, 1, ..., n} with stationary distribution π and τi, τ̃i be the hitting times in (2.1). Suppose
λ1, ..., λn be non-zero eigenvalues of I −K and set

t =

n∑
i=1

1

λi
, σ2 =

n∑
i=1

1

λ2
i

, ρ2 = σ2 − t, λ = min
1≤i≤n

λi.

Then, for 0 ≤ i ≤ n,

t ≤ E0τ̃i + Enτ̃i = E0τi + Enτi ≤ t+
4

a(i)λ

and

σ2 ≤ Var0τ̃i + Varnτ̃i ≤
17σ2

a(i)2
, ρ2 ≤ Var0τi + Varnτi ≤ ρ2 +

17

a(i)2λ2
,

where a(i) = min{π([0, i]), π([i, n])}.
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To determine a cutoff time and a window using Theorem 1.3, one needs to compute
the mean and variance of the hitting time to some state given that the chain starts at one
boundary state. Explicit formulas on both terms are available using the Markov property
and we summarize them in Lemma A.1.

The next proposition discusses the cutoff times obtained in Theorem 1.3 and provides
a universal lower bound on the corresponding windows using the transition rates and
the stationary distribution.

Proposition 2.4. Let K be the transition matrix of a birth and death chain on {0, 1, ..., n}
with transition rates pi, qi, ri. Let τi, τ̃i be the hitting times in (2.1) and set

s(i) = E0τ̃i + Enτ̃i, b(i)2 = Var0(τ̃i) + Varn(τ̃i).

Suppose K is irreducible with stationary distribution π and spectral gap λ. Let M ∈
{0, 1, ..., n} be a state satisfying π([0,M ]) ≥ 1/2 and π([M,n]) ≥ 1/2. Then, for 0 ≤ i ≤
j ≤M ,

s(i)− s(j) =

j−1∑
`=i

1− 2π([0, `])

p`π(`)
≥ 0, (2.9)

and, for 0 ≤ i ≤ n,

b(i) ≥ 1

λ
≥ 1

2
max

0≤j≤M≤k≤n
max


M−1∑
`=j

π([0, j])

p`π(`)
,

k∑
`=M+1

π([k, n])

q`π(`)

 . (2.10)

Proof. (2.9) is given by Lemma A.1 and the first inequality of (2.10) is obvious from
Lemmas 2.1-2.2, while the second inequality of (2.10) is cited from Theorem A.1 of
[9].

Remark 2.2. Let sn, tn be the constants in Theorems 1.1-1.3. By Corollary 2.3, one has
sn − tn ≥ 0 and, by (2.9), the difference sn − tn is minimized when Mn satisfies

πn([0,Mn]) ≥ 1/2, πn([Mn, n]) ≥ 1/2.

3 Cutoff in total variation

This section is dedicated to the proof of Theorem 1.4. Throughout the rest of this
article, we will write Pi to denote the probability given the initial state i. First, recall
two useful bounds on the total variation.

Lemma 3.1. [9, Proposition 3.8 and Equation (3.5)] Consider a continuous time birth
and death chain on {0, 1, ..., n} with stationary distribution π. For 0 ≤ i ≤ n, let τ̃i be

the first hitting time to state i and d(c)
TV (i, t) be the total variation distance at time t with

initial state i. Then, for 0 ≤ i ≤ n and 0 ≤ j ≤ k ≤ n,

d
(c)
TV (i, t) ≤ Pi(max{τ̃j , τ̃k} > t) + 1− π([j, k])

and
d

(c)
TV (0, t) ≥ P0(τ̃i > t)− π([0, i− 1]).

Based on the above lemma, we may bound the maximum total variation mixing time
using the expected hitting times.

Theorem 3.2. Let π, τ̃i be as in Lemma 3.1 and set

θ(i) = max{E0τ̃i,Enτ̃i}, α(i)2 = max{Var0τ̃i,Varnτ̃i}.
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The maximum total variation mixing time satisfies, for any 0 ≤ j ≤ k ≤ n and δ ∈ (0, 1),

T
(c)
TV (ε1) ≤ θ(j) + Ej τ̃k + Ek τ̃j +

√(
2
δ − 1

)
max{α(j), α(k)}

and

T
(c)
TV (ε2) ≥ θ(j)− Ek τ̃j −

√(
1
δ − 1

)
max{α(j), α(k)},

where ε1 = 1− π([j, k]) + δ and ε2 = min{π([j, n]), π([0, k])} − δ.

Proof. We first consider the upper bound. Set ε1 = 1 − π([j, k]) + δ. By Lemma 3.1, if
i ≤ j, then

d
(c)
TV (i, t) ≤ P0(τ̃k > t) + 1− π([j, k]).

As a result of the one-sided Chebyshev inequality, this implies

T
(c)
TV (i, ε1) ≤ E0τ̃k +

√(
1
δ − 1

)
α(k).

Similarly, if i ≥ k, then

T
(c)
TV (i, ε1) ≤ Enτ̃j +

√(
1
δ − 1

)
α(j).

Note that, in the case j < i < k,

Pi(max{τ̃j , τ̃k} > t) ≤ Pi(τ̃k > t) + Pi(τ̃j > t) ≤ Pj(τ̃k > t) + Pk(τ̃j > t).

This implies

T
(c)
TV (i, ε1) ≤ Ej τ̃k + Ek τ̃j +

√(
2
δ − 1

)
max{α(j), α(k)}.

Combining all above gives the desired upper bound.
For the lower bound, set ε2 = min{π([j, n]), π([0, k])} − δ. By the second inequality of

Lemma 3.1, one has

d
(c)
TV (0, t) ≥ π([j, n])− P0(τ̃j ≤ t).

Setting t = E0τ̃j −
√

(1/δ − 1)α(j) in the above inequality derives

d
(c)
TV (0, t) ≥ π([j, n])− δ ≥ ε2.

This implies

T
(c)
TV (ε2) ≥ T (c)

TV (0, ε2) ≥ E0τ̃j −
√

( 1
δ − 1)α(j).

Similarly, for k ≥ j, we have

T
(c)
TV (ε2) ≥ Enτ̃k −

√
( 1
δ − 1)α(k) = Enτ̃j − Ek τ̃j −

√
( 1
δ − 1)α(k).

Both inequalities combine to the desired lower bound.

Proof of Theorem 1.4(Continuous time case). It has been shown in [14] that separation
is maximized when the chain started at any of the boundary states and the maximum
total variation cutoff is equivalent to the maximum separation cutoff. It is clear that the
constants, sn and bn, in Theorem 1.3 are respectively of the same order as the constants,
θn and αn, in Theorem 1.4. As a consequence of Theorem 1.3, Fc has a cutoff in the
maximum total variation if and only if θnλn →∞ if and only if θn/αn →∞.

To see a cutoff time and a window, we assume in the following that θn/αn →∞. Set

ε0 = inf
n

min{πn([0,Mn]), πn([Mn, n])}.
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For ε ∈ (0, ε0), we may choose xn, yn such that

πn([0, xn]) ≥ ε

3
, πn([xn, n]) ≥ 1− ε

3
, πn([0, yn]) ≥ 1− ε

3
, πn([yn, n]) ≥ ε

3
.

Clearly, xn ≤ yn. Replacing j, k, δ with xn, yn, ε/3 in Theorem 3.2 yields

T
(c)
n,TV(ε) ≤ θn(xn) + Exn τ̃

(n)
yn + Eyn τ̃

(n)
xn +

√
6

ε
max{αn(xn), αn(yn)},

where

θn(j) := max{E0τ̃
(n)
j ,Enτ̃

(n)
j }, α2

n(j) = max{Var0τ̃
(n)
j ,Varnτ̃

(n)
j }.

In the above notations, θn = θn(Mn) and αn = αn(Mn). Since xn ≤Mn ≤ yn, one has

Enτ̃
(n)
xn = Enτ̃

(n)
Mn

+ EMn τ̃
(n)
xn , E0τ̃

(n)
Mn

= E0τ̃
(n)
xn + Exn τ̃

(n)
Mn

.

Note that, for any positive reals a, b, c, d,

|max{a+ b, c} −max{a, c+ d}| ≤ max{b, d}.

This implies

|θn(xn)− θn| ≤ Exn τ̃
(n)
Mn

+ EMn τ̃
(n)
xn ≤ Exn τ̃

(n)
yn + Eyn τ̃

(n)
xn .

According to the definition of xn, yn,Mn, Corollary 2.3 implies

αn(xn) � αn � αn(yn).

Let pn,`, qn,` be the birth and death rates of the nth chain. The replacement of j,M, k

with xn,Mn, yn in (2.10) yields that, for any 0 ≤ i ≤ n,

αn(i) ≥ 1

2
√

2
max

{
Mn−1∑
`=xn

πn([0, xn])

pn,`πn(`)
,

yn∑
`=Mn+1

πn([yn, n])

qn,`πn(`)

}

≥ ε

12
√

2

yn−1∑
`=xn

1

pn,`πn(`)
=

ε

12
√

2

yn∑
`=xn+1

1

qn,`πn(`)

≥ ε

12
√

2
max{Exn τ̃ (n)

yn ,Eyn τ̃
(n)
xn },

where the second inequality uses the fact qn,`πn(`) = pn,`−1π(`−1) and the last inequality
applies the first identity in Lemma A.1. As a consequence, we may conclude from the
above discussions that

T
(c)
n,TV(ε)− θn ≤

(
48
√

2

ε
+

√
6

ε

)
max{αn(xn), αn(yn)} � αn,

for all ε ∈ (0, ε0). In a similar statement, one can show, by the second part of Theorem
3.2, that

θn − T (c)
n,TV(1− ε) ≤

(
36
√

2

ε
+

√
3

ε

)
max{αn(xn), αn(yn)} = O(αn),

for all ε ∈ (0, ε0). This proves the (θn, αn) cutoff for Fc.
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Proof of Theorem 1.4(Discrete time case). We will use the result in the continuous time
case and [8] to deal with the discrete time case. Set

δ = inf
n,i
Kn(i, i), K(δ)

n = (Kn − δI)/(1− δ).

In the assumption for discrete time case, we have δ ∈ (0, 1). Let Xn = {0, 1, ..., n},
F (δ) = (Xn,K(δ)

n , πn)∞n=1 and F (δ)
c be the family of continuous time chains associated

with F (δ). It was proved in [8] (See Theorems 3.1 and 3.3) that, in the maximum total
variation,

F has a cutoff ⇔ F (δ)
c has a cutoff (3.1)

and
F has a (tn, bn) cutoff ⇔ F (δ)

c has a ((1− δ)tn, bn) cutoff. (3.2)

Let τ̃ (n,δ)
i be the hitting time to state i of the continuous time chain associated with K(δ)

n

and Ei,Vari be the conditional expectation and variance given the initial state i. Set

θ(δ)
n = max

{
E0τ̃

(n,δ)
Mn

,Enτ̃
(n,δ)
Mn

}
, β(δ)

n = max
{

Var0τ̃
(n,δ)
Mn

,Varnτ̃
(n,δ)
Mn

}
.

For F (δ)
c , it has been proved in the continuous time case that

F (δ)
c has a cutoff ⇔ θ(δ)

n λ(δ)
n →∞ ⇔ θ(δ)

n /β(δ)
n →∞,

where λ(δ)
n is the smallest non-zero eigenvalue of I −K(δ)

n . Furthermore, if it holds true
that θ(δ)

n /β
(δ)
n → ∞, then F (δ)

c has a (θ
(δ)
n , β

(δ)
n ) cutoff. As a result of (3.1) and (3.2), we

have
F has a cutoff ⇔ θ(δ)

n /β(δ)
n →∞,

and, further, if the right side holds, then F has a (θ
(δ)
n /(1− δ), β(δ)

n ) cutoff.

Let λn, θn, βn be the constants in Theorem 1.4. Clearly, λn = (1− δ)λ(δ)
n . To finish the

proof, it suffices to show that

θ(δ)
n = (1− δ)θn, β(δ)

n � βn. (3.3)

Let pn,i, qn,i, rn,i be the transition rates of Kn and p(δ)
n,i, q

(δ)
n,i , r

(δ)
n,i be the transition rates of

K
(δ)
n . It is clear that

p
(δ)
n,i = pn,i/(1− δ), q

(δ)
n,i = qn,i/(1− δ), r

(δ)
n,i = (rn,i − δ)/(1− δ).

The first equality of (3.3) is an immediate result of the first identity of Lemma A.1. To
see the second part of (3.3), let λn,1, ..., λn,n be eigenvalues of the submatrix of I −Kn

obtained by removing the Mn-th row and column. Clearly, λn,1/(1 − δ), ..., λn,n/(1 − δ)
are eigenvalues of the submatrix of I −K(δ)

n obtained by removing the Mn-th row and
column. As a consequence of Lemma 2.1, we have

β2
n �

n∑
i=1

1− λn,i
λ2
n,i

,
(
β(δ)
n

)2

�
n∑
i=1

1

λ2
n,i

.

Note that the application of Remark 2.1 on the chain (Xn,K(δ)
n , πn) says

(1− δ)
n∑
i=1

1

λ2
n,i

≥
n∑
i=1

1

λn,i
.

This implies βn � β(δ)
n .
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4 A randomization of birth and death chains

This section gives two nontrivial examples as applications of theorems in the intro-
duction. The first example is stated in Theorem 1.5 and we discuss its proof in the
following.

Proof of Theorem 1.5. The proofs for Fc and F are similar and we consider only the
continuous time case. Let Mn, θn, αn be as in Theorem 1.4. For convenience, we let
(pn,i, qn,i, rn,i) be the transition rates of Kn. For n ≥ 1, set

θn,1 =

Mn−1∑
i=0

πn([0, i])

πn(i)pn,i
, θn,2 =

n∑
i=Mn+1

πn([i, n])

πn(i)qn,i

and

α2
n,1 =

Mn−1∑
i=0

Mn−1∑
j=i

πn([0, i])2

πn(i)pn,iπn(j)pn,j
, α2

n,2 =

n∑
i=Mn+1

i∑
j=Mn+1

πn([i, n])2

πn(i)qn,iπn(j)qn,j
.

It is clear from Lemma A.1 that

θn = max{θn,1, θn,2}, αn = max{αn,1, αn,2}.

Without loss of generality, we may assume that θn = θn,1. For n ≥ 1, let Un,1, Vn,1 be
positive random variables defined by

Un,1 =

Mn−1∑
i=0

πn([0, i])

πn(i)pn,iCn,i+1
, V 2

n,1 =

Mn−1∑
i=0

Mn−1∑
j=i

πn([0, i])2

πn(i)pn,iCn,i+1πn(j)pn,jCn,j+1
.

By the independency of Cn,i, one may compute

EUn,1 = µnθn,1 = µnθn, Var(Un,1) = ν2
nα

2
n,1 ≤ ν2

nα
2
n

and

EV 2
n,1 =

∑
0≤i<j≤Mn−1

πn([0, i])2

πn(i)pn,iπn(j)pn,j
µ2
n +

Mn−1∑
i=0

πn([0, i])2

πn(i)2p2
n,i

(µ2
n + ν2

n)

≤ (µ2
n + ν2

n)α2
n,1 ≤ [(µn + νn)αn,1]2.

The above estimation of EV 2
n,1 implies

EVn,1 ≤
√
EV 2

n,1 ≤ (µn + νn)αn,1 ≤ (µn + νn)αn.

Set an =
√

(µnθn)/(νnαn), bn =
√

(µnθn)/[(µn + νn)αn] and

En,1 = {ωn ∈ Ωn : |Un,1(ωn)− µnθn| < anνnαn, Vn,1(ωn) < bn(µn + νn)αn}.

Since Fc has a maximum total variation cutoff, Theorem 1.4 implies αn = o(θn). In the
assumption of (νnαn) = o(µnθn), it is easy to see that, for ωn ∈ En,1,

Un,1(ωn) ∼ µnθn, Vn,1(ωn) = o(µnθn).

By the Chebyshev and Markov inequalities, the fact that an, bn →∞ yields P(n)(En,1)→
1.

EJP 20 (2015), paper 76.
Page 14/47

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-4077
http://ejp.ejpecp.org/


Computing cutoff times

In the same way, we set

Un,2 =

n∑
i=Mn+1

πn([i, n])

πn(i)qn,iCn,i
, V 2

n,2 =

n∑
i=Mn+1

i∑
j=Mn+1

πn([i, n])2

πn(i)qn,iCn,iπn(j)qn,jCn,j
,

and
En,2 = {ωn ∈ Ωn : Un,2(ωn) < µnθn + anνnαn, Vn,2(ωn) < bn(µn + νn)αn}.

A similar reasoning as before yields that P(n)(En,2)→ 1 and, for ωn ∈ En,2,

Un,2(ωn) ≤ µnθn(1 + o(1)), Vn,2(ωn) = o(µnθn).

As consequence, if we set En = En,1 ∩ En,2, then P(n)(En)→∞ and, for ωn ∈ En,

max{Un,1, Un,2} ∼ µnθn, max{Vn,1, Vn,2} = o(µnθn).

The maximum total variation cutoff for F (ω)
c and the cutoff time µnθn are immediate from

Theorem 1.4.

Remark 4.1. From the proof given above, one can derive a variation of Theorem 1.5.
Namely, under the assumption of νnαn = o(µnθn), if Fc has no maximum total variation
cutoff (resp. maximum separation cutoff), then there is a sequence En ⊂ Ωn satisfying
P(n)(En) → 1 such that F (ω)

c has no maximum total variation cutoff (resp. maximum
separation cutoff) for ω ∈

∏∞
n=1En. Note that, the requirement νnαn = o(µnθn) and

the assumption of no cutoff will imply the existence of a subsequence, say in, such that
νin = o(µin). As a result of the Chebyshev inequality, 1/Cin,1 − E(1/Cin,1) converges in

probability to 0. This turns F (ω)
c into a lazy version of Fc with high probability.

Note that the hypothesis of νnαn = o(µnθn) requires the existence of a second
moment of 1/Cn,1. Next, we give an example where 1/Cn,1 does not have a finite first
moment.

Theorem 4.1. For n ≥ 1, let Cn,1, ..., Cn,n be i.i.d. uniform random variables over (0, 1)

defined on (Ωn,P
(n)). For ω = (ω1, ω2, ...) ∈

∏
n Ωn, let F (ω) = (Xn,K(ωn)

n , πn)∞n=1 be a
family of birth and death chains with Xn = {0, 1, ..., n} and{

K
(ωn)
n (i, i+ 1) = K(i+ 1, i) = Cn,i+1/2, ∀0 ≤ i < n,

K
(ωn)
n (i, i) = 1−K(ωn)

n (i, i+ 1)−K(ωn)
n (i, i− 1), ∀i.

Let F (ω)
c be the family of continuous time chains associated with F (ω) and, for ωn ∈ Ωn,

let T cn,TV(ωn, ·) be the maximum total variation mixing time for (Xn,K(ωn)
n , πn). Then,

there is a sequence En ⊂ Ωn satisfying P(n)(En)→ 1 such that, for any ω = (ω1, ω2, ...) ∈∏∞
n=1En, the family F (ω)

c has no maximum total variation cutoff and T cn,TV(ωn, ε) � n2 log n

for ε ∈ (0, 1/10).

Proof. Let Mn ∈ Xn and Un,1, Un,2 be as in the proof of Theorem 1.5. For n ≥ 1, set

Ωn =

{
Cn,i >

1

n log n
,∀1 ≤ i ≤ n

}
, P

(n)
(·) = P(n)(·|Ωn),

where P
(n)

is the conditional probability of P(n) given Ωn. Clearly, P(n)(Ωn) = (1 −
1/n log n)n → 1 and, in P

(n)
, Cn,1, ..., Cn,n are i.i.d. random variables uniformly dis-

tributed over (1/n log n, 1). Let E and Var be the expectation and variance taken in P
(n)

.
It is an easy exercise to compute

E(1/Cn,1) =
log n+ log log n

1− 1/n log n
∼ log n
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and
Var(1/Cn,1) = n log n− (E(1/Cn,1))2 ∼ n log n,

This implies that, if Mn →∞ and n−Mn →∞, then

EUn,1 ∼M2
n log n, EUn,2 ∼ (n−Mn)2 log n,

and
Var(Un,1) ∼M2

nn log n, Var(Un,2) ∼ (n−Mn)2n log n.

For a ∈ (0, 1), if Mn = banc, we write U (a)
n,i for Un,i. As a result of the above computation,

we obtain
EU

(a)
n,1 ∼ a2n2 log n, EU

(a)
n,2 ∼ (1− a)2n2 log n,

and
Var(U

(a)
n,1) ∼ a2n3 log n, Var(U

(a)
n,2) ∼ (1− a)2n3 log n.

For n ≥ 1, let

En =
{
ωn ∈ An : |U (a)

n,1 − a2n2 log n| < n3/2 log n, for a = 1/4, 1/2
}
.

It is easy to show that P
(n)

(En) → 1 and, hence, P(n)(En) ≥ P(n)(An)P
(n)

(En) → 1.
Furthermore, for ωn ∈ En,

max{U (1/2)
n,1 (ωn), U

(1/2)
n,2 (ωn)} ∼ n2 log n

4

and

max{U (1/4)
n,1 (ωn), U

(1/4)
n,2 (ωn)} ∼ 9n2 log n

16
.

By Remark 1.7, F (ω)
c has no maximum total variation cutoff for ω ∈

∏
nEn. The order of

the mixing time is given by Theorems 3.1 and 3.9 of [9].

Remark 4.2. We refer the reader to [13, 19, 20] for other randomized birth and death
chains, which are different from the one considered in Theorem 4.1.

5 Chains started at boundary states

For continuous time birth and death chains, [14] shows that separation reaches its
maximum when the initial state is any of the boundary states. This is not true in the case
of total variation and it is easy to construct counterexamples. In this section, we discuss
the total variation cutoff for families of birth and death chains started at a boundary
state. As before, we use F and Fc for families of birth and death chains without starting
states specified and write FL,FLc and FR,FRc respectively for families of chains started
at the left and right boundary states.

The following theorem displays a list of equivalent conditions for the total variation
cutoff. It is worthwhile to note that some of these conditions are very similar to the
conditions in Theorem 1.4.

Theorem 5.1. Let F = (Xn,Kn, πn)∞n=1 be a family of irreducible birth and death chains
with Xn = {0, 1, ..., n} and Fc be the family of associated continuous time chains in F . For

n ≥ 1, let τ̃ (n)
i be the first hitting time to state i of the nth chain in Fc and, for a ∈ (0, 1),

let Mn(a) be a state in Xn satisfying

πn([0,Mn(a)]) ≥ a, πn([Mn(a), n]) ≥ 1− a,
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and let λn(a) be the smallest eigenvalue of the submatrix of I −Kn indexed by states
0, ...,Mn(a)− 1. Set

un(a) = E0τ̃
(n)
Mn(a), v2

n(a) = Var0τ̃
(n)
Mn(a).

Assume that πn(0)→ 0. Then, the following are equivalent.

(1) FLc has a total variation cutoff.

(2) un(a)/vn(a)→∞ for all a ∈ (0, 1).

(3) un(a)λn(a)→∞ for all a ∈ (0, 1).

(4) There are a ∈ (0, 1) and a positive sequence (tn)∞n=1 satisfying

tn = O(un(c)), ∀c ∈ (0, 1)

and

lim
n→∞

P0

(
τ̃

(n)
Mn(a) > (1− ε)tn

)
= 1, ∀ε ∈ (0, 1),

and, for any b ∈ (a, 1), there is αb ∈ (0, 1) such that

lim sup
n→∞

P0

(
τ̃

(n)
Mn(b) > (1 + ε)tn

)
≤ αb, ∀ε > 0,

where Pi denotes the probability given the initial state i.

Furthermore, if (2) or (3) holds, then FLc has a cutoff with cutoff time (un(a))∞n=1 for
any a ∈ (0, 1). If (4) holds, then FLc has a cutoff with cutoff time (tn)∞n=1.

The discrete time version of the previous theorem can be stated as follows.

Theorem 5.2. Let F ,Mn(a), λn(a) be as in Theorem 5.1. For n ≥ 1, let τ (n)
i be the first

hitting time to state i of the nth chain in F and, for a ∈ (0, 1), set

un(a) = E0τ
(n)
Mn(a), w2

n(a) = Var0τ
(n)
Mn(a).

Assume that πn(0)→ 0, infi,nKn(i, i) > 0 and un(a)→∞ for some a ∈ (0, 1). Then, the
conclusion in Theorem 5.1 remains true for the family FL with the replacement of vn(a)

by wn(a).

Remark 5.1. The proofs of Theorems 5.1 and 5.2 are complicated and are given in
Section 7. It is shown in the beginning of those proofs that the condition πn(0)→ 0 is
necessary for the existence of cutoff of FLc and FL.

Remark 5.2. Let F ,Fc be as in Theorem 5.1 and (pn,i, qn,i, rn,i) be the transition rates of
the nth chains in F . Let Mn ∈ Xn be a sequence of states satisfying (1.3), that is,

inf
n≥1

πn([0,Mn]) > 0, inf
n≥1

πn([Mn, n]) > 0,

and xn ∈ {0, n} be a boundary state fulfilling the following equation

max{E0τ̃
(n)
Mn

,Enτ̃
(n)
Mn
} = Exn τ̃

(n)
Mn

.

By Lemma A.1 and Theorem A.1 of [9], if xn = 0, then

Exn τ̃
(n)
Mn

=

Mn−1∑
i=0

πn([0, i])

πn(i)pn,i
≤
Mn−1∑
i=0

1

πn(i)pn,i
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and

1

λn
≥ min{πn([0,Mn]), πn([Mn, n])} × max

j:j<Mn

Mn−1∑
i=j

πn([0, j])

πn(i)pn,i

≥ min{πn([0,Mn]), πn([Mn, n])} × πn(0)

Mn−1∑
i=0

1

πn(i)pn,i

This implies

Exn τ̃
(n)
Mn

λn ≤
1

min{πn([0,Mn]), πn([Mn, n])}πn(0)
.

In a similar way, this inequality also holds in the case xn = n. As a consequence of
Theorem 1.4, if Fc has a maximum total variation cutoff, then πn(xn) → 0. The above
discussion also holds for F with the assumption infn,iKn(i, i) > 0.

Remark 5.3. Let FLc and FL be the families in Theorems 5.1 and 5.2. If FLc (resp. FL)
has a total variation cutoff with cutoff time tn (resp. tn →∞), then

tn ∼ E0τ̃
(n)
Mn

, (resp. tn ∼ E0τ
(n)
Mn

, )

where Mn ∈ Xn is any sequence satisfying

inf
n≥1

πn([0,Mn]) > 0, inf
n≥1

πn([Mn, n]) > 0. (5.1)

In particular, if FLc (resp. FL) has a total variation cutoff with bounded cutoff time, then
one may use Lemma 3.1 and Theorem 5.1 to derive

E0τ̃
(n)
Mn

= O(1), (resp. E0τ
(n)
Mn

= O(1), )

for any sequence Mn ∈ Xn satisfying (5.1).

Remark 5.4. Let FLc be the family in Theorems 5.1. If FLc has a total variation cutoff,
then un(a) ∼ un(b) for all a, b ∈ (0, 1), or equivalently

EMn(a)τ̃
(n)
Mn(b) = o

(
E0τ̃

(n)
Mn(c)

)
, ∀a, b, c ∈ (0, 1).

This is also true for FL with the assumption in Theorem 5.2. But, the converse is not
necessarily true. For an illustration, recall the example in Remark 1.7. It has been
proved that

E0τ̃
(n)
Mn(a) �

1

λn
� 1

ξn
+ n2, ∀a ∈ (0, 1).

By Lemma A.1, one may compute

Var0τ̃
(n)
1 =

1

ξ2
n

and

Var1τ̃
(n)
Mn(a) ≥

Mn(a)−1∑
i=1

1

Kn(i, i+ 1)πn(i)

i∑
`=1

πn(`)E`τ̃
(n)
i+1 � n

4.

Along with the fact Var0τ̃
(n)
i ≤ (E0τ̃

(n)
i )2, we may conclude from the above computations

that Var0τ̃
(n)
Mn(a) � ξ

−2
n + n4 for all a ∈ (0, 1). By Theorem 5.1, this implies that the family

FLc has no total variation cutoff. It has been shown in Remark 1.7 that if n2ξn → 0, then

E0τ̃
(n)
Mn(a) ∼ ξ

−1
n for all a ∈ (0, 1).
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Remark 5.5. Let vn(a) and wn(a) be the constants in Theorems 5.1 and 5.2. It is
remarkable that if δ = infi,nKn(i, i) > 0, then δv2

n(a) ≤ w2
n(a) ≤ v2

n(a) for all a ∈ (0, 1). To

see this, we let β(n)
1 , ..., β

(n)
Mn

be the eigenvalues of the submatrix of I −Kn indexed by

0, ...,Mn(a)− 1. By Lemma 2.1, β(n)
i > 0 for all i and

v2
n(a) =

Mn(a)∑
i=1

1

(β
(n)
i )2

, w2
n(a) =

Mn(a)∑
i=1

1− β(n)
i

(β
(n)
i )2

.

Clearly, w2
n(a) ≤ v2

n(a). For the lower bound of w2
n(a), set K(δ)

n = (Kn − δI)/(1 − δ).

Note that K(δ)
n is also a stochastic matrix and the submatrix of I − K(δ)

n indexed by
0, ...,Mn(a)− 1 has eigenvalues β(n)

1 /(1− δ), ..., β(n)
Mn(a)/(1− δ). By Remark 2.1, we have

(1− δ)
Mn(a)∑
i=1

1

(β
(n)
i )2

≥
Mn(a)∑
i=1

1

β
(n)
i

and this implies w2
n(a) ≥ δv2

n(a).

Remark 5.6. Note that, in Theorems 5.1 and 5.2, if one chooses E0τ̃
(n)
Mn(a) and E0τ

(n)
Mn(a)

as the cutoff times, the square roots of Var0τ̃
(n)
Mn(a) and Var0τ

(n)
Mn(a) are no longer suitable

for the respective cutoff windows. This is very different from the conclusion in Theorem
1.4 and we refer the reader to Example 5.1 for an illustration of this observation.

Remark 5.7. By Theorems 5.1 and 5.2, if, based on the assumption of πn(0) → 0, FLc
(resp. FL) has a total variation cutoff with cutoff time tn (resp. tn →∞), then

E0τ̃
(n)
Mn(a) ∼ tn (resp. E0τ

(n)
Mn(a) ∼ tn), ∀a ∈ (0, 1).

This implies
E0τ̃

(n)
Mn
∼ tn (resp. E0τ

(n)
Mn
∼ tn),

for any sequence Mn satisfying infn πn([0,Mn]) > 0 and infn πn([Mn, n]) > 0. Let λn(a),
vn(a) and wn(a) be the quantities in Theorems 5.1 and 5.2. As it is easy to check that

λn(a) ≤ λn(b), vn(a) ≤ vn(b), wn(a) ≤ wn(b), ∀0 < a < b < 1,

one may relax the selection of state Mn(a), which generally requires detailed information
of πn, in Theorems 5.1 and 5.2 to any sequence Mn which satisfies infn πn([0,Mn]) > 0

and infn πn([Mn, n]) > 0. The following theorem summarizes the above discussions.

Theorem 5.3. Let F ,Fc and λn(a), un(a), vn(a), wn(a) be as in Theorems 5.1 and 5.2.
Suppose that πn(0)→ 0 and let an ∈ (0, 1) be any sequence satisfying

inf
n≥1

an > 0, sup
n≥1

an < 1. (5.2)

(1) For Fc, the following are equivalent.

(1-1) FLc has a total variation cutoff.
(1-2) un(an)/vn(an)→∞ for any sequence an satisfying (5.2).
(1-3) un(an)λn(an)→∞ for any sequence an satisfying (5.2).

Further, if (1-2) or (1-3) holds, then FLc has cutoff time (un(an))∞n=1 for any se-
quence an satisfying (5.2).

(2) For F , assume that infi,nKn(i, i) > 0 and there is a sequence an satisfying (5.2)
such that un(an)→∞. Then, the following are equivalent.
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(2-1) FL has a total variation cutoff.
(2-2) un(an)/wn(an)→∞ for any sequence an satisfying (5.2).
(2-3) un(an)λn(an)→∞ for any sequence an satisfying (5.2).

Further, if (2-2) or (2-3) holds, then FL has cutoff time (un(an))∞n=1 for any se-
quence an satisfying (5.2).

The next corollary, of which proof is lengthy and addressed in Section 7, provides a
way of selecting cutoff windows.

Corollary 5.4. Let Fc, un(a), vn(a) be as in Theorem 5.1. If FLc has a total variation
cutoff and bn > 0 is a sequence satisfying

bn = o(un(a)), vn(a) = O(bn), ∀a ∈ (0, 1),

then FLc has a (un(a), bn) total variation cutoff. The above statement is also true for FL
under the assumption of infn,iKn(i, i) > 0 and infn bn > 0 and the replacement of vn(a)

by wn(a) in Theorem 5.2.

Example 5.1. Let F = (Xn,Kn, πn)∞n=1 be a family of birth and death chains for which
Xn = {0, 1, ..., n}, πn(i) = 2−n

(
n
i

)
and

Kn(i, i+ 1) = 1− i
n , Kn(i+ 1, i) = i+1

n for i 6= Mn,

Kn(Mn,Mn + 1) = cn
(
1− Mn

n

)
, Kn(Mn,Mn) = (1− cn)

(
1− Mn

n

)
,

Kn(Mn + 1,Mn) = cn(Mn+1)
n , Kn(Mn + 1,Mn + 1) = (1−cn)(Mn+1)

n ,

where cn ∈ (0, 1) and Mn ∈ Xn is a state satisfying πn([0,Mn]) ≥ 1/4 and πn([Mn, n]) ≥
3/4. Let Fc be the family associated with F and τ̃ (n)

i be the first hitting time to state i of
the nth chain in Fc. We will also use Mn(a) with a ∈ (0, 1) to denote a state satisfying
πn([0,Mn(a)]) ≥ a and πn([Mn(a), n]) ≥ 1− a. When cn = 1, (Xn,Kn, πn) is the Ehrenfest
chain on {0, 1, ..., n}. The spectral information of the Ehrenfest chain is well-studied and
it is easy to derive by Lemma 2.2 that

E0τ̃
(n)
bn/2c =

1

4
n log n+O(n), Var0τ̃

(n)
bn/2c � n

2.

One may use Stirling’s formula to show that, for 0 < a < b < 1,∣∣∣n
2
−Mn(a)

∣∣∣ � √n, πn(i) � 1√
n

uniformly for Mn(a) ≤ i ≤Mn(b).

By Lemmas A.1, 2.2 and 7.1, this implies that, for a ∈ (0, 1),

E0τ̃
(n)
Mn(a) =

1

4
n log n+O(n), Var0τ̃

(n)
Mn(a) � n

2. (5.3)

When cn is small, (Xn,Kn, πn) is the modification of the Ehrenfest chain with bottleneck
between states Mn and Mn + 1. In the following, we will discuss the total variation cutoff
and the cutoff window of FLc when cn is small.

First, we consider the total variation cutoff of FLc . By Lemma A.1 and (5.3), one can
show without difficulty that, for a ∈ (0, 1/2),

E0τ̃
(n)
Mn(a) =

1

4
n log n+O(n), Var0τ̃

(n)
Mn(a) � n

2, (5.4)

and, for a ∈ (1/2, 1),

E0τ̃
(n)
Mn(a) =

1

4
n log n+O(n) +

1 + o(1)

2cnπn(Mn)
, Var0τ̃

(n)
Mn(a) � n

2 +
n

c2n
, (5.5)
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where πn(Mn) � 1/
√
n. By Theorem 5.1, FLc has a total variation cutoff if and only if

cn
√
n log n→∞.

Next, we discuss the cutoff window of FLc . Assume that cn
√
n log n→∞. By Corollary

5.4 and Equations (5.4) and (5.5), FLc has a ( 1
4n log n,max{

√
n/cn, n}) total variation

cutoff. We will prove that the window is optimal when cn
√
n → 0. Suppose cn

√
n → 0

and set

sn = E0τ̃
(n)
Mn

, tn = E0τ̃
(n)
Mn+1, a2

n = Var(n)
0 τ̃

(n)
Mn

, b2n = Var(n)
0 τ̃

(n)
Mn+1.

Let T cn,TV(0, ε) be the total variation mixing time of the nth chain in FLc and recall (7.2) in
the following

T
(c)
n,TV(0, ε)

≤ E0τ̃
(n)
i +

√
( 1−δ
δ )Var0(τ̃

(n)
i ) for ε = δ + πn([i+ 1, n])

≥ E0τ̃
(n)
i −

√
( δ

1−δ )Var0(τ̃
(n)
i ) for ε = δ − πn([0, i− 1])

.

In the first inequality, the replacement of i = Mn and δ = 1/8 implies

T cn,TV(0, 7/8) ≤ sn + 3an.

In the second inequality, the replacement of i = Mn + 1 and δ = 3/8 gives

T cn,TV(0, 1/8) ≥ tn −
4

5
bn.

These two inequalities yield

T cn,TV(0, 1/8)− T cn,TV(0, 7/8) ≥ EMn
τ̃

(n)
Mn+1 − 3an −

4

5
bn.

Under the assumption that cn
√
n→ 0, one may compute using Lemma A.1 that

an � n, bn ∼ EMn τ̃
(n)
Mn+1 �

√
n

cn
=

n

cn
√
n
.

Consequently, when cn
√
n→ 0, the cutoff window can be Var0τ̃

(n)
Mn(a) for any a ∈ (1/4, 1)

but not for a ∈ (0, 1/4). Similar observation also happens in FRc .
We would like to point out an interesting observation arising from the bottleneck

effect in this example. Compared with the case cn = 1 for all n, when cn is of order
bigger than 1/

√
n, FLc has a cutoff with the same cutoff time and window. When cn is

of order between 1/
√
n and 1/

√
n log n, FLc has a cutoff with the same cutoff time but

different (larger) cutoff window. When cn is of order smaller than 1/
√
n log n, the cutoff

of FLc disappears.

6 Comparison of total variation cutoffs

In this section, we make a comparison of cutoffs introduced in Sections 3 and 5. To
avoid confusion, we use F ,Fc to denote families of birth and death chains without initial
states specified and let FL,FLc and FR,FRc be families of chains started at respectively
left and right boundary states. The following theorem is an immediate corollary of
Theorems 5.1 and 5.2 and the proof is given in the end of this section.

Theorem 6.1. Let F = (Xn,Kn, πn)∞n=1 be a family of irreducible birth and death chains
with Xn = {0, ..., n} and Fc be the family of continuous time chains associated with F .
For any sequence S = (xn)∞n=1 with xn ∈ Xn, let FS ,FSc be the families of chains in F ,Fc
for which the nth chain started at xn. Assume that πn({0, n})→ 0.
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(1) If FLc and FRc have a total variation cutoff with cutoff time rn and sn, then Fc has a
maximum total variation cutoff with cutoff time tn, where tn = max{rn, sn}.

(2) Let Mn ∈ Xn be a sequence of states satisfying

inf
n≥1

πn([0,Mn]) > 0, inf
n≥1

πn([Mn, n]) > 0

and let S = (xn)∞n=1, where xn ∈ {0, n} is a state such that

max
{
E0τ̃

(n)
Mn

,Enτ̃
(n)
Mn

}
= Exn τ̃

(n)
Mn

and τ̃
(n)
i is the first hitting time to state i of the nth chain in Fc. If Fc has a

maximum total variation cutoff with cutoff time tn, then FSc has a total variation

cutoff with cutoff time tn. In particular, FSc has a (Exn τ̃
(n)
Mn

, bn) total variation cutoff

with b2n = max{Var0τ̃
(n)
Mn

,Varnτ̃
(n)
Mn
}.

The above statements also apply for F under the assumption infn,iKn(i, i) > 0.

Remark 6.1. Let Fc, τ̃ (n)
i ,Mn(a) be as in Theorem 5.1. By Theorem 6.1(2) and Remark

5.4, if Fc has a maximum total variation cutoff, then

EMn(a)τ̃
(n)
Mn(b) = o

(
max

{
E0τ̃

(n)
Mn(c),Enτ̃

(n)
Mn(c)

})
, ∀a, b, c ∈ (0, 1).

The following example gives counterexamples to the converse of (1) and (2) in
Theorem 6.1.

Example 6.1. Consider the family F = (Xn,Kn, πn)∞n=1, where Xn = {0, 1, ..., n} and
Kn(i, i+ 1) = 1− i

2n , ∀0 ≤ i < n, i 6= in,

Kn(i+ 1, i) = i+1
2n , ∀0 ≤ i < n− 1, i 6= in, Kn(n, n− 1) = 1,

Kn(in, in + 1) = cn(1− in
2n ), Kn(in + 1, in) = cn

in+1
2n ,

Kn(in, in) = (1− cn)(1− in
2n ), Kn(in + 1, in + 1) = (1− cn) in+1

2n ,

with 0 ≤ in < n and cn ∈ [0, 1], and

πn(i) = 21−2n

(
2n

i

)
, ∀0 ≤ i < n, πn(n) = 2−2n

(
2n

n

)
.

As before, we use Mn(a) to denote a state in Xn satisfying πn([0,Mn(a)]) ≥ a and

πn([Mn(a), n]) ≥ 1 − a and let τ̃ (n)
i be the first hitting time to state i of the continuous

time chain associated with (Xn,Kn, πn). Let 0 < λn,1 < λn,2 < · · · < λn,n be eigenvalues
of I −Kn. It follows immediately from the central limit theorem that

n−Mn(a) �
√
n, ∀a ∈ (0, 1). (6.1)

In what follows, we discuss the total variation cutoffs of Fc, FLc and FRc with specific
cn and in.

First, assume that cn = 1 for all n. In this setting, the chain (Xn,Kn, πn) is exactly
the collapsed chain of the Ehrenfest model on {0, 1, ..., 2n} obtained by combining states
{i, 2n− i} into a new state for 0 ≤ i < n. The spectral information of the Ehrenfest model
is well-studied and this implies

λn,i =
2i

n
, ∀1 ≤ i ≤ n.
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By Theorem 1.1, Fc has a maximum separation cutoff with cutoff time 1
2n log n and, thus,

has a maximum total variation cutoff. A simple computation with the Stirling formula
gives

πn(i) � 1√
n
, uniformly for Mn(a) ≤ i ≤ n.

By Lemma A.1, this implies that, for a ∈ (0, 1),

Enτ̃
(n)
Mn(a) � n, Varnτ̃Mn(a) � n2,

and, by Theorem 1.3, we have E0τ̃
(n)
Mn(a) ∼

1
2n log n for any a ∈ (0, 1). As a consequence

of Theorems 5.1 and 6.1(2), FRc has no total variation cutoff, but FLc has with cutoff time
1
2n log n. Furthermore, by Theorem 1.4(1), the total variation cutoff time for Fc can be
1
2n log n. This gives a counterexample to the converse of Theorem 6.1(1).

Next, we consider the case n− in = o(
√
n) and cn is small. The assumption of small cn

denotes a bottleneck between states in and in + 1. Under the assumption n− in = o(
√
n),

(6.1) implies that, for a ∈ (0, 1), both E0τ̃
(n)
Mn(a) and Var0τ̃

(n)
Mn(a) remain the same as in the

case cn = 1. This implies that FLc has a total variation cutoff with cutoff time 1
2n log n.

For the cutoff of FRc , one may compute using the formula in Lemma A.1 that, for any
a ∈ (0, 1),

Enτ̃
(n)
Mn(a) � n+

n− in
cn

, Varnτ̃Mn(a) �
(
n+

n− in
cn

)2

.

Consequently, Theorem 5.1 implies that FRc has no cutoff in total variation. Moreover,
Theorem 1.4 implies that if (n−in)/cn = o(n log n), then Fc has a maximum total variation
cutoff. If n log n = O((n− in)/cn), then Fc has no maximum total variation cutoff, which
gives a counterexample to the converse of Theorem 6.1(2).

The next theorem provides more information on the comparison of cutoffs and should
be regarded as a complement to Theorem 6.1.

Theorem 6.2. Let F = {(Xn,Kn, πn)∞n=1 be a family of birth and death chains with
Xn = {0, 1, ..., n} and Fc be the family of continuous time chains associated with F .
Suppose that πn({0, n})→ 0 and, in total variation, FLc has a cutoff with cutoff time tn
but no subsequence of FRc has a cutoff. Let Mn be a state in Xn and set

R = lim sup
n→∞

Enτ̃
(n)
Mn

tn
. (6.2)

Then, the following are equivalent.

(1) Fc has a maximum total variation cutoff. In particular, tn is a cutoff time.

(2) R = 0 for some sequence (Mn)∞n=1 satisfying

inf
n≥1

πn([0,Mn]) > 0, inf
n≥1

πn([Mn, n]) > 0. (6.3)

(3) R = 0 for any sequence (Mn)∞n=1 satisfying (6.3).

The above statement also holds for F provided infn,iKn(i, i) > 0.

Remark 6.2. Consider the family F in Theorem 6.2. Suppose that πn(0) → 0 and FLc
has a total variation cutoff with cutoff time tn. Let R be the constant in (6.2), where
Mn is a sequence satisfying (6.3). For a ∈ (0, 1), let 0 ≤Mn(a) ≤ n be a state satisfying
πn([0,Mn(a)]) ≥ a and πn([Mn(a), n]) ≥ 1− a. By Theorem 5.1 and Remark 5.4, it is easy
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to see that EMn(a)τ̃
(n)
Mn(b) = o(tn) for all 0 < a < b < 1. Further, one may use the following

inequality,

Ej τ̃
(n)
i ≤ πn([j + 1, n])

πn([0, i])
Eiτ̃

(n)
j , ∀0 ≤ i < j ≤ n,

which can be derived using Lemma A.1, to get EMn(b)τ̃
(n)
Mn(a) = o(tn) for all 0 < a < b < 1.

This implies, for 0 < a ≤ infn πn([0,Mn]) and supn πn([Mn, n]) ≤ b < 1,

lim sup
n→∞

Enτ̃
(n)
Mn(b)

tn
≤ R ≤ lim sup

n→∞

Enτ̃
(n)
Mn(a)

tn

≤ lim sup
n→∞

Enτ̃
(n)
Mn(b)

tn
+ lim sup

n→∞

EMn(b)τ̃
(n)
Mn(a)

tn

= lim sup
n→∞

Enτ̃
(n)
Mn(b)

tn
.

As a consequence, we obtain

R = lim sup
n→∞

Enτ̃
(n)
Mn(a)

tn
∀0 < a < 1. (6.4)

In particular, the limit R is independent of the choice of (Mn)∞n=1 subject to (6.3).
Note that the conclusion in (6.4) also applies for the discrete time case with the

further assumption infi,nKn(i, i) > 0. In detail, the proof for the case tn →∞ is similar
to the continuous time case. If tn has a bounded subsequence, say tkn , then, by Remark

5.3, E0τ
(kn)
Mkn (a) = O(1) for any a ∈ (0, 1). As a consequence of the observation E0τ

(n)
i ≥ i,

one has Mkn(a) = O(1) and, then, Enτ
(kn)
Mkn (a) ≥ n −Mkn(a) → ∞ for all a ∈ (0, 1). This

leads to

lim sup
n→∞

Enτ
(n)
Mn(a)

tn
=∞, ∀a ∈ (0, 1),

and

R ≥ lim sup
n→∞

Enτ
(kn)
Mkn (a)

tkn
=∞, ∀ sup

n
πn([0,Mn]) < a < 1,

as desired.
It is worthwhile to remark that, in the above discussions, lim sup can be replaced by

lim provided that Enτ̃
(n)
Mn

/tn and Enτ
(n)
Mn

/tn converge.

Proof of Theorem 6.2. By Remark 6.2, it is obvious that (2) and (3) are equivalent and
the choice of Mn can be restricted to Mn(a), a state such that πn([0,Mn(a)]) ≥ a and
πn([Mn(a), n]) ≥ 1− a.

We first consider the continuous time case. Since FLc has a total variation cutoff with
cutoff time tn, Theorem 5.1 implies

E0τ̃
(n)
Mn(a) ∼ tn, Var0τ̃

(n)
Mn(a) = o(t2n), ∀a ∈ (0, 1). (6.5)

For (2)⇒(1), assume that R = 0 with Mn = Mn(a) for some a ∈ (0, 1). This implies

Enτ̃
(n)
Mn(a) = o(tn) and, then, Varnτ̃

(n)
Mn(a) = o(t2n) using the fact Varnτ̃

(n)
i ≤ (Enτ̃

(n)
i )2.

Combining this observation with (6.5) yields√
max

{
Var0τ̃

(n)
Mn(a),Varnτ̃

(n)
Mn(a)

}
= o

(
max

{
E0τ̃

(n)
Mn(a),Enτ̃

(n)
Mn(a)

})
. (6.6)

By Theorem 1.4, Fc has a maximum total variation cutoff with cutoff time tn.

EJP 20 (2015), paper 76.
Page 24/47

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-4077
http://ejp.ejpecp.org/


Computing cutoff times

For (1)⇒(3), we prove the equivalent implication by assuming that R > 0 for some
sequence (Mn)∞n=1 satisfying (6.3). Note that one may choose a subsequence (kn)∞n=1

such that

lim
n→∞

Ekn τ̃
(kn)
Mkn

tkn
= R > 0. (6.7)

For the subfamily of FLc indexed by (kn)∞n=1, Remark 6.2 implies that the limit in (6.7)
also holds for Mkn = Mkn(a) with a ∈ (0, 1). Further, as the subfamily of FRc indexed by
(kn)∞n=1 is assumed to have no total variation cutoff, we may refine, by Theorem 5.1, the
selection of kn such that√

Varkn τ̃
(kn)
Mkn (a) � Ekn τ̃

(kn)
Mkn (a), tkn = O

(
Ekn τ̃

(kn)
Mkn (a)

)
, (6.8)

for some a ∈ (0, 1). Combining (6.5) with the above discussion leads to√
max

{
Var0τ̃

(kn)
Mkn (a),Varkn τ̃

(kn)
Mkn (a)

}
� max

{
E0τ̃

(kn)
Mkn (a),Ekn τ̃

(kn)
Mkn (a)

}
,

for some a ∈ (0, 1). By Theorem 1.4, the subfamily of Fc indexed by (kn) has no maximum
total variation cutoff.

Next, we consider the discrete time case. For (2)⇒(1), assume that R = 0 with
Mn = Mn(a′) for some a′ ∈ (0, 1). This implies Enτ

(n)
Mn(a′) = o(tn) and Varnτ

(n)
Mn(a′) = o(t2n).

Observe that
E0τ

(n)
Mn(a) + Enτ

(n)
Mn(a) ≥ n, ∀a ∈ (0, 1). (6.9)

By Remark 5.3, (6.9) implies tn → ∞. Otherwise, if ln is a subsequence such that
tln is bounded, then E0τ

(ln)
Mln (a′)(≥ Mln(a′)) is bounded, which implies Elnτ

(ln)
Mln (a′) ≥

ln −Mln(a′)→∞ and then

∞ = lim inf
n→∞

ln
tln
≤ lim sup

n→∞

2Elnτ
(ln)
Mln (a′)

tln
≤ 2R = 0,

a contradiction. Using Theorem 5.2, one may derive a discrete time version of (6.5) and
(6.6). As a consequence of Theorem 1.4, F has a maximum total variation cutoff with
cutoff time tn.

For (1)⇒(3), we assume the inverse of (3) that R > 0 for some sequence Mn satisfying
(6.3). By Remark 6.2, one may select a subsequence `n such that

lim
n→∞

E`nτ
(`n)
M`n (a)

t`n
= R > 0, ∀a ∈ (0, 1).

Consider the following two refinements of `n such that
Case 1: t`n →∞.
Case 2: t`n = O(1).
The proof of Case 1 is the same as the continuous time case. In Case 2, since the

subfamily of FL indexed by (`n) has a cutoff with cutoff time t`n , Remark 5.3 implies that

E0τ
(`n)
M`n (a) = O(1), Var0τ

(`n)
M`n (a) = O(1), ∀a ∈ (0, 1).

By (6.9), we have E`nτ
(`n)
M`n (a) →∞ for any a ∈ (0, 1) and, by Theorem 5.2, we may further

refine `n such that the discrete time version of (6.8) holds for some a ∈ (0, 1) with the
replacement of kn by `n. Consequently, Theorem 1.4 implies that the subfamily of F
indexed by (`n) (and, hence, F) has no maximum total variation cutoff.
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The next theorem is a special version of Theorem 6.1 which identifies two different
cutoffs discussed in this section.

Theorem 6.3. Let F = (Xn,Kn, πn)∞n=1 be a family of irreducible birth and death chains
with Xn = {0, ..., n} and Fc be the families of continuous time chains associated with F .
Assume that Kn(i, j) = Kn(n− i, n− j) for all i, j ∈ Xn and n ≥ 1.

(1) FLc has a total variation cutoff with cutoff time tn if and only if Fc has a maximum
total variation cutoff with cutoff time tn.

(2) Under the assumption that infn,iKn(i, i) > 0, FL has a total variation cutoff with
cutoff time tn if and only if F has a maximum total variation cutoff with cutoff time
tn.

Proof of Theorem 6.1(Continuous time case). As before, we use τ̃ (n)
i to denote the first

hitting time to state i of the nth chain in Fc and use the notation Mn(a) with a ∈ (0, 1) to
denote a state in Xn satisfying πn([0,Mn(a)]) ≥ a and πn([Mn(a), n]) ≥ 1− a.

For (1), assume that FLc ,FRc have total variation cutoffs with cutoff times rn, sn. By
Theorem 5.1, we have√

Var0τ̃
(n)
Mn(1/2) = o

(
E0τ̃

(n)
Mn(1/2)

)
, E0τ̃

(n)
Mn(1/2) ∼ rn,

and √
Varnτ̃

(n)
Mn(1/2) = o

(
Enτ̃

(n)
Mn(1/2)

)
, Enτ̃

(n)
Mn(1/2) ∼ sn.

Clearly, this implies√
max

{
Var0τ̃

(n)
Mn(1/2),Varnτ̃

(n)
Mn(1/2)

}
= o

(
max

{
E0τ̃

(n)
Mn(1/2),Enτ̃

(n)
Mn(1/2)

})
and

max
{
E0τ̃

(n)
Mn(1/2),Enτ̃

(n)
Mn(1/2)

}
∼ max{rn, sn} = tn.

By Theorem 1.4, Fc has a maximum total variation cutoff with cutoff time tn.
For (2), let F̂ = (Xn, K̂n, π̂n)∞n=1 be a family given by

K̂n = Kn, π̂n = πn if xn = 0,

and

K̂n(i, j) = Kn(n− i, n− j), π̂n(i) = πn(n− i), ∀i, j ∈ Xn if xn = n.

Let F̂c be the family of continuous time chains associated with F̂ . Suppose that Fc has
a maximum total variation cutoff with cutoff time tn. It is obvious that F̂c also has a
maximum total variation cutoff with cutoff time tn and, to show that FSc has a total
variation cutoff with cutoff time tn, it is equivalent to prove that F̂Lc has a total variation
cutoff with cutoff time tn.

Let τ̂ (n)
i be the first hitting time to state i of the continuous time chain associated

with (Xn, K̂n, π̂n) and set M̂n be a state defined by

M̂n =

{
Mn if xn = 0

n−Mn if xn = n
.

We use M̂n(a) to denote a state such that

π̂n([0, M̂n(a)]) ≥ a, π̂n([M̂n(a), n]) ≥ 1− a.
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By Theorem 1.4, the total variation cutoff of F̂c with cutoff time tn implies

tn ∼ max
{
E0τ̂

(n)

M̂n
,Enτ̂

(n)

M̂n

}
= E0τ̂

(n)

M̂n

and, for any a ∈ (0, 1),√
max

{
Var0τ̂

(n)

M̂n(a)
,Varnτ̂

(n)

M̂n(a)

}
= o(tn) = o

(
E0τ̂

(n)

M̂n

)
. (6.10)

As a result of Lemma 7.1 and (6.10), we have, for 0 < b < a < 1,

E
M̂n(b)

τ̂
(n)

M̂n(a)
= O

(√
Var

M̂n(b)
τ̂

(n)

M̂n(a)

)
= o

(
E0τ̂

(n)

M̂n

)
,

which leads to
E0τ̂

(n)

M̂n(a)
∼ E0τ̂

(n)

M̂n
, ∀a ∈ (0, 1).

Applying the last identity to (6.10) yields√
Var0τ̂

(n)

M̂n(a)
= o

(
E0τ̂

(n)

M̂n(a)

)
, ∀a ∈ (0, 1).

By Theorem 5.1, F̂Lc has a total variation cutoff with cutoff time tn. The precise descrip-
tion of the cutoff time and window is given by Theorem 1.4, Corollary 5.4 and Remark
1.5.

Proof of Theorem 6.1(Discrete time case). We use τ (n)
i to denote the first hitting time to

state i of the nth chain in F and Mn(a) for a state in Xn satisfying πn([0,Mn(a)]) ≥ a and
πn([Mn(a), n]) ≥ 1− a.

For (1), assume that FL,FR have cutoffs with respective cutoff times rn, sn. Given
an increasing sequence K = (kn)∞n=1 in {1, 2, ...}, let F(K) be the family of chains in F
indexed by the sequence K. By Proposition 2.1 in [7], to prove F has a maximum total
variation cutoff, it suffices to show that, for any increasing sequence of positive integers,
there is a subsequence, say K, such that F(K) has a maximum total variation cutoff.
Note that, by Remark 5.3, rn+ sn must tend to infinity. This implies that K can be chosen
to satisfy one of the following cases.

Case 1: rkn →∞ and skn →∞.
Case 2: rkn →∞ and skn = O(1).
Case 3: rkn = O(1) and skn →∞.
The proof for Case 1 is the same as the continuous time case. The proofs of Case 2

and Case 3 are similar and we discuss Case 2, here. By Theorem 5.2 and Remark 5.3,
the cutoffs of FL,FR imply that, for a ∈ (0, 1),

E0τ
(kn)
Mkn (a) ∼ rkn ,

√
Var0τ

(kn)
Mkn (a) = o(rkn),

and √
Varknτ

(kn)
Mkn (a) ≤ Eknτ

(kn)
Mkn (a) = O(1).

This implies, for a ∈ (0, 1),√
max

{
Var0τ

(kn)
Mkn (a),Varknτ

(kn)
Mkn (a)

}
= o

(
max

{
E0τ

(kn)
Mkn (a),Eknτ

(kn)
Mkn (a)

})
and

max
{
E0τ

(kn)
Mkn (a),Eknτ

(kn)
Mkn (a)

}
∼ max{rkn , skn} = tkn .
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By Theorem 1.4, F(K) has a maximum total variation cutoff with cutoff time tkn .
For (2), based on the following observation

n ≤ E0τ
(n)
i + Enτ

(n)
i , ∀0 ≤ i ≤ n,

we have Exnτ
(n)
Mn
→∞. The remaining proof is similar to the continuous time case and is

skipped.

7 Proof of Theorems 5.1, 5.2 and Corollary 5.4

This section is dedicated to the proof of Theorems 5.1 and 5.2 and we need the
following lemmas.

Lemma 7.1. Let (X ,K, π) be an irreducible birth and death chain on {0, 1, ..., n} and
τi, τ̃i be the first hitting times to state i of the discrete time chain and the associated
continuous time chain. Let λi be the smallest eigenvalue of the submatrix of I − K
indexed by 0, ..., i− 1. Then, for i < j,

π([0, i])

2π([0, j − 1])
(Eiτ̃j)

2 ≤ Vari(τ̃j) ≤
2

λj
Eiτ̃j

and
δπ([0, i])

2π([0, j − 1])
(Eiτj)

2 ≤ Vari(τj) ≤
2

λj
Eiτj ,

where δ = miniK(i, i). In particular,

Eiτj = Eiτ̃j ≤
4π([0, j − 1])

π([0, i])λj
.

Lemma 7.2. Let K be the transition matrix of an irreducible birth and death chain
on {0, 1, ..., n} and τ̃i be the first hitting time to state i for the continuous time chain
associated with K. For 0 < i ≤ n and a ∈ (0, 1),

P0(τ̃i > aE0τ̃i) ≥ min

{
e−
√
a,

(1− a)2

√
a+ (1− a)2

}
.

Lemma 7.3. Let K be the transition matrix of an irreducible birth and death chain on
X = {0, 1, ..., n} with transition rates pi, qi, ri and stationary distribution π. Let τi, τ̃i be
as in Lemma 7.1. Then, for i < j < k,

Ej min{τi, τk} = Ej min{τ̃i, τ̃k} = A/B,

where

A =
∑

i+1≤`1≤j
j≤`2≤k−1

π([`1, `2])

π(`1)q`1π(`2)p`2
, B =

k−1∑
`=i

1

π(`)p`
.

Lemma 7.4. Let (X ,K, π) be an irreducible birth and death chain on {0, 1, ..., n} and
Ht = e−t(I−K). Then,

(1) Ht(0, i)/π(i) ≥ Ht(0, i+ 1)/π(i+ 1) for 0 ≤ i < n and t ≥ 0,

(2) Assume that miniK(i, i) ≥ 1/2. Then, Km(0, i)/π(i) ≥ Km(0, i + 1)/π(i + 1) for
0 ≤ i < n and m ≥ 0.

We relegate the proofs of Lemmas 7.1, 7.2 and 7.3 to the appendix and refer the
reader to Lemma 4.1 in [14] for a proof of Lemma 7.4.
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Proof of Theorem 5.1. We first prove the equivalence for cutoffs. Note that πn(0)→ 0 is
necessary for the total variation cutoff since

lim inf
n→∞

d
(c)
n,TV(0, t) ≤ lim inf

n→∞
d

(c)
n,TV(0, 0) = 1− lim sup

n→∞
πn(0).

Under the assumption that πn(0)→ 0, it is easy to see that, for any a ∈ (0, 1), Mn(a) ≥ 1

if n is large enough. For a ∈ (0, 1) and n ≥ 1 such that Mn(a) ≥ 1, we let

λn,1(a) < · · · < λn,Mn(a)(a)

be the eigenvalues of the submatrix of I − Kn indexed by 0, 1, ...,Mn(a) − 1. Clearly,
λn(a) = λn,1(a) and, by Lemma 2.1,

un(a) =

Mn(a)∑
i=1

1

λn,i(a)
, v2

n(a) =

Mn(a)∑
i=1

1

λ2
n,i(a)

.

As in the proof of (2.4), we have√
un(a)λn(a) ≤ un(a)

vn(a)
≤ un(a)λn(a).

This implies the equivalence of (2) and (3).
To prove the remaining equivalences, we let d(c)

n,TV be the total variation distance of
the nth chains. By Lemma 3.1, one has

d
(c)
n,TV(0, t)

{
≤ P0(τ̃

(n)
i > t) + πn([i+ 1, n]),

≥ P0(τ̃
(n)
i > t)− πn([0, i− 1]).

(7.1)

As a result of the one-sided Chebyshev inequality, this implies

T
(c)
n,TV(0, ε)

≤ E0τ̃
(n)
i +

√
( 1−δ
δ )Var0(τ̃

(n)
i ) for ε = δ + πn([i+ 1, n]),

≥ E0τ̃
(n)
i −

√
( δ

1−δ )Var0(τ̃
(n)
i ) for ε = δ − πn([0, i− 1]),

(7.2)

where δ ∈ (0, 1).
Now, we prove (2)⇒(1) and assume that (2) holds. By the last inequality of Lemma

7.1, we have, for 0 < δ < ε < 1,

0 ≤ un(ε)− un(δ) ≤ 4ε

δλn(ε)
≤ 4εvn(ε)

δ
= o(un(ε)). (7.3)

Fix ε ∈ (0, 1) and let 0 < ε1 < ε < ε2 < 1. By (7.2), the replacement of i = Mn(ε2),
δ = ε2 − ε in the first inequality and the replacement of i = Mn(ε1), δ = 1− ε+ ε1 in the
second inequality yieldT

(c)
n,TV(0, 1− ε) ≤ un(ε2) +

√
( 1
ε2−ε − 1)vn(ε2) = (1 + o(1))un(ε2),

T
(c)
n,TV(0, 1− ε) ≥ un(ε1)−

√
( 1
ε−ε1 − 1)vn(ε1) = (1 + o(1))un(ε1).

As a result of (7.3), we obtain that T (c)
n,TV(0, ε) = (1 + o(1))un(η) for any ε, η ∈ (0, 1), which

proves (1).
Next, we prove (4)⇒(3). Assume that (tn)∞n=0 is a positive sequence satisfying

tn = O(un(c)) for all c ∈ (0, 1) and a ∈ (0, 1) is a constant such that

lim
n→∞

P0

(
τ̃

(n)
Mn(b) > (1− ε)tn

)
= 1, ∀b ∈ (a, 1), (7.4)
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and, for any b ∈ (a, 1), there corresponds a constant αb ∈ (0, 1) such that

lim sup
n→∞

P0

(
τ̃

(n)
Mn(b) > (1 + ε)tn

)
≤ αb, (7.5)

for all ε ∈ (0, 1). Note that λn(a2) ≤ λn(a1) for 0 < a1 < a2 < 1. To prove (3), it suffices
to show that tnλn(b) → ∞ for all b ∈ (a, 1). Now, we fix b ∈ (a, 1). Since πn(0) → 0,
it is clear that Mn(b) ≥ 1 for n large enough. By [5], if Mn(b) ≥ 1, we may write

τ̃
(n)
Mn(b) = Tn(b) + Sn(b), where Tn(b) and Sn(b) are independent, Tn(b) is an exponential

random variable with parameter λn(b) and Sn(b) is a sum of independent exponential
random variables with parameters λn,2(b), ..., λn,Mn(b)(b). Note that

P0

(
τ̃

(n)
Mn(b) > (1− ε)tn

)
=

∫ ∞
0

λn(b)e−λn(b)sP0(Sn(b) > (1− ε)tn − s)ds

≤ (1− e−λn(b)t)P0(Sn(b) > (1− ε)tn − t) + e−λn(b)t,

where the inequality is obtained by separating the region of integration into (0, t) and
[t,∞), and

P0

(
τ̃

(n)
Mn(b) > (1 + ε)tn

)
=

∫ ∞
0

λn(b)e−λn(b)sP0(Sn(b) > (1 + ε)tn − s)ds

≥ P0(Sn(b) > (1 + ε)tn − r)e−λn(b)r.

By (7.4) and (7.5), the replacement of t = C/λn(b) and r = 2C/λn(b) with C = 1
4 log 1

αb
in

the above inequalities yields that, for all ε ∈ (0, 1),

lim
n→∞

P0(Sn(b) > (1− ε)tn − C/λn(b)) = 1

and
lim sup
n→∞

P0(Sn(b) > (1 + ε)tn − 2C/λn(b)) ≤
√
αb < 1.

As a consequence, for ε ∈ (0, 1), if n is large enough, one has

(1 + ε)tn − 2C/λn(b) ≥ (1− ε)tn − C/λn(b),

which implies tnλn(b) ≥ C/(2ε). This proves tnλn(b)→∞.
To finish the proof of those equivalences, it remains to show (1)⇒(4). Assume that Fc

has a cutoff with cutoff time tn. The replacement of i = Mn(a) in (7.1) implies that, for
all ε ∈ (0, 1),

lim inf
n→∞

P0

(
τ̃

(n)
Mn(a) > (1− ε)tn

)
≥ a (7.6)

and
lim sup
n→∞

P0

(
τ̃

(n)
Mn(a) > (1 + ε)tn

)
≤ a. (7.7)

By the Markov inequality, (7.6) implies that tn = O(un(a)) for all a ∈ (0, 1). As a result of
Lemma 7.2, (7.7) implies that un(a) = O(tn) for all a ∈ (0, 1), which leads to tn � un(a)

for all a ∈ (0, 1).
To fulfill the requirement in (4), one has to prove that there is a ∈ (0, 1) such that

lim
n→∞

P0

(
τ̃

(n)
Mn(a) > (1− ε)tn

)
= 1, ∀ε ∈ (0, 1). (7.8)

To see the above limit, we fix ε ∈ (0, 1) and show that, for any subsequence of positive
integers, there is a further subsequence satisfying (7.8). Let kn be a subsequence of
positive integers and set

R(a) := lim
b→1

lim inf
n→∞

EMkn (a)τ̃
(kn)
Mkn (b)

tkn
.
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Clearly, R(a) is nonnegative and non-increasing in a.
We consider the following two cases of R(a). First, assume that R(a) = 0 for some

a ∈ (0, 1) and let bn be a sequence in (a, 1) that converges to 1. Since R(b1) = 0, we

may choose `1 ∈ {k1, k2, ...} such that EM`1
(a)τ̃

(`1)
M`1

(b1) < t`1/2. Inductively, for n ≥ 1, we

may select, according to the fact R(bn+1) = 0, a constant `n+1 ∈ {k1, k2, ...} satisfying
`n+1 > `n and

EM`n+1
(a)τ̃

(`n+1)
M`n+1

(bn+1) < t`n+1/2
n+1.

This implies
EM`n (a)τ̃

(`n)
M`n (b) = o(t`n), ∀b ∈ (a, 1).

By Lemma 2.1, un(a) � tn implies 1/λn(a) = O(tn) and, by Lemma 7.1, this yields

VarM`n (a)τ̃
(`n)
M`n (b) = o(t2`n) for all b ∈ (a, 1). As a consequence of the one-sided Chebyshev

inequality, we obtain

lim
n→∞

PM`n (a)

(
τ̃

(`n)
M`n (b) ≤ ηt`n

)
= 1, ∀b ∈ (a, 1), η > 0.

This leads to

lim inf
n→∞

P0

(
τ̃

(`n)
M`n (a) > (1− ε)t`n

)
≥ lim inf

n→∞
P0

(
τ̃

(`n)
M`n (b) > (1− ε/2)t`n , τ̃

(`n)
M`n (b) − τ̃

(`n)
M`n (a) ≤ εt`n/2

)
= lim inf

n→∞
P0

(
τ̃

(`n)
M`n (b) > (1− ε/2)t`n

)
≥ b,

for all b ∈ (a, 1), where the last inequality uses (7.6). Letting b tend to 1 gives the desired
limit.

Next, we assume that R(a) > 0 for all a ∈ (0, 1). Along with this fact un(a) � tn
for all a ∈ (0, 1), it is easy to see that, for any a ∈ (0, 1), there is b ∈ (a, 1) such that

EMkn (a)τ̃
(kn)
Mkn (b) � tkn . To prove (7.8) for the subsequence kn, we need the following

discussion. For n ≥ 1, set Hn,t = e−t(I−Kn) and let (Xn,t)t≥0 be a realization of the
semigroup Hn,t and, for η ∈ (0, 1), let

Nn(η) = max{0 ≤ i ≤ n|Hn,(1−η)tn(0, i) > πn(i)}.

By Lemma 7.4, we have

d
(c)
n,TV(0, (1− η)tn) = Hn,(1−η)tn(0, [0, Nn(η)])− πn([0, Nn(η)]).

Since Fc has a cutoff with cutoff time (tn)∞n=1, this implies

lim
n→∞

Hn,(1−η)tn(0, [0, Nn(η)]) = 1, lim
n→∞

πn([0, Nn(η)]) = 0.

Obviously, this yields

lim
n→∞

P0

(
Xn,(1−η)tn ≤Mn(a)

)
= 1, ∀a, η ∈ (0, 1). (7.9)

Back to the case that R(a) > 0 for all a ∈ (0, 1), one may choose 0 < b < a− < a <

a+ < c < 1 such that

EMkn (b)τ̃
(kn)
Mkn (a−) � tkn � EMkn (a+)τ̃

(kn)
Mkn (c). (7.10)

This implies that Mkn(b) < Mkn(a−) and Mkn(a+) < Mkn(c) for n large enough. Next, let
L be a positive integer and set

∆n = ∆n(L) :=
(1− ε)tn

L
.
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Note that, for 0 ≤ j ≤ L− 1,

P0

(
τ̃

(kn)
Mkn (a) ∈ (j∆kn , (j + 1)∆kn ], Xkn,(j+1)∆kn

≤Mkn(b)
)

≤P0

(
τ̃

(kn)
Mkn (a) ∈ (j∆kn , (j + 1)∆kn ]

)
PMkn (a)

(
τ̃

(kn)
Mkn (b) ≤ ∆kn

)
.

By (7.9), summing up the above inequalities over j and then passing n to the infinity
yields

lim sup
n→∞

P0

(
τ̃

(kn)
Mkn (a) ≤ (1− ε)tkn

)
≤ lim sup

n→∞
P0

(
τ̃

(kn)
Mkn (a) ≤ (1− ε)tkn

)
× lim sup

n→∞
PMkn (a)

(
τ̃

(kn)
Mkn (b) ≤ ∆kn

)
.

Observe that if there is L > 0 such that

lim sup
n→∞

PMkn (a)

(
τ̃

(kn)
Mkn (b) ≤ ∆kn

)
< 1, (7.11)

then

lim sup
n→∞

P0

(
τ̃

(kn)
Mkn (a) ≤ (1− ε)tkn

)
= 0,

as desired. To get the limit in (7.11), it suffices to show that there is L > 0 such that

lim sup
n→∞

PMkn (a) (Tkn ≤ ∆kn) < 1,

where Tn = min{τ̃ (n)
Mn(b), τ̃

(n)
Mn(c)}. By Lemma 7.3, EMkn (a)Tkn = Akn/Bkn , where

An =
∑

Mn(b)+1≤`1≤Mn(a)
Mn(a)≤`2≤Mn(c)−1

πn([`1, `2])

πn(`1)qn,`1πn(`2)pn,`2
, Bn =

Mn(c)−1∑
`=Mn(b)

1

πn(`)pn,`
.

It is easy to see from the first identity in Lemma A.1 that

An ≥ (a+ − a−)EMn(b)τ̃
(n)
Mn(a−)EMn(a+)τ̃

(n)
Mn(c), Bn ≤ EMn(b)τ̃

(n)
Mn(c)/b.

Along with the fact that un(a) � tn for all a ∈ (0, 1), one may apply (7.10) to the above
inequalities to get EMkn (a)Tkn � tkn . Now, we choose L > 0 such that

0 < EMkn (a)Tkn −∆kn � tkn ,

where the first inequality holds for n large enough. Since Tn ≤ τ̃ (n)
Mn(c), one also has

VarMn(a)Tn ≤ EMn(a)T
2
n ≤ EMn(a)(τ̃

(n)
Mn(c))

2 = VarMn(a)τ̃
(n)
Mn(c) + (EMn(a)(τ̃

(n)
Mn(c))

2

≤ Var0τ̃
(n)
Mn(c) + (E0τ̃

(n)
Mn(c))

2 ≤ 2(E0τ̃
(n)
Mn(c))

2 = 2un(c)2 � t2n.

As a result of the one-sided Chebyshev inequality, this implies

lim sup
n→∞

PMkn (a) (Tkn ≤ ∆kn) ≤ lim sup
n→∞

(
1 +

(EMkn (a)Tkn −∆kn)2

VarMkn (a)Tkn

)−1

< 1.

To see a cutoff time for FLc , it has been shown in the proof of (2)⇒(1) that T (c)
n,TV(0, ε) ∼

un(a) for any ε, a ∈ (0, 1). This implies that, under the assumption of (2) or (3), FLc has a
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cutoff with cutoff time (un(a))∞n=1 for any a ∈ (0, 1). In the assumption of (4), we let tn be
a sequence and 0 < a1 < a2 < 1 be constants such that

lim
n→∞

P0

(
τ̃

(n)
Mn(a1) > (1− ε)tn

)
= 1, ∀ε ∈ (0, 1), (7.12)

and
lim sup
n→∞

P0

(
τ̃

(n)
Mn(a2) > (1 + ε)tn

)
< 1, ∀ε > 0. (7.13)

To show that tn is a cutoff time for FLc , it suffices to prove, based on the equivalence
of assumptions (2) and (4), that tn ∼ un(a) for some a ∈ (0, 1). First, by the Markov
inequality, (7.12) implies

lim inf
n→∞

un(a1)

tn
≥ 1.

On the other hand, by the Chebyshev inequality, one has

lim sup
n→∞

P0

(∣∣∣τ̃ (n)
Mn(a2) − un(a2)

∣∣∣ > εun(a2)
)
≤ lim sup

n→∞

vn(a2)2

ε2un(a2)2
= 0, ∀ε > 0,

where the last equality uses assumption (2). Clearly, this implies that

lim
n→∞

P0

(
τ̃

(n)
Mn(a2) > (1− ε)un(a2)

)
= 1, ∀ε ∈ (0, 1).

A comparison of the tail probabilities in (7.13) and in the above limit says that, for
ε ∈ (0, 1),

(1− ε)un(a2) ≤ (1 + ε)tn, for n large enough.

This yields

lim sup
n→∞

un(a2)

tn
≤ 1.

As a result of the fact un(a1) ∼ un(a2), we obtain un(a1) ∼ tn, as desired.

Proof of Theorem 5.2. Set

δ = inf
i,n
Kn(i, i), K(δ)

n = (Kn − δI)/(1− δ), H
(δ)
n,t = et(K

(δ)
n −I).

It is easy to see that (Xn,Kn, πn) and (Xn, H(δ)
n,t , πn) are respectively the δ-lazy walk and

the continuous time chain associated with (Xn,K(δ)
n , πn). Let dn,TV, d

(c,δ)
n,TV and Tn,TV, T

(c,δ)
n,TV

and τ
(n)
i , τ

(n,δ)
i be respectively the total variation distances, the total variation mixing

times and the first hitting times to state i of chains (Xn,Kn, πn) and (Xn, H(δ)
n,t , πn). As a

result of the following observation

H
(δ)
n,t = et(K

(δ)
n −I) = et(Kn−I)/(1−δ), (7.14)

it is easy to see that the ratio of the spectral gaps of (Xn,Kn, πn) and (Xn, H(δ)
n,t , πn) is

constant in n and, further,

E0τ̃
(n,δ)
Mn(a) = (1− δ)un(a), Var0τ̃

(n,δ)
Mn(a) � wn(a), (7.15)

where the latter also uses Remark 5.5. This is consistent with (3.3).
Set F (δ)

c = (Xn, H(δ)
n,t , πn)∞n=1 and let F (δ,L)

c denote the family of chains in F (δ)
c started

at the left boundary points. The remaining proof for the equivalence of (1), (2) and (3)
is very similar to the proof of the discrete time case in Theorem 1.4 if (3.1) and (3.2)
hold under the replacement of F ,F (δ)

c by FL,F (δ,L)
c . These two equivalences are given
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by Theorem 3.4 in [8] but the prerequisite of this theorem asks the existence of some
ε ∈ (0, 1) such that Tn,TV(0, ε) → ∞ and T

(c,δ)
n,TV (0, ε) → ∞. (The authors of [8] point out

the observation that such a requirement is missed in their article.) First, consider the
requirement T (c,δ)

n,TV (0, ε)→∞. Recall the second inequality in Lemma 3.1 in the following

d
(c,δ)
n,TV (0, t) ≥ P0

(
τ̃

(n,δ)
Mn(a) > t

)
− a.

By Lemma 7.2, (7.15) and the fact Var0τ̃
(n,δ)
Mn(a) ≤ (E0τ̃

(n,δ)
Mn(a))

2, the above inequality implies

d
(c,δ)
n,TV (0, α(1− δ)un(a)) ≥ min

{
e−
√
α,

(1− α)2

√
α+ (1− α)2

}
− a, ∀α ∈ (0, 1).

This yields that

lim inf
n→∞

T
(c,δ)
n,TV (0, ε)

un(a)
> 0 for ε small enough. (7.16)

Since un(a)→∞, we have T (c,δ)
n,TV (0, ε)→∞ for ε small enough.

Next, we prove Tn,TV(0, ε) → ∞. Note that one may use (7.14) and the triangle
inequality to derive

d
(c,δ)
n,TV (0, t) ≤ P(Nt ≤ m) + P(Nt > m)dn,TV(0,m), (7.17)

where (Nt)t≥0 is a Poisson process with parameter 1/(1− δ). A simple application of the
weak law of large numbers says that Nt/t converges to 1/(1− δ) in probability as t tends
to infinity. By (7.16) and the assumption un(a)→∞, the replacement of t = βun(a) and
m = dβun(a)e in (7.17) with small β implies that

lim inf
n→∞

Tn,TV(0, ε)

un(a)
> 0 for ε small enough. (7.18)

This yields that Tn,TV(0, ε)→∞ for ε small enough.
To show (1)⇔(4), let (Nt)t≥0 be the Poisson process as before. It is easy to see from

(7.14) that if (X
(n)
m )∞m=0 is a realization of (Xn,Kn, πn), then (X

(n)
Nt

)t≥0 is a realization of

(Xn, H(δ)
n,t , πn). This implies

P0

(
τ̃

(n,δ)
i > s

)
= P0

(
X

(n)
Nr

< i, ∀0 ≤ r ≤ s
)

= P0(X(n)
m < i, ∀m ≤ Ns) = P0

(
τ

(n)
i > Ns

)
.

(7.19)

Since un(a)→∞ for some a ∈ (0, 1), we obtain

FL has a cutoff ⇔ F (δ,L)
c has a cutoff.

By Theorem 5.1, the latter is equivalent to the existence of a sequence tn > 0 and a
constant a ∈ (0, 1) satisfying

tn = O
(
E0τ̃

(n,δ)
Mn(c)

)
, ∀c ∈ (0, 1) (7.20)

and
lim
n→∞

P0

(
τ̃

(n,δ)
Mn(a) > (1− ε)tn

)
= 1, ∀ε ∈ (0, 1) (7.21)

and, for any b ∈ (a, 1), there is αb ∈ (0, 1) such that

lim sup
n→∞

P0

(
τ̃

(n,δ)
Mn(b) > (1 + ε)tn

)
≤ αb, ε ∈ (0, 1). (7.22)
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As a result of (7.15), one can see that (7.20) is equivalent to tn = O(un(a)) and further,
by (7.19), (7.21) implies

lim inf
n→∞

P0

(
τ

(n)
Mn(a) >

(1− ε)tn
1− δ

)
≥ lim inf

n→∞
P0

(
τ

(n)
Mn(a) > N(1−ε/2)tn

)
= lim inf

n→∞
P0

(
τ̃

(n,δ)
Mn(a) > (1− ε/2)tn

)
= 1.

and (7.22) implies

lim sup
n→∞

P0

(
τ

(n)
Mn(b) >

(1 + ε)tn
1− δ

)
≤ lim sup

n→∞
P0

(
τ

(n)
Mn(b) > N(1+ε/2)tn

)
= lim sup

n→∞
P0

(
τ̃

(n,δ)
Mn(b) > (1 + ε/2)tn

)
≤ αb,

for all ε ∈ (0, 1). This gives the desired properties in (4). Conversely, one may use a
similar statement to prove (7.21) and (7.22) based on the observation of (4) and this part
is omitted.

For a choice of the cutoff time, if (2) or (3) holds, the proof for the selected cutoff
time is given by (7.15) and Theorem 3.4 in [8]. If (4) holds, the proof is exactly the same
as that of Theorem 5.1 and we skip it here.

Proof of Corollary 5.4. The (un(a), bn) cutoff of FLc is immediately from (7.2) and Lemma
7.1. For the (un(a), bn) cutoff of FL, the assumption infn bn > 0 and bn = o(un(a)) implies
that un(a)→∞ for all a ∈ (0, 1), which means that the cutoff time tends to infinity. The
remaining proof also uses Theorem 3.4 in [8] and is similar to the proof of the discrete
time case in Theorem 1.4. We refer the reader to Section 3 for details.

8 Examples

In this section, we consider some classical examples and use the developed theory
to examine the existence of cutoff and, in particular, compute the cutoff time. First,
we write F = (Xn,Kn, πn)∞n=1 for a family of irreducible birth and death chains with
Xn = {0, 1, ..., n} and write FL,FR for families of chains in F started at the left and right
boundary states. For the continuous time case, those families are written as Fc,FLc ,FRc
instead. For n ≥ 1, let pn,i, qn,i, rn,i be the birth, death and holding rates in Kn and

τ
(n)
i , τ̃

(n)
i be the first hitting times to state i of the nth chains in F ,Fc. For a ∈ (0, 1),

Mn(a) denotes a state in Xn satisfying πn([0,Mn(a)]) ≥ a and πn([Mn(a), n]) ≥ 1− a.

(1) Biased random walk. For n ∈ N, let

pn,i = rn,n = p, qn,i+1 = rn,0 = q, ∀0 ≤ i < n, n ≥ 1,

with q = 1− p ∈ (0, 1/2). Note that the stationary distribution satisfies

πn(i) =
p/q − 1

(p/q)n+1 − 1

(
p

q

)i
, ∀0 ≤ i ≤ n.

This implies
πn([0, i])

πn(i)
=
p/q − (p/q)−i

p/q − 1
, ∀0 ≤ i ≤ n. (8.1)

By Lemma A.1, one has

E0τ̃
(n)
n =

n−1∑
i=0

πn([0, i])

pπn(i)
, ζn,i ≤ Variτ̃

(n)
i+1 ≤ 2ζn,i,
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where

ζn,i =
1

p2πn(i)

i∑
`=0

(
πn([0, `])

πn(`)

)2

πn(`).

Applying (8.1) to the computation of E0τ̃
(n)
n and ζn,i yields

E0τ̃
(n)
n =

n

p− q
− p2

q(p− q)2

(
1−

(
q

p

)n)
,

1

p2
≤ ζn,i ≤

p

(p− q)3
, ∀i,

where the bound of ζn,i leads to Var0τ̃
(n)
n � n. Observe that πn([0, n]) = 1 and πn(n)→ 1−

q/p. As a consequence of Theorems 1.3, 1.4 and 6.1 withMn = n, the families Fc,FLc have
a ( n

p−q ,
√
n) cutoff in total variation and separation. To examine the existence of cutoff

for FRc , we fix a ∈ (q/p2 − 1, q/p). Based on the observation that πn(n− 1)→ (p− q)/p2,

one has Mn(a) = n− 1 for n large enough and this implies Varnτ̃
(n)
Mn(a) = (Enτ̃

(n)
Mn(a))

2. By

Theorem 5.1, FRc has no cutoff in total variation.

(2) Metropolis chains for exponential distributions Consider an increasing positive
function f on (0,∞). For n ≥ 1, let πn(i) = πn(0)f(i) and

pn,i = rn,0 = 1/2, qn,i+1 =
f(i)

2f(i+ 1)
, ∀0 ≤ i < n, (8.2)

and

rn,i+1 =
1

2
− f(i)

2f(i+ 1)
, ∀0 ≤ i < n− 1, rn,n = 1− f(n− 1)

f(n)
. (8.3)

One can check that the nth chain is the Metropolis chain for πn with base chain the
simple random walk on Xn with holding probability 1/2 at boundaries. We refer the
reader to [10] for details of Metropolis chains.

It is worthwhile to note that Kn is monotonic, i.e. pn,i + qn,i+1 ≤ 1 for all 0 ≤ i < n.
By Corollary 4.2 in [14], separation of the nth chain in F ,FL,FR (and respectively in
Fc,FLc ,FRc ) is the same. As a result of Theorem 1.1, the existence of separation cutoff of
F is equivalent to that of Fc and the cutoff time and window for Fc given by Theorem
1.1 is applicable to F . For the total variation distance, if infn,i rn,i > 0 is assumed, then
Theorems 1.4, 5.1 and 5.2 and Remarks 1.6 and 5.5 imply that the existence of cutoff of
F (respectively FL,FR) is equivalent to that of Fc (respectively FLc ,FRc ). Furthermore,
the cutoff times and windows for F ,Fc given by Theorem 1.4 (respectively for FL,FLc
and for FR,FRc given by Theorems 5.1 and 5.2) are consistent in the way that the cutoff
times are equal and the cutoff windows are of the same order.

In this example, f(x) = exp{αxβ} with α > 0 and β > 0. Note that infn,i rn,i > 0 if
β ≥ 1 and infn,i rn,i = 0 if β ∈ (0, 1). In what follows, the cutoff phenomenon is discussed
case by case according to β.

Case 1: β > 1. We first make some computations. Note that

d

dx
f(x) = αβxβ−1f(x) ≥ αβf(x) ∀x ≥ 1.

This implies

i∑
j=0

f(j) ≤ 1 + f(i) +

∫ i

1

f(x)dx ≤ 1 + f(i) +
f(i)− f(1)

αβ
≤
(

2 +
1

αβ

)
f(i).

When i tends to infinity, one has(
1− 1

i

)β
= 1− β

i
+O

(
1

i2

)
.
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This leads to
f(i− 1)

f(i)
= exp

{
−αβiβ−1

(
1 +O

(
1

i

))}
= O

(
1

i2

)
.

As a result, we obtain

1 ≤ πn([0, i])

πn(i)
= 1 +

πn([0, i− 1])

πn(i)
≤ 1 +

(
2 +

1

αβ

)
f(i− 1)

f(i)
= 1 +O

(
1

i2

)
.

Replacing i with n gives πn(n)→ 1 and, by Lemma A.1, one has

E0τ̃
(n)
n = 2

n−1∑
i=0

πn([0, i])

πn(i)
= 2n+O(1)

and

Variτ̃
(n)
i+1 �

1

πn(i)

i∑
`=0

(
πn([0, `])

πn(`)

)2

πn(`) � 1 uniformly for 0 ≤ i < n.

The estimation of the variance implies Var0τ̃
(n)
n � n. By Theorem 1.3, 1.4 and Theorem

6.1, both Fc and FLc have a (2n,
√
n) cutoff in total variation and separation. For the

family FRc , the observation, πn(n)→ 1, implies that the total variation mixing time of the
nth chain is equal to 0 when n is large enough.

Case 2: β = 1. Set δ = (1− e−α)/2. Note that (Kn − δI)/(1− δ) is the biased random
walk on Xn with p = 1/(1 + e−α). The result for biased random walks implies that Fc
and FLc have a ( 2n

1−e−α ,
√
n) cutoff in total variation and separation but FRc has no total

variation cutoff.
In Cases 1 and 2, one has infn,i rn,i > 0. This implies that, in the total variation

distance, the conclusion on the existence of cutoff, the cutoff time and the cutoff window
also applies to Fc,FLc ,FRc .

Case 3: 0 < β < 1. First, observe that

d

dx
(x1−βf(x)) = αβf(x) + (1− β)x−βf(x).

This implies

i1−βf(i)− j1−βf(j)

αβ + (1− β)j−β
≤
∫ i

j

f(x)dx ≤ i1−βf(i)

αβ
, ∀1 ≤ j < i.

and then

1

αβ + (1− β)j−β

(
1− j1−βf(j)

i1−βf(i)

)
≤ f(1) + · · ·+ f(i)

i1−βf(i)
≤ 1

αβ
+ iβ−1 (8.4)

When i ≥ 2j and j →∞, one has

f(j)

f(i)
= exp

{
−αiβ

(
1−

(
j

i

)β)}
= o

(
1

i

)
.

Consequently, we obtain, as j →∞,

f(0) + · · ·+ f(i) = i1−βf(i)

(
1

αβ
+O(j−β + iβ−1)

)
uniformly for i ≥ 2j. (8.5)

Replacing i, j with n, bn/2c in (8.5) gives

1

πn(0)
= n1−βf(n)

(
1

αβ
+ o(1)

)
as n→∞.
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Next, we fix c > 0 and let cn be a sequence converging to c such that cnn1−β ∈ Xn.
Set Mn = n− cnn1−β . Replacing i, j with Mn, bMn/2c in (8.5) yields

lim
n→∞

πn([0,Mn]) = lim
n→∞

πn(0)

Mn∑
`=0

f(`) = e−cαβ ∈ (0, 1).

By Lemma A.1, one has, when 2jn ≤ in ≤Mn and jn →∞,

E0τ̃
(n)
Mn

= 2

Mn−1∑
`=0

f(0) + · · ·+ f(`)

f(`)
=

2n2−β

αβ(2− β)
+O

(
n2−βj−βn + i2−βn + n

)
,

where the second equality is given by separating
∑
`<Mn

into
∑
`<in

and
∑
in≤`<Mn

and
then applying (8.4) and (8.5) respectively, and

Var0τ̃
(n)
Mn
�

∑
0≤`≤i<Mn

(f(0) + · · ·+ f(`))2

f(i)f(`)
�
Mn−1∑
i=0

1

f(i)

i∑
`=0

`2−2βf(`),

where the computation uses (8.4). Observe that 4− 3β > 2− β. Setting jn = bn1/2c and

in = bn
4−3β
4−2β c. Clearly, in ≥ 2jn for n large enough and, in the computation of expectation,

this leads to

E0τ̃
(n)
Mn

=
2n2−β

αβ(2− β)
+O

(
n2− 3

2β + n
)
.

Applying the following fact

d

dx
(x3−3βf(x)) = [(3− 3β)x2−3β + αβx2−2β ]f(x) � x2−2βf(x), ∀x ≥ 1,

to the computation of the variance yields

Var0τ̃
(n)
Mn
�
Mn−1∑
i=0

i3−3β � n4−3β .

Similarly, one may use the observation that f(Mn)
f(n) =→ e−cαβ to derive

qn,i � 1 uniformly for Mn ≤ i ≤ n.

By Lemma A.1, this implies

Enτ̃
(n)
Mn
�

n∑
i=Mn+1

f(i) + · · ·+ f(n)

f(i)
� n2−2β

and

Varnτ̃
(n)
Mn
�

∑
Mn<i≤`≤n

(f(`) + · · ·+ f(n))2

f(i)f(`)
� n4−4β .

As a consequence of Theorem 1.3, 1.4 and 6.1, Fc and FLc have a ( 2n2−β

αβ(2−β) , n
2− 3

2β + n)

cutoff in total variation and separation but, by Theorem 5.1, FRc has no total variation
cutoff. Note that, when β ∈ (2/3, 1), a better choice of the cutoff window is n2− 3

2β. To
have this cutoff window, a more subtle estimation of the cutoff time is required.

We summarize the above results in the following theorem.
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Theorem 8.1. Let f(x) = exp{αxβ} with α > 0, β > 0. Consider the family F =

(Xn,Kn, πn)∞n=1, where Xn = {0, 1, ..., n}, πn(i) = π(0)f(i) and Kn is a birth and death
chain with transition rates

pn,i = rn,0 = 1/2, qn,i+1 =
f(i)

2f(i+ 1)
, rn,i+1 =

1

2
− f(i)

2f(i+ 1)
, ∀0 ≤ i < n.

Then, Fc and FLc have a (tn, bn) cutoff in total variation and separation but FRc has no
total variation cutoff, where

tn =


2n for β > 1

2n
1−e−α for β = 1
2n2−β

αβ(2−β) for 0 < β < 1

, bn =

{√
n for β ≥ 1

n2− 3
2β + n for 0 < β < 1

.

(3) Metropolis chains for polynomial distributions In this example, we consider the
family of Metropolis chains given by (8.2) and (8.3) with the replacement of f(x) by
g(x) = exp{α(log(x+ 1))β}, where α, β are positive. It has been shown in [9] that Fc has
a cutoff in total variation and separation when β > 1 but has no cutoff when 0 < β ≤ 1.
The following theorem provides a cutoff time and a cutoff window when β > 1.

Theorem 8.2. Let g(x) = exp{α(log(x+ 1))β} with α > 0 and β > 1. Consider the family
F = (Xn,Kn, πn)∞n=1, where Xn = {0, 1, ..., n}, πn(i) = π(0)g(i) and Kn is a birth and
death chain with transition rates

pn,i = rn,0 = 1/2, qn,i+1 =
g(i)

2g(i+ 1)
, rn,i+1 =

1

2
− g(i)

2g(i+ 1)
, ∀0 ≤ i < n.

Then, Fc and FLc have a (tn, bn) cutoff in total variation and separation but FRc has no
total variation cutoff, where

tn =

N∑
`=0

n2

αβB`(log n)β+`−1
, bn =

n2

(log n)
3
2 (β−1)

and B0 = 1, B` = 2`(β − 1)β · · · (β + `− 2), N = dβ−3
2 e ≥ 0.

Remark 8.1. Note that, in Theorem 8.2, β +N − 1 < 3
2 (β − 1) ≤ β +N .

The proof of Theorem 8.2 is similar to the proof of the case β ∈ (0, 1) in Theorem 8.1
and is placed in the appendix.

(4) Metropolis chains for binomial distributions For n ≥ 1, let πn(i) = 2−n
(
n
i

)
and

pn,i = qn,n−i =
1

2
, qn,i+1 = pn,n−i−1 =

i+ 1

2(n− i)
, ∀0 ≤ i < n/2,

and rn,i = 1− pn,i − qn,i for 0 ≤ i ≤ n. It is easy to check that Kn is the Metropolis chain
for πn with base chain the simple random walk on Xn with holding probability 1/2 at
the boundary states. The separation cutoff of this family is proved in [12] and we will
discuss the cutoff time and the cutoff window in this example. First, one may use Lemma
A.1 and (5.3) to derive

Mn−1∑
i=0

πn([0, i])

πn(i)(1− i
n )

=
n log n

4
+O(n),

∑
0≤`≤i<Mn

πn([0, `])2

πn(`)πn(i)
� n2, (8.6)

for any sequence Mn ∈ Xn satisfying |Mn − n
2 | = O(

√
n). Note that

πn(i)

(
1− i

n

)
=
πn−1(i)

2
, πn([0, i]) = πn−1([0, i])− πn−1(i)

2
.
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This implies
πn([0, i])

πn(i)(1− i
n )

=
2πn−1([0, i])

πn−1(i)
− 1. (8.7)

Set Mn = bn/2c. By Lemma A.1, (8.6) and (8.7), we obtain

E0τ̃
(n)
Mn

=

Mn−1∑
i=0

2πn([0, i])

πn(i)
=

Mn−1∑
i=0

(
πn+1([0, i])

πn+1(i)(1− i
n+1 )

+ 1

)
=
n log n

4
+O(n)

and

Var0τ̃
(n)
Mn
�

∑
0≤`≤i<Mn

πn([0, `])2

πn(`)πn(i)
� n2.

In a similar way, one has

Enτ̃
(n)
Mn

=
n log n

4
+O(n), Varnτ̃

(n)
Mn
� n2.

As a consequence of Theorems 1.3, 1.4 and 6.1, Fc has a ( 1
2n log n, n) separation cutoff

and Fc,FLc have a ( 1
4n log n, n) total variation cutoff.

A Auxiliary results and proofs

Lemma A.1. Consider an irreducible birth and death chain on {0, 1, ..., n} with transition
rates pi, qi, ri and stationary distribution π. Let τi, τ̃i be the hitting times in (2.1). Then,
one has

Eiτi+1 = Eiτ̃i+1 =
π([0, i])

π(i)pi
,

and

Vari(τi+1) =
1

piπ(i)

i∑
`=0

π(`)[E`τi+1 + E`τi − 1],

and

Vari(τ̃i+1) =
1

piπ(i)

i∑
`=0

π(`)[E`τ̃i+1 + E`τ̃i].

Proof. See [2] for a proof of the discrete time case. The continuous time case is a simple
corollary of the discrete time case.

Proof of Remark 1.1. Let tn, λn,i, λn, σn, ρn be the notations in Theorem 1.1. It has been
proved in [12] that

F has a separation cutoff ⇔ tnλn →∞ (A.1)

and
btn − (1/ε− 1)1/2ρnc ≤ Tn,sep(0, ε) ≤ dtn + (1/ε− 1)1/2ρne, ∀ε ∈ (0, 1).

These inequalities imply

|Tn,sep(0, ε)− tn| ≤ (1/ε− 1)1/2ρn + 1, ∀ε ∈ (0, 1).

Note that λn,i ≤ 2 for 1 ≤ i ≤ n. Clearly, this yields tn ≥ n/2. As a consequence, if
ρn = o(tn) or equivalently max{ρn, 1} = o(tn), then F has a (tn,max{ρn, 1}) separation
cutoff.

To see the inverse direction, note that

max{ρ2
n, 1/λ

2
n} ≤

tn
λn
.

EJP 20 (2015), paper 76.
Page 40/47

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-4077
http://ejp.ejpecp.org/


Computing cutoff times

This implies √
tnλn ≤

tn
max{ρn, 1/λn}

≤ tnλn,

and, as a result, we have

tnλn →∞ ⇔ max{ρn, 1/λn} = o(tn). (A.2)

By (A.1) and (A.2), FL has a separation cutoff if and only if max{ρn, 1/λn} = o(tn).
Further, if F has a separation cutoff, then ρn = o(tn).

Proof of Lemma 2.2. Let π be the stationary distribution of K. Since π is a reversible
measure for K, the spectra of K,Li are real. The interlacing property of λj , λ

(i)
j is given

by Theorem 4.3.8 of [15]. Clearly, this gives the first inequality 1/λ1 ≤ 1/λ
(i)
1 . Note that

λ
(i)
1 = min

{
〈(I −K)f, f〉π

π(f2)

∣∣∣∣f(i) = 0

}
,

where 〈g, h〉π =
∑n
j=0 g(j)h(j)π(j). By Proposition A.2 and Theorem 3.8 of [9], one has

1

4C(i)
≤ λ(i)

1 ≤
1

C(i)
,

1

4C(i)
≤ λ1 ≤

1

min{π([0, i]), π([i, n])}C(i)
,

where

C(i) = max

max
0≤j<i

i−1∑
`=j

π([0, j])

π(`)K(`, `+ 1)
, max
i<j≤n

j∑
`=i+1

π([j, n])

π(`)K(`, `− 1)

 .

This gives the second inequality 1/λ(i) ≤ (4/min{π([0, i]), π([i, n])})/λ1.

Proof of Lemma 7.1. Let pk, qk, rk be the transition rates of K. We first consider the
continuous time case. By Lemma A.1, we have, for 0 ≤ i < j ≤ n,

Variτ̃j ≥
j−1∑
k=i

1

pkπ(k)

k∑
`=0

π(`)

k∑
m=`

Emτ̃m+1 =

j−1∑
k=i

1

pkπ(k)

k∑
m=0

π([0,m])Emτ̃m+1

≥ π([0, i])

π([0, j − 1])

j−1∑
k=i

π([0, k])

pkπ(k)

k∑
m=i

Emτ̃m+1

=
π([0, i])

π([0, j − 1])

j−1∑
k=i

k∑
m=i

Ek τ̃k+1Emτ̃m+1 ≥
π([0, i])

2π([0, j − 1])
(Eiτ̃j)

2.

This proves the lower bound.
For the upper bound, let a1 < · · · < ai and b1 < · · · < bj be the eigenvalues of the

submatrices of I −K indexed respectively by 0, ..., .i− 1 and 0, ..., j − 1. By the strong
Markov property, the first hitting time to state i started at 0 and the first hitting time to
state j started at i are independent. By Lemma 2.1, this implies

Eiτ̃j =

j∑
k=1

1

bk
−

i∑
k=1

1

ak
, Variτ̃j = Var0τ̃j − Var0τ̃i =

j∑
k=1

1

b2k
−

i∑
k=1

1

a2
k

.

Inductively applying Theorem 4.3.8 of [15] yields the fact that

ak > bk, ∀1 ≤ k ≤ i.
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As a result, we have

Variτ̃j =

i∑
k=1

(
1

bk
− 1

ak

)(
1

bk
+

1

ak

)
+

j∑
k=i+1

1

b2k

≤ 2

b1

i∑
k=1

(
1

bk
− 1

ak

)
+

2

b1

j∑
k=i+1

1

bk
=

2

b1
Eiτ̃j .

For the discrete time case, let δ = miniK(i, i) and set K(δ) = (K − δI)/(1 − δ). Let

τ
(δ)
i , τ̃

(δ)
i be the first hitting times to state i of the discrete time and continuous time

chains associated with K(δ). Let c1 < · · · < ci and d1 < · · · < dj be the eigenvalues of the
submatrices of I −K(δ) indexed respectively by 0, ..., .i− 1 and 0, ..., j − 1. It is clear that
(1− δ)c1, ..., (1− δ)ci and (1− δ)d1, ..., (1− δ)dj are the eigenvalues of the submatrices of
I −K indexed respectively by 0, ..., .i− 1 and 0, ..., j − 1. By Lemma 2.1, we have

Eiτj =

j∑
k=1

1

(1− δ)dk
−

i∑
k=1

1

(1− δ)ck
=
Eiτ̃

(δ)
j

(1− δ)

and

Variτj =

j∑
k=1

1− (1− δ)dk
(1− δ)2d2

k

−
i∑

k=1

1− (1− δ)ck
(1− δ)2ck

The bounds for Variτj are immediately obtained by the result in the continuous time case
and the following equalities.

Variτj =
Variτ̃

(δ)
j

(1− δ)2
−
Eiτ̃

(δ)
j

1− δ
=
δVariτ̃

(δ)
j

(1− δ)2
+

Variτ
(δ)
j

1− δ
.

Proof of Lemma 7.2. Let λ1, ..., λi be the eigenvalues of the submatrix of I −K indexed
by {0, ..., i− 1}. By Lemma 2.1, one has

E0τ̃i =

i∑
k=1

1

λk
, Var0τ̃i =

i∑
k=1

1

λ2
k

.

These identities imply Var0τ̃i ≤ E0τ̃i/λ, where λ = min{λk|1 ≤ k ≤ i}. As a result of the
one-sided Chebyshev inequality, we have, for a ∈ (0, 1),

P0(τ̃i > aE0τ̃i) ≥ 1− 1

1 + (1− a)2(E0τ̃i)2/Var0τ̃i
≥ 1− 1

1 + (1− a)2λE0τ̃i
.

Let b be a positive constant. If λE0τ̃i ≥ b, then

P0(τ̃i > aE0τ̃i) ≥ 1− 1

1 + (1− a)2b
.

Brown and Shao proved in [5] that, under P0, τ̃i has the distribution as the sum of
exponential random variables with parameters λ1, ..., λi. In the case of λE0τ̃i ≤ b, this
leads to

P0(τ̃i > aE0τ̃i) ≥ exp{−aλE0τ̃i} ≥ e−ab.

Summarizing both cases yields

P0(τ̃i > aE0τ̃i) ≥ min

{
e−ab, 1− 1

1 + (1− a)2b

}
.

Taking b = 1/
√
a gives the desired inequality.

EJP 20 (2015), paper 76.
Page 42/47

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-4077
http://ejp.ejpecp.org/


Computing cutoff times

Proof of Lemma 7.3. For simplicity, we set τ = min{τi, τk}. The first equality is clear
from the definition. To see the second equality, note that it follows immediately from the
Markov property that

Ejτ = (κ1 + · · ·+ κk−i−1)

(
1 + γ1 + · · ·+ γj−i−1

1 + γ1 + · · ·+ γk−i−1

)
− (κ1 + · · ·+ κj−i−1),

where

γ` =
qi+1qi+2 · · · qi+`
pi+1pi+2 · · · pi+`

, κ` =

(
1

qi+1
+

1

qi+2γ1
+ · · ·+ 1

qi+`γ`−1

)
γ`.

The proof of the above identity is somewhat complicated and we refer the reader to
Equation (3.66) in [18] for a proof. Observe that

Ejτ(1 + γ1 + · · ·+ γk−i−1) =(κj−i + · · ·+ κk−i−1)

+
∑

1≤`1≤j−i−1
j−i≤`2≤k−i−1

(γ`1κ`2 − κ`1γ`2) (A.3)

and

γ`1κ`2 − κ`1γ`2 =

(
1

qi+`1+1γ`1
+ · · ·+ 1

qi+`2γ`2−1

)
γ`1γ`2

In some computations, one can see that γ` = (π(i)pi)/(π(i+ `)pi+`). This implies

κ` =
π([i+ 1, i+ `])

π(i+ `)pi+`
,

`2∑
`=`1+1

1

qi+`γ`−1
=
π([i+ `1 + 1, i+ `2])

π(i)pi
,

and

γ`1κ`2 − κ`1γ`2 =
π([i+ `1 + 1, i+ `2])π(i)pi
π(i+ `1)pi+`1π(i+ `2)pi+`2

.

Putting the above identities back to (A.3) gives

Ejτ

(
π(i)pi

k−1∑
`=i

1

π(`)p`

)
=

k−1∑
`=j

π([i+ 1, `])

π(`)p`
+

∑
i+1≤`1≤j−1
j≤`2≤k−1

π([`1 + 1, `2])π(i)pi
π(`1)p`1π(`2)p`2

= π(i)pi
∑

i≤`1≤j−1
j≤`2≤k−1

π([`1 + 1, `2])

π(`1)p`1π(`2)p`2

= π(i)pi
∑

i+1≤`1≤j
j≤`2≤k−1

π([`1, `2])

π(`1)q`1π(`2)p`2
,

where the last equality uses the fact π(i− 1)pi−1 = π(i)qi.

Proof of Theorem 8.2. First, observe that

d

dx

(
(x+ 1)g(x)

(log(x+ 1))β−1

)
=

(
αβ +

1− (β − 1)/ log(x+ 1)

(log(x+ 1))β−1

)
g(x).

Set i0 = eβ−1. For i > j ≥ i0 − 1, one has

Ai,j
αβ + (log(j + 1))1−β ≤

(log(i+ 1))β−1

(i+ 1)g(i)

∫ i

j

g(x)dx ≤ 1

αβ
,
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where

Ai,j = 1− (j + 1)(log(j + 1))1−βg(j)

(i+ 1)(log(i+ 1))1−βg(i)
> 0.

This implies, for i > j ≥ i0 − 1,

(log(i+ 1))β−1[g(0) + · · ·+ g(i)]

(i+ 1)g(i)

{
≤ 1

αβ + i0(log(i+1))β−1

i+1 ,

≥ Ai,j
αβ+(log(j+1))1−β

.
(A.4)

Note that, for log(i+ 1) ≥ 2 log(j + 1) and i→∞,

g(j)

g(i)
= exp

{
−α(log(i+ 1))β

(
1− log(j + 1)

log(i+ 1)

)β}
= o

(
1

(log(i+ 1))β−1

)
.

This implies that, when log(i+ 1) ≥ 2 log(j + 1) and j →∞,

Ai,j = 1 + o
(
(log(j + 1))1−β) .

By (A.4), one has, as j →∞,

(log(i+ 1))β−1[g(0) + · · ·+ g(i)]

(i+ 1)g(i)
=

1

αβ
+O

(
(log(j + 1))1−β) , (A.5)

uniformly for log(i+ 1) ≥ 2 log(j + 1).
Let cn be a sequence such that cnn(log(n+ 1))1−β ∈ Xn and set Mn = n[1− cn(log(n+

1))1−β ]. Suppose that cn converges to some positive constant c. Replacing i, j with
n, b
√
n− 1c and then with Mn, b

√
Mn − 1c in (A.5) gives

1

πn(0)
∼ (n+ 1)g(n)

αβ(log(n+ 1))β−1
, lim

n→∞
πn([0,Mn]) = e−αβc.

Next, we compute the expectation and variance of the first hitting time with initial state
0. By Lemma A.1, one has

E0τ̃
(n)
Mn

= 2

Mn−1∑
`=0

g(0) + · · ·+ g(`)

g(`)
, Var0τ̃

(n)
Mn
�

∑
0≤`≤i<Mn

(g(0) + · · ·+ g(`))2

g(i)g(`)
.

To sum up the right side of the above identities, we need the following computations. An
application of the integration by parts gives that, for k ∈ {0, 1, 2, ...},

∫
x+ 1

(log(x+ 1))β−1
dx =

k∑
`=0

(x+ 1)2

2B`(log(x+ 1))β+`−1

+

∫
x+ 1

Bk+1(log(x+ 1))β+k
dx,

(A.6)

where B0 = 1 and B` = 2`(β − 1)β · · · (β + ` − 2). This implies, for `n → ∞ and
log(Mn)/ log(`n)→∞,

∫ Mn

`n

x+ 1

(log(x+ 1))β−1
dx =

k∑
`=0

(Mn + 1)2

2B`(log(Mn + 1))β+`−1

+O

(
M2
n

(logMn)β+k

)
.

(A.7)
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Using the following computations,

(Mn + 1)2 = n2

(
1 +O

(
1

(log n)β−1

))
,

and
1

(log(Mn + 1))p
=

1

(log n)p

(
1 +O

(
1

(log n)β

))
, ∀p > 0,

one may rewrite (A.7) as∫ Mn

`n

x+ 1

(log(x+ 1))β−1
dx =

k∑
`=0

n2

2B`(log n)β+`−1
+O

(
n2

(log n)2β−2

)
. (A.8)

Set N = dβ−3
2 e ≥ 0 and let in, jn ∈ Xn be states satisfying log(in + 1) ≥ 2 log(jn + 1),

jn →∞ and logMn/ log in →∞. By (A.4) and (A.6) with k = 0, one has

∑
`<in

g(0) + · · ·+ g(`)

g(`)
�
∫ in

1

x+ 1

(log(x+ 1))β−1
dx � i2n

(log in)β−1
= o(log n),

and, by (A.5) and (A.8) with k = N , we get

∑
in≤`<Mn

g(0) + · · ·+ g(`)

g(`)
=

N∑
`=0

n2

2αβB`(log n)β+`−1
+O

(
n2

(log n log jn)β−1

)
.

Putting both summations together and applying the setting, jn =
⌊
e
√

logn}
⌋
− 1 and

in =
⌈
e
√

2(logn)
⌉
− 1, yields

E0τ̃
(n)
Mn

=

N∑
`=0

n2

αβB`(log n)β+`−1
+O

(
n2

(log n)
3
2 (β−1)

)
.

For the variance, note that

d

dx

(
(x+ 1)3

(log(x+ 1))3β−3
g(x)

)
=

(x+ 1)2g(x)

(log(x+ 1))2β−2

(
αβ +

3

(log(x+ 1))β−1
− 3(β − 1)

(log(x+ 1))β

)
and

d

dx

(
(x+ 1)4

(log(x+ 1))3β−3

)
=

(x+ 1)3

(log(x+ 1))3β−3

(
4− 3(β − 1)

log(x+ 1)

)
.

By (A.4), this implies

∑
0≤`≤i

(g(0) + · · ·+ g(`))2

g(`)
�
∫ i

i0

(x+ 1)2g(x)

(log(x+ 1))2β−2
dx � (i+ 1)3g(i)

(log(i+ 1))3β−3

and then

Var0τ̃
(n)
Mn
�

∑
0≤i<Mn

(i+ 1)3

(log(i+ 1))3β−3
�
∫ Mn

i0

(x+ 1)3

(log(x+ 1))3β−3
dx

� (Mn + 1)4

(log(Mn + 1))3β−3
� n4

(log n)3β−3
.
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Now, we compute the expectation and variance of the first hitting with initial state n.
Note that

lim
n→∞

g(Mn)

g(n)
= e−αβc.

This implies inf{qn,i|Mn < i < n, n ≥ 1} > 0 and, by Lemma A.1,

Enτ̃
(n)
Mn
�

∑
Mn<i≤n

g(i) + · · ·+ g(n)

g(i)
� (n−Mn)2 � n2

(log n)2β−2

and

Varnτ̃
(n)
Mn
�

∑
Mn<i≤`≤n

(g(`) + · · ·+ g(n))2

g(i)g(`)
� (n−Mn)4 � n4

(log n)4β−4
.

The desired cutoff time and cutoff window are given by Theorems 1.3, 1.4, 5.1 and
6.1.
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