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1 Introduction

We start by defining the concept of a random dynamical system which has been introduced
by L. Arnold and his school and which we adapt slightly according to our needs (cf. Arnold
(1997), Arnold and Scheutzow (1995)).

Definition 1 Let (Ω,F , PI ) be a probability space and θ a Borel RI -action on Ω i.e. θ :
RI × Ω→ Ω satisfies

i) θ is (B ⊗ F ,F)-measurable, where B is the Borel σ-algebra of RI

ii) θ0 = idΩ

iii) θt+s = θt ◦ θs for all s, t ∈ RI .

If in addition N ∈ F , PI (N) = 0 implies PI (θ−1
t N) = 0 for all t ∈ RI i.e. PI is quasi-

invariant under θ, then (Ω,F , PI , θ) is called quasimetric dynamical system (QDS).
If even more PI (θ−1

t A) = PI (A) for all A ∈ F , t ∈ RI i.e. PI is invariant under θ, then
(Ω,F , PI , θ) is called metric dynamical system (MDS).

Definition 2 Let (Ω,F , PI , θ) be a QDS and I a subsemigroup of ( RI ,+), (e.g. RI , [0,∞),
NI , ZZ ). Let (H, ◦) be a semigroup. A map ϕ : I × Ω→ H is called cocycle if

ϕ(t+ s, ω) = ϕ(t, θsω) ◦ ϕ(s, ω) for all t, s ∈ I, ω ∈ Ω.

ϕ : I × Ω → H is called a crude cocycle if for every s ∈ I there exists a PI -null set Ns

such that

ϕ(t+ s, ω) = ϕ(t, θsω) ◦ ϕ(s, ω) for all t, s ∈ I, ω 6∈ Ns.

(Ω,F , PI , θ, ϕ) is called random dynamical system (RDS), if ϕ is a cocycle over the
MDS (Ω,F , PI , θ). We call an RDS one-sided if I = [0,∞) or I = NI 0.

We will always assume that θ is defined on RI × Ω even if we consider cocycles which are
defined on a proper subset of RI . This will be convenient and does not seem to be too
restrictive provided one is willing to change the (e.g. one-sided) QDS on which the cocycle
ϕ is defined without changing the law of ϕ (cf. (Arnold, Scheutzow (1995), Theorem 13)
for a closely related question).

An important class of RDS arises via solution flows of stochastic differential equations
(SDEs) driven by semimartingales Z with stationary increments. More precisely we assume
that the m-dimensional semimartingale Z has the helix property on the MDS (Ω,F , PI , θ)
i.e.

Zt+s(ω)− Zs(ω) = Zt(θsω), s, t ≥ 0, ω ∈ Ω
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i.e. Z is a cocycle with (H, ◦) = ( RI m,+) and I = [0,∞). We can always extend Z to
a helix with index set RI in a unique way (Arnold, Scheutzow (1995)) but there will be
no need to do this. Let f : RI n → RI n×m satisfy a global Lipschitz condition and let us
assume that Z has continuous paths. Consider the n-dimensional SDE

dXt = f(Xt−)dZt , t ≥ s

Xs = x , x ∈ RI n , s ≥ 0, (1)

By results of Kunita (Kunita (1984, 1990)) we know that (1) admits a solution flow of
homeomorphisms (even without Z being a helix) i.e. a map φ : ∆ × Ω → H, where
∆ = {s, t ∈ RI : 0 ≤ s ≤ t <∞} and (H, ◦) is the group of homeomorphisms on RI n with
respect to composition such that

φs,u(ω) = φt,u(ω) ◦ φs,t(ω) for all 0 ≤ s ≤ t ≤ u, ω ∈ Ω (2)

and such that φs,t(ω)(x) solves (1) for each fixed x ∈ RI n and s ≥ 0.

The helix property of Z can be shown to imply that for every s ≥ 0 there exists a set Ms

of measure zero such that

φs,s+t(ω) = φ0,t(θsω) (3)

for all t ≥ 0 and all ω 6∈ Ms (Arnold, Scheutzow (1995)). If we define ϕ(t, ω) := φ0,t(ω),
t ≥ 0, ω ∈ Ω, then ϕ is obviously a crude cocycle with Ns = Ms (assuming that Ms and
Ns are chosen as small as possible). Since one is interested in getting a cocycle ϕ rather
than a crude cocycle and since φ is only uniquely defined up to sets of measure zero the
question arises if there exists a version of φ (or of ϕ) such that Ns = Ms = ∅ for all
s ≥ 0 i.e. such that ϕ is a cocycle. This is usually referred to as the perfection problem
of crude cocycles. Note that the union of all sets Ms need not be a set of measure zero in
general. A positive solution of the perfection problem thus guarantees that (1) generates
the RDS (Ω,F , PI , θ, ϕ).

The perfection problem in the above set-up (with continuous Z) was solved in (Arnold,
Scheutzow (1995)) - even for more general equations than (1). In fact (Arnold, Scheut-
zow (1995)) and (Mohammed, Scheutzow (1996)) contain abstract perfection results for
group-valued crude cocycles which enjoy continuity properties in the ”time” variable (with
different proofs). A more general perfection result for group-valued cocycles without con-
tinuity properties is given in (Scheutzow (1996)).

We will show that if Z is a semimartingale helix which is just cadlag (i.e. right continuous
with left limits for all ω ∈ Ω) then there still exists a solution map φ with properties (2)
and (3). It does not take values in the group of homeomorphisms in general but just in the
semigroup (Cn, ◦) of continuous functions from RI n to RI n. If we define ϕ(t, ω) := φ0,t(ω)
as before then ϕ is still a crude cocycle but the perfection theorems above can not be
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applied. In fact all proofs of the perfection theorems mentioned above heavily use the
existence of inverse elements in the group H.

Let us point out the difference between the perfection problem in the group-valued and
the semigroup-valued case. We call φ a crude semiflow if it satisfies (2) and (3) and
semiflow or perfect semiflow if it satisfies (2) and (3) without exceptional sets.

There is a one-to-one correspondence betweenH-valued semiflows φ̃ and H-valued cocycles
ϕ̃ given by ϕ̃(t, ω) := φ̃0,t(ω) and φ̃s,t(ω) := ϕ̃(t − s, θsω) which holds also if H is just a
semigroup. For the corresponding crude objects φ and ϕ and the perfection problems
there is still a close correspondence if H is a group but no longer if H is just a semigroup.
Indeed if we start with a group-valued crude semiflow φ, define ϕ(t, ω) := φ0,t(ω), find

a perfection ϕ̃ of ϕ and define φ̃s,t(ω) := ϕ̃(t − s, θsω), then φ̃ is a semiflow which is

indistinguishable from φ i.e. φ̃ and φ agree identically up to a set of measure zero. We
call φ̃ a perfection of φ. Conversely if we start with a group-valued crude cocycle ϕ and
define φs,t(ω) := ϕ(t, ω)◦ϕ−1(s, ω), then φ is a crude semiflow (observe that ϕ(0, ω) equals
the identity eH of H almost surely). Note that φs,t(ω) := ϕ(t− s, θsω) will not be a crude

semiflow in general! If φ̃ is a perfection of φ then ϕ̃(t, ω) := φ̃0,t(ω) is a perfection of ϕ.
So the perfection problems for ϕ and φ are equivalent in the group-valued case. This is no
longer true in case H is just a semigroup.

If we start with a semigroup-valued crude semiflow φ, then φ̃ as defined above is still a
semiflow but it need not be indistinguishable from φ (see Example 10). In general the
best we can say is that for every fixed s ≥ 0 there exists a PI -null set As such that
φs,t(ω) = φ̃s,t(ω) for all t ≥ s and all ω 6∈ As. If we start with a semigroup-valued crude
cocycle then we can not even define φ as above due to the possible nonexistence of inverses.
So the perfection problems for crude cocycles and crude semiflows are different problems
in the general semigroup-valued case.

Here we will be interested in obtaining perfect versions for solution semiflows of SDEs.
Therefore we will concentrate on perfection results for crude semiflows (Theorems 3 and
4) which we will apply to solutions of SDEs in Chapter 3. In Theorem 5 we provide
the existence of a nice solution semiflow of (1) without requiring Z to have stationary
increments. Even though Theorem 5 and its counterpart Proposition 8 for the case of
locally Lipschitz coefficients look somewhat ”classical” we could not find them in the
literature. Corollaries 6 and 9 then show (in particular) that if Z is a helix then (1)
generates a RDS in case f is Lipschitz resp. locally Lipschitz.

The perfection problem for crude semigroup-valued cocycles has been solved in certain
cases in (Kager (1996)) - even without continuity assumptions. We mention that a number
of authors have treated the related perfection problem for multiplicative functionals of
Markov processes which are by definition cocycles which take values in the semigroup
[0,∞) with respect to multiplication (Meyer (1972), Walsh (1972), Sharpe (1988), Getoor
(1990)). The restriction to the semigroup [0,∞) simplifies the problem. On the other
hand it is complicated by the fact that in the Markov process literature θ is usually only
one-sided.
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2 Perfection of a crude semiflow

We will use the following notation:

∆ = {(s, t) ∈ RI 2 : 0 ≤ s ≤ t}
B(T ) = Borel σ-algebra on the topological space T
λ = Lebesgue measure on RI (or its restriction to a subset of RI )
PI ∗ = inner measure associated with PI
QI + = set of nonnegative rationals
DI n = space of RI n-valued cadlag functions on [0,∞)

equipped with the topology of uniform convergence on compacts.

Theorem 3 Let (H, ◦) be a second countable Hausdorff topological semigroup with identity
element eH and H := B(H). Let (Ω,F , PI , θ) be a QDS and assume that φ : ∆× Ω → H
satisfies

(i) φ(s, t, ω) = φ(u, t, ω) ◦ φ(s, u, ω) for all ω ∈ Ω, 0 ≤ s ≤ u ≤ t,

(ii) for every s ≥ 0 there exists a PI -null set Ns such that

φ(s, t, ω) = φ(0, t− s, θsω) for all ω 6∈ Ns, t ≥ s,

(iii) φ is (B(∆)⊗F ,H)-measurable,

(iv) s 7→ φ(s, t, ω) is right continuous on [0, t] for every t > 0, ω ∈ Ω,

(v) t 7→ φ(s, t, ω) is right continuous on [s,∞) for every s ≥ 0, ω ∈ Ω.

Then there exists a map φ̃ : ∆× Ω→ H which satisfies (i), (iii), (iv), (v) and

(ii’) φ̃(s, t, ω) = φ̃(0, t− s, θsω) for all ω ∈ Ω, 0 ≤ s ≤ t,

(vi) PI ∗({ω : φ̃(s, t, ω) = φ(s, t, ω) for all (s, t) ∈ ∆}) = 1,

(vii) for every u ≥ 0

{φ̃(s, s+ u, ω); s ≥ 0, ω ∈ Ω} ⊆ {φ(s, s+ u, ω); s ≥ 0, ω ∈ Ω} ∪ {eH}.

In particular φ(s, s, ω) = eH for all s ≥ 0, ω ∈ Ω implies φ̃(s, s, ω) = eH for all
s ≥ 0, ω ∈ Ω,

(viii) if (s, t) 7→ φ(s, t, ω) is continuous resp. cadlag for all ω ∈ Ω, then the same is true
for φ̃.
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Remark: It is no restriction to assume in (ii) that the exceptional null sets do not
depend on t because if they do then by assumption (v) and the Hausdorff property of H

Ns :=
⋃
t≥0

Ns,t =
⋃

t∈ QI +

Ns,t

has also measure zero for every s ≥ 0.

Proof of Theorem 3:
Define

M := {(s, ω) ∈ [0,∞)× Ω : φ(s, s+ t, ω) = φ(0, t, θsω) for all t ≥ 0}
and

Ω̃ := {ω ∈ Ω : (s+ r, θ−rω) ∈M for λ⊗ λ− a.a. (s, r) ∈ RI 2 such that s+ r ≥ 0}.

Due to assumption (v) and the fact that H is Hausdorff we have

M =
⋂

t∈ QI +

{(s, ω) : φ(s, s+ t, ω) = φ(0, t, θsω)}.

Using (iii) and the fact that the diagonal in H ×H is closed (since H is Hausdorff) and
hence in B(H × H) and that B(H × H) = B(H) ⊗ B(H) = H ⊗ H (since H is second
countable) we see that M ∈ B([0,∞))⊗F . Further (ii) implies λ⊗ PI (([0,∞)×Ω)\M) = 0.

Quasi-invariance of PI and Fubini’s theorem then imply Ω̃ ∈ F and PI (Ω̃) = 1. Note that
Ω̃ is invariant under θu for every u ∈ RI .

Define for 0 ≤ s < t

φ̃(s, t, ω) :=

{
ess limh↓0 φ(0, t− s− h, θs+hω), ω ∈ Ω̃

eH, ω 6∈ Ω̃

See (Dellacherie, Meyer (1978), p. 105) for the definition of the essential limit. To see that
the esslim exists, observe that

φ(0, t− s− h, θs+hω) = φ(s+ h+ r, t+ r, θ−rω) (4)

provided t ≥ s+ h and (s+ h+ r, θ−rω) ∈M , so for fixed 0 ≤ s < t (4) holds for all ω ∈ Ω̃
and λ⊗ λ-a.a. (r, h) ∈ [0,∞]× [0, t− s]. Now assumption (iv) implies the existence of the
esslim and also that

φ̃(s, t, ω) = φ(s+ r, t+ r, θ−rω) (5)

for 0 ≤ s < t, ω ∈ Ω̃ and a.a. r ≥ 0 where the exceptional null set may depend on s and
ω. Finally define
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φ̃(s, s, ω) =

{
limh↓0 φ̃(s, s+ h, ω), ω ∈ Ω̃

eH, ω 6∈ Ω̃
(6)

It is clear from (5) and (v) that the limit exists and also that (5) still holds if s = t, ω ∈ Ω̃
for a.a. r ≥ 0.

We claim that φ̃ has all the properties stated in the theorem.

(i) is obvious from assumption (i) and (5).

(ii’) follows from (5) and the fact that Ω̃ is invariant under θ.

(iii) SinceH is separating and countably generated we can embed (H,H) in ([0, 1],B[0, 1])
as a measurable space (Zimmer (1984), p. 194). Then

φ̃(s, t, ω) :=

{ ∫ 1
0 φ(s+ r, t+ r, θ−rω)dr, ω ∈ Ω̃

eH , ω 6∈ Ω̃

Now the fact that Ω̃ ∈ F , assumption (iii) and Fubini’s theorem imply (iii).

(iv) follows from (5) and assumption (iv).

(v) follows from (5) and assumption (v).

(vi) If ω ∈ Ω̃, then φ̃(s, t, ω) = φ(s+r, t+r, θ−rω) = φ(0, t−s, θsω) for a.a. r ≥ 0, s ≥ 0
and all t ≥ s. Further φ(0, t− s, θsω) = φ(s, t, ω) for a.a. ω ∈ Ω, so for a.a. s ≥ 0
and a.a. ω ∈ Ω we have φ̃(s, t, ω) = φ(s, t, ω) for all t ≥ s. Now (iv) implies (vi).

(vii) follows from (5) and the definition of φ̃.

(viii) follows from (5) and the definition of φ̃.

Remark: Contrary to the group-valued case for which a perfection theorem without
continuity conditions in the ”time” variable was proved in (Scheutzow (1996)) Theorem 3
is wrong if we drop (v) in both the assumption and conclusion. We will give an example
in Chapter 4. Note that we made use of (v) twice in the proof: the first time to show
M ∈ B([0,∞)) ⊗ F and then in (6). The crucial step in which we can not avoid (v)
completely is (6) - even if we define φ̃(s, s, ω) differently (see Example 10).

Let us show that (v) can be avoided to prove (4) and (5) because a similar argument will
be needed in the proof of Theorem 4: the complement of M in [0,∞)×Ω is the projection
of the set

A := {(s, ω, t) : φ(s, s+ t, ω) 6= φ(0, t, θsω)} ∈ B([0,∞))⊗F ⊗B([0,∞))
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onto the first two components. By the projection theorem (Cohn (1980), Prop. 8.4.4)
M is measurable w.r.t. the completion of B([0,∞)) ⊗ F w.r.t. λ ⊗ PI . So we can find
M1 ⊂M ⊂ M2 such that M1,M2 ∈ B([0,∞))⊗F and λ⊗ PI (M2 \M1) = 0. Clearly M2

has full measure and therefore M1 as well. If we define Ω̃ as before but with M1 instead of
M then (4) and (5) follow as before.

In a number of cases some of the assumptions in Theorem 3 will not be satisfied. In
particular the continuity assumptions are rather strong in infinite dimensional cases if one
uses the usual (strong) topologies on H (even in the deterministic case). We will therefore
formulate a version of Theorem 3 which assumes only pathwise right continuity and which
may well be applicable for certain infinite dimensional equations.

Theorem 4 Let E be a Hausdorff second countable topological space with E = B(E) and
(H, ◦) a semigroup of maps from E to E such that either E is Polish (i.e. second countable
and complete metric) or there exists a countable set D ⊆ E such that h, h̃ ∈ H, h|D = h̃|D
implies h = h̃. Let (Ω,F , PI , θ) be a QDS and assume that φ : ∆× Ω → H satisfies (i),
(ii) of Theorem 3 and

(iii’) φ is (B(∆)⊗F ⊗ E, E)-measurable.

(iv’) s 7→ φ(s, t, ω, x) is right continuous for every t > 0, ω ∈ Ω, x ∈ E on [0, t).

(v’) t 7→ φ(s, t, ω, x) is right continuous for every s ≥ 0, ω ∈ Ω, x ∈ E on [s,∞).

Then there exists a map φ̃ : ∆ × Ω → H which satisfies (i), (ii’), (iii’), (iv’), (vi), (vii)
and

(viii’) If (s, t) 7→ φ(s, t, ω, x) is continuous resp. cadlag for every ω ∈ Ω and x ∈ E, then
the same is true for φ̃.

Proof:
Define M as in the proof of Theorem 1. If a set D as in Theorem 4 exists, then

M =
⋂

t∈ QI +

⋂
x∈D
{(s, ω) : φ(s, s+ t, ω, x) = φ(0, t, θsω, x)}.

So M ∈ B([0,∞))⊗F as before. If E is Polish then define M1 as in the previous remark
with t replaced by the pair (t, x) ∈ [0,∞)×E. The rest of the proof is completely analogous
to that of Theorem 3 except that we always add an additional argument x ∈ E of φ and
limits and the integral are taken for fixed x.
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3 Application to stochastic differential equations

Let m,n ∈ NI and let (Zt)t≥0 be an m-dimensional semimartingale w.r.t. the stochastic
basis (Ω,F , (Ft)t≥0, PI ) which we assume to satisfy the usual conditions (Protter (1992),
p. 3). Let F be a σ-algebra such that Z : [0,∞) × Ω → RI m is (B([0,∞))⊗ F ,B( RI m))-
measurable and such that F is the PI -completion of F . We could take F = F here but as
soon as we will introduce θ and require that θ be (B([0,∞))⊗F ,F)- measurable then it
is a severe restriction of generality to assume that F is complete.

Let f : RI n → RI n×m satisfy a global Lipschitz condition. We will first show that there
exists a version of the solution map φ : ∆× Ω→ H of the SDE

dXt = f(Xt−)dZt , t ≥ s

Xs = x , s ≥ 0, x ∈ RI n (7)

which satisfies (i), (iii), (iv) and (v) of Theorem 3 if we take H = Cn = C( RI n, RI n)
equipped with the compact-open topology (which is the same as the one generated by
uniform convergence on compact sets). It is well-known that H is a second countable and
metrizable topological semigroup (Dugundji (1966), Chap. XII, Th. 2.2, Th. 5.2, 8.5 ).
Then we will assume in addition that Z is a helix and we will show that φ automatically
satisfies (ii). By Theorem 3 we get a version φ̃ of φ which is in particular a perfect semiflow.
If we define ϕ(t, ω) := φ̃(0, t, ω), then (Ω,F , PI , θ, ϕ) is an RDS which is generated by (7).

Theorem 5 Let Z be an RI m-valued semimartingale and let f : RI n → RI n×m satisfy a
global Lipschitz condition. Then there exists a map φ : ∆ × Ω→ H(= Cn) which satisfies
(i) and (iii) of Theorem 3 and also

(ix) (s, t) 7→ φ(s, t, ω) is cadlag for every ω ∈ Ω,

(x) φ(s, t, ω)(x) solves (7) for every s ≥ 0, x ∈ RI n,

(xi) φ(s, s, ω) = eH for every s ≥ 0, ω ∈ Ω,

(xii) x 7→ φ(s, s+ ·, ω)(x) is continuous from RI n to DI n for every s ≥ 0, ω ∈ Ω.

(xiii) If Z has continuous paths then (s, t) 7→ φ(s, t, ω) is continuous for every ω ∈ Ω and
φ(s, t, ω) is a homeomorphism from RI n to RI n for every (s, t) ∈ ∆ and ω ∈ Ω.

Remark: We assumed that the stochastic basis satisfies the usual conditions, so φ
will automatically be progressively measurable for fixed s and x.

Proof:
It is known that for a given Lipschitz map f there exists ε > 0 such that for every
semimartingale Z satisfying ‖Z‖H∞ < ε there exists a map φ̄ : [0,∞) × Ω → H such
that
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a) φ(t, ω)(x) solves (7) for s = 0 and every x ∈ RI n.

b) for every t ≥ 0, ω ∈ Ω, φ(t, ω) is a homeomorphism from RI n to RI n,

c) x→ φ(·, ω)(x) is continuous from RI n to DI n for every ω ∈ Ω.
(Meyer (1981), p.114), see also (Protter (1992), p.189) for the definition of ‖ · ‖H∞.

A straightforward contradiction argument shows that b) and c) imply d) and e):

d) t 7→ φ(t, ω) is cadlag (w.r.t. the topology on H),

e) s 7→ φ
−1

(s, ω) is cadlag.

Let us further show

f) φ is (B([0,∞))⊗F ,H)-measurable.
Fix t ≥ 0, a compact set K ⊆ RI n and an open set G ⊆ RI n. Then a) and c) imply

⋂
x∈K

{ω : φ(t, ω)(x) ∈ G} ∈ F

i.e. ω 7→ φ(t, ω) is (F ,H)-measurable for every t ≥ 0. Using d) and the fact that H
is metrizable we get f).

For the given semimartingale Z (which need not satisfy ‖Z‖H∞ < ε) we can find a sequence
of finite stopping times 0 = T0 < T1 < T2 < · · · such that PI (Tk ↑ ∞) = 1 and
‖ZTk−−ZTk−1‖H∞ < ε for all k ∈ NI , where ε is chosen as before (depending on f). Here ZT

and ZT− stand for the semimartingales ZT
t := ZT∧t and ZT−

t := Zt1I{T>t}+ZT−1I{T≤t} resp.
(Protter (1992), p. 192/193). We can now apply the previous results to the semimartingales(
ZTk−
t − ZTk−1

t

)
t≥0

. Denote the corresponding maps by φ̄k. Define ϕ̄k : RI n × Ω→ RI n by

ϕk(x, ω) := x+ f(x)
(
ZT k(ω) − ZT k(ω)−

)
.

For (s, t) ∈ ∆, ω ∈ Ω, x ∈ RI n define

φ̂(s, t, ω)(x) := φl(t, ω) ◦
l−1∏
j=k

(ϕj(·, ω) ◦ φj (Tj−(ω), ω)) ◦ φ−1

k (s, ω)(x),

where Tk−1 ≤ s < Tk and Tl−1 ≤ t < Tl. On the null set on which Tk does not converge to
∞ we let φ̂(s, t, ω) = eH for all (s, t) ∈ ∆. Obviously φ̂ takes values in H.

By f) φ̂ is (B(∆)⊗F ,H)-measurable. Since H is separating and countably generated we
can find a PI -null set N ∈ F such that φ defined as
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φ(s, t, ω) :=

{
φ̂(s, t, ω), ω 6∈ N
eH, ω ∈ N

is (B(∆)⊗ F ,H)-measurable (Scheutzow (1996), Lemma 2.7) i.e. φ satisfies (iii). Let us
verify that φ has all other asserted properties.

(i) and (xi) follow from the definition of φ.

(ix) follows from d), e) and the definition of φ.

(x) From the definition of φ̂, it is clear that φ̂ (and hence φ) solves (7) for every
s ≥ 0, x ∈ RI n.

(xii) is a consequence of (ix). In fact for a function ψ : [0,∞) 7→ C( RI n, RI n) the following
properties are equivalent:

• t 7→ ψ(t) is cadlag

• x 7→ ψ(·)(x) is continuous from RI n to DI n.

(xiii) By (Kunita (1990), Theorem 4.5.1) we know that if Z has continuous paths there
exists a map φ : ∆ × Ω → H with values in the group of homeomorphisms which
satisfies (i), (x), (xi) and such that (s, t, x) 7→ φ(s, t, ω)(x) is continuous for every
ω ∈ Ω. The last property implies that (s, t) 7→ φ(s, t, ω) is continuous - even in the
stronger topology of the group of homeomorphisms (Kunita (1990), p. 115), so (xii)
and (xiii) follow. To show (iii) we may have to change φ on a PI -null set as above
(without destroying any of the other properties).

Let us now consider the particular case when Z has stationary increments. More precisely,
let (Ω,F , (Ft)t≥0, PI , θ) be a filtered MDS (FMDS) in the sense that (Ω,F , PI , θ) is an
MDS, (Ω,F , (Ft)t≥0, PI ) is a stochastic basis (satisfying the usual conditions) and θs is
(Ft+s,Ft)- measurable for every s, t ≥ 0. As before F denotes the PI -completion of F .

Corollary 6 Let Z be an RI m-valued semimartingale helix over the FMDS
(Ω,F , (Ft)t≥0, PI , θ) and assume that f : RI n → RI n×m satisfies a global Lipschitz condition.
Then the map φ in Theorem 5 satisfies all assumptions of Theorem 3. In particular there
exists a solution semiflow φ̃ of (7) i.e. (7) generates an RDS.

Proof:
We only need to check assumption (ii) of Theorem 3. Fix s ≥ 0 and x ∈ RI n. We have a.s.

φ(0, t− s, ω, x) = x+

(∫
(0,t−s]

f(φ(0, u−, ·, x))dZu
)

(ω), t ≥ 0.
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We want so show that almost surely

φ(0, t− s, θsω, x) = x+

(∫
(s,t]

f(φ(0, u− − s, θs(·), x))dZu
)

(ω), t ≥ s,

because this implies that for almost all ω we have φ(0, t − s, θsω, x) = φ(s, t, ω, x) for all
t ≥ s due to the fact that (7) has a unique solution.

Therefore we need to show that

∫
(s,t]

g(u− s, θsω)dZu =

(∫
(0,t−s]

g(u, ·)dZu
)

(θsω) a.s. (8)

where g(u, ω) := f(φ(0, u−, ω, x)). Observe that the integral on the left side of (8) is well-
defined because the integrand is caglad and adapted due to the measurability assumptions
on θ. The fact that (8) holds follows by first checking (8) in case g is simple predictable
(which follows immediately from the helix property of Z) and then approximating the
given g by simple predictable processes uniformly on [0, t− s] in probability. Alternatively
we could derive (8) from (Protter (1986), Theorem 3.1 (vi)) which is more general (but
has the disadvantage that his set-up is slightly different).

Remark (about the linear case):
Let us briefly specialize to the linear case i.e. fij(x) = aijx, where aTij ∈ RI n, i = 1, · · · , n,
j = 1, · · · ,m. Then the solution of (7) for s = 0 is given by Xt = Atx, where At, t ≥ 0 is
an RI n×n-valued solution of

At = I +
∫

(0,t]
(dZ̃u)Au−, (9)

where Z̃ is an RI n×n-valued semimartingale whose components are linear combinations of
the components of Z and where I is the n × n- identity matrix. Any solution of (9) is
called stochastic exponential of Z̃ and is usually denoted by E(Z̃)t, t ≥ 0. A glance at the
proof of Theorem 5 shows that we can choose φ in such a way that φ(s, t, ω) is linear for
all (s, t) ∈ ∆, ω ∈ Ω. If Z is a helix then Theorem 5 and (vii) of Theorem 3 show that
there exists a perfection φ̃ of φ which takes values in the subsemigroup of linear maps.

We will now consider the case in which f : RI n → RI n×m is only locally Lipschitz continuous.
Until further notice Z is an RI m-valued semimartingale which need not be a helix. Let ∂
be an element not contained in RI n. We follow the idea of the proof of Theorem V.38 in
(Protter (1992)) and choose global Lipschitz functions fk, k ∈ NI such that fk(x) = f(x)
for all |x| ≤ k. Let φ(k) : ∆ × Ω → H(= Cn) be the corresponding maps of Theorem 5.
Then there exists a PI -null set N such that

φ(k)(s, t, ω)(x) = φ(l)(s, t, ω)(x)

12



for all k, l ∈ NI , x ∈ RI n, (s, t) ∈ ∆, ω 6∈ N as long as sups≤u<t | φ(k)(s, u, ω)(x) |≤ k ∧ l.
Changing the φ(k) on a global set of measure zero if necessary, we can and will assume that
N is empty. Now define

φ(s, t, ω)(x) :=

{
limk→∞ φ

(k)(s, t, ω)(x), if supk∈IN sups≤u≤t | φ(k)(s, u, ω)(x) |<∞
∂, otherwise

(10)

Note that the limit exists in RI n and that we could extend the sup over s ≤ u < t instead
of s ≤ u ≤ t without changing φ. φ is called strictly conservative if there exists a PI -null
set N such that φ(s, t, ω)(x) 6= ∂ for all (s, t) ∈ ∆, x ∈ RI n, ω 6∈ N . In this case we again
can and will assume that N is empty.

Proposition 7 If φ is strictly conservative then it satisfies all properties of Theorem 5
with the possible exception of the second part of (xiii). Instead we have
(xiii’) If Z has continuous paths then (s, t) 7→ φ(s, t, ω) is continuous for every ω ∈ Ω and
φ(s, t, ω) : RI n → RI n is one-to-one for every (s, t) ∈ ∆ and ω ∈ Ω.

Proof:
Fix ω ∈ Ω and N ∈ NI . The definition of φ together with (ix) of Theorem 5 (applied to the
φ(k)) imply that for every | x |≤ N and 0 ≤ s ≤ N there exists an open neighborhood Us,x
of (s, x) such that sups̃≤t≤N | φ(s̃, t, ω)(x̃) − φ(s, t, ω)(x) |≤ 1 for all (s̃, x̃) ∈ Us,x. Using
the compactness of [0, N ]× {x ∈ RI n : |x| ≤ N} we get

sup
|x|≤N

sup
0≤s≤t≤N

| φ(s, t, ω)(x) |<∞. (11)

Property (iii) holds since φ(s, t, ω) = limk→∞ φ(k)(s, t, ω) in H = Cn, the φ(k) satisfy
(iii) and H is metrizable. All other properties follow from (11) and the corresponding
properties for the φ(k) except for the second part of (xiii) which need not hold in general.
The one-to-one property again follows from (11) and property (xiii) applied to the φ(k).

Remark: It follows from Proposition 7 that Corollary 6 still holds if f : RI n → RI n×m

is only locally Lipschitz continuous and if φ defined by (10) is strictly conservative. Observe
that if Z has continuous paths, then the one-to-one property of φ is preserved by φ̃ due to
(vii) of Theorem 3.

Now we consider the general case in which φ is not necessarily strictly conservative. Unfor-
tunately the map φ defined by (10) is not necessarily right continuous in the first variable
for fixed x ∈ RI n if we give E = RI n ∪ {∂} the topology of the Alexandrov one point
compactification of RI n, so Theorem 4 cannot be applied. It seems that Theorem 3 cannot
be directly applied either. We will therefore construct a perfection φ̃ of φ via approxi-
mation by the φ̃(k) which we get from Theorem 3. In spite of the fact that we do not
need the following proposition later we state it - together with a sketch of its proof - for
completeness.
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Proposition 8 Let f : RI n → RI n×m be locally Lipschitz continuous and let Z be a semi-
martingale. Define E := RI n ∪ {∂} equipped with the topology of the one-point compact-
ification of RI n. Let (H, ◦) be the semigroup of maps h : E → E which map ∂ to ∂ and
which are continuous at x whenever x ∈ RI n and h(x) ∈ RI n. Then the map φ defined by
(10) is H-valued and satisfies (i), (iii’) of Theorem 4 and also

(xiv) t 7→ φ(s, s+ t, ω, x) is cadlag for every ω ∈ Ω, x ∈ RI n, s ≥ 0 ,

(xv) φ(s, s, ω, x) = x for all s ≥ 0, ω ∈ Ω, x ∈ RI n.

(xvi) If φ(s, t, ω, x) = ∂ and t > s, then limh↓0, φ(s, t− h, ω, x) = ∂ ,

(xvii) φ is a local solution of (7) i.e.

φ(s, t, ω, x) = x+
∫ t

s
f(φ(s, u−, ω, x))dZu a.s.

for all 0 ≤ s ≤ t, x ∈ RI n such that φ(s, t, ω, x) 6= ∂.

(xviii) If φ(s, t, ω, x) 6= ∂, then for every ε > 0 there exist δ = δ(ε) > 0 such that
| φ(s, t, ω, x)−φ(s, t, ω, x) |< ε for all | x−x |< δ, t ≤ t < t+δ, s ≤ s < s+δ and
| φ(s, t, ω, x)− φ(s, t

−
, ω, x) |< ε for all | x− x |< δ, t− δ < t ≤ t, s ≤ s < s + δ.

An analogous statement holds for s−.

(xix) If Z has continuous paths then φ(s, t, ω, x) = φ(s, t, ω, y) 6= ∂ implies x = y.

Proof: It suffices to prove (xvi) since all other properties then follow from the definition
of φ. Fix s ≥ 0, x ∈ RI n, ω ∈ Ω and assume that

τ := inf{u > s : φ(s, u, ω, x) = ∂} ∈ (s,∞)

and φ(s, τ, ω, x) = ∂. Further assume that limh↓0 φ(s, τ − h, ω, x) either does not exist
or is unequal to ∂. Then there exists N ∈ NI and a sequence hn ↓ 0 such that for
all n ∈ NI | φ(s, τ − hn, ω, x) |≤ N. By Theorem 5 (ix) there exists h > 0 such that
sup|y|≤N |φ(N+1)(u, t, ω, y)| ≤ N + 1 for all τ − h ≤ u ≤ t < τ . Further φ(N+1)(u, t, ω, y) =
φ(u, t, ω, y) for all τ−h ≤ u ≤ t ≤ τ and all |y| ≤ N . In particular |φ(u, τ, ω, y)| 6= ∂ for all
τ−h ≤ u ≤ τ and all |y| ≤ N . Inserting yn = φ(s, τ−hn, ω, x) we see that φ(s, τ, ω, x) 6= ∂
which is a contradiction.

Remark: φ(s, t, ω) will in general not be continuous from E to E - in fact not even from
RI n to E - because solutions which get (or start) close to ∂ do not necessarily stay close to
∂ (even in the strictly conservative case). For the same reason s 7→ φ(s, t, ω, x) need not
be right continuous.
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Corollary 9 In addition to the assumptions of Proposition 8 we require that Z be an
m-dimensional semimartingale helix on the FMDS (Ω,F , (Ft)t≥0, PI , θ). Then there exist
maps φ̃ : ∆×Ω→ H and ζ : [0,∞)× RI n×Ω→ (0,∞] (the ”residual life time”) such that

a) ζ(s, x, ω) = inf{t ≥ 0 : φ̃(s, s+ t, ω, x) = ∂} for all s ≥ 0, x ∈ RI n, ω ∈ Ω,

b) φ̃(s, ·, ·)(x) solves

Xt = x+
∫

(s,t]
f(Xu− ) dZu

on [s, s+ ζ(s, x, ω)) for every s ≥ 0, x ∈ RI n,

c) φ̃(s, t, ω) = φ̃(u, t, ω) ◦ φ̃(s, u, ω) for all ω ∈ Ω, 0 ≤ s ≤ u ≤ t,

d) φ̃(s, t, ω) = φ̃(0, t− s, θsω) for all ω ∈ Ω, 0 ≤ s ≤ t,

e) ζ(s, x, ω) = ζ(0, x, θsω) = ζ(t, φ̃(s, t, ω, x), ω))− t+ s for ω ∈ Ω, 0 ≤ s ≤ t, x ∈ RI n

such that φ̃(s, t, ω, x) ∈ RI n,

f) φ̃(s, s, ω, x) = x for all ω ∈ Ω, 0 ≤ s, x ∈ E,

g) (s, t, ω, x) 7→ φ̃(s, t, ω, x) is (B(∆)⊗F ⊗ E, E)-measurable,

h) if φ̃(s, t, ω, x) = ∂, then limh↓0 φ̃(s, t− h, ω, x) = ∂,

i) t 7→ φ̃(s, s+ t, ω, x) is cadlag,

j) (xviii) of Proposition 8 holds for φ̃,

k) x 7→ ζ(s, x, ω) is lower semi-continuous.

l) If Z has continuous paths then φ̃(s, t, ω, x) = φ̃(s, t, ω, y) 6= ∂ implies x = y.

Proof: From Theorem 5 we know that the φ(k) defined before satisfy the assumptions
of Theorem 3. We show how a slight modification of the proof of Theorem 3 provides us
with a semiflow φ̃ as in the statement of the corollary. Define M as the intersection of all
M (k), k ∈ NI , where M (k) is defined like M in the proof of Theorem 3 but with φ(k) instead
of φ. Proceeding as in the proof of Theorem 3 we get

φ̃(k)(s, t, ω) = φ(k)(s+ r, t+ r, θ−rω)

for all k ∈ NI , (s, t) ∈ ∆, ω ∈ Ω̃ and r 6∈ Ns,ω where λ(Ns,ω) = 0. Now we define

φ̃(s, t, ω, x) =

{
limk→∞ φ̃

(k)(s, t, ω, x), if supk∈IN sups≤u≤t | φ̃(k)(s, u, ω, x) |<∞
∂, otherwise
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Clearly φ̃ is well-defined (i.e. the limit exists). Obviously φ̃ is indistinguishable from φ,
so b) follows. All other statements either follow from the corresponding properties for the
φ̃(k) or we have proved them already.

4 Complements

We give an example which shows that in Theorem 3 one can not drop (v) in the assumption
and conclusion.

Example 10 Let (H, ◦) = ([0,∞),×), (Ω,F , PI ) = ([0, 1),B([0, 1)), λ |[0,1)),
θsω := ω + smod 1, s ∈ RI . Further define

φ(s, t, ω) =

{
1, if s = t = ω 6= 0
0, otherwise.

It is easy to check that φ satisfies (i) - (iv) of Theorem 3. Assume that φ̃ satisfies (ii’) of
Theorem 3 and that φ and φ̃ agree identically on Ω ⊆ Ω. Then φ̃(s, s, s) = 1 for s ∈ Ω\{0}
and therefore φ̃(0, 0, 2smod 1) = 1 for s ∈ Ω\{0}. On the other hand φ̃(0, 0, 2smod 1) =
φ(0, 0, 2 smod 1) = 0 if 2smod 1 ∈ Ω. Therefore PI ∗(Ω) ≤ 1/2 i.e. φ̃ can never satisfy
(vi) of Theorem 3.

Remark on a generalization of Theorems 3 and 4:
The group-valued perfection results in (Arnold, Scheutzow (1995)) and (Scheutzow (1996))
are formulated for more general groups than RI as the ”time” variable of the underlying
MDS, namely for locally compact second countable Hausdorff (LCCB) groups G. Therefore
one might ask whether Theorems 3 and 4 admit a similar generalization.

This is indeed possible provided that the index set I ⊆ G of the crude semiflow is a
measurable subsemigroup of the LCCB group G and that I has strictly positive Haar
measure. Of course we need to say what we mean by ”right continuous” in this case. If we
assume for simplicity that φ is jointly continuous in the first two variables, then the proof
of Theorem 3 goes through with a few obvious modifications (replace λ by Haar measure
on G and t ≥ 0 by t ∈ I).
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