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Abstract

We consider a family of distributions on spatial random partitions that provide a
coupling between different models of interest: the ideal Bose gas; the zero-range
process; particle clustering; and spatial permutations. These distributions are invari-
ant for a “chain of Chinese restaurants” stochastic process. We obtain results for the
distribution of the size of the largest component.
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1 Introduction

We study systems of random integer partitions that are independent except for a
global constraint on their total mass. Such a setting appears, directly or indirectly, in
diverse systems of statistical mechanics: the ideal quantum Bose gas, the zero-range
process, particle clustering, certain coagulation-fragmentations processes, and some
models of spatial permutations. A common feature is the possibility of a Bose–Einstein
condensation; namely, under some conditions, a phase transition takes place that is
accompanied with the formation of large objects. In the language of probability, a single
random variable realizes the large deviation required to satisfy the constraint on its
sum; this behavior is a well-known hallmark for sums of heavy-tailed random variables,
and in fact many of our results can be read as abstract results for (conditioned) sums of
independent random variables.

We introduce the setting in Section 2. The random objects are “spatial partitions”,
that is, collections of integer partitions indexed by locations. The distribution has a
product structure subject to a global constraint. Two marginals play an important rôle.
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Random partitions in statistical mechanics

The first marginal deals with the site occupation numbers; the resulting distribution
is that of the ideal Bose gas or of the zero-range process. The second marginal deals
with integer partitions; the resulting distribution is that of the particle clustering and
of spatial permutations. The present study originated in an attempt at unifying the
latter two systems, and the links with the former systems were rather unexpected. It is
useful to establish connections since many results and properties of one system can be
transferred to the others.

The special cases are described in Section 3. The ideal Bose gas can be found
in Section 3.1, the zero-range process in Section 3.2, particle clustering in Section
3.3, coagulation-fragmentations processes in Section 3.4, and spatial permutations in
Section 3.5.

The measures considered in this article are invariant measures for interesting Markov
processes. One process represents customers in a “chain of Chinese restaurants” which
combines the usual Chinese restaurant process with the zero-range process. It is de-
scribed in Section 4.1. This actually holds only when the parameters satisfy certain
consistency properties. Another process is a coagulation-fragmentation process which
is a variant of the Becker–Döring model, see Section 4.2.

The possible occurrence of Bose–Einstein condensation and its consequences are
addressed in Section 5. The relevant asymptotic is the thermodynamic limit of statistical
mechanics, and the critical density is given by an explicit formula. We study more
specific settings in the last two sections, namely, the case of the trap potential in Section
6 and the case of the square potential in Section 7.

2 Random spatial partitions

2.1 Setting

An integer partition1 λ of the integer n ∈ N is a finite decreasing sequence λ1 >
λ2 > · · · > λk > 1, of varying length k, whose elements add up to n:

∑k
j=1 λj = n;

one often writes “λ ` n”. We refer to the length k of the sequence as the number of
components of the partition λ. Every partition is uniquely determined by the numbers
rj(λ) = #{i = 1, . . . , k | λi = j}, j ∈ N, which count how many times a given integer
j appears in the partition λ; they are often called occupation numbers of the partition.
We also define the partition of n = 0 as the empty sequence (length 0, all occupation
numbers equal to 0).

We are interested in random integer partitions that have additional structure. A
spatial partition of the integer n is a collection λ = (λx)x∈Zd of integer partitions at
each site x ∈ Zd. That is, each λx is a k-tuple (λx1, λx2, . . . , λxk), where k varies and
where the integers λxj satisfy

λx1 > λx2 > . . . > λxk > 1 (2.1)

(and we allow for the “empty” sequence with k = 0). The spatial partition λ is uniquely
determined by the numbers rxj that count how many times a given integer j appears in
the partition at site x,

rxj = #{i = 1, 2, · · · : λxi = j}. (2.2)

We can form two different types of marginals, summing over integers j or sites x; this
gives rise to two different types of occupation numbers. We let r = (rj)j > 1 denote the
sums over all the sites, i.e., rj =

∑
x∈Zd rxj . The site occupation numbers η = (ηx)x∈Zd

are given by
ηx =

∑
i > 1

λxi =
∑
j > 1

jrxj . (2.3)

1When there is no risk of confusion with set partitions, we drop the word “integer” in front of “partition”.
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Random partitions in statistical mechanics

Thus for every x, λx is a partition of the integer ηx. Sometimes this aspect is stressed
and one calls λ a vector partition of the vector η, written λ ` η (see e.g. [53]).
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Figure 1: A schematic illustration of spatial partitions and the two relevant marginals.

These definitions are illustrated in Figure 1. The intuition is as follows: we think of
x ∈ Zd as sites in space (hence the name spatial partitions). “Space” and “site" should
be taken loosely — x can be a particle position, a moment vector x = k in a Fourier
transformed picture, or a label for an energy level, see the examples and Table 1 in
Section 3. Let Λn denote the set of spatial partitions such that∑

x∈Zd,i > 1

λxi =
∑

x∈Zd, j > 1

jrxj =
∑
x∈Zd

ηx =
∑
j > 1

jrj = n. (2.4)

In the language of statistical mechanics, Λn is a canonical configuration space with total
particle number n. Notice that Λn is a countable set. For later purpose we also define
Nn ⊂ NZ0 as the set of η’s with

∑
x∈Zd ηx = n, and Rn ⊂ NN0 as the set of r’s with∑

j∈N rj = n. Let π1 : Λn → Nn, λ 7→ r(λ) and π2 : Λn → Rn, λ 7→ η(λ) be the natural
projections.

Apart from the space dimension d, the relevant parameters for our probability dis-
tribution on Λn are the following:

(i) A potential function V : Rd → (−∞,∞].

(ii) A parameter ρ ∈ [0,∞) which represents the density of the system. We set Ld =

n/ρ.

(iii) A sequence of non-negative parameters θ = (θj)j > 1.

The probability distribution on Λn is defined as

PL,n(λ) =
1

ZL,n

∏
x∈Zd

∏
j > 1

1

rxj(λ)!

(
θj
j

e−jV (x/L)

)rxj(λ)

. (2.5)
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The number ZL,n is the normalization; it actually depends on V and θ, but we al-
leviate the notation by neglecting to make it explicit. We assume that ZL,n < ∞ The
relevant asymptotic is the thermodynamic limit where both n and L tend to infinity,
with L such that n = ρLd. We will propose different interpretations of the measure PL,n
later. One such interpretation is that PL,n is a canonical Gibbs measure for particles
moving in the trap potential V (x/L), forming groups at each site. Particles from dif-
ferent groups do not interact; the parameter θj is a Boltzmann weight for intra-group
interactions.2 See Section 3 for details.

2.2 Marginals and conditional probabilities

An advantage of the probability measure (2.5) is that it allows us to switch between
random partitions and sums of independent, infinitely divisible random variables. The
latter play an important rôle as stationary measures of the zero-range process. These
measures arise as marginals of PL,n.

To be sure, sums of independent random variables, corresponding to the occupa-
tion numbers rj , have played a significant rôle in many recent studies of decomposable
random structures (see for instance [6]); but, to the best of our knowledge, this connec-
tion to the infinitely divisible random variables, corresponding to the site occupation
numbers ηx, has not been noticed before. It allows us to deduce limit laws for random
partitions from limit laws for sums of independent variables.

Let PL,n ◦ π−1
1 and PL,n ◦ π−1

2 be the push-forwards of PL,n under the projections
onto Nn and Rn, respectively. Set

hm =
∑
λ`m

∏
j > 1

1

rj(λ)!

(θj
j

)rj(λ)

, (2.6)

where the first sum is over the partitions λ of the integer m. We can think of hm as the
analogue of the normalization ZL,n for a single site (no product over x, no background
potential V (x/L)). Later we will discuss the properties of the map (θj) 7→ (hm).

Proposition 2.1.

(a) The measure PL,n ◦ π−1
1 has the product form

PL,n
(
π−1

1 ({η})
)

= PL,n
(
{λ : η(λ) = η}

)
=

1

ZL,n

∏
x∈Zd

(
hηx e−ηxV (x/L)

)
. (2.7)

(b) The measure PL,n ◦ π−1
2 is of the Gibbs partition form

PL,n
(
π−1

2 ({r})
)

= PL,n
(
{λ : r(λ) = r}

)
=

1

ZL,n

∏
j > 1

1

rj !

(θj
j

∑
x∈Zd

e−jV (x/L)
)rj

.

(2.8)

Proposition 2.1 has natural probabilistic proof and interpretation, which we defer to
Section 2.4. For now, suffice it to say that the first marginal (2.7) arises as the stationary
measure of the zero-range process.

In order to recover the full measure from the marginals, we give below the condi-
tional measures PL,n(λ|η(λ) = η) and PL,n(λ|r(λ) = r). Let νm be the measure on

2Our interpretation is consistent with the examples given in Section 3 but different from that of Vershik [53]
and Pitman [49, Chapter 1.5], who consider ZL,n as a microcanonical rather than a canonical partition
function.
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integer partitions of m given by

νm(λ) =
1

hm

∏
j > 1

1

rj(λ)!

(θj
j

)rj(λ)

. (2.9)

The normalization hm is defined in (2.6). The measure νm is the analogue of the mea-
sure (2.5) for a single site x. It is an example of a Gibbs random partition which we
describe in more details in Section 2.3. The next proposition contains expressions of
the conditional probabilities.

Proposition 2.2. The conditional measures are given by

(a) PL,n(λ|η(λ) = η) =
∏
x∈Zd

νηx(λx).

(b) PL,n(λ|r(λ) = r) =
∏
j > 1

(( rj
{rxj}x∈Zd

) ∏
x∈Zd

p
rxj
xj

)
, with pxj =

exp(−jV (x/L))∑
y∈Zd exp(−jV (y/L))

.

We leave the elementary proof to the reader. Notice that PL,n(λ|η) does not depend
on V , and PL,n(λ|r) does not depend on θ. Part (a) says that, conditioned on the site
occupation numbers, the partitions λx become independent Gibbs partitions. Part (b)
says that given rj , the rxj ’s are multinomial: each of the rj components of size j chooses
the site x with probability pxj .

2.3 Gibbs random partitions

The measure νm defined in (2.9) can be viewed as describing Gibbs random parti-
tions, which have been studied in detail before, see [6, 34, 16, 33, 48, 55, 45, 47, 25, 7]
and Chapters 1.5 and 2.5 in [49]. The main questions deal with the number of elements
and their typical size, for given weights (θj). The probability that the typical size is
equal to ` is defined by

Pn(X = `) = En

(`R`
n

)
=
θ` hn−`
nhn

. (2.10)

See Section 5 for more discussion about the random variable for the typical size of
elements, where the random element is picked with probability that is proportional to
its size.

We now study the relation between the θjs and the hns. This is obviously useful in
view of the relation above. But this relation is also conceptually interesting since the
θjs are related to the Lévy measure of a process on N0 given by the hns.

Recall that a measure µ is infinitely divisible if for all n ∈ N, there is a measure
µ̃n such that µ = µ̃n ∗ · · · ∗ µ̃n is the n-fold convolution of µ̃n. Similarly we say that a
sequence (hm)m > 0 of non-negative numbers is infinitely divisible if for all n ∈ N there

is a sequence of non-negative numbers (h
(n)
m ) such that (hm) is the n-fold convolution

of (h
(n)
m )m > 0, i.e., h = h(n) ∗ · · · ∗ h(n). There is a rich theory for infinitely divisible

measures [39], closely related to the topic of Lévy processes.

Proposition 2.3. Let (hm)m > 0 be a sequence of non-negative numbers such that h0 =

1 and
∑
m hmz

m has nonzero radius of convergence. Then there is a unique sequence
(θj)j > 1 of real numbers such that Eq. (2.6) holds for all m ∈ N. Moreover, we have
θj > 0 for all j > 1 if and only if (hm)m > 0 is infinitely divisible.

Proof. We note the power series identity∑
m > 0

hmz
m = exp

(∑
j > 1

θj
j
zj
)

(2.11)
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(see e.g. [1, Section 3.3]). This identity shows that for a given (hm) there is a unique
sequence of real numbers (θj) such that Eq. (2.6) holds.

Let R denote the radius of convergence of the series
∑
hmz

m. Fix z ∈ (0, R), and

let C(z) =
∑
m > 0 hmz

m and p
(z)
m = C−1hmz

m. One can check that (hm) is infinitely

divisible if and only if (pm) is. Furthermore, (p
(z)
m ) defines a probability measure on N0

with cumulant generating function

log
( ∑
m > 0

p(z)
m etm

)
=
∑
j > 1

θj
j
zj
(

etj − 1
)
. (2.12)

Here, t satisfies z et < R. We recognize the Lévy-Khinchin representation for an in-
finitely divisible measure in the special case of a measure on N0; it follows from clas-
sical results (see e.g. Chapter 18 in [39]) that (p

(z)
m ) is infinitely divisible if and only if

θj > 0 for all j > 1. If this is the case, the weights α(z)
j =

θj
j z

j define a measure on N,

the Lévy measure of (p
(z)
m ).

Another question of interest is the relation between the asymptotic behaviors of the
sequences (θm) and (hm) as m→∞. This has been investigated in the references cited
at the beginning of this subsection. Relevant results can also be found in the probability
literature on the relation between the tails of an infinitely divisible measure and its Lévy
measure, e.g. in [30, 31]. Here we quote a result of Embrechts and Hawkes [30] on the
tail equivalence of an infinitely divisible measure and its Lévy measure; equivalently, on
the relation between the tails of (hm) and (θj/j). Recall that the convolution between
two sequences is defined by (a ∗ b)n =

∑n
j=0 ajbn−j .

Theorem 2.4. (Embrechts and Hawkes [30]) Let (pn)n > 0 define an infinitely divisible
law on N0 with Lévy measure (αj)j > 1. Suppose that αj > 0 for all j > 1. Let
αj = αj/(

∑
k > 1 αk). The following are equivalent as n→∞:

(i) (p ∗ p)n = 2(1 + o(1))pn and pn+1/pn → 1.

(ii) (α ∗ α)n = 2(1 + o(1))αn and αn+1/αn → 1.

(iii) pn = (1 + o(1))αn and αn+1/αn → 1.

We note that the Lévy measure of an integer-valued random variable has always
finite mass, hence

∑
j > 1 αj <∞.

A probability measure onN satisfying (p∗p)n ∼ 2pn is called discrete subexponential.
This property suggests that, if two independent variables are conditioned so their sum
takes some big value, one variable will take a small value and the other variable will
take the appropriate big value. Discrete subexponential variables are necessarily heavy-
tailed, that is,

∑
n pnz

n has radius of convergence 1. We can apply this theorem if∑
j θj/j < ∞ and θj+1/θj → 1. Let pm = hm exp(−

∑
j > 1 θj/j). The condition (ii)

becomes
n−1∑
j=1

θj
j

θn−j
n− j

= 2

n/2∑
j=1

θj
j

θn−j
n− j

= 2
(
1 + o(1)

)θn
n

∑
j > 1

θj
j
. (2.13)

The first equality is valid if n is even, there is an unimportant correction in the case of
n odd. An immediate consequence of Theorem 2.4 and of the dominated convergence
theorem is the following.

Theorem 2.5. Assume that θn+1/θn → 1 and that θn−j/θn 6 cj for 1 6 j 6 n
2 and

all n, with cj satisfying
∑
θjcj/j <∞. Then, as n→∞,

hn =
(
1 + o(1)

)θn
n

exp
(∑
j > 1

θj
j

)
.
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Notice that cj is necessarily greater or equal to 1, which requires
∑
j θj/j < ∞.

The theorem was actually proposed in [16] but the connection with infinitely divisible
laws and with Theorem 2.4 had not been noticed. It applies in particular to stretched
exponential weights, θj/j = exp(−jγ) with 0 < γ < 1.

2.4 Gibbs partitions and Poisson random variables

We conclude this section by explaining in more details the probabilistic picture be-
hind Proposition 2.1. To this aim we generalize a well-known relationship between
Gibbs partitions and Poisson variables, see for example Eq. (1.53) in [49] or the condi-
tioning relation (3.1) in [6].

We assume that there exists z > 0 such that for all L > 0,∑
x∈Zd

∑
j > 1

θj
j
zj e−jV (x/L) <∞. (2.14)

Let (Ω,F ,PzL) be a probability space and let (Rxj)x∈Zd,j∈N be a family of independent
Poisson random variables,

Rxj ∼ Poiss
(θj
j
zje−jV (x/L)

)
. (2.15)

PzL is the grand-canonical measure. The occupation numbers are the random variables

Hx :=
∑
j∈N

jRxj , Rj :=
∑
x∈Zd

Rxj . (2.16)

We also define the total number of particles by

N =
∑
x∈Zd

∑
j∈N

jRxj =
∑
x∈Zd

Hx =
∑
j∈N

jRj . (2.17)

A moment of thought shows that the law PL,n is recovered by conditioning on the event∑
x,j jRxj = n,

PL,n(λ) = PzL

(
∀x ∈ Zd ∀j ∈ N : Rxj = rxj(λ)

∣∣∣N = n
)
, (2.18)

and the normalization satisfies

znZL,n = PzL

(
N = n

)
× exp

(∑
x∈Zd

∑
j∈N

θj
j
zj e−jV (x/L)

)
. (2.19)

Note that in Eq. (2.18) the right-hand side is independent of z; this is related to the
invariance of the measure PL,n under rescalings θj → θjz

j . Under the measure PzL, the
random variables Rj are independent Poisson variables

Rj ∼ Poiss
(θj
j
zj
∑
x∈Zd

e−jV (x/L)
)
, (2.20)

and the Hx are independent variables with cumulant generating function

logEzL
[
etHx

]
=
∑
j∈N

θj
j
zj e−jV (x/L)

(
ejt − 1) (t ∈ R). (2.21)

Put differently, Hx is an integer-valued, infinitely divisible random variable with Lévy
measure ν(j) = (θj/j)z

j exp(−jV (x/L)), compare with the proof of Proposition 2.3.
Furthermore,

PzL

(
Hx = m

)
= hmz

m e−mV ( xL ) e−
∑
j > 1

θj
j z

j exp(−jV (x/L)) , (2.22)
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with hm as defined in Eq. (2.6). Indeed,

PzL

(
Hx = m

)
=
∑
λ`m

∏
j > 1

PzL

(
Rxj = rj(λ)

)
=
∑
λ`m

∏
j > 1

{
1

rj(λ)!

(θj
j
zj e−jV ( xL )

)rj(λ)

e−
θj
j z

j exp(−jV ( xL ))

}
.

(2.23)

Proof of Proposition 2.1. For (a), we note that

PL,n
(
π−1

1 ({η})
)

= PzL

(
∀x ∈ Zd : Hx = ηx

∣∣∣N = n
)

=
1

PzL(
∑
xHx = n)

∏
x∈Zd

PzL

(
Hx = ηx

) (2.24)

and we conclude with Eqs. (2.22) and (2.19). For (b), we observe that

PL,n
(
π−1

2 ({r})
)

= PzL

(
∀j ∈ N : Rj = rj

∣∣∣N = n
)

=
1

PzL(
∑
j jRj = n)

∏
j∈N

PzL
(
Rj = rj

) (2.25)

and conclude with Eqs. (2.21) and (2.19).

3 Relationship with existing models

Our setting is closely related to several models of interest, namely the ideal Bose
gas, the zero-range process, particle clustering, coagulation-fragmentation, Becker–
Döring, spatial permutations, and population genetics. The relations are explained in
this section. Each situation comes with its own language; the keywords and their cor-
respondence are summarized in Table 1.

Zero-range particle site -
Chinese restaurant customer restaurant table
ideal Bose gas, particle Fourier mode, cycle
spatial permutation energy level
particle clustering, particle site in space cluster (droplet)
nucleation
population genetics individual colony same-allele group

within colony

Table 1: Language of the different models and their correspondence.

3.1 Ideal Bose gas

Although it was not fully appreciated at the time, Bose–Einstein condensation is
the first description of a phase transition in statistical mechanics. The ideal Bose
gas is a quantum system whose description involves a complex Hilbert space and the
Schrödinger equation; but its equilibrium state is a probability distribution of occupa-
tion numbers of Fourier modes. It fits our setting, by choosing V (x) = β‖x‖2 and θj ≡ 1;
β is the inverse temperature. With the change of variables k = 2π

L x, writing λkj in-
stead of λxj , PL,n becomes a probability measure on spatial partitions (λkj). Summing
over j and writing ηk instead of ηx = ηkL, we get the familiar probability measure on
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occupation numbers

PL,n(π−1
1 ({η})) =

1

ZL,n

∏
k∈ 2π

L Z
d

e−β‖k‖
2ηk . (3.1)

Summing over k we get that the marginal PL,n ◦ π−1
2 is the probability distribution of

cycle lengths associated with the ideal Bose gas [52, 10]. Thus PL,n provides a coupling
of the distribution of momenta and cycle lengths for the ideal Bose gas. This generalizes
to independent bosons in a trap, when the weight exp(−β

∑
k ‖k‖2ηk) is replaced with

exp(−β
∑
r∈I Erηr), where I is a countable index set replacing Zd and Er (r ∈ I) are the

eigenvalues of the Schrödinger operator in the trap. Results in this case were recently
obtained in [20] (see also [18]).

The interacting Bose gas is much more complicated and it does not fit the present
setting. But a partial mean-field approach for the dilute regime suggests that interac-
tions can be approximated by cycle weights θj [14].

3.2 Zero-range process

This describes a system of classical particles with stochastic dynamics. There are
n particles moving on the sites {1, . . . , L} and we let η ∈ Hn denote the occupations of
the sites. The dynamics is as follows. A particle exits the site x at rate g(ηx), where g
is a given function N → (0,∞), and it chooses a new site uniformly at random among
the neighbors. As it turns out, the spatial dimension does not appear in the stationary
measure, so the model is usually studied in d = 1. The invariant measure is

PL,n(η) =
1

ZL,n

L∏
x=1

hηx , (3.2)

where the function hk is related to the rates g by

hk =

k∏
i=1

1

g(i)
. (3.3)

It fits the setting studied in this article by choosing the potential V such that e−V (s) =

χ[0,1](s); see Eq. (2.7).
It was noticed by Evans [36] that for certain rates g, the system possesses a critical

density where a sort of Bose–Einstein condensation takes place. See also [41, 5, 4, 22]
for further studies. Variants of the model allow for motion on graphs other than Zd

and hopping mechanisms different from the simple random walk, see [36, 54, 40]
and the references therein. When e−V differs from the characteristic function, the
marginal (2.7) is the stationary measure of an inhomogeneous zero-range process, com-
pare with Eq. (2.4) of [40].

3.3 Particle clustering

The measure PL,n describes approximately the droplet size distributions for a sys-
tem of interacting particles in the canonical Gibbs ensemble, see [51, 43] and the ref-
erences therein. Let v be a pair potential with a finite range R > 0. Thus particles at
mutual distance larger than R do not interact. With each configuration (x1, . . . , xn) ∈
[0, L]dn we associate a graph by drawing a line between xi, xj whenever |xi − xj | 6 R,
and we call Nk(x) the number of connected components having k particles. We have∑N
k=1 kNk(x) = n. We put on [0, L]dn the canonical Gibbs measure at inverse temper-

ature β > 0. If we neglect the constraint that particles belonging to different con-
nected components have mutual distance larger than R, the probability of seeing a
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given droplet size distribution (Nk) becomes approximately

n∏
k=1

1

Nk!

(
LdZk(β)

)Nk
, (3.4)

where Zj(β) is a partition function over droplet-internal degrees of freedom [43]. Eq. (3.4)
corresponds to a measure of the form (2.8) with

∑
x exp(−V (x/L)) replaced by Ld, and

θj/j = Zj(β).

3.4 Coagulation-fragmentation processes and Becker–Döring equations

The Becker–Döring system of coupled ordinary differential equations [9] is a popular
model for the dynamics of nucleation, with interesting long-time behavior [8]. A natural
stochastic variant of the model is the following. Let (aj)j > 1 and (bj)j > 1 be positive

numbers such that for all j, θ1θjaj
j =

θj+1bj+1

j+1 . We define a continuous-time Markov
chain with state space {λ : λ ` n} and two types of transition:

• Coagulation: a monomer decides to join a j-cluster. The transition (r1, rj , rj+1)→
(r1 − 1, rj−1 − 1, rj+1 + 1) happens at rate ajr1rj/L

d if j 6= 1, and a1r1(r1 − 1)/L2

for j = 1.

• Fragmentation: a monomer decides to depart from a j-cluster, resulting in the
transition (r1, rj−1, rj)→ (r1 + 1, rj−1 + 1, rj − 1). This happens at rate bjrj .

One can check through detailed balance that the marginal (2.8) with the square po-
tential exp(−V (s)) = 1[0,1](s) is a stationary measure of this process. The dynamics
is a stochastic version of the Becker–Döring equations much in the same way as the
Marcus–Lushnikov coalescent is a stochastic version of the Smoluchowski coagulation
equations [2]. The model can be easily generalized to allow for joining and departure
of groups of size larger than one, and falls into the class of well-studied coagulation-
fragmentation processes, see e.g. [29, 12]. In Section 4.2 we propose a “spatial” version
of the process for which our measure PL,n is stationary.

3.5 Spatial permutations

Models of spatial permutations are motivated by Feynman’s approach to the Bose
gas and by Sütő’s work on cycles [52]. A more general framework was proposed in [13],
which was studied further in [15, 17]. Spatial permutations involve a distribution jointly
over points in Rd and over permutations of these points, with penalties that discourage
long jumps. More precisely, the probability space is Λn × Sn, where Λ is the box [0, L]d

(with periodic boundary conditions), n is the number of points, and Sn is the group of
permutations of n elements. Let ξ : Rd → [0,∞] and define

ZL,n =
∑
σ∈Sn

∫
Λn

dx1 . . . dxn

n∏
j=1

e−ξ(xj−xσ(j)) . (3.5)

The probability element for having points x1, . . . , xn and permutation σ is then

1

ZL,n

( n∏
j=1

e−ξ(xj−xσ(j))
)

dx1 . . . dxn. (3.6)

The marginal obtained after summing over permutations is a permanental point pro-
cess, which we do not discuss here despite interest of its own. We rather focus on
properties of permutation cycles. We make the extra assumption that e−ξ has non-
negative Fourier transform, which we write e−V , with V a real function on Rd. Then
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the marginal over the cycle lengths, after integrating over positions and summing over
compatible permutations, is precisely the marginal (2.8). This follows from the Pois-
son summation formula, see [13] for details. Notice that the special case ξ(x) = β‖x‖2
corresponds to the homogeneous ideal Bose gas described in Section 3.1.

3.6 Population genetics

Consider n individuals that carry different alleles of a given gene, and live in differ-
ent locations or colonies x. Inside each colony, we group individuals that carry the same
allele. This gives rise to a spatial partition. In the Ewens case θj ≡ θ, one might imag-
ine that our measure is stationary for a population model that includes migration (with
some colonies possibly more attractive than others) and mutation. Remember that the
Ewens sampling formula appears naturally in the infinite alleles model with mutation
rate θ; see [28] and references therein for more background.

4 Stochastic processes

Here we propose two continuous-time Markov processes with state space Λn that
have PL,n as a reversible (hence stationary) measure. The first process combines the
zero-range process with the Chinese restaurant process; it has the nice structural prop-
erty that the vector of site occupation numbers η(λ(t)) is Markovian (regardless of the
starting point λ(0)) and evolves as the zero-range process. However we are able to
define the Chinese restaurant part only when the weights θj are j-independent. For
non-constant θj ’s, we replace the Chinese restaurant step by instant reshuffling. The
second process is a coagulation-fragmentation process that is very natural from the
point of view of the Becker–Döring model of nucleation explained in Section 3.4.

4.1 Chain of Chinese restaurants

Recall that, in the Chinese restaurant process, customers enter the restaurant one
by one. The (n + 1)th customer sits next to an existing customer with probability 1

n+θ ,

and starts a new table with probability θ
n+θ . The table occupation is a random partition

and the distribution after n customers is given by the Ewens measure. That is, take
θj ≡ θ in Eq. (2.9). We refer to Chapter 3 in [49] for background and details.

We adapt the dynamics to spatial partitions as follows. To each site x ∈ Zd is as-
sociated a restaurant. The total number of customers is n and it is conserved. Let ηx
denote the number of customers at site x, and λx ` ηx denote the table occupation. We
consider a continuous-time Markov dynamics where

• A customer exits restaurant x at rate g(ηx); he is chosen uniformly among the ηx
customers at x.

• The new restaurant y is chosen with probability t(x, y). It may depend on L. We
assume that

∑
y t(x, y) = 1, and that

e−V (x/L) t(x, y) = e−V (y/L) t(y, x). (4.1)

• In the restaurant y, the new customer sits next to another customer with proba-
bility 1

ηy+θ , and at an empty table with probability θ
ηy+θ .

With hn defined in (2.6), we take the rate to be g(n) = hn−1/hn (with g(0) = 0). One can
check that hn = θ(θ + 1) . . . (θ + n − 1)/n! and that g(n) = n

θ+n−1 . A possible choice for

t(x, y) is e−V (y/L) /
∑
z e−V (z/L) (with y = x being allowed).

It is clear that this defines a Markov process on spatial partitions. Let q(λ,λ′) denote
the rate of the transition λ 7→ λ′. In order to write it explicitly, observe that it is zero
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unless there exist x, y ∈ Zd and j, k ∈ N (with k 6= 0) such that

rxj(λ
′) = rxj(λ)− 1, ry,k+1(λ′) = ryk(λ)− 1,

rx,j−1(λ′) = rx,j−1(λ) + 1, ry,k(λ′) = ryk(λ)− 1
(4.2)

and all other occupation numbers are rzi unchanged. In this case, the rate is

q(λ,λ′) = g(ηx(λ)) t(x, y) p−(j, λx) p+(k, λy). (4.3)

Here, the probability that the customer leaving restaurant x leaves a j-table is

p−(j;λx) =
jrxj
ηx

(4.4)

and the probability that the customer joins a k-table (k > 1) or opens a new table
(k = 0) is

p+(k;λy) =
kryk
ηy + θ

, p+(0;λy) =
θ

ηx + θ
. (4.5)

The stationary measure of this process is precisely the measure defined in Eq. (2.5).
Indeed, it satisfies the detailed balance condition.

Lemma 4.1. The rate of Eq. (4.3) satisfies the detailed balance condition

PL,n(λ)q(λ,λ′) = PL,n(λ′)q(λ′,λ).

Proof. We only need to consider the case λ 6= λ′. When the customer changes restau-
rants, we have to check that

PL,n(λ) g(ηx(λ)) t(x, y) p−(j;λx) p+(k;λy)

= PL,n(λ′) g(ηy(λ′)) t(y, x) p+(k + 1;λ′y) p−(j − 1;λ′x). (4.6)

Using (4.1), one can check that for all λ,λ′ and all η, we have the identities

PL,n
(
π−1

1 ({η})
)
g(ηx)t(x, y) = PL,n

(
π−1

1 ({η − δx + δy})
)
g(ηy + 1)t(y, x),

νηx(λx)p−(j;λx) = νηx−1(λ′x)p+(j − 1;λ′x),

νηy (λy)p+(k;λy) = νηy+1(λ′y)p−(k + 1;λ′y).

(4.7)

The detailed balance property now follows from Proposition 2.2.

Since the state space Λn is infinite, we need to check that the Markov process is
non-explosive; to this aim we need the following lemma.

Lemma 4.2. We have ∑
λ,λ′∈Λn
λ 6=λ′

PL,n(λ)q(λ,λ′) <∞. (4.8)

Proof. We have∑
λ′

q(λ,λ′) =
∑

x,y∈Zd

∑
j,k∈N

g(ηx(λ)) t(x, y) p−(j, λx) p+(k, λy)

=
∑
x

g(ηx(λ))

=
∑
x

ηx
θ + ηx − 1

6
n

θ
.

(4.9)
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Define q(λ,λ) = −
∑

λ∈Λn,λ′ 6=λ q(λ,λ
′) and Q = (q(λ,λ′))λ,λ′∈Λn . For later purpose

we note
q(λ,λ) = −g(ηx(λ))

∑
y 6=x

t(x, y)− g(ηx(λ))t(x, x)
∑
k 6=j

p+(k;λ−jx ). (4.10)

Consider the backward Kolmogorov equations

∂Pt
∂t

(λ,λ′) =
(
QPt

)
(λ,λ′) =

∑
λ′′∈Λn

q(λ,λ′′)Pt(λ
′′,λ′), (4.11)

with the standard initial condition P0(λ,λ′) = δλ,λ′ .

Proposition 4.3. There is a unique Markov semi-group (Pt(λ,λ
′))t > 0 solving the back-

wards Kolmogorov equations for the rates (4.3). It defines a Markov process (λ(t))t > 0

with state space Λn, which has PL,n as a reversible (hence stationary) measure.

Note that (Pt) defines a strongly continuous contraction semi-group in `∞(Λn) with
infinitesimal generator Q: Pt = exp(tQ).

Proof. This follows from Lemmas 4.1 and 4.2, and the non-explosion criterion given
in [21], Corollary 3.8.

Proposition 4.4. Let (λ(t))t > 0 be the Markov process from Proposition 4.3, with ar-
bitrary initial law. Then the marginal (η(λ(t)))t > 0 is a Markov process with transitions
(ηx, ηy) → (ηx − 1, ηy + 1) (x 6= y, all other occupation numbers unchanged) happening
at rate g(ηx)p(x, y).

Hence the site occupation numbers evolve according to a (possibly inhomogeneous)
zero-range process; the total rate for a customer to leave a restaurant is g(ηx)(1 −
p(x, x)).

Proof. Observe∑
λ′`η′

q(λ,λ′) = g(ηx(λ))t(x, y)
∑
j,k

p−(j;λx)p+(k;λy) = g(ηx(λ))t(x, y) (4.12)

if η′ = η(λ)− δx + δy, and in view of Eq. (4.10),∑
λ`η

q(λ,λ) = g(x, ηx)t(x, x)
∑
k 6=j

p+(k;λ−jx ) + q(λ,λ) = −g(x, ηx)
∑
y 6=x

t(x, y). (4.13)

Let q̃(η,η′) := g(ηx)t(x, y) if η′ = η − δx + δy for some x, y ∈ Zd with x 6= y, q̃(η,η′) = 0

if η′ 6= η is not of the form just described, q̃(η,η) := 1 −
∑

η′∈Nn,η′ 6=η q̃(η,η
′), and Q̃ :=(

q̃(η,η′)
)
η,η′∈Nn

. An argument similar to the one used in the proof of Proposition 4.3

shows that P̃t := exp(tQ̃) uniquely defines a Markov semi-group on Nn, which is an
inhomogeneous zero-range process. Eqs. (4.12) and (4.13) become∑

λ′`η′
q(λ,λ′) = q̃(η(λ),η′) (4.14)

for all λ ∈ Λn, η′ ∈ Nn. The latter identity can be conveniently recast in operator
language: set R(λ,η) := 1{λ`η} = δη,η(λ). We have QR = RQ̃, hence PtR = RP̃t for all
t > 0, i.e., ∑

λ′`η′
Pt(λ,λ

′) = P̃t(η(λ),η′). (4.15)

This condition is sufficient to ensure that η(λ(t))t > 0 is Markovian with transition rates
q̃(λ,λ′), see Theorem 4 in [19] (the theorem is formulated for finite state spaces but
holds in our set-up as well).
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Thus we have constructed a process combining the zero-range and Chinese restau-
rant process for which the measures PL,n are reversible. Finally, let us address the
non-Ewens case where the parameters (θj) depend on j. There exist Markov processes
such that the measure (2.5) is stationary. For instance, take a zero-range process on the
(ηx), together with an “instant reshuffling” of the partitions at the two locations where
a customer has been lost or gained. The transition rate of the process is

g(ηx) t(x, y) νηx−1(λ′x) νηy+1(λ′y).

One can check that Propositions 4.3 and 4.4 remain true. It would be nice to discover
other, more natural Markov processes.

4.2 Coagulation-fragmentation processes

For our second process, let (aj)j > 1 and (bj)j > 2 be positive sequences such that for
all j,

aj
θj
j
θ1 = bj+1

θj+1

j + 1
. (4.16)

In addition to (4.1), we assume that for some z > 0 satisfying Eq. (2.14), we have

∑
x,y∈Zd

e−V (x/L) t(x, y) <∞,
∑

x∈Zd,j > 2

bj
θj
j
zj e−jV (x/L) <∞. (4.17)

As the process presented here is a generalization of the stochastic version of the Becker–
Döring model presented in Sec. 3.4, we use the vocabulary of nucleation/particle clus-
tering and we speak of particles and clusters (or droplets) instead of customers or
restaurants. Monomers are clusters of size 1. We allow three types of transitions:

• Coagulation at a given site x: a j-cluster (j > 1) and a 1-cluster coagulate to a
(j+1)-cluster, i.e., (rx,j−1, rj,x, rx,j+1)→ (rx,j−1−1, rx,j−1, rx,j+1 +1). This occurs
at rate ajrxj(λ)rx1(λ) if j 6= 1, and at rate a1rx1(λ)(rx1(λ)− 1) if j = 1.

• Fragmentation at a given site x: a monomer departs from a j-cluster (j > 2). The
transition (rx1, rx,j−1, rx,j)→ (rx1 + 1, rx,j−1 + 1, rx,j − 1) occurs at rate bjrxj(λ).

• Jump of a monomer from site x to site y 6= x: the transition (rx1, ry1) → (rx1 −
1, ry1 + 1) occurs at rate rx1(λ)t(x, y).

There are many possible generalizations: for example, we could allow for the jumping
of whole clusters rather than only monomers, or allow two groups of size larger than
one to coalesce, or take coagulation-fragmentation rates proportional to powers of the
occupation numbers rγxj , see [29]. We stick to the process presented here for notational
simplicity, and also because it is closest in spirit to the original Becker–Döring model of
nucleation [9] set in the framework of kinetic gas theory: monomers are mobile particles
of a dilute gas, clusters of size j > 2 are small chunks of condensed precipitate and
they are deemed immobile (or at least very slow compared to gas particles).

Proposition 4.5. The transition rates specified above define uniquely a Markov semi-
group with state space Λn. The measure PL,n is reversible, hence stationary, for the
associated Markov process.

Proof. We leave the proof of the detailed balance conditions to the reader and look at
the non-explosion criterion from Lemma 4.2. Let z > 0 be such that Eq. (2.14) holds.
The contribution to

∑
λ 6=λ′ P

z
L(λ)q(λ,λ′) from coagulation of j-clusters (j 6= 1) with
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monomers is estimated as

∑
λ∈∪nΛn

PzL(λ)
∑

x∈Zd,j∈N

ajrxj(λ)rx1(λ) =
∑

x∈Zd,j∈N

aj

(
θ1z e−V (x/L)

)(θj
j
zj e−jV (x/L)

)
=

∑
x∈Zd,j > 1

bj+1
θj+1

j + 1
zj+1 e−(j+1)V x/L) <∞. (4.18)

We have used that under PzL the Rxjs are independent Poisson variables, and we have
used the assumption (4.16). The contributions of coagulation of monomers, fragmenta-
tion, and random walk can be evaluated in a similar way. We conclude as in Lemma 4.2
and Proposition 4.3.

It is natural to ask about the evolution of the marginals η(λ(t)) and r(λ(t)). Let
us first look at the site occupation numbers. The rate for a particle to leave a site
depends on the number of monomers at this site, i.e., it is not a function of the total
number of particles at the site alone. Therefore η(λ(t)) is not Markovian. However,
it is natural to approximate the process by replacing the jump rate rx1t(x, y) by the
conditional expectation

t(x, y)EL,n
(
rx1(λ)

∣∣ηx(λ) = ηx
)

= t(x, y)
∑

rx1 > 1

rx1νηx(rx1) =
θ1hηx−1

hηx
t(x, y), (4.19)

which is the transition rate for a zero-range process (for the last equality, see Propo-
sition 2.1 in [33]). Now look at the cluster size counts rj =

∑
x rxj . Remember

that the conditional law of rxj is binomial with rj trials and success probability pxj ∝
exp(−jV (x/L)). Again, r(λ(t))t > 0 will not be Markovian, but it is natural to approxi-
mate it by a process with effective coagulation rate

∑
x∈Zd

ajEL,n

[
rx1(λ)rxj(λ)

∣∣∣r1(λ) = r1, rj(λ) = rj

]
= ajr1rj

∑
x∈Zd

px1pxj , (4.20)

for j 6= 1. Similar expressions hold for coagulation of two monomers and for the ef-
fective fragmentation rate. In the case of square traps, exp(−V (x/L)) = 1[0,L)d(x) with
L ∈ N, we have pxj = L−d1[0,L)d(x) and the effective rates are exactly those of the
Becker–Döring process from Section 3.4.

5 Condensation

We study the asymptotic behavior in the thermodynamic limit n→∞, L→∞ at fixed
density ρ = n/Ld. The model may undergo a phase transition when the density varies.
Above a certain transition density ρc, a condensation occurs that is characterized by the
presence of large components.

There are two natural definitions of condensation, one in terms of site occupation
numbers (number of customers of a restaurant), used in the zero-range process, and the
other in terms of random partitions (number of occupants of a table). We shall actually
observe that both definitions are equivalent. The results of this section can be found
in Theorems 5.2 and 5.3. The expressions are familiar for the zero-range process and
for spatial permutations. The motivation of this section is to present a novel, unified
perspective.
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Condensation is measured by the following “order parameters”:

ν∞ = lim
K→∞

lim
n→∞
ρLd=n

EL,n

( 1

n

∑
j>K

j Rj

)
(5.1)

µ∞ = lim
K→∞

lim
n→∞
ρLd=n

EL,n

( 1

n

∑
x:ηx>K

ηx(λ)
)
. (5.2)

(The existence of the limits over n is proved in the proof of Theorem 5.3 below. The
existence of the limits over K is guaranteed by monotonicity.) We say that condensation
occurs if µ∞ > 0 or ν∞ > 0, and refer to µ∞ or ν∞ as the condensate fraction. In
principle, it might happen that ν∞ < µ∞. But Theorem 5.2 below shows that ν∞ = µ∞;
the two definitions of condensation are equivalent.

Under some assumptions, we prove the existence of a transition density ρc such that
the order parameters are zero for ρ 6 ρc and positive for ρ > ρc. In order to define the
transition density, let

ρ(z) =
∑
j > 1

θjz
j

∫
Rd

e−jV (x) dx. (5.3)

Let zc ∈ (0,∞] be the radius of convergence of the power series above. The transition
density is

ρc = ρ(zc). (5.4)

It is possible that ρc is infinite, meaning that no transition takes place. In the case zc = 1

we get

ρc =
∑
j > 1

θj

∫
Rd

e−jV (x) dx. (5.5)

The transition density may be finite for two reasons (or a combination of both). First,
a trap such as V (x) = ‖x‖δ yields

∫
e−jV ∼ j−d/δ, which is summable if δ < d. This

is the case of the ideal Bose gas of Section 3.1, where θj ≡ 1 and δ = 2. Eq. (5.5) is
then the famous formula derived by Einstein in 1924. Second, the parameters θj may
be summable. This is the case of the invariant measure of the zero-range process of
Section 3.2 in the regime studied by Evans [36]. There is no confining potential here,∫

e−jV ≡ 1. A very different situation is particle clustering, see Section 3.3, where the
parameters θj are given by certain cluster integrals [44]. The general form of (5.3) with
θj 6≡ 1 and V 6≡ 0 appeared in the context of spatial random permutations with cycle
weights [14, 15] discussed in Section 3.5. A variant of the alternative expression (5.3)
for zero-range processes with disorder can be found e.g. in [40] (Eq. (4.2)).

If we are given parameters hn instead of the θj , we can consider the alternative
expression

ρ(z) =

∫
Rd

∑
n > 1 nhnz

n e−nV (x)∑
n > 0 hnz

n e−nV (x)
dx, (5.6)

where the integrand is by definition equal to 0 when V (x) = ∞. Indeed, the right side
of Eq. (5.6) is equal to ∫

Rd
z
∂

∂z
log
(∑
k > 0

hkz
k e−kV (x)

)
dx,

and using (2.11) with z 7→ z e−V (x) we get ρ(z) in (5.3). The expression (5.6) is the
density-activity series for the (inhomogeneous) zero-range processes.

We make the following assumptions throughout this section.
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Assumption 5.1. Assume that V : Rd → [0,∞] is continuous at 0, with V (0) = 0, and
that for every j > 1, we have

1

Ld

∑
x∈Zd

e−jV (x/L) →
∫
Rd

e−jV (x) dx

as L→∞.

It follows from this assumption that the series
∑
j > 1

θj
j z

j has the same radius of
convergence zc as the series (5.3) for ρ(z). The next theorem claims that ρc is indeed
the transition density.

Theorem 5.2 (Condensation). Under Assumption 5.1, we have

ν∞ = µ∞ = max
(
0, 1− ρc

ρ

)
.

The proof of this theorem can be found immediately after Theorem 5.3 below.
It is possible to provide more detailed results about “typical sizes” of components.

Choose a customer at random, and consider the size of the element of the partition that
he belongs to. Informally, we have

Prob(typical size of element is j) = EL,n

(jRj
n

)
. (5.7)

Indeed, there are jRj customers in tables with j people. Similarly, let Nk denote the
number of restaurants with k people:

Nk(ω) = #{x ∈ Zd : Hx(ω) = k}. (5.8)

The probability that a random customer finds himself in a restaurant with k people is

Prob(typical site occupation is k) = EL,n

(Nk
n

)
. (5.9)

The next theorem gives the asymptotic behavior of typical sizes. In order to state it,
we introduce z0(ρ) as the unique solution of the equation ρ(z) = ρ when ρ < ρc; we set
z0(ρ) = zc when ρ > ρc.

Theorem 5.3 (Typical sizes). Under Assumption 5.1, we have for all j > 1 and k > 0,

(a)
jRj
n

p−→ 1

ρ
θjz0(ρ)j

∫
Rd

e−jV (x) dx,

(b)
Nk
n

p−→ 1

ρ

∫
Rd

khkz0(ρ)k exp(−kV (x))∑
j > 0 hjz0(ρ)j exp(−jV (x))

dx.

Here,
p−→ denotes the convergence in probability as n,L→∞ with ρLd = n.

The proof of this theorem can be found at the end of the section. We first use it to
prove Theorem 5.2.

Proof of Theorem 5.2. We have

ν∞ = 1− lim
K→∞

lim
L,n→∞

K∑
j=1

EL,n

(jRj
n

)
= 1− 1

ρ

∑
j > 1

θjz0(ρ)j
∫
Rd

e−jV (x) dx

(5.10)

and the definitions of ρc and z0(ρ) imply that ν∞ = max(0, 1 − ρc
ρ ). The proof for µ∞ is

similar and is based on the alternative formula (5.6) for ρ(z).
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The rest of this section is devoted to the proof of Theorem 5.3. The method relies
on the conditioning relation (2.18); we first prove limit laws for the grand-canonical
measures PzL and then show that the conditioning merely picks the right activity z =

z0(ρ). Technicalities arise because the grand-canonical probability to have exactly n

particles goes to 0, and because the power series at finite L need not converge at
z = zc.

Lemma 5.4 below and the limit law for the Rj ’s are closely related to large deviations
results [11, 52, 10, 41, 44]; we provide a complete proof because our setting is more
general.

Lemma 5.4.

lim
n→∞
ρLd=n

1

n
logZL,n =

1

ρ

∑
j > 1

θj
j
z0(ρ)j

∫
Rd

e−jV (x) dx− log z0(ρ).

Proof. Using Eq. (2.19) but neglecting the probability term, we get

1

Ld
logZL,n 6

∑
j > 1

θj
j
zj

1

Ld

∑
x∈Zd

e−jV (x/L) − ρ log z. (5.11)

For any z < zc, we have by dominated convergence

lim sup
n→∞
ρLd=n

1

Ld
logZL,n 6

∑
j > 1

θj
j
zj
∫
R

e−jV (x) dx− ρ log z. (5.12)

The bound extends to z = zc by continuity. The equation of Lemma 5.4 holds at least as
an upper bound.

For the lower bound, we start with Proposition 2.1 (b). We have

ZL,n >
n∏
j=1

1

rj !

(θj
j

1

Ld

∑
x∈Zd

e−jV (x/L)
)rj

(5.13)

for any choice of non-negative integers (rj) such that
∑
jrj = n. Let us introduce the

following entropy function on sequences a = (aj) such that aj > 0 and
∑
j jaj 6 1:

I(a) = −
∑
j > 1

aj log
( e θj
jajρ

∫
Rd

e−jV (x) dx
)
. (5.14)

We have

1

n
logZL,n > −I

(
1
nr1,

1
nr2, . . .

)
+
∑
j > 1

rj
n

log
1
Ld

∑
x∈Zd e−jV (x/L)∫

Rd
e−jV (x) dx

− 1

n

n∑
j=1

log
rj !

(rj/e)rj
.

(5.15)

Let aj be equal to the right side of Theorem 5.3 (a). We choose a sequence r(n) such

that
∑
jr

(n)
j = n, 1

nr
(n)
j 6 2aj , and 1

nr
(n)
j → aj as n → ∞. By continuity of V around 0,

we have

const j−d 6
∫

e−jV (x) dx 6
∫

e−V (x) dx,

const j−d 6
1

Ld

∑
x

e−jV (x/L) 6
1

Ld

∑
x

e−V (x/L) 6 const,
(5.16)

where the constants do not depend on L, j. The logarithm in the first sum in Eq. (5.15)
is less than a constant times j, so the summand is less than a constant times jaj . We can
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then use the dominated convergence theorem and the first sum in Eq. (5.15) vanishes
in the limit n → ∞. The last sum also vanishes: Using 1 6 rj !

(rj/ e )rj
6 Crj , we have

for any K

1

n

K∑
j=1

log
rj !

(rj/ e )rj
6

1

n

K∑
j=1

logCn, (5.17)

which goes to 0 as n→∞. Further, using log s 6 s,

1

n

n∑
j=K+1

log
rj !

(rj/ e )rj
6

1

n

n∑
j=K+1

logCrj 6
C

K

n∑
j=K+1

jrj
n

6
C

K
. (5.18)

This is arbitrarily small by choosing K large enough. Finally, recall that I is continuous
on the set of non-negative sequences (bj) satisfying

∑
jbj 6 1 [8]. Then

lim inf
n→∞

1

n
logZL,n > −I(a), (5.19)

and a calculation shows that −I(a) is equal to the right side of the expression in Lemma
5.4.

Recall the definition of EzL given in Section 2.4.

Lemma 5.5. For any z < zc, we have

(a) lim
L→∞

EzL

(jRj
Ld

)
= θjz

j

∫
Rd

e−jV (x) dx.

(b) lim
L→∞

EzL

(Nk
Ld

)
=

∫
Rd

hkz
k e−kV (x)∑

j > 1 hjz
j e−jV (x)

dx.

Proof. We have

EzL

(jRj
Ld

)
= θjz

j 1

Ld

∑
x∈Zd

e−jV (x) , (5.20)

and the limit (a) exists by Assumption 5.1. For the limit (b), we have

EzL

(Nk
Ld

)
=

1

Ld

∑
x∈Zd

hkz
k e−kV (x/L)∑

j hjz
j e−jV (x/L)

=
1

Ld

∑
x∈Zd

hkz
k e−kV (x/L) exp

{
−
∑
j

θj
j
zj e−jV (x/L)

}
.

(5.21)

We can expand the last exponential so as to get a convergent series of terms of the form
e−nV (x/L) with n ∈ N. The Riemann sums converge in the limit L → ∞ by Assumption
1, and the result follows from dominated convergence.

Lemma 5.6. Let z < zc and a > 0. There exist L0 and b > 0 such that for all L > L0,
we have

(a) PzL

(
1
Ld

∣∣Nk − EzLNk∣∣ > a
)

6 e−bL
d

,

(b) PzL

(
1
Ld

∣∣Rj − EzLRj∣∣ > a
)

6 e−bL
d

.
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Proof. We bound the cumulant generating functions and then deduce bounds with the
help of Markov’s inequality. Since random variables at different locations are indepen-
dent, we have

1

Ld
logEzL

[
et(Nk−E

z
LNk)

]
=

1

Ld

∑
x∈Zd

logEzL

[
exp
(
t1{Hx(ω)=k} − t PzL(Hx = k)

)]
=

1

Ld

∑
x∈Zd

{
−tPzL(Hx = k) + log

(
1 + ( et − 1) PzL(Hx = k)

)}
.

(5.22)

Using log(1 + s) 6 s, we find

1

Ld
logEzL

[
et(Nk−E

z
LNk)

]
6
(

et − 1− t
) 1

Ld

∑
x∈Zd

PzL(Hx = k)

=
(

et − 1− t
)
EzL

(Nk
Ld

)
.

(5.23)

The latter expectation converges by Lemma 5.5 (b) so that everything is bounded by
c(z)t2 for t 6 1 with c(z) depending on z only. Then

PzL

(
1
Ld

(Nk − EzLNk) > a
)

= PzL

(
et(Nk−E

z
LNk) > etaL

d
)

6 e−taL
d

EzL

(
et(Nk−E

z
LNk)

)
6 e−L

d(ta−c(z)t2) .

(5.24)

This is smaller than 1
2 e−bL

d

for some b > 0. A similar bound can be found forPzL( 1
Ld

(Nk−
EzLNk) < −a) and this completes the proof of (a). The same method can be used to prove
the claim (b) for Rj .

Proof of Theorem 5.3. We only prove the claim (b), as the proof for (a) is the same. Let
mk be the limit in (b). We have

PL,n

(∣∣Nk
Ld
−mk

∣∣ > ε
)

6 PL,n

(∣∣Nk
Ld
− EzL(Nk

Ld
)
∣∣ > ε−

∣∣mk − EzL(Nk
Ld

)
∣∣)

=
PzL
(∣∣Nk
Ld
− EzL(Nk

Ld
)
∣∣ > ε−

∣∣mk − EzL(Nk
Ld

)
∣∣)

PzL
(∑

j > 1 jRj = n
) .

(5.25)

Then

PzL

(∑
j > 1

jRj = n
)

= znZL,n exp
{
−
∑
x∈Zd

∑
j > 1

θj
j
zj e−jV (x/L)

}
. (5.26)

We choose z close to z0(ρ) in such a way that∣∣∣mk −
∫
Rd

hkz
k e−kV (x)∑

j > 1 hjz
j e−jV (x)

dx
∣∣∣ 6

ε

2
,∣∣∣∑

j > 1

θj
j

(
zj − z0(ρ)j)

∫
Rd

e−jV (x) dx− ρ log
z

z0(ρ)

∣∣∣ 6
a

2
.

(5.27)

(If ρ < ρc, we can choose z = z0(ρ); if ρ > ρc, we need to choose z close enough to zc.)
From Lemma 5.6 there exist b > 0 and L0 such that for all L > L0, we have

PzL

(∣∣Nk
Ld
− EzL(Nk

Ld
)
∣∣ > ε−

∣∣mk − EzL(Nk
Ld

)
∣∣) 6 e−bL

d

. (5.28)
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It follows from Lemma 5.4 that there exists L1 such that if L > L1, we have

PzL

(∑
j > 1

jRj = n
)

> e−aL
d

. (5.29)

Choosing a < b, we get the claim.

6 Trap potentials

In this section we investigate the shape and location of the condensate for a class of
potential functions that have a unique minimum at the origin; square traps are treated
in Section 7. Theorem 6.2 states that the condensate is located at the origin (the trap’s
minimum), and Theorems 6.4–6.7 provide the fluctuations of the occupation of the ori-
gin. The fluctuations are governed by infinitely divisible laws that need not be normal
or α-stable, as expected for sums of independent random variables that are not identi-
cally distributed [39]. Theorems 6.2, 6.4 and 6.5 generalize known results [15, 18, 20],
Theorems 6.6 and 6.7 are new. A graphical overview is given in Figure 2. Section 6.3
discusses the distribution of the partition elements at the origin: the condensate can
concentrate on a single large element or be distributed according to some non-trivial
law, e.g. a Poisson-Dirichlet distribution.

6.1 Macroscopic occupation of the origin

In this subsection we consider the marginal measure on η and we establish that the
excess mass is concentrated at x = 0. We also prove a central limit theorem.

Assumption 6.1. We assume that the potential function V : Rd → [0,∞] satisfies the
following properties:

(i) V (x) = ‖x‖δ(1 + o(1)) around the origin with 0 < δ < d.

(ii) V (x) > b > 0 for all ‖x‖ > 1.

(iii) For every a > 0, there exists a constant Ca such that

1

Ld

∑
x∈Zd\{0}

e−aV (x/L) < Ca

∫
Rd

e−aV (x) dx <∞;

we also assume that the left side converges to
∫

e−aV as L→∞.

For the weights, we assume that θj > 0 for all j, that limj→∞
1
j log θj = 0, and that

∑
j > 1

θj
jd/δ

<∞. (6.1)

Notice that if V (x) ≈ c‖x‖δ with c > 0 around the origin, there is no loss in generality
in taking c = 1. Indeed, let L′ = c−1/δL and V ′(x) = V (c−1/δx). Then V ′(x) ≈ ‖x‖δ
around 0 and the probability can be written in terms of L′ and V ′ by replacing e−jV (x/L)

by e−jV
′(x/L′) .

It follows from our assumptions that
∫
Rd

exp(−jV (x))dx is bounded from above and
below by a constant times j−d/δ, whence zc = 1 and ρc < ∞. Additional regularity
conditions on the θjs, formulated as conditions on the tails of the hns, will be imposed in
the theorems. They are loosely related to regularity conditions for heavy-tailed random
variables [31] and can be checked, in part, with the help of Theorem 2.5.

The assumption δ < d will be important in our proofs. We suspect that a condition
on δ is necessary, as for large δ the potential may be too shallow in order to confine the
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condensate to a single site; in fact the limit δ →∞ corresponds, formally, to the square
traps from Section 7, where all sites are alike and the condensate chooses uniformly
among them. It is not clear how large δ should be in order for this to occur.

Recall that H0 is the random variable for the total occupation of the origin.

Theorem 6.2. Suppose that Assumption 6.1 holds true, and that there exist constants
C, c > 0 and a 6 1

2 (1− δ
d ) such that for all n > 1,

C−1 e−cn
a

6 hn 6 C ecn
a

.

Assume also that ρ > ρc. Then as n,L → ∞ with fixed ρ = n/Ld, we have the conver-
gence in distribution

1

Ld
H0

d
−→ ρ− ρc.

The theorem applies to algebraically decaying weights θj = j−γ , γ > 0, by Theo-
rem 2.5. It also applies to stretched exponential weights θj/j = e−j

γ

and algebraically
growing weights θj = jγ with γ > 0 small enough. In the latter case, we indeed have

hn =
(
1 + o(1)

)
cn−(γ+2)/[2(γ+1)] exp

(
Cnγ/(1+γ)

)
(6.2)

for suitable constants c, C. Eq. (6.2) was proven by Erlihson and Granovsky, see Eq.
(4.66) in [34]. It also follows from results proven independently in [33]. (The proof in
[33] was given for specific weights that satisfy θj = (1 + o(1))jγ , but it can be extended
with the help of known results on polylogarithms [37, Chapter VI.8].)

For the proof of Theorem 6.2 we follow [18, 15], see also [20]. First we express
the canonical expectations with respect to the grand-canonical measure at z = zc = 1

with the help of the conditioning relation (2.18). A difficulty here is that
∑
j θj/j can

be infinite, in which case PzcL (H0 = ∞) = 1. Therefore we give a special treatment to
x = 0. Let

M(ω) =
∑

x∈Zd\{0}

Hx(ω) =
∑
j > 1

∑
x∈Zd\{0}

jRxj(ω) (6.3)

be the number of particles not at 0.3 Let ρLc = 1
Ld
EzcL (M); this is approximately equal to

the critical density:

ρLc =
1

Ld
EzcL (M) =

1

Ld

∑
j > 1

∑
x∈Zd\{0}

θj e−jV (x/L) , (6.4)

which converges to ρc by dominated convergence.

Lemma 6.3. Under the same assumptions as in Theorem 6.2, there exist C, c > 0 such
that for all L > 0 and all B > 0,

PzcL

(∣∣ 1
Ld
M − ρLc

∣∣ > B
)

6 C exp(−cB L(d−δ)/2).
If in addition

∑
j jθj/j

d/δ < ∞, the same estimate holds with exponent min(d/2, d − δ)
instead of (d− δ)/2.

As we shall see later, the additional condition means that M has normal fluctuations
of order Ld/2; if the confining potential is quite shallow, δ > d/2, our large deviations
estimate kicks in at fluctuations of the order of Lδ only.

3A careful inspection of the definitions shows that the measure µΛ used by Buffet and Pulé [18] and Betz
and Ueltschi [15] is, in our notation, the law of M under PzcL . The variable M is also used by Chatterjee and
Diaconis [20].
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Proof. Recall that the cumulant generating function of a Poisson variable N ∼ Poiss(λ)

is logE etN = λ( et − 1). Let t = tL ∈ R with t2L = O(Ld−δ). We have

logEzcL
[

etL( 1

Ld
M−ρLc ) ] =

∑
j > 1

∑
x∈Zd\{0}

logEzcL
[

ejtL
1

Ld
(Rxj(ω)−EzcL Rxj)

]
=
∑
j > 1

∑
x∈Zd\{0}

θj
j

e−jV (x/L)
(

ejtL/L
d

− 1− j tL
Ld
)
.

(6.5)

Using | es − 1− s| 6 1
2s

2 e|s| , the interior sum is bounded by

1

2
θj

1

Ld

∑
x∈Zd\{0}

e−
1
2 jV (x/L)

[jt2L
Ld

e−j(
1
2V (x/L)− 1

Ld
tL)
]
. (6.6)

Because of Assumption 6.1 (i), there exists b′ > 0 such that V (x/L) > b′L−δ for all
non-zero x ∈ Zd. Since tL � Ld−δ, the square bracket is bounded, for large L, by

j
t2L
Ld

exp
(
− b′

4Lδ
j
)

6
t2L
Ld
× 4Lδ

b′e
. (6.7)

Then there is a constant C ′ > 0 such that∣∣∣logEzcL
[

etL( 1

Ld
M−ρLc ) ]∣∣∣ 6 C ′

t2L
Ld−δ

∑
j > 1

θj
jd/δ

= O(1). (6.8)

Using Markov’s inequality,

PzcL

(
1
Ld
M − ρLc > B

)
6 e−tLB EzcL

[
etL( 1

Ld
M−ρLc ) ], (6.9)

and a similar bound for the probability that 1
Ld
M − ρLc 6 −B (use a negative tL).

If
∑
j jθj/j

d/δ <∞, we choose tL = O(Ld−δ) to bound the square bracket in (6.6) by

a constant times j. The right side in (6.8) is then replaced by const(t2L/L
d)
∑
jθj/j

d/δ

and it is bounded when tL = O(Ld/2).

Proof of Theorem 6.2. We have

PzcL

( n∑
j=1

jR0j = `
)

= h` exp
(
−

n∑
j=1

θj
j

)
(6.10)

so that

PL,n(H0 = `) =
PzcL (

∑n
j=1 jR0j = `)PzcL (M = n− `)
PzcL (

∑n
j=1 jR0j +M = n)

, (6.11)

EL,n
[

et(n−H0)
]

=
EzcL [hn−M etM ]

EzcL [hn−M ]
. (6.12)

We use the convention that hm = 0 when m < 0.
We show that EL,n

[
exp( t

Ld
(n −H0))

]
→ etρc for any t. Convergence in distribution

follows from the pointwise convergence of the Laplace transform and we get the claim
of the theorem. It is enough to show that for any ε > 0, we have

EzcL [hn−M1|M/Ld−ρLc |>ε]

EzcL [hn−M ]
→ 0. (6.13)
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We have

EzcL [hn−M1|M/Ld−ρLc |>ε]

EzcL [hn−M ]
6

maxj 6 n hj
minj 6 n hj

PzcL (| 1
Ld
M − ρLc | > ε)

PzcL (M 6 n)

6
maxj 6 n hj
minj 6 n hj

C e−cεL
(d−δ)/2

.

(6.14)

The last inequality follows from Lemma 6.3. The last term vanishes indeed as L →
∞.

6.2 Fluctuations of the condensate

We now study the fluctuations of the condensate. The goal is to find the correct
scaling α and the limiting random variable X such that

H0 − Ld(ρ− ρLc )

Lα
d
−→ X. (6.15)

For simplicity, we fix the potential V (x) = c‖x‖δ in this subsection. It turns out that the
phase diagram of the fluctuations is very rich. It is pictured in Fig. 2. We only provide
partial results, see the regions in dark colors. The lightly colored region is left to future
studies; it would certainly be interesting to know what happens there.

0

2

1

−2 −1 1 2

no condensation

γ

d
δ

Lδ (Thm 6.5)

L
δ

1−δγ/d (Thm 6.7)

Lδ(1+γ/2) (Thm 6.6)

Ld/2 (Thm 6.4)

Figure 2: Phase diagrams of the fluctuations of the condensate for the weights θj = jγ and
the potential V (x) = c‖x‖δ. Results for the dark regions are stated in Theorems 6.4 to 6.7. For
d
δ

6 γ + 1, there is no condensation. The light region remains to be investigated.

The first result deals with normal fluctuations. Let

σ2
c =

∑
j > 1

jθj

∫
Rd

e−jV (x) dx. (6.16)

The first result holds in the case where the variance above is finite.

Theorem 6.4 (Central limit theorem for H0). Assume that V (x) = ‖x‖δ, ρ > ρc and∑
j > 1 jθj/j

d/δ < ∞. In addition, assume that there exist C, c > 0, a < min( 1
2 , 1 −

δ
d ),
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and b > a+ max( 1
2 ,

δ
d ) such that for all n,

C−1 e−cn
a

6 hn 6 C ecn
a

,

lim
n→∞

max
m∈[−nb,nb]

hn+m

hn
= 1.

Then, as L, n→∞ with n = ρLd,

H0 − Ld(ρ− ρLc )

σcLd/2
d
−→ N (0, 1). (6.17)

The conditions on the hns can be easily verified for many given (θj) with the help
of Theorem 2.5 and Eq. (6.2). In the case of stretched exponential weights θj = e−j

α

,

where hn ≈ e−n
α

, we have hn+m/hn ≈ e−αm/n
1−α

so we need b < 1−α. This is possible
only if α < 1

2 min( 1
2 , 1−

δ
d ). For larger α, or for weights θj = jγ with large γ, we expect

a deterministic shift in the average occupation number of the origin, small compared
to n but large compared to

√
n, and then normal fluctuations around the shifted mean;

compare with Theorem 7.1 (c).

Proof. This is similar to Theorem 6.2. Since H0 = ρLd −M , it is enough to show that

EL,n

(
exp
{

iu
M − LdρLc
σcLd/2

})
→ e−u

2/2 . (6.18)

As in Eq. (6.12), and again using the convention hm = 0 when m < 0, we have

EL,n

(
exp
{

iu
M − LdρLc
σcLd/2

})
=
EzcL

(
hn−M exp

{
iu
M−LdρLc
σcLd/2

})
EzcL (hn−M )

= EzcL

(
exp
{

iu
M − LdρLc
σcLd/2

})
+ EzcL

([ hn−M
EzcL (hn−M )

− 1
]

exp
{

iu
M − LdρLc
σcLd/2

})
.

(6.19)

We have

EzcL

[
exp
(

iu
M − ρLc Ld

σcLd/2

)]
= exp

{∑
j > 1

θj
j

∑
x∈Zd\{0}

e−jV (x/L)
[

e
ij u

σcL
d/2 − 1− ij u

σcLd/2

]}
.

(6.20)

The absolute value of the square bracket is less than j2u2/σ2
cL

d. From our assumptions
and dominated convergence, we get

lim
L→∞

EL,n

(
exp
{

iu
M − LdρLc
σcLd/2

})
= e−u

2/2 . (6.21)

It remains to verify that the second term in (6.19) vanishes in the limit L→∞.
Let α = min(d2 , d− δ) and ν < α− ad. As in the proof of Theorem 6.2, it follows from

Lemma 6.3 that

EzcL

([ hn−M
EzcL (hn−M )

− 1
]
1| 1

Ld
M−ρLc |>L−ν

)
6 const e2cna−cLα−ν → 0. (6.22)

We also have(
1 + o(1)

)
min

m,|m−LdρLc |<Ld−ν
hn−m 6 EzcL (hn−M ) 6

(
1 + o(1)

)
max

m,|m−LdρLc |<Ld−ν
hn−m.

(6.23)

We choose ν > d(1 − b), which is possible by the assumptions of the theorem. Then
EzcL (hn−M ) = hn−ρLc Ld(1 + o(1)) and the second term in (6.19) vanishes in the limit
L→∞.
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The central limit theorem applies to the ideal Bose gas in dimensions d > 5. It was
noted by Buffet and Pulé that the fluctuations were non-normal in d = 3, of order L2

[18]. We propose here three theorems about non-normal fluctuations larger than Ld/2.
They always apply to situations where the variance σ2

c defined in (6.16) is infinite. In
order to guess the scale of the fluctuations, we observe that

EzcL

((
M − EzcLM

)2)
=
∑
j > 1

jθj
∑

x∈Zd\{0}

e−jV (x/L) = O(Ld+δ). (6.24)

This can be shown by controlling the sum over j as in the proof of Lemma 6.3.
The first theorem deals with the Ewens case where the weights θj are constant. The

critical density is finite and the variance infinite when 1 < d
δ − γ 6 2. Let (Gx)x∈Zd be

i.i.d. Gamma variables with parameters (θ, 1) (that is, the probability density function is
Γ(θ)−1tθ−1 e−t for t > 0).

Theorem 6.5. Suppose that V (x) = c‖x‖δ with d
2 < δ < d, and that θj ≡ θ is constant.

Then if ρ > ρc, we have

H0 − (ρ− ρLc )Ld

Lδ
d
−→

∑
x∈Zd\{0}

θ −Gx
‖x‖δ

.

When θ = 1, Gx is exponential with mean 1 and we recover the result from [18, 20].
The limiting random variable of Theorem 6.5 requires some explanations (see [20] for
a closely related situation). Each Gx has mean θ. Consider

YΛ =
∑
x∈Λ

θ −Gx
‖x‖δ

. (6.25)

Since 2δ > d and
∑
x∈Zd\{0} ‖x‖−2δ <∞, a standard theorem applies that concerns ran-

dom series [27, Chapter 2.5]: For every increasing sequence (Λn)n∈N of domains with
∪nΛn = Zd, the limit Y (ω) = limn→∞ YΛn(ω) exists almost surely. The dominated con-
vergence theorem further shows that the limiting random variable has characteristic
function

E( eiuY ) = exp

{
θ

∑
x∈Zd\{0}

[ iu

‖x‖δ
− log

(
1 +

iu

‖x‖δ
)]}

. (6.26)

It follows in particular that the law of Y is independent of the precise choice of the
sequence of domains. The infinite sum in Theorem 6.5 is by definition a variable equal
to Y in law.

Theorem 6.6. Suppose that V (x) = ‖x‖δ, θj = jγ with γ > 0, and that (1 + γ)(1 + 1
2γ) <

d
δ < γ + 2. Then if ρ > ρc, we have

H0 − (ρ− ρLc )Ld

Lδ(1+γ/2)

d
−→
(

Γ(γ + 2)
∑

x∈Zd\{0}

1

‖x‖δ(γ+2)

)1/2

N (0, 1).

Next, let bγ,δ,d be equal to

bγ,δ,d = −Γ(1 + γ)

|γ|

∫
Rd

((
1 + ‖x‖δ

)|γ| − ‖x‖δ|γ| − |γ| ‖x‖−δ(1+γ)
)

dx. (6.27)

The integrand behaves like ‖x‖−δ(2+γ) for large ‖x‖ and like ‖x‖−δ(1+γ) for small ‖x‖,
so the integral is well-defined. It follows from (1 + ‖x‖δ)|γ| 6 ‖x‖δ|γ|(1 + |γ| ‖x‖−δ) that
bγ,δ,d is positive. We define Z to be the stable random variable whose Laplace transform
for t > 0 is

E etZ = ebγ,δ,d t
|γ|+d/δ

. (6.28)
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Theorem 6.7. Suppose that V (x) = ‖x‖δ, θj = jγ with γ < 0, and that 1 < d
δ < γ + 2.

Then if ρ > ρc, we have
H0 − (ρ− ρLc )Ld

Lα
d
−→ Z,

where α = δ
1−δγ/d .

Remark 6.8. If δ > d, an analogous result for the fluctuations of M in the grand-
canonical ensemble at z = zc still holds, but we can no longer use Lemma 6.3 in order to
pass from the grand-canonical to the canonical ensemble. We suspect that Theorem 6.7
can be shown with an adequate replacement of Lemma 6.3 (e.g., algebraic deviations
bounds based on finite moments), but leave the proof or disproof as an open problem.

We prove these theorems by showing convergence of Laplace or Fourier transforms.
Let

Is(z) =
∑
j > 1

jsθjz
j . (6.29)

We have

logEzcL

[
et
(
M−EzcL M

) ]
=

∑
x∈Zd\{0}

logEzcL

[
et
(
Hx−EzcL Hx

) ]
, (6.30)

logEzcL

[
et
(
Hx−EzcL Hx

) ]
= I−1

(
et−V (x/L)

)
− I−1

(
e−V (x/L)

)
− tI0

(
e−V (x/L)

)
. (6.31)

Combining Eq. (6.31) with asymptotic expansions of I−1( e−µ ), I0( e−µ ) around µ = 0,
we obtain two lemmas on single-site fluctuations.

Lemma 6.9. Suppose that V (x) = ‖x‖δ and that θj = θ for all j. Then under PzcL , for
every fixed x ∈ Zd\{0}, we have

Hx − EzcLHx

Lδ
d
−→

1

‖x‖δ
(θ −Gx),

where Gx is a Gamma random variable with parameter (θ, 1).

Proof. For θj ≡ θ we have I−1(z) = −θ log(1− z). As µ→ 0,

I−1( e−µ ) = −θ log(1− e−µ ) = −θ logµ+ θ
µ

2
+O(µ2)

I0( e−µ ) =
θ

1− e−µ
= θµ−1 + o(µ−1)

(6.32)

hence as long as t→ 0, t < µ,

I−1( et−µ )− I−1( e−µ )− tI0( e−µ ) = −θ log
(
1− t

µ

)
+ θ tµ + o(1). (6.33)

Applying this to µ = V (x/L) and t = sL−δ, we get

logEzcL

[
esL

−δ
(
Hx−EzcL Hx

) ]
= −θ

(
log
(
1− s

‖x‖δ
)
− s
‖x‖δ

)
+ o(1). (6.34)

On the other hand,

logE
[

es(θ−G)
]

= θ
(
s− log(1 + s)

)
. (6.35)

The result follows with the help of the usual continuity theorems (convergence of Laplace
transforms implies convergence in distribution).
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Lemma 6.10. Suppose that V (x) = ‖x‖δ and θj = jγ with γ > 0. Then under PzcL , for
every fixed x ∈ Zd\{0},

Hx − EzcLHx

Lδ(γ+2)/2

d
−→

(Γ(γ + 2))1/2

‖x‖δ(γ+2)/2
N (0, 1). (6.36)

Proof. Consider first the case γ /∈ N, and slightly modified weights corresponding to

I0( e−µ ) =
Γ(γ + 1)

(1− e−µ )γ+1
− Γ(γ + 1). (6.37)

The corresponding weights satisfy θj = jγ(1 + o(1)) [33]. We note the identity

I−1( et−µ )− I−1( e−µ )− tI0( e−µ ) =

∫ t

0

(
I0( es−µ )− I0( e−µ )

)
ds. (6.38)

For µ→ 0, we have
I0( e−µ ) = Γ(γ + 1)µ−γ−1 +O(µ−γ). (6.39)

More precisely, I0( e−µ ) has an asymptotic expansion of the form µ−γ−1
∑
n > 0 anµ

n. As
t, µ→ 0 with t = o(µ),∫ t

0

(
(µ− s)−γ−1 − µ−γ−1

)
ds = 1

γ

(
(µ− t)−γ − µ−γ

)
− tµ−γ−1

=
(
1 + o(1)

)
1
2 (γ + 1)µ−γ−2t2.

(6.40)

The other terms of the asymptotic expansion — which can be pushed to arbitrarily high
order — can be evaluated in a similar way and are found to give contributions of smaller
order. Choosing t = sL−δ(γ+2)/2 and µ = ‖x‖δ/Lδ, we get

lim
L→∞

logEzcL

[
exp

(
s(Hx − EzcLHx)

Lδ(γ+2)/2

)]
= 1

2Γ(γ + 2)s2‖x‖−δ(γ+2) (6.41)

and we recognize the Laplace transform of a normal random variable. This proves
the lemma for the modified weights from [33]. For the original weights θj = jγ , we
recognize in I−1(z) a dilogarithm, and the results still apply because the dilogarithm
and the function (6.37) have similar asymptotic expansions [37, Chapter VI.8].

Now we come to the proofs of the theorems. The proof of Theorem 6.5 is based on
Lemma 6.9 and is analogous to the proofs in [18, 20] and to the proof of Theorem 6.6,
and it is therefore omitted. In contrast with algebraically growing weights no additional
condition on γ is needed in order to go from the grand-canonical to the canonical en-
semble. This is because hn = θ(θ + 1) · · · (θ + n − 1)/n! is a slowly varying function of
n.

Proof of Theorem 6.6. We treat first the fluctuations of M in the grand-canonical en-
semble at z = zc. To this aim we look at the Fourier tranform of the law of L−δ(γ+2)(M−
EzcLM) under PzcL ; it is given by a sum over x analogous to Eq. (6.30). We split the sum
in two parts. Revisiting the proof of Lemma 6.10, we find that for suitable c and ε, all
µ 6 εδ, and all |t| 6 1

2µ,∣∣I−1( eit−µ )− I−1( e−µ )− itI0( e−µ )
∣∣ 6 (γ + 1)|t|2µ−γ−2. (6.42)

We apply this inequality to µ = ‖x‖δ/Lδ with ‖x‖ 6 εL, and t = s/Lδ(γ+2), with L large
enough so that |s|L−δ(γ+2) 6 1

2L
−δ. Then∣∣∣logEzcL

[
eisL−δ(γ+2)/2(Hx−EzcL Hx)

]∣∣∣ 6 (γ + 1)
s2

‖x‖δ(γ+2)
. (6.43)
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We have δ(γ + 2) > d, so the right side can be summed over x ∈ Zd \ {0}. From
Lemma 6.10 and dominated convergence, we get

lim
L→∞

∑
x∈Zd\{0}
‖x‖ 6 εL

logEzcL
[

eisL−δ(γ+2)/2(Hx−EzcL Hx)
]

= −s
2

2

∑
x∈Zd\{0}

Γ(γ + 2)

‖x‖δ(γ+2)
, (6.44)

which is the logarithm of the Fourier transform of the limiting normal random variable.
It remains to show that the sum over ‖x‖ > εL does not contribute. Notice that∑

j > 1

jθj

∫
‖x‖>ε

e−jV (x) dx <∞. (6.45)

Arguments similar to the proof of Lemma 6.3 show that

1

Ld
EzcL

[ ∑
x∈Zd
‖x‖ > εL

(
Hx − EzcLHx

)2]
= O(1). (6.46)

Write Mε for the sum of the Hx over ‖x‖ > εL. We have, for every κ > 0,

PzcL

( Mε

Lδ(γ+2)/2
> κ

)
6 κ−2L−δ(γ+2)EzcL

[
(Mε − EzcLMε)

2
]

= O(Ld−δ(γ+2))→ 0. (6.47)

It follows that EzcL [exp(is(Mε − EzcLMε)L
−δ(γ+2)/2)] → 1: the sites ‖x‖ > 1 do not

contribute to the Fourier transform. Thus we have proven that M fluctuates as Lδ(γ+2)/2

times the limiting Gaussian variable. We conclude with the help of Eq. (6.12) as in the
proof of Theorems 6.2 and Theorems 6.4. Let εL = Lβ . The condition β+ 1

2 (d+δ) > d γ
γ+1

ensures that |M−ρLc Ld| > εLL
(d+δ)/2 does not contribute; the condition δ(1+ 1

2γ) 6 β+
1
2 (d+δ) < d

γ+1 ensures that the hn is approximately constant on the scale of fluctuations

and in the interval |M − ρLc Ld| 6 εLL
d. Such a β exists in the region of parameters

considered here.

Proof of Theorem 6.7. We proceed as in the proofs of Theorems 6.2 and Theorems 6.4.
Observe that by Theorem 2.5, hn = (1 + o(1))θn/n = (1 + o(1))n−|γ|−1 is a regularly
varying function of n. We can invoke Eq. (6.12) and prove that

EzcL

(
e−

t
Lα (M−EzcL M)

)
−→ E( etZ ) (6.48)

for each fixed t. Using Eqs (6.30) and (6.31), we have

logEzcL

(
e−

t
Lα (M−EzcL M)

)
=

∑
x∈Zd\{0}

(
I−1

(
e−

t
Lα−V (x/L)

)
−I−1

(
e−V (x/L)

)
+

t

Lα
I0
(

e−V (x/L)
))
.

(6.49)

Fix ε > 0. Just as in the proof of Theorem 6.6, one can show that sites x with ‖x‖ > εL

are irrelevant. Eq. (6.39) stays true [37, Chapter VI.8]. Therefore as ε → 0, uniformly
in L, Eq. (6.49) is equal to

−
(
1 + o(1)

)Γ(1 + γ)

|γ|
∑

x∈Zd\{0}
‖x‖ 6 εL

[( t

Lα
+
‖x‖δ

Lδ

)|γ|
−
(‖x‖δ
Lδ

)|γ|
− |γ| t

Lα

(‖x‖δ
Lδ

)|γ|−1
]

= −
(
1 + o(1)

)Γ(1 + γ)

|γ|
∑

x∈Zd\{0}
‖x‖ 6 εL

1

Lα|γ|

[(
t+
∥∥∥ x

L1−αδ

∥∥∥δ)|γ|− ∥∥∥ x

L1−αδ

∥∥∥δ|γ|− |γ|t∥∥∥ x

L1−αδ

∥∥∥−δ(1+γ
]
.

(6.50)
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We recognize a Riemann sum in the equation above, and this converges as L→∞ to

− Γ(1 + γ)

|γ|

∫
Rd

[(
t+ ‖x‖δ

)|γ| − ‖x‖δ|γ| − |γ| t ‖x‖−δ(1+γ)
]
dx = t|γ|+d/δ bγ,δ,d. (6.51)

This proves (6.48), and Theorem 6.7.

6.3 Size of partition elements

In this section we have so far discussed the occupation number at x = 0. We now
turn to the partition structure of the condensate. Again we consider the potential
V (x) = ‖x‖δ and the weights θj = jγ . In view of Proposition 2.2 (a), and since by
Theorem 6.2 we have H0/L

d → ρ − ρc when ρ > ρc, it is natural to assume that the
limiting structure of the partition λ0 under PL,n is the same as that of a single-site Gibbs
partition νm when m ∼ (ρ− ρc)Ld →∞. We do not wish to carry out the proof here (see
however the proof of Proposition 7.2 in Section 7) and we base our discussion on the
assumption that this is true.

Recall the definition (5.1) of ν∞, and let

νmacro = lim
ε↘0

lim
n→∞
ρLd=n

EL,n

( 1

n

∑
j>εn

j Rj

)
. (6.52)

be the fraction of particles in partition components of macroscopic size, i.e., of the
order of n. It is clear that ν∞ > νmacro. There are three phases in the (γ, ρ)-plane, as
illustrated in Fig. 3. For ρ < ρc, we have ν∞ = νmacro = 0 by Theorem 5.2.

For ρ > ρc, the site 0 is macroscopically occupied and the partition structure results
from the Gibbs measure on partitions, νm. There are three possibilities, depending on
the parameter γ:

γ < 0 The partition displays a unique large element that contains all the indices save a
(random) finite number [16]. This gives a phase with macroscopic elements.

γ = 0 (Uniform random permutations or the Ewens measure.) The number of partition
elements is logarithmic, they have typically a size proportional to m and their joint
law is asymptotically a Poisson-Dirichlet law, as for the lengths of cycles in uniform
random permutations; see e.g. [6]. Here also, νmacro = ν∞.

γ > 0 It was proved in [33, 25] that typical elements have size of order m1/(γ+1), with
Gamma distribution. Moreover the number of elements divided by mγ/(γ+1) con-
verges in law to some constant [34, 33], and the limit behavior of the partition is
described by a deterministic limit shape [35, 23]: there is a function w(x) such
that for all x > 0, we have the convergence in law under νm:

1

mγ/(γ+1)
#{j : λj > xm1/(γ+1)} → w(x). (6.53)

Remark 6.11. The Poisson-Dirichlet process appearing for γ = 0 has been general-
ized and belongs to a two-parameter family introduced in [50], called two-parameter
Poisson-Dirichlet or Pitman-Yor processes. They can be constructed using subordina-
tors or stick-breaking schemes [50] and can appear as limits of more general Gibbs
partitions where the weight is allowed to depend explicitly on the number of cycles [49].

7 Square potentials

This last section is devoted to square traps, e−V (x) = 1(− 1
2 ,

1
2 ]d(x). There is not much

spatial structure left, as the Ld available sites are all alike with indifferent location. But
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sub−macroscopic

0

macroscopic

finite

d
δ − 1

νmacro = ν∞ > 0

ν∞ > 0

νmacro = 0

γ

νmacro = ν∞ = 0

ρ

Figure 3: Phase diagram for the family of measures with V = ‖x‖δ and θj = jγ . The transition
line bordering the finite phase is given by the transition density ρ = ρc defined in (5.5).

this case is actually very interesting mathematically as it involves conditioned random
variables. And it is relevant in mathematical physics because it describes the station-
ary measure of the zero-range process, and certain equilibrium measures in droplet
formations.

The results of Theorems 5.2 and 5.3 are valid here. In the case zc = 1, the transition
density (5.5) takes the simple form

ρc =
∑
j > 1

θj . (7.1)

We refer to our previous discussion of the zero-range process for background and lit-
erature behind this formula. In contrast to the confining potentials of Section 6, con-
densation does not take place at x = 0 but on a random location picked uniformly at
random. On that site, the partition has one large element. Instead of H0, we consider
here the following random variables:

ML = max
x∈Zd,‖x‖1 6 L

2

Hx,

TL = max{j ∈ N : Rj > 1}.
(7.2)

The main theorem of this section is due to Nagaev [46], and to Armendáriz, Grosskin-
sky, and Loulakis [4], see Theorem 7.1 below. It concerns the random variable ML and
we complement it with a result for TL. Before this we discuss the grand-canonical mea-
sure PzcL and the connection with Cramér series. At the end of the section, we comment
on the relation with surface tension and the critical point of fluids.

For concreteness we focus on algebraic and stretched exponential weights, θj = j−α

with α > 1 or θj = j exp(−jγ) with 0 < γ < 1. Under PzcL the random variables Hx are
i.i.d. and their distribution satisfies

PzcL (Hx = n) = hn exp(−
∑
j > 1

θj/j) =
θn
n

(1 + o(1)). (7.3)
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The last relation follows from Theorem 2.5. The mean and variance of Hx are

EzcL (Hx) =
∑
j > 1

θj = ρc,

EzcL
(
[Hx − EzcL (Hx)]2

)
=
∑
j > 1

jθj = σ2
c .

(7.4)

The variance is consistent with Eq. (6.24).
It turns out that the limit law for stretched exponential weights with fast decay

( 1
2 6 γ < 1) involves a deterministic shift ∆L. In order to define it, consider first the

cumulant generating function

ϕ(t) = logEzcL
(

etHx
)

=
∑
j > 1

θj
j

(
etj − 1

)
. (7.5)

It is finite for t 6 0. Given τ < 0, let tτ be the unique solution of the equation
ϕ′(t) = ρc + τ . Then as τ ↗ 0, the Legendre transform ϕ̃(τ) = supt∈R(tτ − ϕ(t)) has an
asymptotic expansion of the form

− ϕ̃(τ) = ϕ(tτ )− (ρc + τ)tτ = − τ2

2σ2
+ τ3

∑
k > 0

λkτ
k. (7.6)

The coefficients λk are rational functions of the cumulants and they form the Cramér
series of Hx [42]. In a more general context, the series provides corrections to the
central limit theorem when looking at moderate deviations that are larger than

√
n but

smaller than n; see Chapter 7 in [42]. For heavy-tailed variables, the Cramér series
diverges and we truncate it at t := b(1− γ)−1 − 2c+ 1. Let

fL(∆) =
(
(ρ− ρc)Ld −∆

)γ
+

∆2

2σ2
c (Ld − 1)

− ∆3

(Ld − 1)2

t∑
k=0

λk
( ∆

Ld − 1

)k
. (7.7)

It follows from the results of Nagaev [46] that for ρ > ρc and 1
2 6 γ < 1,

PzcL

( ∑
x∈Zd,‖x‖1 6 L/2

Hx = ρLd
)

=
(
1 + o(1)

)
Ld exp

(
−min

∆>0
fL(∆)

)
. (7.8)

The interpretation of Eq. (7.8) is that one of the Ld sites captures almost all of the excess
particles (ρ−ρc)Ld, the remaining Ld−1 sites have a small excess ∆ of particles, and the
shift ∆ minimizes the free energy penalty fL(∆). In order to compute ∆, it is convenient
to change variables and write ∆ = a(ρ−ρc)Ld; setting the derivative equal to zero yields
the equation

γσ2
c (Ld − 1)

((ρ− ρc)Ld)2−γ = a(1− a)1−γ
(

1− σ2
c

t∑
k=0

(k + 3)λk

( (ρ− ρc)Lda

Ld − 1

)k+2)
. (7.9)

It has a solution a ∼ γσ2Ld(γ−1)(ρ− ρc)γ−2. The minimizer ∆L satisfies

∆L =
(
1 + o(1)

)
γσ2

c (ρ− ρc)γ−1Ldγ . (7.10)

When 0 < γ < 1
2 , the shift ∆L �

√
Ld is negligible and Eq. (7.8) is replaced by the

simpler relation [46]

PzcL

( ∑
x∈Zd,‖x‖1 6 L/2

Hx = ρLd
)
∼ LdPzcL

(
Hx = (ρ− ρc)Ld

)
∼
θ(ρ−ρc)Ld

ρ− ρc
. (7.11)
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(The last identity follows from Theorem 2.5). Eq. (7.11) also holds in the case of the
algebraic weights θj = jα with α > 1 [26].

Before formulating the theorem on ML we recall the definition of α-stable random
variables. They are needed in the case of slowly decaying algebraic weights (1 < α < 2).
They are conveniently defined via their Laplace transform: For t > 0,

E
[

e−tY
]

= exp
( 1

α

∫ ∞
0

(
e−tu − 1 + tu)

du

u1+α

)
= exp

( 1

α
M(α)tα

)
, (7.12)

where M(α) =
∫∞

0
( e−y − 1 + y)y−1−αdy > 0. The random variable Y has zero expecta-

tion E(Y ) = 0; its right tail is P(Y > x) = (1 + o(1))α−1x−α as x → ∞, and its left tail
P(Y 6 −x) is exponentially small [39].

Recall that ρc =
∑
j > 1 θj and σ2

c =
∑
j > jθj . The results from conditioned sums of

random variables can be formulated in our context as follows.

Theorem 7.1 (Nagaev [46], Armendáriz, Grosskinsky, Loulakis [3, 4]). Assume that
ρ > ρc.

(a) If θj = j−α with 1 < α < 2, then

ML = (ρ− ρc)Ld − Ld/αYL,

where YL converges in law to the α-stable variable defined in (7.12).

(b) If θj = j−α with α > 2 or θj = exp(−jγ) with 0 < γ < 1
2 , then

ML = (ρ− ρc)Ld + σcL
d/2 YL

where YL converges in law to a standard normal variable.

(c) If θj = j exp(−jγ) with 1
2 6 γ < 1, then

ML = (ρ− ρc)Ld −∆L + σcL
d/2 YL

where YL converges in law to a standard normal variable, and ∆L is the determin-
istic shift of order Ldγ > Ld/2 defined in (7.10).

The next proposition is a variant of the non-spatial Theorem 3.2 in [16].

Proposition 7.2. Suppose that ρ > ρc and that the weights are from one of the cases in
Theorem 7.1. Let (Nj)j > 1 be independent Poisson random variables with parameters
θj/j. Then

∑
j > 1 jNj is almost surely finite, and under PL,n we have the convergence

in law
ML − TL

d
−→

∑
j > 1

jNj . (7.13)

The proof is given at the end of this section. Proposition 7.2 implies that for all
sequences aL → ∞, PL,n

(
ML − TL > aL

)
→ 0. Therefore TL and ML have the same

fluctuations, and we have proved the following:

Theorem 7.3. Theorem 7.1 holds true for TL as well as ML.

Thus we have proved a limit law for the largest component of a Gibbs partition of n
with probability weights

1

ZL,n

∏
j > 1

1

rj !

(
Ld
θj
j

)rj
(7.14)

(see Proposition 2.1), and Eqs. (7.8) and (7.11) provide, up to the factor exp(−Ld
∑
j θj/j),

the precise asymptotics of the partition function ZL,n.
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From a mathematical point of view, Theorem 7.3 is new4 and it highlights similarities
between limit laws for the Gibbs partition (7.14) and sums of i.i.d. variables. These
similarities might seem surprising at first, but we have given a natural explanation by
providing a coupling (the measure PL,n) to a model with i.i.d. variables (the Hxs).

From a physical point of view, the coupling PL,n establishes an explicit relation
between stationary measures of the zero-range process on the one hand and the ideal
Bose gas and classical droplet models on the other hand. The former is often used for
driven systems that are out of equilibrium, the latter belong to equilibrium statistical
mechanics. It is amusing to note, moreover, that the intricacies of the large deviations
of stretched exponential variables with γ > 1

2 have a natural physical interpretation in
the droplet model, and the non-normal fluctuations are related to the critical point of
fluids.

Indeed, it is common to model the free energy of a droplet of volume j as a bulk
term proportional to j plus a surface term jγ with γ = (d − 1)/d [51]. Assume that the
bulk term is zero and set µsat = 0 (the chemical potential at which the gas saturates).
Then p(µ) =

∑
j(θj/j) eµj is the pressure of the gas, and Eq. (7.6) gives an asymptotic

expansion of the free energy

f(ρ) = sup
µ

(
µρ− p(µ)

)
= f(ρsat) +

1

2σ2
(ρ− ρsat)

2 −
∑
k > 0

λk(ρ− ρsat)
3+k,

(7.15)

as ρ ↗ ρsat. The variance σ2 is proportional to the isothermal compressibility κT of the
saturated gas [51]: A formal manipulation in thermodynamics notation shows that

1

κT
= −V ∂p

∂V

∣∣∣
T

= V
∂2

∂V 2

{
V f
(
N
V

)}
= ρ2 ∂

2f

∂ρ2
(ρ) (7.16)

which converges to ρ2sat
σ2 as ρ ↗ ρsat. Here, V is the volume, N = ρV the particle

number, and F = V f(N/V ) the extensive free energy. Eq. (7.7) is up to an additive
constant the free energy of supersaturated gas in coexistence with a large droplet;
the shift ∆L ∝ Ld−1 ∝ n(d−1)/d is natural because surface tension tends to make the
condensate droplet smaller. This gives a physical interpretation to the large deviations
for stretched exponential variables with γ = (d− 1)/d > 1/2.

The anomalous fluctuations arise when the compressibility κT ∝ σ2 becomes infinite,
i.e., at the critical point of the fluid. In the Fisher droplet model, this is achieved
by assigning to each droplet a “surface” free energy more general than j(d−1)/d, with
temperature-dependent parameters; see the review [51] and the references therein.

Proof of Proposition 7.2. Observe that for k > 0,

P
(∑
j > 1

jNj = k
)

= hk e−
∑
j > 1 θj/j (7.17)

(with h0 = 1). By Eq. (2.11) the right side adds up to 1 when k is summed over k > 0,
so that

∑
j > 1 jNj is almost surely finite. Let Sn be the size of the largest partition

element, at the site of higher occupation. Clearly SL 6 TL 6 ML; we show below
that SL = TL with high probability. Fix k ∈ N0 and let δ > 0 with δ < 1− ρc/ρ. Choose n
large enough so that δn− k > k. Using Proposition 2.2, we get

PL,n
(
SL = ML − k

)
=

∑
m > δn

θm−k
m− k

hk
hm
PL,n

(
ML = m

)
+ PL,n

(
SL = ML − k,ML 6 δn

)
,

(7.18)

4Bogachev and Zeindler prove the existence of a giant cycle of size of order (1−ρc/ρ)n for a related model
of random permutations, but without results on its fluctuations [17, Corollary 5.14].
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hence∣∣∣PL,n(SL = ML − k
)
− P

(∑
j > 1

jNj = k
)∣∣∣

6 2PL,n
(
ML 6 δn) + sup

m > δn

∣∣∣ θm−k
m− k

hk
hm
− hk exp

(
−
∑
j > 1

θj
j

)∣∣∣. (7.19)

The first term vanishes because 1
nML → 1 − ρc

ρ > δ; the second term vanishes because
(θj/j) is discrete subexponential (Theorems 2.4 and 2.5). Thus we have shown that for
all k > 0,

lim
n→∞
ρLd=n

PL,n
(
SL = ML − k

)
= P

(∑
j > 1

jNj = k
)
, (7.20)

that is,ML−SL converges in law to
∑
j > 1 jNj . It follows in particular that 1

nSn → 1− ρcρ .
To conclude, we note that since SL 6 TL, we have

PL,n
(
TL 6= SL) 6 PL,n

(
TL > SL | SL > δn

)
+ PL,n

(
SL < δn

)
. (7.21)

The last term vanishes because 1
nSL → 1− ρc

ρ and δ < 1−ρc/ρ. The first term in the right
side is bounded by the conditional probability that there is a second site, in addition to
the most occupied one, whose occupation is at least δn. With the help of Eqs. (7.8)
and (7.11) one can show that the probability of the latter event goes to zero. Hence
PL,n(TL 6= SL)→ 0 and we conclude with the help of Eq. (7.20).

In forthcoming work [32] we will introduce analytic continuations, known as Lindelöf
integrals, of the grand canonical ensembles studied in this paper and, by methods of
Hardy space analysis and contour deformation, show how the results of this section
may be extended to a broader class of decaying weights in which the weights θj arise
as the values, at positive integers j, of a function p(ξ) analytic for ξ ∈ C \ (−∞, 0].
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