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The Slepian zero set, and Brownian bridge embedded
in Brownian motion by a spacetime shift
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Abstract

This paper is concerned with various aspects of the Slepian process (Bt+1 −Bt, t ≥ 0)
derived from one-dimensional standard Brownian motion (Bt, t ≥ 0). In particular,
we offer an analysis of the local structure of the Slepian zero set {t : Bt+1 = Bt},
including a path decomposition of the Slepian process for 0 ≤ t ≤ 1. We also establish
the existence of a random time T ≥ 0 such that the process (BT+u −BT , 0 ≤ u ≤ 1) is
standard Brownian bridge.
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1 Introduction and main result

In a recent work [66], we were interested in continuous paths of length 1 in Brownian
motion (Bt; t ≥ 0). We proved that Brownian meander m and the three-dimensional
Bessel process R can be embedded into Brownian motion by a random translation of
origin in spacetime, while it is not the case for either normalized Brownian excursion e
or reflected Brownian bridge |b0|. The following question was left:

Question 1.1. Can we find a random time T ≥ 0 such that (BT+u −BT ; 0 ≤ u ≤ 1) has
the same distribution as standard Brownian bridge (b0u; 0 ≤ u ≤ 1)?

As a natural candidate, the bridge-like process as below was considered:

(BF+u −BF ; 0 ≤ u ≤ 1), (1.1)

where
F := inf{t ≥ 0;Bt+1 −Bt = 0}. (1.2)

This bridge-like process bears some resemblance to Brownian bridge. At least, it
starts and ends at 0, and is some part of a Brownian path in between. This leads us to
the following question:
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The Slepian zeros and Brownian bridge embedded in Brownian motion

Question 1.2.

1. Is the bridge-like process defined as in (1.1) standard Brownian bridge?

2. If not, is the distribution of standard Brownian bridge absolutely continuous with
respect to that of the bridge-like process?

Let C0[0, 1] be the set of continuous paths (wt; 0 ≤ t ≤ 1) starting at w0 = 0, and B be
the Borel σ−field of C0[0, 1]. To provide a context for the above questions, we observe
that

F := inf{t ≥ 0;Xt ∈ BR0}, (1.3)

where
Xt := (Bt+u −Bt; 0 ≤ u ≤ 1) for t ≥ 0, (1.4)

is the moving-window process associated to Brownian motion (Bt; t ≥ 0), and

BR0 := {w ∈ C0[0, 1];w(1) = 0}

is the set of bridges with endpoint 0. Note that the moving-window process X is a
stationary Markov process, with transition kernel Pt : (C0[0, 1],B)→ (C0[0, 1],B) for t ≥ 0

given by

Pt(w, dw̃) =

{
PW(dw̃) if t ≥ 1,

1(w̃ = (wt+u − wt;u ≤ 1− t)⊗ w̃′)PWt(dw̃′) if t < 1,

where PW (resp. PWt) is Wiener measure on C0[0, 1] (resp. C0[0, t]), and ⊗ is the usual
path concatenation. Note that PW is invariant with respect to (Pt; t ≥ 0). Moreover,
Xt+l and Xt are independent for all t ≥ 0 and l ≥ 1.

For a suitably nice continuous-time Markov process (Zt; t ≥ 0), there have been
extensive studies on the post-T process (ZT+t; t ≥ 0) with some random time T which is

• a stopping time, see e.g. Hunt [37] for Brownian motion, Blumenthal [14], and
Dynkin and Jushkevich [21] for general Markov processes;

• an honest time, that is the time of last exit from a predictable set, see e.g. Meyer et
al. [59], Pittenger and Shih [68, 69], Getoor and Sharpe [29, 30, 31], Maisonneuve
[57] and Getoor [28];

• the time at which X reaches its ultimate minimum, see e.g. Williams [87] and
Jacobsen [39] for diffusions, Pitman [63] for conditioned Brownian motion and
Millar [60, 61] for general Markov processes.

The problem is related to decomposition/splitting theorems of Markov processes. We
refer readers to the survey of Millar [62], which contains a unified approach to most
if not all of the above cases. See also Pitman [64] for a presentation in terms of point
processes and further references. Moreover, if Z is a semi-martingale and T is an honest
time, the semi-martingale decomposition of the post-T process was investigated in the
context of progressive enlargement of filtrations, by Barlow [4], Yor [88], Jeulin and Yor
[40] and in the monograph of Jeulin [41]. The monograph of Mansuy and Yor [58] offers
a survey of this theory.

The study of the bridge-like process is challenging, because the random time F as
in (1.2) does not fit into any of the above classes. We even do not know whether this
bridge-like process is Markov, or whether it enjoys the semi-martingale property. Note
that if the answer to (2) of Question 1.2 is positive, then we can apply Rost’s filling
scheme [17, 72] as in Pitman and Tang [66, Section 3.5] to sample Brownian bridge
from a sequence of i.i.d. bridge-like processes in Brownian motion by iteration of the
construction (1.1). While we are unable to answer either of the above questions about
the bridge-like process, we are able to settle Question 1.1.
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The Slepian zeros and Brownian bridge embedded in Brownian motion

Theorem 1.3. There exists a random time T ≥ 0 such that (BT+u −BT ; 0 ≤ u ≤ 1) has
the same distribution as (b0u; 0 ≤ u ≤ 1).

In terms of the moving-window process, it is equivalent to find a random time T ≥ 0

such that XT has the same distribution as Brownian bridge b0. As mentioned in Pitman
and Tang [66], this is a variant of the Skorokhod embedding problem for the C0[0, 1]-
valued process X and a random time T . Our proof relies on Last and Thorisson’s
construction [48] of the Palm measure of local times of the moving-window process. The
idea of embedding Palm/Revuz measures arose earlier in the work of Bertoin and Le Jan
[6], and the connection between Palm measures and Markovian bridges was made by
Fitzsimmons et al. [23]. The existence of local times stems from the Brownian structure
of the zero set of the Slepian process St := Bt+1 − Bt for t ≥ 0, which is introduced in
Section 3. See e.g. Theorem 3.1 and Lemma 4.3.

In the proof of Theorem 1.3, we make use of an abstract existence result of Thorisson
[83], see e.g. Theorem 5.9. As a consequence, our method gives little clue on the
construction of the random time T . However, while the paper was under review, we
learned from Hermann Thorisson [79] an explicit embedding of Brownian bridge into
Brownian motion by a spacetime shift. His argument is mainly from Last et al. [51], that
is to construct allocation rules balancing stationary diffuse random measures on the real
line. In particular, they were able to characterize unbiased shifts of Brownian motion,
those are random times T ∈ R such that (BT+u − BT ;u ≥ 0) is a two-sided Brownian
motion, independent of BT . Though it appears to be easier, Thorisson’s constructive
proof relies on a deep and powerful theory. As the two proofs of Theorem 1.3 are of
independent interest, we present both ours in Subsections 5.2 and 5.3, and Thorisson’s
in Subsection 5.4.

We conclude this introductory part by reviewing related literature. Question 1.1 is
closely related to the notion of shift-coupling, initiated by Aldous and Thorisson [2], and
Thorisson [81]. General results of shift-coupling were further developed by Thorisson
[82, 83, 84], see also the book of Thorisson [85]. In the special cases of a family of i.i.d.
Bernoulli random variables indexed by Zd or a spatial Poisson process on Rd, Liggett
[56], and Holroyd and Liggett [35] provided an explicit construction of the random
shift and computed the tail of its probability distribution. Two continuous processes
(Zu;u ≥ 0) and (Z ′u;u ≥ 0) are said to be shift-coupled if there are random times T, T ′ ≥ 0

such that (ZT+u;u ≥ 0) has the same distribution as (Z ′T ′+u;u ≥ 0). From Theorem
1.3, we know that Z := X, the moving-window process can be shift-coupled with some
C0[0, 1]-valued process Z ′ starting at Z ′0 := b0 for random times T ≥ 0 and T ′ = 0.

More recently, Hammond et al. [33] constructed local times on the exceptional times
of two dimensional dynamical percolation. Further, they showed that at a typical time
with respect to local times, the percolation configuration has the same distribution as
Kesten’s Incipient Infinite Cluster [43]. They also made use of Palm theory and the idea
was similar in spirit to ours, though the framework is completely different. In a study of
forward Brownian motion, Burdzy and Scheutzow [16] asked whether a concatenation
of independent pieces of Brownian paths truncated at stopping times forms Brownian
motion. They showed that if these Brownian pieces are i.i.d. and the expected stopping
times are finite, then Brownian motion is achieved by patchwork. The general case
where the Brownian pieces are not identically distributed, is left open.

Organization of the paper: The rest of this paper is organized as follows.

• In Section 2, we present some analysis of random walks related to Question 1.2.

• In Section 3, after recalling some results for the Slepian process due to Slepian
[77] and Shepp [76], we provide a path decomposition for the Slepian process on
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[0, 1], Theorem 3.1.

• In Section 4, we explore the local structure of the Slepian zero set {t ∈ [0, 1];St = 0},
or {t ∈ [0, 1];Xt ∈ BR0}. In particular, Theorem 3.1 is proved in Section 4.2.

• In Section 5, after presenting essential background on Palm theory of stationary
random measures, we give two proofs of Theorem 1.3. The constructive proof in
Subsection 5.4 is due to Hermann Thorisson.

2 Random walk approximation

In this section, we consider the discrete analog of the bridge-like process. Namely,
for an even positive integer n, we run a simple symmetric random walk (RWk)k∈N until
the first level bridge of length n appears. That is, we consider the process

(RWFn+k −RWFn)0≤k≤n, where Fn := inf{k ≥ 0;RWk+n = RWk}. (2.1)

The following invariance principle is proved in Pitman and Tang [66, Proposition 2.4].

Proposition 2.1. [66] The distribution of the process(
RWFn+nu −RWFn√

n
; 0 ≤ u ≤ 1

)
where the walk is defined by linear interpolation between integer times, converges
weakly to the distribution of the bridge-like process as in (1.1).

Further, we may consider Knight’s [44, 45] embedding of random walks in Brownian
motion. Endow the space C[0,∞) with the topology of uniform convergence on compact

sets. Fix n ∈ N. Let τ (n)
0 := 0 and τ

(n)
k+1 := inf{t > τ

(n)
k ; |Bt − Bτ(n)

k

| = 2−n} for k ∈ N.

Note that
(
RW

(n)
k := 2nB

τ
(n)
k

)
k∈N

is a simple random walk. In addition, the sequence of

linearly interpolated random walks(
RW

(n)
22nt

2n
; t ≥ 0

)
converges almost surely in C[0,∞) to (Bt; t ≥ 0).

It is not hard to see that F (w) := inf{t ≥ 0;wt+1 = wt} is not continuous at all paths
w ∈ C0[0,∞). Nevertheless, Pitman and Tang [66, Proposition 2.4] proved that F is
PW-a.s. continuous, where PW is Wiener measure on C[0,∞). Thus, the convergence of
Proposition 2.1 is almost sure in the context of Knight’s construction of simple random
walks.

Now we focus on the discrete bridge defined as in (2.1). Note that the support of the
first level bridge is all bridge paths since the first n steps starting from 0 can be any
path. For n = 2, the bridge (RWF2+k −RWF2

)0≤k≤2 obviously has uniform distribution
on the two possible paths, one positive and one negative. However, the first level bridge
of length n is not uniform for n > 2. Using the Markov chain matrix method, we can
compute the exact distribution of this first level bridge for n = 4 and 6. By up-down
symmetry, we only need to be concerned with those paths whose first step is +1.

TABLE 1. The distribution of the first level bridge as in (2.1) for n = 4.
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TABLE 2. The distribution of the first level bridge as in (2.1) for n = 6.

The numerical results in Table 1 and 2 give us that the first level bridge fails to be
uniform, at least, for n = 4 and 6. By elementary algebraic computation, it is not hard
to check that this is true for all n > 2. Now it is natural to ask whether the first level
bridge could be asymptotically uniform. To this end, we compute the ratio of extremal
probabilities of the first level bridge for some small n’s.

TABLE 3. The ratio max/min probability of the first level bridge of length n.

In Table 3, the ratios max/min of hitting probabilities suggest that the first level
bridge might not be asymptotically uniform. Thus, the answer to (1) of Question 1.2 may
be negative, i.e. the bridge-like process defined as in (1.1) is not standard Brownian
bridge.

This is further confirmed by the following simulations, which show that as n grows,
the empirical distribution of the maximum of the first level bridge does not appear to
converge to the Kolmogorov-Smirnov distribution [46, 78], that is the distribution of the
supremum of Brownian bridge, see e.g. Billingsley [10, Section 13].

Figure 1: Solid curve: the Kolmogorov-Smirnov CDF; Dashed curve over the solid curve:
the empirical CDF of the maximum of scaled uniform bridge of length n = 104; dashed
curve below the solid curve: the empirical CDF of the maximum of the first level bridge
of length n = 104.
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n 100 500 1000 2000 5000 10000

CDF(1.3) 0.9361 0.9193 0.9129 0.9117 0.9088 0.9080

Difference −0.0042 0.0126 0.0190 0.0202 0.0231 0.0239

TABLE 4. 2nd row: the CDFs at 1.3 of the scaled maximum of the first level bridge of
length n. 3rd row: the differences between the Kolmogorov-Smirnov CDF evaluated at
1.3 (≈ 0.9319) and those of the 2nd row.

3 The Slepian process: Old and New

Let us turn back to the random time F defined as in (1.2). We rewrite it as

F := inf{t ≥ 0;St = 0}, (3.1)

where St := Bt+1 − Bt for t ≥ 0 is a stationary Gaussian process with mean 0 and
covariance E[St1St2 ] = max(1 − |t1 − t2|, 0). Note that (St; t ≥ 0) is not Markov, since
the only nontrivial stationary, Gaussian and Markov process is the Ornstein-Uhlenbeck
process, see e.g. Doob [20, Theorem 1.1]. The process (St; t ≥ 0) was first studied by
Slepian [77]. Later, Shepp [76] gave an explicit formula for

I(t|x) := P(F > t|S0 = x),

as a t−fold integral when t is an integer and as a 2[t] + 2−fold integral when t is not an
integer. Shepp’s results are as follows. Let

φ(x) :=
1√
2π

exp

(
−x

2

2

)
and φθ(x) :=

1√
θ
φ

(
x√
θ

)
.

When t = n is an integer,

I(t|x)φ(x) =

∫
D′

det

[
φ(yi − yj+1)

]
0≤i,j≤n

dy2 · · · dyn+1, (3.2)

where y0 = 0, y1 = |x| and D′ := {|x| < y2 < · · · < yn+1}. When t = n+ θ where 0 < θ < 1,

I(t|x)φ(x) =

∫
D′′

det

[
φθ(xi − yi)

]
0≤i,j≤n+1

× det

[
φθ(yi − xj+1)

]
0≤i,j≤n

dx2 · · · dxn+1dy0 · · · dyn+1, (3.3)

where x0 = 0, x1 = |x| and D′′ := {|x| < x2 < · · · < xn+1 and y0 < · · · < yn+1}. The
distribution of the first passage time F is characterized by

P(F > t) =

∫
R

I(t|x)φ(x)dx, (3.4)

where I(t|x)φ(x) is given as (3.2) when t is integer and given as (3.3) when it is not. In
particular,

P(F > 1) =

∫
R

[Φ(0)φ(x)− φ(0)Φ(x)]dx

=
1

2
− 1

π
, (3.5)
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where Φ(x) :=
∫ x
−∞ φ(z)dz is the cumulative distribution function of the standard normal

distribution.
In this paper, we study the local structure of the Slepian zero set, i.e. {t ∈ [0, 1];St =

0}, by showing that it is mutually absolutely continuous relative to that of Brownian
motion with normally distributed starting point. The main result, which provides a path
decomposition of the Slepian process on [0, 1], is stated as below.

Theorem 3.1. Let F := inf{t ≥ 0;St = 0} and G := sup{t ≤ 1;St = 0}. Given the
quadruple (S0, S1, F,G) with 0 < F < G < 1, the Slepian process (St; 0 ≤ t ≤ 1) is
decomposed into three conditionally independent pieces:

• (St/
√

2; 0 ≤ t ≤ F ) is Brownian first passage bridge from (0, S0/
√

2) to (F, 0);

• (St/
√

2;F ≤ t ≤ G) is Brownian bridge of length G− F ;

• (|St|/
√

2;G ≤ t ≤ 1) is a three-dimensional Bessel bridge from (G, 0) to (1, |S1|/
√

2).

In addition, the distribution of (S0, S1, F,G) with 0 < F < G < 1 is given by

P(S0 ∈ dx, S1 ∈ dy, F ∈ da,G ∈ db) =

|xy|
8π2
√

(b− a)a3(1− b)3
exp

(
−x

2

4a
− y2

4(1− b)
− (x+ y)2

4

)
. (3.6)

Figure 2: Path decomposition of (St/
√

2; 0 ≤ t ≤ 1) with 0 < F < G < 1.

On the event {0 < F < G < 1}, the Slepian process is achieved by first creating the
quadruple (S0, S1, F,G) and then filling in with usual Brownian components. Similarly,
on the event {F > 1}, (St/

√
2; 0 ≤ t ≤ 1) is Brownian bridge from (0, S0/

√
2) to (1, S1/

√
2)

conditioned not to hit 0.
The proof of Theorem 3.1 is deferred to Section 4.2. One method relies on Shepp

[75]’s result of the absolute continuity between Gaussian measures, where the Slepian
process was proved to be mutually absolutely continuous with respect to some modified
Brownian motion on [0, 1]. As pointed out by Shepp [76], the absolute continuity fails
beyond the unit interval. This is why we restrict the study of the Slepian zero set to
intervals of length 1. Nevertheless, we have the following conjecture:

Conjecture 3.2. For t ≥ 0, the Slepian zero set on [0, t], i.e. {u ∈ [0, t];Su = 0}, is
mutually absolutely continuous with respect to that of {u ∈ [0, t]; ξ +Bu = 0}, the zero
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set of Brownian motion started at ξ with standard normal distribution, ξ ∼ N (0, 1), and ξ
independent of B.

4 The Slepian zero set and path decomposition

In this section, we study the Slepian zero set on [0, 1], that is {u ∈ [0, 1];Su = 0}.
The problem here involves level crossings of a stationary Gaussian process. We refer
readers to the surveys of Blake and Lindsey [13], Abrahams [1], Kratz [47], as well as
the books of Cramér and Leadbetter [19, Chapter 10], Azaïs and Wschebor [3, Chapter
3] for further development.

Berman [5] studied general criteria for stationary Gaussian processes to have local
times. In particular, he proved that if (Zt; t ≥ 0) is a stationary Gaussian process with
covariance RZ(t) and 1 − RZ(t) ∼

t→0
|t|α for some 0 < α < 2, then Z has local times

(Lxt ;x ∈ R, t ≥ 0) such that for any Borel measurable set C ⊂ R and t ≥ 0,∫ t

0

1(Zs ∈ C)ds =

∫
C

Lxt dx.

As discussed in the introduction, the Slepian process has covariance RS(t) := max(1−
|t|, 0), which obviously fits into the above category. See also the survey of Geman and
Horowitz [25] for further development on Gaussian occupation measures.

Below is the plan for this section:

In Subsection 4.1, we deal with the local absolute continuity between the distribution
of the Slepian process and that of Brownian motion with random starting point. This
follows some general discussion on the absolute continuity between Gaussian measures
by Shepp [75].

In Subsection 4.2, we give two proofs for the path decomposition of the Slepian
process (St; 0 ≤ t ≤ 1), Theorem 3.1. There we provide an alternative construction of
(St; t ≥ 0), Proposition 4.4.

In Subsection 4.3, we study a Palm-Itô measure associated to the gaps between
Slepian zeros, with comparison to the well-known Itô’s excursion law [38].

4.1 Local absolute continuity between Slepian zeros and Brownian zeros

As proved by Shepp [75], for each fixed t ≤ 1, the distribution of the Slepian process
(Su; 0 ≤ u ≤ t) is mutually absolutely continuous with respect to that of

(B̃u :=
√

2(ξ +Bu); 0 ≤ u ≤ t), (4.1)

where ξ ∼ N (0, 1) is independent of (Bu;u ≥ 0). The Radon-Nikodym derivative is given
by

dPS

dPW̃
(w) :=

2√
2− t

exp

(
w2

0

4
− (w0 + wt)

2

4(2− t)

)
, (4.2)

where PS (resp. PW̃) is the distribution of the Slepian process S (resp. the modified
Brownian motion B̃ defined as in (4.1)) on C[0, 1]. As a first application, we compute the
density of the first passage time F , defined as in (3.1), on the unit interval.

Proposition 4.1. For w ∈ C[0, 1], let F := inf{t ≥ 0;wt = 0}. Then

PS(F ∈ da) =
1

π

√
2− a
a

da for 0 ≤ a ≤ 1, (4.3)
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Proof. Fix a ≤ 1. By the change of measure formula (4.2),

PS(F ∈ da) = EW̃

[
1(F ∈ da) · 2√

2− a
exp

(
w2

0

4
− (w0 + wa)2

4(2− a)

)]
=

2√
2− a

EW̃

[
1(F ∈ da) exp

(
w2

0

4
− w2

0

4(2− a)

)]
=

2√
2− a

∫
R

1√
4π

exp

(
−x

2

4

)
· PW̃x(F ∈ da) exp

(
x2

4
− x2

4(2− a)

)
dx, (4.4)

where PW̃x is the distribution of B̃ conditioned on B̃0 = x. It is well-known that

PW̃x(F ∈ da) =
|x|√
4πa3

exp

(
−x

2

4a

)
da. (4.5)

Injecting (4.5) into (4.4), we obtain

PS(F ∈ da) =
1

2π
√

(2− a)a3

∫
R

|x| exp

(
− x2

2a(2− a)

)
dxda

=
1

π

√
2− a
a

da.

Remark 4.2. As a check, from (4.3),

PS(F ≤ 1) =
1

2
+

1

π
≈ 0.82,

which agrees with the formula (3.5) derived from the determinantal expressions (3.2),
(3.3) and (3.4). Since the absolute continuity relation does not hold when t > 1, we are
not able to derive a simple formula for the density of F on (1,∞).

Next we deal with the local absolute continuity between the distribution of Slepian
zeros and that of Brownian motion with normally distributed starting point. The result
enables us to prove Proposition 2.1, that is the weak convergence of the discrete first
level bridges to the bridge-like process as in (1.1).

Lemma 4.3. For each fixed t ≥ 0, the distribution of (Su; t ≤ u ≤ t + 1) is mutually
absolutely continuous with respect to that of (B̃u; t ≤ u ≤ t+ 1) defined as in (4.1). The
Radon-Nikodym derivative is given by

dPS

dPW̃t
(w) = 2

√
1 + t

2− t
exp

(
w2

0

4(1 + t)
− (w0 + w1)2

4(2− t)

)
, (4.6)

where PW̃t
is the distribution of B̃ on [t, t + 1]. In particular, the distribution of the

Slepian zero set restricted to [t, t+ 1], i.e. {u ∈ [t, t+ 1];Su = 0} is mutually absolutely
continuous with respect to that of {u ∈ [t, t+ 1]; ξ + Bu = 0}, the zero set of Brownian
motion starting at ξ ∼ N (0, 1).

Proof. It suffices to prove the first part of this lemma. By stationarity of the Slepian
process, the distribution of (Su; t ≤ u ≤ t + 1) is the same as that of (Su; 0 ≤ u ≤ 1),
which is mutually absolutely continuous relative to (B̃u; 0 ≤ u ≤ 1) with density given by
(4.2). Now we conclude by noting that the distribution of (B̃u; t ≤ u ≤ t+ 1) and that of
(B̃u; 0 ≤ u ≤ 1) are mutually absolutely continuous, with Radon-Nikodym derivative

dPW̃

dPW̃t
(w) :=

√
1 + t exp

(
− tw2

0

4(1 + t)

)
.
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The Slepian zeros and Brownian bridge embedded in Brownian motion

As a consequence, all local properties of the Slepian zero set mimic closely those of
Brownian motion with normally distributed starting point. In particular, with positive
probability, the Slepian process visits the origin on the unit interval. And immediately
thereafter, it returns to the origin infinitely often, as does Brownian motion. In addition,
it is easy to see that the Radon-Nikodym derivative between the distribution of {u ∈
[0, 1];Su = 0} and that of {u ∈ [0, 1]; ξ +Bu = 0} is given by

E

[
dPS

dPW̃
(w)

∣∣∣∣∣Proj(w)

]
, (4.7)

where Proj(w) := {u ∈ [0, 1];wu = 0} is the zero set of w ∈ C[0, 1]. In the next subsection,
we will see how this conditional expectation, as the Radon-Nikodym derivative, can be
made explicit by some sufficient statistics.

4.2 Path decomposition of the Slepian process on [0, 1]

In this subsection, we investigate further the local structure of the Slepian zero set
by proving Theorem 3.1.

From the work of Slepian [77], we know that given the i.i.d. normally distributed
sequence (Sn := Bn+1 − Bn)n∈N, for each n ∈ N, the process (Sn+u/

√
2; 0 ≤ u ≤ 1)

has the same distribution as Brownian bridge from Sn/
√

2 to Sn+1/
√

2. For n ∈ N and
k ≥ 2, the processes (Sn+u/

√
2; 0 ≤ u ≤ 1) and (Sn+k+u/

√
2; 0 ≤ u ≤ 1) are independent.

However, the consecutive bridges (Sn+u/
√

2; 0 ≤ u ≤ 1) and (Sn+1+u/
√

2; 0 ≤ u ≤ 1) for
n ∈ N, are correlated. The correlation is inferred from the following construction of the
Slepian process.

Proposition 4.4. Let (Zn)n∈N be a sequence of i.i.d. N (0, 1)-distributed random vari-
ables, and (bnt ; 0 ≤ t ≤ 1)n∈N be a sequence of i.i.d. standard Brownian bridges indepen-
dent of (Zn)n∈N. Define a continuous-time process (Zt; t ≥ 0) as

Zt := bn+1
t−n − bnt−n + (n+ 1− t)Zn + (t− n)Zn+1 for n ≤ t < n+ 1, n ∈ N. (4.8)

Then (Zt; t ≥ 0) has the same distribution as the Slepian process (St; t ≥ 0).

Proof. Note that (Zt; t ≥ 0) and (St; t ≥ 0) are centered Gaussian processes. It suffices
to show that (Zt; t ≥ 0) and (St; t ≥ 0) have the same covariance function. Let t2 ≥ t1 ≥ 0.
Recall that E[St1St2 ] = max(1− t2 + t1, 0). From the construction (4.8) of (Zt; t ≥ 0), we
know that Zt1 and Zt2 are independent if t1 ∈ [n, n+ 1) and t2 ≥ n+ 2 for some n ∈ N. In
this case, E[Zt1Zt2 ] = 0. The other cases are:

• t1, t2 ∈ [n, n+ 1) for some n ∈ N. Then

E[Zt1Zt2 ] = E[bn+1
t1−nb

n+1
t2−n] + E[bnt1−nb

n
t2−n]

+ (n+ 1− t1)(n+ 1− t2)EZ2
n + (t1 − n)(t2 − n)EZ2

n+1

= 2(t1 − n)(n+ 1− t2) + (n+ 1− t1)(n+ 1− t2) + (t1 − n)(t2 − n)

= 1− t2 + t1.

• t1 ∈ [n, n+ 1) and t2 ∈ [n+ 1, n+ 2) for some n ∈ N. Then

E[Zt1Zt2 ] = −E[bn+1
t1−nb

n+1
t2−n−1] + (t1 − n)(n+ 2− t2)EZ2

n+1.

When t2 − t1 ≥ 1, we obtain:

E[Zt1Zt2 ] = −(t1 − n)(n+ 2− t2) + (t1 − n)(n+ 2− t2) = 0.

When t2 − t1 < 1, we obtain:

E[Zt1Zt2 ] = −(n+ 1− t1)(t2 − n− 1) + (t1 − n)(n+ 2− t2) = 1− t2 + t1.
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The Slepian zeros and Brownian bridge embedded in Brownian motion

Putting all pieces together, we have E[Zt1Zt2 ] = max(1− t2 + t1, 0) = E[St1St2 ].

Remark 4.5. In particular, the proposition shows that given the triple of i.i.d. standard
normal variables (Sn, Sn+1, Sn+2), the two standard Brownian bridges derived from
(Sn+u; 0 ≤ u ≤ 1) and (Sn+1+u; 0 ≤ u ≤ 1) by subtracting off the lines between endpoints:(
Sn+u − (1− u)Sn − uSn+1√

2
; 0 ≤ u ≤ 1

)
and

(
Sn+1+u − (1− u)Sn+1 − uSn+2√

2
; 0 ≤ u ≤ 1

)
are not conditionally independent.

For w ∈ C[0, 1], let F := inf{t ≥ 0;wt = 0} be the time of first hit to 0, and G :=

sup{t ≤ 1;wt = 0} be the time of last exit from 0 on the unit interval. From Proposition
4.4, the Slepian process on [0, 1] can be constructed by first picking independently
S0, S1 ∼ N (0, 1), and then filling in a

√
2-Brownian bridge from S0 to S1. This bridge

construction provides a proof of Theorem 3.1.

Proof of Theorem 3.1. The first part of the statement is quite straightforward from
Proposition 4.4 and the discussion above. To finish the proof, we compute the PS-joint
distribution of the quadruple (w0, w1, F,G) on the event {0 < F < G < 1}.

PS(w0 ∈ dx,w1 ∈ dy, F ∈ da,G ∈ db) =
dxdy

2π
exp

(
−x

2 + y2

2

)
PW̃x→y(F ∈ da,G ∈ db),

(4.9)
where PW̃x→y is the distribution of B̃ defined as in (4.1), conditioned to start at x and
end at y. In addition,

PW̃x→y(F ∈ da,G ∈ db)

=
|x|√

4π(1− a)a3
exp

(
− y2

4(1− a)
− x2

4a
+

(x− y)2

4

)
· PW̃x→y(G ∈ db|F ∈ da)

=
|x|√

4π(1− a)a3
exp

(
− y2

4(1− a)
− x2

4a
+

(x− y)2

4

)
· |y|

√
1− a√

4π(b− a)(1− b)3
exp

(
y2

4(1− a)
− y2

4(1− b)

)
=

|xy|
4π
√

(b− a)a3(1− b)3
exp

(
−x

2

4a
− y2

4(1− b)
+

(x− y)2

4

)
. (4.10)

Injecting (4.10) into (4.9), we obtain the formula (3.6).

By integrating over S0 ∈ dx and S1 ∈ dy in the formula (3.6), we get:

P(F ∈ da,G ∈ db)

=
2

π
√
b− a

[
1

(2 + a− b)
√
a(1− b)

+
1√

(2 + a− b)3
arctan

√
a(1− b)
2 + a− b

]
, (4.11)

and integrating further (4.11) over G ∈ db, we obtain:

P(F ∈ da) =
1

π

√
2− a
a

da for 0 < a < 1,

which agrees with the formula (4.3) found in Proposition 4.1.
In the rest of the subsection, we give yet another proof of Theorem 3.1. We start by

deriving the formula (3.6) from the absolute continuity relation (4.2).
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The Slepian zeros and Brownian bridge embedded in Brownian motion

Proof of (3.6) by (4.2). We first compute thePW̃-joint distribution of (w0, w1, F,G), where

PW̃ is the distribution of B̃ on [0, 1] defined as in (4.1).

PW̃(w0 ∈ dx,w1 ∈ dy, F ∈ da,G ∈ db)

=
dx√
4π

exp

(
−x

2

4

)
· PW̃(w1 ∈ dy, F ∈ da,G ∈ db|w0 ∈ dx)

=
dx√
4π

exp

(
−x

2

4

)
· |x|da√

4πa3
exp

(
−x

2

4a

)
· PW̃(w1 ∈ dy,G ∈ db|w0 ∈ dx, F ∈ da)

=
dx√
4π

exp

(
−x

2

4

)
· |x|da√

4πa3
exp

(
−x

2

4a

)
· |y|dydb

4π
√

(b− a)(1− b)3
exp

(
− y2

4(1− b)

)
(4.12)

=
|xy|

16π2
√

(b− a)a3(1− b)3
exp

(
−x

2

4
− x2

4a
− y2

4(1− b)

)
dx dy da db, (4.13)

where (4.12) can be read from Revuz and Yor [71, Exercise 3.23, Chapter III]. Now (4.13)
combined with (4.2) yields the desired result.

We need the following elementary result regarding the change of measures.

Lemma 4.6. Assume that P and Q are two probability measures on (Ω,F) such that

dQ

dP
(w) := f(Z),

where Z := Z(w) is a random element and f(Z) is the Radon-Nikodym derivative of Q
with respect to P. Futhermore,

1. Let A ∈ σ(Z) be an event determined by Z, with P(A) > 0 and Q(A) > 0;

2. Let Y be another random element such that under P, Y is independent of Z given
A (such random element Y need only be defined conditional on A).

Then the Q-distribution of Y given A is the same as the P-distribution of Y given A. And
under Q, Y is independent of Z given A.

Proof. Take g, h : (Ω,F)→ (R,B(R)) two bounded measurable functions. First note that

EQ[g(Y )|A] =
P(A)

Q(A)
EP[g(Y )f(Z)|A]

=
P(A)

Q(A)
EP[f(Z)|A] · EP[g(Y )|A] (4.14)

= EP[g(Y )|A], (4.15)

where (4.14) is due to the P-conditional independence of Y and Z given A. In addition,

EQ[g(Y )h(Z)|A] =
P(A)

Q(A)
EP[g(Y )h(Z)f(Z)|A]

=
P(A)

Q(A)
EP[h(Z)f(Z)|A] · EP[g(Y )|A] (4.16)

= EQ[h(Z)|A] · EQ[g(Y )|A], (4.17)

where (4.16) is again due to the P-conditional independence of Y and Z given A, and
(4.17) follows readily from (4.15).
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The Slepian zeros and Brownian bridge embedded in Brownian motion

Alternative proof of Theorem 3.1. We borrow the notations from Lemma 4.6 in our set-
ting: P := PW̃, Q := PS, Z := (w0, w1, F,G) and A := {0 < F < G < 1}. Conditional on
A, define Y (2) to be the scaled bridge on [F,G], that is

Y (2)
u :=

wF+u(G−F )√
G− F

for 0 ≤ u ≤ 1.

It is well-known that under PW̃ and on the event {0 < F < G < 1}, (Y
(2)
u /
√

2; 0 ≤ u ≤ 1)

is standard Brownian bridge, independent of (w0, w1, F,G), see e.g. Lévy [54] or Revuz
and Yor [71, Exercise 3.8, Chapter XII]. Then by Lemma 4.6, under PS and on the event
{0 < F < G < 1}, (Y

(2)
u /
√

2; 0 ≤ u ≤ 1) is also standard Brownian bridge, independent
of (w0, w1, F,G). In addition, define Y (1) := (wu; 0 ≤ u ≤ F ) and Y (3) := (wu;G ≤ u ≤ 1).

Similarly, under PW̃ and on the event {0 < F < G < 1},

• Y (1)/
√

2 is Brownian first passage bridge from (0, w0/
√

2) to (F, 0), see e.g. Bertoin
et al [7];

• |Y (3)|/
√

2 is reversed Brownian first passage bridge from (1, |w1|/
√

2) to (G, 0), that
is the three-dimensional Bessel bridge from (G, 0) to (1, |w1|/

√
2), see e.g. Biane

and Yor [9].

Moreover, these two processes are conditionally independent given (w0, w1, F,G). It
suffices to apply again Lemma 4.6 to conclude.

In view of the Brownian characteristics,it would be interesting to find a construction
of the conditioned Slepian process (St/

√
2; 0 ≤ t ≤ 1) with {0 < F < G < 1} by some

path transformation of standard Brownian motion/bridge. We leave the interpretation
open for future investigation.

4.3 A Palm-Itô measure related to Slepian zeros

To capture the structure of the Slepian zero set, an alternative way is to study the
Slepian excursions between consecutive zeros. Let E be the space of excursions defined
by

E := {ε ∈ C[0,∞); ε0 = 0 and εt = 0 for all t ≥ ζ(ε) ∈]0,∞[},

where ζ(ε) := inf{t > 0; εt = 0} is the lifetime of the excursion ε ∈ E. Following Pitman
[65], the gaps between zeros of a process (Zt; t ≥ 0) with σ-finite invariant measure can
be described by a Palm-Itô measure nZ , defined on the space of excursions E as

nZ(dε) := E#{0 < t < 1;Zt = 0 and e(t) ∈ dε},

where e(t) is the excursion starting at time t > 0 in the process Z. The following result of
last exit decomposition for stationary processes is read from Pitman [65, Theorem 1(iii)].

Theorem 4.7. [65] Let PZ govern a stationary process (Zt; t ≥ 0) with σ-finite invariant
measure. For w ∈ C[0, 1], let

Gt := sup{u ≤ t;wu = 0}, (4.18)

be the last exit time from 0 before time t, and e(Gt) be the excursion straddling time
t > 0 in the path. Then

PZ(t−Gt ∈ da, e(Gt) ∈ dε) = da1(ζ(ε) > a)nZ(dε), (4.19)

Remark 4.8.
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1. Theorem 4.7 extends a result of Bismut [11], where Z is Brownian motion with
invariant Lebesgue measure. In this case, the Palm-Itô measure nZ is just Itô’s
excursion law n.

2. There is an analog of last exit decomposition (4.19) for standard Brownian motion.
Let PW be Wiener measure on C[0,∞), then

PW(t−Gt ∈ da, e(Gt) ∈ dε) = da
1√

2π(t− a)
1(ζ(ε) > a)n(dε),

where n is Itô’s excursion law. The result is deduced from Getoor and Sharpe [32],
who gave a last exit decomposition for general Markov processes.

Now we apply Theorem 4.7 to the Slepian process (St; t ≥ 0). Let PS be the distribu-
tion of the Slepian process, we have:

PS(t−Gt ∈ da, e(Gt) ∈ dε) = da1(ζ(ε) > a)nS(dε), (4.20)

where
nS(dε) := E#{0 < t < 1;St = 0 and e(t) ∈ dε}. (4.21)

As shown in the following lemma, the last exit time Gt is closely related to the first
passage time F defined as in (3.1). Here we adopt the convention that sup ∅ := 0.

Lemma 4.9. Let t > 0. Under PS, t−Gt has the same distribution as F ·1(F ≤ t)+t·1(F >

t), where Gt is defined by (4.18) and F by (3.1).

Proof. It suffices to observe that (Su; 0 ≤ u ≤ t) has the same distribution as (St−u; 0 ≤
u ≤ t). This is clear from the covariance function of the Slepian process.

Proposition 4.10. For a > 0,

nS(ζ > a) = P(F ∈ da)/da, (4.22)

where nS is defined as in (4.21) and F is defined as in (3.1). In particular,

nS(ζ > a) =
1

π

√
2− a
a

for 0 < a < 1. (4.23)

Proof. It follows from (4.19) that

nS(ζ > a)da = P(t−Gt ∈ da).

According to Lemma 4.9,

P(t−Gt ∈ da) = P(F ∈ da) for t > a.

Then (4.22) is a direct consequence of the above two observations. Combining with the
formula (4.3), we derive further (4.23).

From the Palm-Lévy measure (4.23), we can see how the Slepian zero set restricted
to [0, 1] differs from a plain Brownian zero set, where Itô’s excursion law is given by

n(ζ > a) =

√
2

πa
for a > 0.

As expected, nS(ζ > a) and n(ζ > a) have asymptotically equivalent tails a−
1
2 when

a → 0+. Observe a constant factor
√
π between them. This is because the invariant

Lebesgue measure of reflected Brownian motion is σ-finite and there is no canonical
normalization. We also refer readers to Pitman and Yor [67, Section 2] for the Palm-Lévy
measure of the gaps between zeros of squared Ornstein-Uhlenbeck processes.
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5 Brownian bridge embedded in Brownian motion

In this section, we prove Theorem 1.3, that is embedding Brownian bridge (b0u; 0 ≤
u ≤ 1) into Brownian motion (Bt; t ≥ 0) by a random translation of origin in spacetime.
The problem of embedding continuous paths into Brownian motion was broadly discussed
in Pitman and Tang [66], to which we refer readers for a bird’s-eye view.

Recall that (Xt; t ≥ 0) is the moving-window process associated to Brownian motion
defined as in (1.4). We aim to find a random time T ≥ 0 such that XT has the same
distribution as b0. A general result of Rost [73] implies that such a randomized stopping
time T ≥ 0 exists (relative to the filtration of the moving window process, so T + 1 would
be a randomized stopping time in the Brownian filtration) if and only if

lim
α→0

sup
1≥g∈Sα

(∫
gdPW0

−
∫
gdPW

)
= 0, (5.1)

where PW is Wiener measure on C0[0, 1] and PW0

is Wiener measure pinned to 0 at time
1, that is the distribution of Brownian bridge b0. For α > 0, Sα is the set of α−excessive
functions, see e.g. the book of Sharpe [74] for background. However, the criterion (5.1)
is difficult to check since PW0

is singular with respect to PW.
We work around the problem in another way, which relies heavily on Palm theory

of stationary random measures. Such theory has been successfully developed by the
Scandinavian probability school in the last few decades. The book of Thorisson [85]
records much of this important work. For technical purposes, we introduce a two-sided
Brownian motion (B̂t; t ∈ R), and let

X̂t := (B̂t+u − B̂t; 0 ≤ u ≤ 1) for t ∈ R, (5.2)

be the moving-window process associated to the two-sided Brownian motion B̂. Note
that (X̂t; t ∈ R) is a stationary Markov process with state space (C0[0, 1],B). Alternatively,
X̂ can be viewed as a random element in the space C0[0, 1]R, to which we assign the
metric ρ by

ρ(x, y) :=

∞∑
n=0

1

2n
min

(
sup

−n≤t≤n
||xt − yt||∞, 1

)
for x, y ∈ C0[0, 1]R (5.3)

where C0[0, 1] is equipped with the sup-norm || · ||∞.
Below is the plan for this section:
In Subsection 5.1, we provide background on Palm theory of stationary random

measures. We define a notion of local times of the C0[0, 1]−valued process X̂ by weak
approximation. Furthermore, we show that the 0-marginal of the Palm measure of local
times is Brownian bridge.

In Subsection 5.2, we derive from a result of Last and Thorisson [48] that the Palm
probability measure of a jointly stationary random measure associated to X̂ can be
obtained by a random time-shift of X̂ itself. In particular, there exists a random time
T̂ ∈ R such that X̂T̂ has the same distribution as (b0u; 0 ≤ u ≤ 1).

In Subsection 5.3, we prove that if some distribution on C0[0, 1] can be achieved in the
moving-window process X̂ associated to two-sided Brownian motion, then we are able to
construct a random time T ≥ 0 such that X̂T has that desired distribution. Theorem 1.3
follows immediately from the above observations.

In Subsection 5.4, after presenting some results of Last et al. [51], we construct
a random time T ≥ 0 such that X̂T has the same distribution as (b0u; 0 ≤ u ≤ 1). The
construction also makes use of the local times defined in Subsection 5.1. The argument
is due to Hermann Thorisson.
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5.1 Local times of X̂ and its Palm measure

In this subsection, we present background on Palm theory of stationary random
measures. To begin with, (Ω,F ,P) is a generic probability space on which random
elements are defined.

Let (Zt; t ∈ R) ∈ ER be a continuous-time process with a measurable state space
(E, E). We further assume that the process Z is path-measurable, that is ER × R 3
(Z, t)→ Zt ∈ E is measurable for all t ∈ R. See e.g. Appendix of Thorisson [80] for more
on path-measurability. Let ξ be a random σ−finite measure on R.

Assume that the pair (Z, ξ) is jointly stationary, that is

θs(Z, ξ)
(d)
= (Z, ξ) for all s ∈ R, (5.4)

where θsZ := (Zs+t; t ∈ R) and θsξ(·) := ξ(· + s) are usual time-shift operations. Then
the Palm measure PZ,ξ of the jointly stationary pair (Z, ξ) is defined as follows: for
f : ER ×M(R)→ R bounded measurable,

PZ,ξf := E

∫ 1

0

f(θt(Z, ξ))ξ(dt).

In the rest of the paper, we only need to care about the ER-marginal of PZ,ξ. That is, for
f : ER → R bounded measurable,

Pξf := E

∫ 1

0

f(θtZ)ξ(dt). (5.5)

By abuse of language, we call Pξ defined by (5.5) the Palm measure of the stationary
random measure ξ. Thus, Pξ is a σ−finite measure on ER. If Pξ1 = Eξ[0, 1) <∞, then
the normalized measure Pξ/Pξ1 is called the Palm probability measure of ξ. So far most
of the results have been established for PZ,ξ, but they still hold for the marginal Pξ. We
refer readers to Kallenberg [42, Chapter 11], Thorisson [85, Chapter 8], Last [49, 50]
and the thesis of Gentner [26] for further development on Palm versions of stationary
random measures.

In the sequel, we adapt our problem setting to the above abstract framework. We take
the state space E := C0[0, 1] equipped with its Borel σ−field B. Recall that (X̂t; t ∈ R),
the moving-window process defined as in (5.2), is a random element in the metric space
(C0[0, 1]R, ρ) with the distance ρ defined by (5.3).

For a Borel measurable set C ⊂ R, let

BRC := {w ∈ C0[0, 1];w(1) ∈ C}

be the set of bridge paths with endpoint in C. By stationarity of (X̂t; t ∈ R), for each fixed
t ∈ R, {u ∈ [t, t+ 1]; X̂u ∈ BR0} − {t} has the same distribution as {u ∈ [0, 1]; X̂u ∈ BR0},
which is mutually absolutely continuous relative to that of {u ∈ [0, 1]; B̃u = 0} by Lemma
4.3. Here B̃ is the modified Brownian motion as in (4.1). Inspired from the notion of
Brownian local times, we define a random σ−finite measure Γ on R as follows: for n ∈ N
and C ⊂ R,

Γ([−n, n] ∩ C) := lim
ε→0

√
π

2

1

ε

∫
[−n,n]∩C

1(X̂u ∈ BR[−ε,ε])du. (5.6)

Let us justify that the random measure Γ as in (5.6) is well-defined. Write C = ∪k∈ZCk
where Ck := C ∩ [k, k + 1]. We want to show that for each k ∈ Z,

lim
ε→0

1

ε

∫
Ck

1(X̂u ∈ BR[−ε,ε])du is well-defined almost surely.

The following lemma is quite straightforward, the proof of which is omitted.
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Lemma 5.1. Assume that two random sequences (Yε)ε>0 and (Y ′ε )ε>0 with a measurable
state space (G,G) have the same distribution. If f : G → R is a measurable function
satisfying that f(Yε) converges almost surely as ε → 0, then f(Y ′ε ) converges almost
surely as ε→ 0

Observe that for each fixed k ∈ Z, {u ∈ [k, k + 1]; X̂u ∈ BR[−ε,ε]} has the same
distribution as {u ∈ [0, 1];Su ∈ [−ε, ε]}+ {k} where (Su;u ≥ 0) is the Slepian process. By
Lemma 5.1, it suffices to prove that for each Borel measurable set C ′ ⊂ [0, 1],

lim
ε→0

1

ε

∫
C′

1(Su ∈ [−ε, ε])du is well-defined almost surely.

And this is quite clear from the path decomposition of the Slepian process on [0, 1],
Theorem 3.1. We refer readers to Lévy [55], and Revuz and Yor [71, Chapter VI] for the
existence of Brownian local times by approximation. Now for n ∈ N,

1

ε

∫
[−n,n]∩C

1(X̂s ∈ BR[−ε,ε])ds =

n−1∑
k=−n

1

ε

∫
Ck

1(X̂s ∈ BR[−ε,ε])ds

converges almost surely as ε→ 0.
The random measure Γ defined by (5.6) can be interpreted as the local times of the

moving-window process X̂ at the level BR0. Note that the pair (X̂,Γ) is jointly stationary
in the sense of (5.4). Next, we compute explicitly the 0-marginal of the Palm measure of
the local times Γ:

Proposition 5.2. Let Π0 : C0[0, 1]R 3 w → w0 ∈ C0[0, 1] be the 0−marginal projection.
Then the image by Π0 of the Palm probability measure of Γ as in (5.6) is

PΓ ◦Π−1
0 = PW0

,

where PW0

is Wiener measure pinned to 0 at time 1, that is the distribution of standard
Brownian bridge.

Proof. Take f : C0[0, 1]→ R bounded continuous. By injecting (5.6) into (5.5), we obtain:

PΓ ◦Π−1
0 f = lim

ε→0

√
π

2

1

ε

∫ 1

0

E[f(X̂t)1(X̂t ∈ BR[−ε,ε])]dt

= lim
ε→0

√
π

2

1

ε
E[f(X̂0)1(X̂0 ∈ BR[−ε,ε])] (5.7)

= lim
ε→0

√
π

2

1

ε
EW[f(w)1(w1 ∈ [−ε, ε])]

= lim
ε→0

EW[f(w)|w1 ∈ [−ε, ε]]

= PW0

f, (5.8)

where PW is Wiener measure on C0[0, 1]. The equality (5.7) is due to stationarity of the
moving-window process X̂, and the equality (5.8) follows from the weak convergence to
Brownian bridge of Brownian motion, see e.g. Billingsley [10, Section 11].

Remark 5.3. The measure PΓ ◦ Π−1
0 defined in Proposition 5.2 is closely related to

the notion of Revuz measure of Markov additive functionals. Note that for s ∈ R and
t ≥ 0, Γ[s, s + t] = Γ[0, t] ◦ θs, i.e. Γ induces a continuous additive functional of the
moving-window process X̂.1 Since (X̂t; t ∈ R) is stationary with respect to PW,

PΓ ◦Π−1
0 f := E

∫ 1

0

f(X̂t)Γ(dt) for f : C[0, 1]→ R bounded measurable,

1This generalizes the definition of continuous additive functionals of one-sided Markov processes, see e.g.
the book of Sharpe [74, Chapter IV] and the survey paper of Getoor [27] for background.
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can be viewed as Revuz measure of Γ in the two-sided setting. For further discussions
on Revuz measure of additive functionals, we refer readers to Revuz [70], Fukushima
[24], and Fitzsimmons and Getoor [22] among others.

5.2 Brownian bridge in two-sided Brownian motion

In this paragraph, we show that there exists a random time T̂ ∈ R such that (B̂T̂+u −
B̂T̂ ; 0 ≤ u ≤ 1) has the same distribution as Brownian bridge b0. In terms of the

moving-window process X̂, we show that

Proposition 5.4. There exists a random time T̂ ∈ R such that X̂T̂ has the same distri-
bution as (b0u; 0 ≤ u ≤ 1)

As mentioned in the introduction, our proof relies on a recent result of Last and
Thorisson [48], which establishes a dual relation between stationary random measures
and mass-stationary ones in the Euclidian space. We refer readers to Last and Thorisson
[52, 53] for the notion of mass-stationarity, which is an analog to point-stationarity of
random point processes.

Before proceeding further, we need the following notations. Recall that (Zt; t ∈ R) is
a path-measurable process with a state space (E, E) such that (ER, ER) is time-invariant,
and ξ is a random σ−finite measure on R. Let Nξ be a simple point process on Z such
that

i ∈ Nξ ⇐⇒ ξ(i+ [0, 1)) > 0.

Next we associate each j ∈ Z to the point of Nξ that is closest to j, choosing the smaller
one when there are two such points. Then we obtain a countable number of sets, each of
which contains exactly one point of Nξ. Let D be the set that contains 0, and S be the
vector from Nξ−point in the set D to 0.

Figure 3: Decomposition of Z induced by the simple point process Nξ.

The next result is read from Last and Thorisson [48, Theorem 2]:

Theorem 5.5. [48] Assume that (1). the pair (Z, ξ) is stationary, (2). Eξ[0, 1) < ∞ and
(3). conv supp ξ = R a.s. where conv supp ξ is the convex hull of the support of ξ. Define

Z0 := θT−SZ,

where the conditional distribution of T ∈ [0, 1) given (Z, ξ) is

θ−Sξ(·|[0, 1)) :=
θ−Sξ(· ∩ [0, 1))

θ−Sξ([0, 1))
.

Define

dP0 :=
θ−Sξ[0, 1)

#D · Eξ[0, 1)
dP,

where #D is the cardinality of the set D. Then Z0 under P0 is the Palm probability
measure of ξ.
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Thorisson [82, 84] presented a duality between stationary point processes and point-
stationary ones in the Euclidian space. In particular, the stationary point process and its
(modified) Palm version are the same with some random time-shift. Thus Theorem 5.5 is
regarded as a generalization of those results in the random diffuse measure setting.

Now we apply Theorem 5.5 to Z := X̂ the moving-window process as in (5.2), and
ξ := Γ the local times as in (5.6). It is straightforward that all assumptions in Theorem
5.5 are satisfied. This leads to:

Corollary 5.6. There exists a random time T ∈ R such that the Palm probability measure
of Γ, i.e. PΓ/PΓ1 is absolutely continuous with respect to the distribution of θT X̂.

By Proposition 5.2, the 0-marginal of the Palm probability measure of Γ is Brownian
bridge. If we can show that the Palm probability measure PΓ/PΓ1 is achieved by θT̂ X̂

for a random time T̂ ∈ R, then Proposition 5.4 follows as a consequence. To this end, we
state a general result, the proof of which is deferred.

Theorem 5.7. Let (Zt; t ∈ R) be a path-measurable process with a state space (E, E).
Assume that

1. Z is ergodic under the time-shift group (θt; t ∈ R), that is

P(Z ∈ H) = 0 or 1 for all H ∈ I := {H ′ ∈ ER; θtH
′ = H ′ for all t ∈ R};

2. µ is a probability measure on (ER, ER) absolutely continuous with respect to the
distribution of θTZ for a random time T ∈ R.

Then there exists a random time T̂ ∈ R such that θT̂Z is distributed as µ.

Proof of Proposition 5.4. We apply Theorem 5.7 to Z := X̂ the moving-window process
and µ := PΓ/PΓ1 the Palm probability measure of Γ. Observe that the invariant σ-field
I ⊂ ∩n∈Nθ−1

n ER, the tail σ-field of (X̂n;n ∈ N) which are i.i.d. copies of Brownian motion
on [0, 1]. By Kolmogorov’s zero-one law, I is trivial under the distribution of X̂ and the
assumption (1) is satisfied. The assumption (2) follows from Corollary 5.6. Combining
Theorem 5.7 and Proposition 5.2, we obtain the desired result.

Remark 5.8. In ergodic theory, the process Z is said to be θ-mixing if

sup{P(Z ∈ A ∩B)− P(Z ∈ A)P(Z ∈ B); t ∈ R, A ∈ Ft, B ∈ F t+s} → 0 as s→∞,

where Ft := σ(Zu;u ≤ t) and F t+s := σ(Zu;u ≥ t+ s). See e.g. Bradley [15] for a survey
on strong mixing conditions. It is quite straightforward that the moving-window process
X̂ is θ-mixing, since X̂t+l and X̂t are independent for all t ≥ 0 and l ≥ 1. Consequently,
X̂ is ergodic under time-shift (θt; t ∈ R). In Section 5.3, this notion of θ-mixing plays an
important role in one-sided embedding out of two-sided processes.

In the rest of this part, we aim to prove Theorem 5.7. We need the following result of
Thorisson [83], which provides a necessary and sufficient condition for two continuous-
time processes being transformed from one to the other by a random time-shift.

Theorem 5.9. [83] Let (Zt; t ∈ R) and (Z ′t; t ∈ R) be two path-measurable processes
with a state space (E, E). Then there exists a random time T̂ ∈ R such that θT̂Z has the
same distribution as Z ′ if and only if the distributions of Z and Z ′ agree on the invariant
σ−field I.

Proof of Theorem 5.7. We apply Theorem 5.9 to Z ′ distributed as µ. Since (θt; t ∈ R) is
ergodic under the distribution of Z,

P(Z ∈ H) = 0 or 1 for all H ∈ I.
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If P(Z ∈ H) = 0 for H ∈ I, then P(θTZ ∈ H) = P(Z ∈ θ−TH) = P(Z ∈ H) = 0. By the
absolute continuity between the distribution µ and that of θTZ, we have µ(H) = 0. By
applying the same argument to the complement of H, P(Z ∈ H) = 1 for H ∈ I implies
µ(H) = 1. Thus, the probability distribution µ and that of Z agree on the invariant
σ−field I. Theorem 5.9 permits to conclude.

5.3 From two-sided embedding to one-sided embedding

We explain here how to achieve a certain distribution on C0[0, 1] in Brownian motion
by a random spacetime shift, once this has been done in two-sided Brownian motion. We
aim to prove that:

Proposition 5.10. Assume that µ is a probability measure on (C0[0, 1],B). If X̂T̂ is

distributed as µ for some random time T̂ ∈ R, then there exists a random time T ≥ 0

such that X̂T is distributed as µ.

It is not hard to see that Theorem 1.3 follows readily from Corollary 5.4 and Proposi-
tion 5.10. In the sequel, we assume path-measurability for any continuous-time processes
that are involved. Let L(X ) be the distribution of any random element X . To prove
Proposition 5.10, we begin with a general statement.

Proposition 5.11. Let (Zt; t ∈ R) be a stationary process and θ-mixing as in Remark
5.8. Assume that ZT̂ is distributed as µ for some random time T̂ ∈ R. Given ε > 0 and
N ∈ N, there exist random times 0 ≤ T1 < · · · < TN on some event EN of probability
larger than 1− ε such that

||L(ZT1 , · · · , ZTN |EN )− µ⊗N ||TV ≤ ε,

where || · ||TV is the total variation norm of a measure.

Before proceeding the proof, we need the following lemma known as Blackwell-
Dubins’ merging of opinions [12]. In that paper, they only proved the result for discrete
chains. But the argument can be easily adapted to the continuous setting. We rewrite
Blackwell-Dubins’ theorem for our own purpose, and leave full details to careful readers.

Lemma 5.12. [12] Let (Zt; t ∈ R) and (Z ′t; t ∈ R) be two path-measurable processes
with a state space (E, E). If the distribution of Z ′ is absolutely continuous with respect
to Z, then

||L(Z ′t+s; s ≥ 0|F ′t)− L(Zt+s; s ≥ 0|Ft)||TV → 0 as t→∞,

where Ft := σ(Zu;u ≤ t) and F ′t := σ(Z ′u;u ≤ t).

Proof of Proposition 5.11. We proceed by induction over N ∈ N. By stationarity of Z, for
each s ∈ R, θsZ has the same distribution as Z. Let T̂θs be the random time constructed
from θsZ just as T̂ is constructed from Z. Therefore, (θsZ)T̂θs

= ZT̂θs+s is distributed

as µ. Let t ∈ R be the ε
2 -quantile of T̂ , that is P(T̂ ≥ t) ≥ 1 − ε

2 . Define T1 := T̂θ−t − t.
Observe that for A ∈ E ,

P(ZT1
∈ A)− ε

2
≤ P(ZT1

∈ A and T1 ≥ 0) ≤ P(ZT1
∈ A).

As a consequence, on the event E1 := {T1 ≥ 0} of probability larger than 1− ε
2 > 1− ε,

||L(ZT1 |E1)− µ||TV ≤
ε/2

1− ε/2
< ε.

Suppose that there exist 0 ≤ T1 < · · · < TN on some event EN of probability larger than
1− ε

4 such that

||L(ZT1
, · · · , ZTN |EN )− µ⊗N ||TV ≤

ε

4
. (5.9)
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Note that the distribution of the conditioned moving-window process (Zs; s ∈ R|EN ) is
absolutely continuous with respect to that of the original one (Zs; s ∈ R). By Lemma
5.12,

||L(Zt+s; s ≥ 0|EN ,Ft)− L(Zt+s; s ≥ 0|Ft)||TV → 0 as t→∞. (5.10)

By triangle inequality, we have for t′, t′′ ≥ 0,

||L(Zt′+t′′+s; s ≥ 0|EN )− L(Zs; s ≥ 0)||TV
≤ ||L(Zt′+t′′+s; s ≥ 0|EN )− L(Zt′+t′′+s; s ≥ 0|EN ,Ft′)||TV

+ ||L(Zt′+t′′+s; s ≥ 0|EN ,Ft′)− L(Zt′+t′′+s; s ≥ 0|Ft′)||TV
+ ||L(Zt′+t′′+s; s ≥ 0|Ft′)− L(Zs; s ≥ 0)||TV . (5.11)

By θ-mixing property, the first and the third term of (5.11) goes to 0 as t′′ → ∞. By
(5.10), the second term of (5.11) goes to 0 as t′ →∞. Therefore,

lim
t→∞

||L(Zt+s; s ≥ 0|EN )− L(Zs; s ≥ 0)||TV = 0 as t→∞. (5.12)

Pick tN ≥ 0 such that P(TN ≥ tN ) ≤ ε
8 and

||L(ZtN+s; s ≥ 0|EN )− L(Zs; s ≥ 0)||TV ≤
ε

8
.

By a similar argument as in the case of N = 1, there exists a random time TN+1 ∈ R
such that P(TN+1 ≥ tN ) ≥ 1− ε

8 and

||L(ZTN+1
|EN ∩ {TN+1 ≥ tN})− µ||TV ≤

ε

8
+
ε

8
=
ε

4
. (5.13)

Let EN+1 := EN ∩ {TN+1 > TN}. Since

P(TN+1 > TN ) ≥ P(TN+1 ≥ tN )− P(TN > tN ) ≥ 1− ε

4
,

we get P(EN+1) ≥ 1− ε
2 > 1− ε. By (5.9) and (5.13),

||L(ZT1
, · · · , ZTN |EN+1)− µ⊗N ||TV ≤

ε

2
and ||L(ZTN+1

|EN+1)− µ||TV ≤
ε

2
.

We obtain immediately that ||L(ZT1
, · · · , ZTN+1

|EN+1)− µ⊗N+1||TV ≤ ε
2 + ε

2 = ε.

By applying Lemma 5.12 in the first step, we deduce from Proposition 5.11 that:

Corollary 5.13. Let (Zt; t ∈ R) be a stationary process and θ-mixing as in Remark 5.8.
Assume that ZT̂ is distributed as µ for some random time T̂ ∈ R. Given ε > 0, N ∈ N and
E0 an event of positive probability, there exist random times 0 ≤ T1 < · · · < TN on some
event EN of probability larger than 1− ε such that

||L(ZT1 , · · · , ZTN |E0, EN )− µ⊗N ||TV ≤ ε.

Now let us recall some elements of von Neumann’s acceptance-rejection algorithm
[86]. Assume that µ and ν are two probability measures such that the Radon-Nikodym
derivative f := dν

dµ is essentially bounded under µ. Let (Zn)n∈N ∼ µ⊗N be a sequence of
i.i.d. random variables distributed as µ. Then

ZT ∼ ν with T := inf

{
i ∈ N;Ui ≤

f(Zi)

ess sup f

}
,
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where (Un)n∈N is a sequence of i.i.d. uniform-[0, 1] random variables independent of
(Zn)n∈N. It is well-known that the total variation between the N th updated distribution
and the target one is of geometric decay, i.e.

||L(ZT∧N )− ν||TV ≤ 2

(
1− 1

ess sup f

)N
.

If the sample size N is large enough, a good portion of the target distribution ν can be
sampled from (Z1, · · · , ZN ) ∼ µ⊗N à la von Neumann. The following lemma is a slight
extension of the above result to the quasi-i.i.d. case. The proof is quite standard, and
thus is omitted.

Lemma 5.14. Assume that ||L(Z1 · · ·ZN )− µ⊗N ||TV ≤ ε for some ε > 0 and N ∈ N.Then

||L(ZTN )− ν||TV ≤ ε+ 2

(
1− 1

ess sup f

)N
,

where TN := inf{i ≤ N ;Ui ≤ f(Zi)/ ess sup f} ∧N .

Proof of Proposition 5.10. We use the same notation as in the proof of Proposition 5.11.
Let t ∈ R be the 1

2−quantile of T̂ , and define T1 := T̂θ−t . By taking T1 ≥ 0 as the stopping
rule, we obtain a 1

2 portion of µ. The idea now is to get the remaining 1
2 portion of µ

by filling-type argument. Note that the target distribution L(X̂T1
|T1 < 0) is absolutely

continuous with respect to µ with the Radon-Nikodym density

f1 :=
dL(X̂T1

|T1 < 0)

dµ
,

which is bounded by 2. As indicated in Remark 5.8, the moving-window process X̂ is
stationary and θ-mixing. We apply Corollary 5.13 to (X̂t; t ∈ R|T1 < 0): for any fixed
N ∈ N, there exist random times 0 ≤ T1 < · · · < TN on some event EN of probability
larger than 3

4 such that

||L(X̂T1 , · · · , X̂TN |T1 < 0, EN )− µ⊗N ||TV ≤
1

4
.

By Lemma 5.14, there is a random integer M ≤ N such that

||L(X̂TM |T1 < 0, EN )− L(X̂T1
|T1 < 0)||TV ≤

1

4
+ 2

(
1− 1

ess sup f1

)N
.

By taking N ∈ N such that (1−1/ ess sup f1)N ≤ 1
8 , we retrieve a 1

2 portion of the targeted

L(X̂T1
|T1 < 0). Restricted to the sub-probability space {T1 < 0}, we obtain a remaining

1
4 portion of µ. Repeat the algorithm, and we finally achieve the desired ( 1

2 + 1
4 + 1

8 + · · · )
distribution µ.

5.4 An explicit embedding of Brownian bridge into Brownian motion

In this subsection, we present a constructive proof of Theorem 1.3 due to Hermann
Thorisson. Recall that X̂ is the moving-window process associated to a two-sided
Brownian motion.

Theorem 5.15. [79] Let Γ be the random σ-finite measure defined as in (5.6). Define

T := inf{t > 0; Γ[0, t] = t}. (5.14)

Then T < ∞ almost surely, and X̂T has the same distribution as standard Brownian
bridge (b0u; 0 ≤ u ≤ 1).
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To proceed further, we need the following notions regarding transports of random
measures, initiated by Holroyd and Peres [36], and Last and Thorisson [52].

Definition 5.16. [36, 52] Let (Ω,F ,P) be a generic probability space, equipped with a
flow (θt; t ∈ R).

1. A measurable mapping τ : Ω×R→ R is called an allocation rule if

τ(θtw, s− t) = τ(w, s)− t for s, t ∈ R P a.s.

2. An allocation rule τ is said to balance two random measures ξ and η if∫
R

1(τ(s) ∈ ·)ξ(ds) = η P a.s.

Triggered by the work of Liggett [56], and Holroyd and Liggett [35] on transporting
counting measures on Zd to the Bernoulli random measure, allocation rules of counting
measures on Zd to an ergodic point process have received much attention, see e.g.
Holroyd and Peres [36], Hoffman et al. [34], Chatterjee et al. [18], and Last and
Thorisson [52] among others. The following result of Last et al. [51, Theorem 5.1] gives
a balancing allocation rule for diffuse random measures on the line.

Theorem 5.17. [51] Let ξ and η be invariant orthogonal diffuse random measures on R
with finite intensities. Assume that

E[ξ[0, 1]|I] = E[η[0, 1]|I] a.s., (5.15)

where I is the invariant σ-field. Then the mapping

τ(s) := inf{t > s; ξ[s, t] = η[s, t]} for all s ∈ R

is an allocation rule balancing ξ and η.

Corollary 5.18. Let Γ be the random σ-finite measure defined as in (5.6). Define

T (s) := inf{t > s; Γ[s, t] = t− s} for all s ∈ R. (5.16)

Then (T (s); s ∈ R) is an allocation rule balancing the Lebesgue measure L1 on R and Γ.

Proof. We want to apply Theorem 5.17 to ξ := L1 and η := Γ. We need to check the
conditions. First it is obvious that L1 and Γ are invariant diffuse measures on the real
line. Note that the measure Γ is supported on the set {t ∈ R; X̂t ∈ BR0} almost surely.
The distribution of {t ∈ R; X̂t ∈ BR0} is the same as that of {t ∈ R;St = 0}, which has
null Lebesgue measure almost surely. Therefore, the measures L1 and Γ are orthogonal.
In the proof of Proposition 5.4, we know that I is trivial under the distribution of X̂.
In addition, EΓ[0, 1] = 1 by the computation as in Proposition 5.2. Thus, we have the
condition (5.15) in the case of ξ := L1 and η := Γ.

In terms of Palm measures, Last and Thorisson [52, Theorem 4.1] gave a necessary
and sufficient condition for an allocation rule to balance two random measures. See also
Last et al. [51, Theorem 2.1].

Theorem 5.19. [52] Consider two random measures ξ and η on R and an allocation rule
τ . Then τ balances ξ and η if and only if

Pξ(θτ(0)w ∈ ·) = Pη,

where Pξ (resp. Pη) is the Palm measure of ξ (resp. η).
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Proof of Theorem 5.15. Applying Theorem 5.19 to ξ := L1, η := Γ and τ := T , we get:

PL1(θT X̂ ∈ ·) = PΓ.

where T is defined by (5.14). Note that for a stationary process, the Palm version of the
Lebesgue measure is the stationary process itself. In particular, PL1 is the distribution
of the moving-window process X̂. By Proposition 5.2, the 0-marginal of PΓ is standard
Brownian bridge. Theorem 5.15 follows readily from these facts.

Finally, let us derive a simple consequence of Theorem 5.15. Let (bpsu ; 0 ≤ u ≤ 1) be
the pseudo Brownian bridge defined by

bpsu :=
Buτ1√
τ1

for all 0 ≤ u ≤ 1,

where τ1 := inf{t ≥ 0;Lt > 1} is the inverse local times of Brownian motion. Biane et al.
[8] proved that the distribution of the pseudo Brownian bridge is mutually absolutely
continuous relative to that of standard Brownian bridge. That is, for f : C0[0, 1]→ R a
bounded measurable function,

E[f(bpsu ; 0 ≤ u ≤ 1)] = E

[√
2

π
Lbr1 f(b0u; 0 ≤ u ≤ 1)

]
,

where Lbr1 is the local time of Brownian bridge at level 0 up to time 1.
From Theorem 5.15, we are able to find a sequence of i.i.d. Brownian bridges by

iteration of the construction (5.14). According to Pitman and Tang [66, Section 3.5], we
can apply Rost’s filling scheme [17, 72] to sample distributions which are absolutely
continuous relative to that of Brownian bridge. In particular,

Corollary 5.20. There exists a random time T ≥ 0 such that (BT+u−BT ; 0 ≤ u ≤ 1) has
the same distribution as (bpsu ; 0 ≤ u ≤ 1).
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