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Abstract

We consider the population model associated to continuous state branching pro-
cesses and we are interested in the so-called Eve property that asserts the existence
of an ancestor with an overwhelming progeny at large times, and more generally, in
the possible behaviours of the frequencies among the population at large times. In
this paper, we classify all the possible behaviours according to the branching mecha-
nism of the continuous state branching process.
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Continuous State Branching Processes (CSBP for short) have been introduced by
Jirina [18] and Lamperti [23, 24, 25]. They are the scaling limits of Galton-Watson
processes: see Grimvall [15] and Helland [16] for general functional limit theorems.
They represent the random evolution of the size of a continuous population. Namely, if
Z = (Zt)t∈[0,∞) is a CSBP, the population at time t can be represented as the interval
[0, Zt]. In this paper, we focus on the following question: as t→∞, does the population
concentrate on the progeny of a single ancestor e ∈ [0, Z0] ? If this holds true, then
we say that the population has an Eve. More generally, we discuss the asymptotic
frequencies of settlers. A more formal definition is given further in the introduction.

The Eve terminology was first introduced by Bertoin and Le Gall [5] for the gen-
eralised Fleming-Viot process. Tribe [33] addressed a very similar question for super-
Brownian motion with quadratic branching mechanism, while in Theorem 6.1 [10] Don-
nelly and Kurtz gave a particle system interpretation of the Eve property. In the CSBP
setting, the question has been raised for a general branching mechanism in [22]. Let
us mention that Grey [14] and Bingham [7] introduced martingale techniques to study
the asymptotic behaviours of CSBP under certain assumptions on the branching mech-
anism: to answer the above question in specific cases, we extend their results using
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On the Eve property for CSBP

slightly different tools. For related issues, we also refer to Bertoin, Fontbona and Mar-
tinez [3], Bertoin [2] and Abraham and Delmas [1].

Before stating the main result of the present paper, we briefly recall basic properties
of CSBP, whose proofs can be found in Silverstein [32], Bingham [7], Le Gall [26] or
Kyprianou [20]. CSBP are [0,∞]-Feller processes whose only two absorbing states are
0 and∞ and whose transition kernels (pt(x, · ) ; t∈ [0,∞), x∈ [0,∞]) satisfy the so-called
branching property:

∀x, x′ ∈ [0,∞] , ∀t ∈ [0,∞) , pt(x, · ) ∗ pt(x′, · ) = pt(x+ x′, ·) . (0.1)

Here, ∗ stands for the convolution product of measures. We do not consider CSBP
that jump to ∞ on a single jump. Since the two absorbing points 0 and ∞ belong to
the state-space, the transition kernels are true probability measures on [0,∞] and they
are characterised by their branching mechanism Ψ : [0,∞) → R as follows: for any
t, λ, x∈ [0,∞), ∫

[0,∞)

pt(x, dy) exp(−λy) = exp
(
− xu(t, λ)

)
, (0.2)

where u( · , λ) is a [0,∞)-valued function that satisfies ∂tu(t, λ)=−Ψ(u(t, λ)) and u(0, λ)=

λ. For short, we write CSBP(Ψ, x) for continuous state branching process with branch-
ing mechanism Ψ and initial value x. The branching mechanism Ψ is necessarily of the
following Lévy-Khintchine form:

∀λ ∈ [0,∞) , Ψ(λ) = αλ+ βλ2 +

∫
(0,∞)

π(dr)
(
e−λr − 1 + λr1{r<1}

)
, (0.3)

where α ∈R, β ≥ 0 and π is a Borel measure on (0,∞) such that
∫

(0,∞)
(1 ∧ r2)π(dr)<

∞. We recall that a CSBP with branching mechanism Ψ is a time-changed spectrally
positive Lévy process whose Laplace exponent is Ψ: see for instance Lamperti [23] and
Caballero, Lambert and Uribe Bravo [9]. Consequently, the sample paths of a cadlag
CSBP have no negative jump. Moreover, a CSBP has infinite variation sample paths iff
the corresponding Lévy process has infinite variation sample paths, which is equivalent
to the following assumption:

(Infinite variation) β > 0 or

∫
(0,1)

r π(dr) =∞ . (0.4)

Therefore, the finite variation cases correspond to the following assumption:

(Finite variation) β = 0 and

∫
(0,1)

r π(dr) <∞ . (0.5)

In the finite variation cases, Ψ can be rewritten as follows:

∀λ ∈ [0,∞), Ψ(λ) = Dλ−
∫

(0,∞)

π(dr) (1− e−λr) , where D := α+

∫
(0,1)

r π(dr) . (0.6)

In these cases, note that D = limλ→∞Ψ(λ)/λ.
We shall always avoid the cases of deterministic CSBP that correspond to linear

branching mechanisms. Namely, we shall always assume that either β > 0 or π 6= 0.
Since Ψ is convex, it has a right derivative at 0, that is possibly equal to −∞. Fur-

thermore, Ψ has at most two roots. We introduce the following notation:

Ψ′(0+) := lim
λ→0+

λ−1Ψ(λ) ∈ [−∞,∞) and γ = sup
{
λ∈ [0,∞) : Ψ(λ)≤0

}
. (0.7)
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Note that γ > 0 iff Ψ′(0+) < 0, and that γ = ∞ iff −Ψ is the Laplace exponent of a
subordinator.

We next discuss basic properties of the function u defined by (0.2). The Markov
property for CSBP entails

∀t, s, λ∈ [0,∞), u(t+s, λ) = u(t, u(s, λ)) and ∂tu (t, λ)=−Ψ(u(t, λ)), u(0, λ)=λ. (0.8)

If λ∈ (0,∞), then u( · , λ) is the unique solution of (0.8). If λ=γ, then u( · , γ) is constant
to γ. An easy argument derived from (0.8) entails the following: if λ> γ (resp. λ< γ),
then u( · , λ) is decreasing (resp. increasing). Then, by an easy change of variable, (0.8)
implies

∀t ∈ [0,∞), ∀λ ∈ (0,∞)\{γ},
∫ λ

u(t,λ)

du

Ψ(u)
= t . (0.9)

For any x ∈ [0,∞], we denote by Px the canonical law of CSBP(Ψ, x) on the Skorohod
space of cadlag [0,∞]-valued functions that is denoted by D([0,∞), [0,∞]). We denote
by Z = (Zt)t∈[0,∞) the canonical process on D([0,∞), [0,∞]). As t→∞, a CSBP either
converges to∞ or to 0. More precisely,

∀x ∈ (0,∞), e−γx = Px
(

lim
t→∞

Zt = 0
)

= 1− Px
(

lim
t→∞

Zt =∞
)
. (0.10)

If Ψ′(0+) > 0 (resp. Ψ′(0+) = 0), then γ = 0 and the CSBP gets extinct: Ψ is said to
be sub-critical (resp. critical ). If Ψ′(0+) < 0, then γ > 0 and the CSBP has a positive
probability to tend to∞: Ψ is said to be super-critical.

Let us briefly discuss absorption: let ζ0 and ζ∞ be the times of absorption in resp. 0

and∞. Namely:

ζ0 =inf
{
t>0 : Zt or Zt− = 0

}
, ζ∞=inf

{
t>0 : Zt or Zt− =∞

}
and ζ=ζ0 ∧ ζ∞, (0.11)

with the usual convention: inf ∅ =∞. We call ζ the time of absorption. The integral
equation (0.9) easily implies the following:

(Conservative Ψ) ∀x ∈ [0,∞), Px(ζ∞ <∞) = 0 ⇐⇒
∫

0+

dr

(Ψ(r))−
=∞ . (0.12)

Here ( · )− stands for the negative part function. If Ψ is non-conservative, namely if

(Non-conservative Ψ)

∫
0+

dr

(Ψ(r))−
<∞ , (0.13)

then, Ψ′(0+) = −∞ and for any t, x ∈ (0,∞), Px(ζ∞ > t) = exp(−xκ(t)), where κ(t) :=

limλ→0+ u(t, λ) satisfies
∫ κ(t)

0
dr/(Ψ(r))−= t. Note that κ : (0,∞)−→ (0, γ) is one-to-one

and increasing. Thus, Px-a.s. limt→∞ Zt=∞ iff ζ∞<∞ and in this case, limt→ζ∞− Zt=∞.
Namely, the process reaches∞ continuously.

The integral equation (0.9) also implies the following:

(Persistent Ψ) ∀x ∈ [0,∞), Px(ζ0 <∞) = 0 ⇐⇒
∫ ∞ dr

Ψ(r)
=∞ . (0.14)

If Ψ allows extinction in finite time, namely if

(Non-persistent Ψ)

∫ ∞ dr

Ψ(r)
<∞ , (0.15)

it necessarily implies that Ψ satisfies (0.4), namely that Ψ is of infinite variation type.
In this case, for any t, x ∈ (0,∞), Px(ζ0 ≤ t) = exp(−xv(t)) where v(t) := limλ→∞ u(t, λ)
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satisfies
∫∞
v(t)

dr/Ψ(r) = t. Note that v : (0,∞)−→ (γ,∞) is one-to-one and decreasing.
Thus, Px-a.s. limt→∞ Zt=0 iff ζ0<∞.

The previous arguments allow to define u for negative times. Namely, for all t ∈
(0,∞), set κ(t) = limλ→0+ u(t, λ) and v(t) = limλ→∞ u(t, λ). As already mentioned, κ(t)

is positive if Ψ is non-conservative and null otherwise and v(t) is finite if Ψ is non-
persistent and infinite otherwise. Then, observe that u(t, · ) : (0,∞) −→ (κ(t), v(t)) is
increasing and one-to-one. We denote by u(−t, · ) : (κ(t), v(t))−→ (0,∞) the reciprocal
function. It is plain that (0.9) extends to negative times. Then, observe that ∂tu(−t, λ) =

Ψ(u(−t, λ)) and that (0.8) extends to negative times as soon as it makes sense.

Let us give here the precise definition of the Eve property. To that end, we fix
x∈(0,∞) and denote by B([0, x]) the Borel subsets of [0, x]. We also denote by M ([0, x])

the set of positive Borel-measures on [0, x] and by M1([0, x]) the set of Borel probability
measures. Let us think of mt ∈M1([0, x]), t ∈ [0,∞), as the frequency distributions of
a continuous population whose set of ancestors is [0, x] and that evolves through time
t. Namely for any Borel set B⊂ [0, x], mt(B) is the frequency of the individuals at time
t whose ancestors belong to B. The relevant convergence mode is the total variation
norm:

∀µ, ν∈M1([0, x]) , ‖µ− ν‖var = sup
{
|µ(A)−ν(A)| ; A ∈ B([0, x])

}
.

Here, it is natural to assume that t 7→ mt is cadlag in total variation norm. The Eve
property can be defined as follows.

Definition 0.1. We denote by ` the Lebesgue measure on R (or its restriction to [0, x]

according to the context). Let t ∈ (0,∞) 7−→mt ∈M1([0, x]) be cadlag with respect to
‖·‖var and assume that there exists m∞∈M1([0, x]) such that limt→∞‖mt −m∞‖var = 0,
where

m∞ = a `+
∑
y∈S

m∞({y})δy . (0.16)

Here, a is called the dust, S is a countable subset of [0, x] that is the set of settlers and
for any y∈S, m∞({y}) is the asymptotic frequency of the settler y.

If a= 0, then we say that the population m := (mt)t∈(0,∞) has no dust (although mt

may have a diffuse part at any finite time t). If a= 0 and if S reduces to a single point
e, then m∞= δe and the population m is said to have an Eve that is e. Furthermore, if
there exists t0∈ (0,∞) such that mt= δe, for any t> t0, then we say that the population
has an Eve in finite time.

The following theorem asserts the existence of a regular version of the frequency
distributions associated with a CSBP.

Theorem 0.2. Let x∈ (0,∞). Let Ψ be a branching mechanism of the form (0.3). We
assume that Ψ is not linear. Then, there exists a probability space (Ω,F ,P) on which
the two following processes are defined.

(a) Z = (Zt)t∈[0,∞) is a cadlag CSBP (Ψ, x).

(b) M = (Mt)t∈[0,∞] is a M1([0, x])-valued process that is ‖·‖var-cadlag on (0,∞) such
that

∀B ∈ B([0, x]), P-a.s. lim
t→0+

Mt(B) = x−1`(B).

The processes Z andM satisfy the following property: for any Borel partition B1, . . . , Bn
of [0, x] there exist n independent cadlag CSBP(Ψ), Z(1), . . . , Z(n), with initial values
`(B1), . . . , `(Bn), such that

∀k ∈ {1, . . . , n} , ∀t ∈ [0, ζ) , Mt(Bk) = Z
(k)
t /Zt , (0.17)
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where ζ stands for the time of absorption of Z.

We call M the frequency distribution process of a CSBP(Ψ, x). If Ψ is of finite vari-
ation type, then M is ‖·‖var-right continous at time 0, which is not the case if Ψ is of
infinite variation type as explained in Section 1.3. The strong regularity of M requires
specific arguments: in the infinite variation cases, we need a decomposition of CSBP
into Poisson clusters, which is the purpose of Theorem 1.8 in Section 1.2. (see this
section for more details and comments).

The main result of the paper concerns the asymptotic behaviour of M on the follow-
ing three events.

• A := {ζ < ∞} that is the event of absorption. Note that P(A) > 0 iff Ψ either
satisfies (0.13) or (0.15), namely iff Ψ is either non-conservative or non-persistent.

• B := {ζ =∞ ; limt→∞ Zt =∞} that is the event of explosion in infinite time. Note
that P(B)> 0 iff Ψ satisfies (0.12) and Ψ′(0+)∈ [−∞, 0), namely iff Ψ is conserva-
tive and super-critical.

• C := {ζ =∞ ; limt→∞ Zt = 0} that is the event of extinction in infinite time. Note
that P(C)>0 iff Ψ satisfies (0.14) and γ<∞.

Theorem 0.3. We assume that Ψ is a non-linear branching mechanism. Let x∈ (0,∞)

and let M and Z be as in Theorem 0.2. Then, P-a.s. limt→∞‖Mt−M∞‖var = 0, where
M∞ is of the form (0.16). Moreover, the following holds true P-almost surely.

(i) On the event A = {ζ <∞}, M has an Eve in finite time.

(ii) On the event B = {ζ=∞ ; limt→∞ Zt=∞}:

(ii-a) If Ψ′(0+)=−∞, then M has an Eve;
(ii-b) If Ψ′(0+) ∈ (−∞, 0) and γ < ∞, there is no dust and M has finitely many

settlers whose number, under P( · |B), is distributed as a Poisson r.v. with
mean xγ conditionned to be non zero;

(ii-c) If Ψ′(0+) ∈ (−∞, 0) and γ =∞, there is no dust and M has infinitely many
settlers that form a dense subset of [0, x].

(iii) On the event C = {ζ=∞ ; limt→∞ Zt=0}:

(iii-a) If Ψ is of infinite variation type, then M has an Eve;
(iii-b) If Ψ is of finite variation type, then the following holds true:

(iii-b-1) If π((0, 1)) < ∞, then there is dust and M has finitely many settlers
whose number, under P( · |C), is distributed as a Poisson r.v. with mean
x
D

∫
(0,∞)

e−γrπ(dr);

(iii-b-2) If π((0, 1))=∞ and
∫

(0,1)
π(dr) r log 1/r < ∞, then there is dust and there

are infinitely many settlers that form a dense subset of [0, x];
(iii-b-3) If

∫
(0,1)

π(dr) r log 1/r = ∞, then there is no dust and there are infinitely

many settlers that form a dense subset of [0, x].

First observe that the theorem covers all the possible cases, except the deterministic
ones that are trivial. On the absorption event A = {ζ <∞}, the result is easy to ex-
plain: the descendent population of a single ancestor either explodes strictly before the
others, or gets extinct strictly after the others, and there is an Eve in finite time.

The cases where there is no Eve – namely, Theorem 0.3 (ii-b ), (ii-c) and (iii-b ) –
are simple to explain: the size of the descendent populations of the ancestors grow
or decrease in the same (deterministic) scale and the limiting measure is that of a
normalised subordinator as specified in Proposition 2.1, Lemma 2.2, Proposition 2.3,
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Lemma 2.4, and also in the proof Section 2.2. Let us mention that in Theorem 0.3 (iii-
b1 ) and (iii-b2 ), the dust of M∞ comes only from the dust of the Mt, t∈ (0,∞): it is not
due to limiting aggregations of atoms of the measures Mt as t→∞.

Theorem 0.3 (ii-a) and (iii-a) are the main motivation of the paper: in these cases,
the descendent populations of the ancestors grow or decrease in distinct scales and one
dominates the others, which implies the Eve property in infinite time. This is the case
of the Neveu branching mechanism Ψ(λ) = λ log λ, that is related to the Bolthausen-
Sznitman coalescent: see Bolthausen and Sznitman [8], and Bertoin and Le Gall [4].

Let us first make some comments in connection with the Galton-Watson processes.
The asymptotic behaviours displayed in Theorem 0.3 (ii ) find their counterparts at the
discrete level: the results of Seneta [30, 31] and Heyde [17] implicitly entail that the
Eve property is verified by a supercritical Galton-Watson process on the event of explo-
sion iff the mean is infinite. However neither the extinction nor the dust find relevant
counterparts at the discrete level so that Theorem 0.3 (i ) and (iii ) are specific to the
continuous setting.

CSBP present many similarities with generalised Fleming-Viot processes, see for
instance the monograph of Etheridge [13]: however for this class of measure-valued
processes Bertoin and Le Gall [5] proved that the population has an Eve without as-
sumption on the parameter of the model (the measure Λ which is the counterpart of
the branching mechanism Ψ). We also mention that when the CSBP has an Eve, one
can define a recursive sequence of Eves on which the residual populations concentrate,
see [22]. Observe that this property is no longer true for generalised Fleming-Viot pro-
cesses, see [21].

The paper is organized as follows. In Section 1.1, we gather several basic properties
and estimates on CSBP that are needed for the construction of the cluster measure done
in Section 1.2. These preliminary results are also used to provide a regular version of
M which is the purpose of Section 1.3. Section 2 is devoted to the proof of Theorem 0.3:
in Section 2.1 we state specific results on Grey martingales associated with CSBP in the
cases where Grey martingales evolve in comparable deterministic scales: these results
entail Theorem 0.3 (ii-b ), (ii-c) and (iii-b ), as explained in Section 2.2. Section 2.3 is
devoted to the proof of Theorem 0.3 (ii-a) and (iii-a): these cases are more difficult to
handle and the proof is divided into several steps; in particular it relies on Lemma 2.9,
whose proof is postponed to Section 2.3.4.

1 Construction of M.

1.1 Preliminary estimates on CSBP.

Recall that we assume that Ψ is not linear: namely, either β > 0 or π 6= 0. The
branching property (0.1) entails that for any t∈ (0,∞), u(t, · ) is the Laplace exponent
of a subordinator. Namely, it is of the following form:

u(t, λ) = κ(t) + d(t)λ+

∫
(0,∞)

νt(dr)
(
1− e−λr

)
, λ ∈ [0,∞), (1.1)

where κ(t) = limλ→0+ u(t, λ), d(t) ∈ [0,∞) and
∫

(0,∞)
(1 ∧ r) νt(dr) <∞. Since Ψ is not

linear, we easily get νt 6=0. As already mentioned in the introduction if Ψ is conservative,
κ(t) = 0 for any t and if Ψ is non-conservative, then κ : (0,∞) −→ (0, γ) is increasing
and one-to-one. To avoid to distinguish these cases, we extend νt on (0,∞] by setting
νt({∞}) :=κ(t). Thus, (1.1) can be rewritten as follows: u(t, λ)=d(t)λ+

∫
(0,∞]

νt(dr) (1−
e−rλ), with the usual convention exp(−∞)=0. Recall from (0.6) the definition of D.
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Lemma 1.1. Let t∈ (0,∞). Then d(t)> 0 iff Ψ is of finite variation type. In this case,
d(t)=e−Dt where D is defined in (0.6).

Proof. First note that d(t)=limλ→∞ λ−1u(t, λ). An elementary computation implies that

u(t, λ)

λ
= exp

(∫ t

0

∂s log u (s, λ) ds
)

= exp
(
−
∫ t

0

Ψ(u(s, λ))

u(s, λ)
ds
)
. (1.2)

If Ψ satisfies (0.15), then recall that limλ→∞ u(t, λ)<∞. Thus, in this case, d(t) = 0. Next
assume that Ψ satisfies (0.14). Then, limλ→∞ u(t, λ) =∞. Note that Ψ(λ)/λ increases
to ∞ in the infinite variation cases and that it increases to the finite quantity D in the
finite variation cases, which implies the desired result by monotone convergence in the
last member of (1.2).

Recall that for any x∈ [0,∞], Px stands for the law onD([0,∞), [0,∞]) of a CSBP(Ψ, x)
and recall that Z stands for the canonical process. It is easy to deduce from (0.1) the
following monotone property:

∀t∈ [0,∞), ∀y∈ [0,∞), ∀x, x′∈ [0,∞] such that x ≤ x′, Px
(
Zt > y

)
≤ Px′

(
Zt > y

)
.

(1.3)

Lemma 1.2. Assume that Ψ is not linear. Then, for all t, x, y∈(0,∞), Px
(
Zt > y

)
> 0 .

Proof. Let (Sx)x∈[0,∞) be a subordinator with Laplace exponent u(t, · ) that is defined
on an auxiliary probability space (Ω,F ,P). Thus Sx under P has the same law as Zt
under Px. Since νt 6= 0, there is r0 ∈ (0,∞) such that νt((r0,∞)) > 0. Consequently,
N := #{z ∈ [0, x] : ∆Sz >r0} is a Poisson r.v. with non-zero mean xνt((r0,∞)). Then, for
any n such that nr0>y we get Px(Zt>y) =P(Sx>y)≥P(N ≥ n)> 0, which completes
the proof.

The following lemmas are used in Section 1.2 for the construction of the cluster
measure.

Lemma 1.3. Assume that Ψ is of infinite variation type. Then, for any t, s∈(0,∞),

νt+s(dr) =

∫
(0,∞]

νs(dx)Px
(
Zt ∈ dr ; Zt > 0

)
. (1.4)

Proof. Let ν be the measure on the right side of (1.4). Then, for all λ∈ (0,∞), (0.2) and
(0.8) imply that∫

(0,∞]

ν(dr)
(
1− e−λr

)
=

∫
(0,∞]

νs(dx)
(
1− e−xu(t,λ)

)
= u(s, u(t, λ)) = u(s+ t, λ)

=

∫
(0,∞]

νt+s(dr)
(
1− e−λr

)
.

By letting λ go to 0, this implies that ν({∞}) = νt+s({∞}). By differentiating in λ,
we also get

∫
(0,∞)

ν(dr) re−λr =
∫

(0,∞)
νt+s(dr) re

−λr. Since Laplace transform of finite

measures is injective, this entails that ν and νt+s coincide on (0,∞) which completes
the proof.

Lemma 1.4. Assume that Ψ is of infinite variation type. Then, for all ε∈ (0, 1) and all
s, t∈(0,∞) such that s<t,∫

(0,∞]

νs(dx)Px(Zt−s > ε) = νt
(
(ε,∞]

)
∈ (0,∞). (1.5)

EJP 19 (2014), paper 6.
Page 7/31

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-2831
http://ejp.ejpecp.org/


On the Eve property for CSBP

Proof. The equality follows from (1.4). Next observe that νt
(
(ε,∞]

)
≤ 1

ε

∫
(0,∞]

(1 ∧
r) νt(dr) < ∞. Since νs does not vanish on (0,∞), Lemma 1.2 entails that the first
member is strictly positive.

We shall need the following simple result in the construction of M in Section 1.3.

Lemma 1.5. For all a, y ∈ (0,∞), limr→0+Pr(Za > y) = 0 and limr→0+Pr(supb∈[0,a] Zb >

y)=0.

Proof. First note that Pr(Za>y) ≤ (1−e−1)−1Er[1−e−Za/y] = (1−e−1)−1(1−e−ru(a,1/y))→
0 as r → 0, which implies the first limit. Let us prove the second limit: if γ=∞, then Z is
non-decreasing and the second limit is derived from the first one. We next assume that
γ<∞, and we claim that there exist θ, C∈(0, 1) that only depend on a and y such that

∀z ∈ [y,∞), ∀b ∈ [0, a], pb(z, [0, θy]) ≤ C . (1.6)

Let us prove (1.6). We specify θ ∈ (0, 1) further. By (1.3), pb(z, [0, θy]) ≤ pb(y, [0, θy]) =

Py(Zb ≤ θy). Using an elementary inequality, we obtain for all λ∈ (0,∞), Py(Zb ≤ θy)≤
exp(yθλ)Ey[exp(−λZb)]=exp(yθλ−yu(b, λ)). We take λ=γ+1. Thus, u(·, γ+1) is decreasing

and pb(z, [0, θy])≤ exp(yθ(γ+1)−yu(a, γ+1)). We choose θ= u(a,γ+1)
2(γ+1) . Then, (1.6) holds

true with C=exp(−yθ(γ + 1)).

We next set T = inf{t ∈ [0,∞) : Zt > y}, with the convention inf ∅ = ∞. Thus
{supb∈[0,a] Zb > y} = {T ≤ a}. Let θ and C as in (1.6). First note that Pr(T ≤ a) ≤
Pr(Za>θy)+Pr(T ≤a; Za≤θy). Then, by the strong Markov property at T and (1.6), we
get

Pr(T ≤a ; Za≤θy) = Er[1{T≤a} pa−T (ZT , [0, θy])] ≤ C Pr(T ≤ a) .

Thus, Pr(supb∈[0,a] Zb > y) ≤ (1−C)−1Pr(Za > θy) → 0 as r → 0, which completes the
proof.

We next state a more precise inequality that is used in the construction of the cluster
measure of CSBP.

Lemma 1.6. We assume that Ψ is not linear. Then, for any ε, η ∈ (0, 1) and for any
t0∈(0,∞), there exists a∈(0, t0/4) such that

∀x∈ [0, η], ∀b∈ [0, a], ∀c∈ [ 1

2 t0, t0], Px

(
sup
t∈[0,b]

Zt > 2η ; Zc > ε
)
≤ 2Px

(
Zb > η ; Zc > ε

)
.

(1.7)

Proof. Since Ψ is not linear, νt 6= 0. If γ =∞, the corresponding CSBP has increasing
sample paths and the lemma obviously holds true. So we assume that γ <∞. We first
claim the following.

∀x, y, t0, t1∈(0,∞) with t1 ≤ t0, inf
t∈[t1,t0]

Px
(
Zt > y

)
> 0. (1.8)

Let us prove (1.8). Suppose that there is a sequence sn∈ [t1, t0] such that

lim
n→∞

Px(Zsn>y)=0.

Without loss of generality, we can assume that limn→∞ sn = t. Since u( · , λ) is continu-
ous, Zsn → Zt in law under Px and the Portmanteau Theorem implies that Px(Zt>y) ≤
lim infn→∞Px(Zsn>y) = 0, which contradicts Lemma 1.2 since t > 0.

We next claim the following: for any η, δ∈(0, 1), there exists a∈(0,∞) such that

∀x∈ [2η,∞), ∀s∈ [0, a], Px
(
Zs ≤ η

)
≤ δ. (1.9)
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Let us prove (1.9). We fix x ∈ [2η,∞). Let a ∈ (0,∞) that is specified later. For any
s∈ [0, a], the Markov inequality entails for any λ∈(0,∞)

Px(Zs ≤ η) ≤ eληEx
[
e−λZs

]
= eλη−xu(s,λ) ≤ e−λη+2η(λ−u(s,λ)) . (1.10)

We now take λ>γ. Then, u( · , λ) is decreasing and we get

− λη + 2η
(
λ−u(s, λ)

)
≤ −λη + 2η

∫ s

0

Ψ(u(b, λ)) db ≤ −λη + 2η aΨ(λ). (1.11)

Then set λ = γ + 1−η−1 log δ and a = (γ + 1)/(2Ψ(λ)), which entails (1.9) by (1.11) and
(1.10).

We now complete the proof of the lemma. We first fix ε, η∈ (0, 1) and t0∈ (0,∞) and
then we set

δ =
1

2

inft∈[ 14 t0,t0] P2η

(
Zt > ε

)
supt∈[ 14 t0,t0]Pη

(
Zt > ε

) .

By (1.8), δ>0. Let a∈(0, 1
4 t0) be such that (1.9) holds true. We then fix x∈ [0, η], b∈ [0, a]

and c∈ [ 1
2 t0, t0] and we introduce the stopping time T = inf{t∈ [0,∞) : Zt > 2η}. Then,

A := Px

(
sup
s∈[0,b]

Zt > 2η ; Zc > ε
)

= Px
(
T ≤ b ; Zc>ε

)
≤ Px

(
Zb> η ; Zc>ε

)
+B , (1.12)

where B := Px
(
T ≤ b ; Zb ≤ η ; Zc>ε

)
is bounded as follows: by the Markov property at

time b and by (1.3), we first get

B ≤ Ex
[
1{T≤b ; Zb≤η}PZb(Zc−b>ε)

]
≤ Pη(Zc−b>ε)Ex

[
1{T≤b ; Zb≤η}

]
.

Recall that pt(x, dy) = Px(Zt ∈ dy) stands for the transition kernels of Z. The strong
Markov property at time T then entails

Ex
[
1{T≤b ; Zb≤η}

]
= Ex

[
1{T≤b} pb−T

(
ZT , [0, η]

)]
.

Next observe that Px-a.s. b−T ≤ a and ZT > 2η, which implies pb−T
(
ZT , [0, η]

)
≤ δ by

(1.9). Thus,
B ≤ δPη(Zc−b>ε)Ex

[
1{T≤b}

]
.

Since c−b∈ [ 1
4 t0, t0], we get δPη(Zc−b>ε) ≤ 1

2 inft∈[ 14 t0,t0]P2η

(
Zt>ε

)
, by definition of δ.

Next, observe that

Px-a.s. on {T ≤ b}, inf
t∈[ 14 t0,t0]

P2η

(
Zt>ε

)
≤ pc−T

(
2η, (ε,∞]

)
≤ pc−T

(
ZT , (ε,∞]

)
,

where we use (1.3) in the last inequality. Thus, by the strong Markov property at time
T and the previous inequalities, we finally get

B ≤ 1

2
Ex
[
1{T≤b} pc−T

(
ZT , (ε,∞]

)]
=

1

2
Px
(
T ≤ b ; Zc>ε

)
=

1

2
A ,

which implies the desired result by (1.12).

We end the section by a coupling of finite variation CSBP. To that end, let us briefly
recall that CSBP are time-changed Lévy processes via Lamperti transform: let X =

(Xt)t∈[0,∞) be a cadlag Lévy process without negative jump that is defined on the
probability space (Ω,F ,P). We assume that X0 = x ∈ (0,∞) and that E[exp(−λXt)] =

exp(−xλ+ tΨ(λ)). We then set

τ = inf
{
t∈ [0,∞) : Xt=0

}
, Lt = τ ∧ inf

{
s∈ [0, τ) :

∫ s

0

dr

Xr
> t
}

and Zt = XLt ,

(1.13)
with the conventions inf ∅=∞ and X∞=∞. Then, (Zt)t∈[0,∞) is a CSBP(Ψ, x). See [9]
for more details. Recall from (0.6) the definition of D.
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Lemma 1.7. Assume that Ψ is of finite variation type and that D is strictly positive. Let
(Zt)t∈[0,∞) be a CSBP(Ψ, x) defined on a probability space (Ω,F ,P). For any λ ∈ [0,∞),
set Ψ∗(λ) := Ψ(λ)−Dλ. Then, there exists (Z∗t )t∈[0,∞), a CSBP(Ψ∗, x) on (Ω,F ,P) such
that

P-a.s. ∀t ∈ [0,∞), sup
s∈[0,t]

Zt ≤ Z∗t .

Proof. Without loss of generality, we assume that there exists a Lévy process X defined
on (Ω,F ,P) such that Z is derived from X by the Lamperti time-change (1.13). We then
set X∗t =Xt+Dt that is a subordinator with Laplace exponent −Ψ∗ and with initial value
x. Since D is positive, we have Xt ≤ X∗t for all t ∈ [0,∞). Observe that τ∗ =∞. Let
L∗ and Z∗ be derived from X∗ as L and Z are derived from X in (1.13). Then, Z∗ is a
CSBP(Ψ∗, x) and observe that L∗t ≥ Lt. Since X∗ is non-decreasing, Z∗t =X∗L∗t ≥X

∗
Lt
≥

XLt =Zt, which easily implies the desired result since Z∗ is non-decreasing.

1.2 The cluster measure of CSBP with infinite variation.

Recall that D([0,∞), [0,∞]) stands for the space of [0,∞]-valued cadlag functions.
Recall that Z stands for the canonical process. For any t∈ [0,∞), we denote by Ft the
canonical filtration. Recall from (0.11) the definition of the times of absorption ζ0, ζ∞
and ζ. Also recall from the beginning of Section 1.1 the definition of the measure νt on
(0,∞].

Theorem 1.8. Let Ψ be of infinite variation type. Then, there exists a unique σ-finite
measure NΨ on D([0,∞), [0,∞]) that satisfies the following properties.

(a) NΨ-a.e. Z0 = 0 and ζ > 0.

(b) νt(dr) = NΨ

(
Zt∈dr ; Zt > 0

)
, for any t ∈ (0,∞).

(c) NΨ

[
F (Z · ∧t)G(Zt+ · ) ; Zt > 0

]
= NΨ

[
F (Z · ∧t)EZt [G ] ; Zt > 0

]
, for any nonnegative

functionals F,G and for any t ∈ (0,∞).

The measure NΨ is called the cluster measure of CSBP(Ψ).

Remark 1.9. The existence of NΨ - sometimes called Kuznetsov measure, see [19] - is
not really new: for sub-critical Ψ, NΨ can be derived from the excursion measure of the
height process of the Lévy trees and the corresponding super-processes as introduced
in [11]. See also Dynkin and Kuznetsov [12] for a different approach on super-processes.
We also point out articles of Li [27, 28, 29] on the construction of this measure when
Ψ′(0+) 6= −∞. Here, we provide a brief and self-contained proof of the existence of the
cluster measure for CSBP that works in all cases.

Proof. The only technical point to clear is (a): namely, the right-continuity at time 0.
For any s, t ∈ (0,∞) such that s≤ t and for any ε ∈ (0, 1), we define a measure Qst,ε on
D([0,∞), [0,∞]) by setting

Qst,ε[F ] =
1

νt((ε,∞])

∫
(0,∞]

νs(dx) Ex
[
F (Z( · −s)+) ; Zt−s>ε

]
, (1.14)

for any functional F . By Lemma 1.4, (1.14) makes sense and it defines a probability
measure on the space D([0,∞), [0,∞]). The Markov property for CSBP and Lemma 1.4
easily imply that for any s≤s0≤ t,

Qst,ε
[
F (Zs0+ · )

]
=

1

νt((ε,∞])

∫
(0,∞]

νs0(dx) Ex
[
F (Z) ; Zt−s0>ε

]
, (1.15)

We first prove that for t and ε fixed, the laws Qst,ε are tight as s→0. By (1.15), it is clear
that we only need to control the paths in a neighbourhood of time 0. By a standard
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criterion for Skorohod topology (see for instance Theorem 16.8 [6] p. 175), the laws
Qst,ε are tight as s→ 0 if the following claim holds true: for any η, δ∈ (0, 1), there exists
a1∈(0, 1

4 t) such that

∀s∈(0, a1], Qst,ε

(
sup
[0,a1]

Z > 2η
)
< δ . (1.16)

To prove (1.16), we first prove that for any η, δ∈(0, 1), there exists a0 ∈ (0, t) such that

∀s, b∈(0, a0] such that s ≤ b, Qst,ε
(
Zb>η

)
<

1

3
δ . (1.17)

Proof of (1.17). Recall that 1[1,∞](y)≤C(1−e−y), for any y∈ [0,∞], where C=(1−e−1)−1.
Fix η, δ∈(0, 1) and s, b∈(0, t) such that s≤b. Then, (1.15), with b=s0, implies that

Qst,ε
(
Zb>η

)
≤ C Qst,ε

(
1− e−

1
η Zb
)

=
C

νt((ε,∞])

∫
(0,∞]

νb(dx)
(
1− e−

1
η x
)
Px(Zt−b>ε)

≤ C2

νt((ε,∞])

∫
(0,∞]

νb(dx)
(
1− e−

1
η x
)
Ex
[
1− e− 1

ε Zt−b
]

≤ C2

νt((ε,∞])

∫
(0,∞]

νb(dx)
(
1− e−

1
η x
)(

1− e−xu(t−b, 1ε )
)

=: f(b).

By developping the product in the integral of the last right member of the inequality,
we get

f(b) =
C2

νt((ε,∞])

(
u(b,

1

η
) + u(t,

1

ε
)− u

(
b ,

1

η
+u(t−b, 1

ε
)
) )
−−−→
b→0

0 ,

We then define a0 such that supb∈(0,a0] f(b) < 1
3δ, which implies (1.17).

Proof of (1.16). We fix η, δ∈(0, 1). Let a∈(0, 1
4 t) such that (1.7) in Lemma 1.6 holds true

with t0 = t. Let a0 as in (1.17). We next set a1 =a∧a0. We fix s∈ (0, a1] and we then get
the following inequalities:

Qst,ε

(
sup
[0,a1]

Z > 2η
)
≤ Qst,ε(Zs > η) +Qst,ε

(
sup
[0,a1]

Z > 2η ; Zs ≤ η,
)

≤ 1

3
δ +

1

νt((ε,∞])

∫
(0,η]

νs(dx)Px

(
sup

[0,a1−s]
Z > 2η ; Zt−s>ε

)
≤ 1

3
δ +

2

νt((ε,∞])

∫
(0,η]

νs(dx)Px
(
Za1−s > η ; Zt−s>ε

)
≤ 1

3
δ + 2Qst,ε(Za1 > η) < δ.

Here we use (1.17) in the second line, (1.7) in the third line and (1.17) in the fourth
one.

We have proved that for t, ε fixed, the laws Qst,ε are tight as s→0. Let Qt,ε stand for a
possible limiting law. By a simple argument, Qt,ε has no fixed jump at time s0 and basic
continuity results entail that (1.15) holds true with Qt,ε instead of Qst,ε, which fixes the
finite-dimensional marginal laws of Qt,ε on (0,∞). Next observe that for η, δ∈(0, 1) and
a1∈(0, 1

4 t) as in (1.16), the set {sup(0,a1) Z>2η} is an open set of D([0,∞), [0,∞]). Then,
by (1.16) and the Portmanteau Theorem, Qt,ε(sup(0,a1) Z > 2η) ≤ δ. This easily implies
that Qt,ε-a.s. Z0 = 0, which completely fixes the finite-dimensional marginal laws of Qt,ε
on [0,∞). This proves that there is only one limiting distribution and Qst,ε → Qt,ε in law
as s→ 0.

We next set Nt,ε = νt((ε,∞])Qt,ε. We easily get Nt,ε − Nt,ε′ = Nt,ε( · ; Zt∈ (ε, ε′]), for
any 0<ε<ε′<1. Fix εp ∈ (0, 1), p ∈ N, that decreases to 0. We define a measure Nt by
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setting

Nt = Nt,ε0 +
∑
p≥0

Nt,εp+1

(
· ; Zt∈(εp+1, εp]

)
= Nt,ε0 +

∑
p≥0

Nt,εp+1
−Nt,εp .

By the first equality, Nt is a well-defined σ-finite measure; the second equality shows
that the definition of Nt does not depend on the sequence (εp)p∈N, which implies that
Nt

(
· ; Zt > ε

)
= νt((ε,∞])Qt,ε, for any ε ∈ (0, 1). Consequently, we get Nt − Nt′ =

Nt( · ; Zt′ = 0), for any t′>t>0. Fix tq ∈ (0, 1), q ∈ N, that decreases to 0. We define NΨ

by setting
NΨ = Nt0 +

∑
q≥0

Ntq+1

(
· ; Ztq = 0

)
= Nt0 +

∑
q≥0

Ntq+1−Ntq .

The first equality shows that NΨ is a well-defined measure and the second one that its
definition does not depend on the sequence (tq)q∈N, which implies

∀ε∈(0, 1), ∀t ∈ (0,∞), NΨ

(
· ; Zt > ε

)
= νt((ε,∞])Qt,ε . (1.18)

This easily entails that for any nonnegative functional F

∀t ∈ (0,∞), NΨ

[
F (Zt+ · ) ; Zt>0

]
=

∫
(0,∞]

νt(dx)Ex[F ] . (1.19)

Recall that ζ is the time of absorption in {0,∞}. Since Ntq,εp(ζ = 0) = 0, we get NΨ(ζ =

0)=0 and thus, NΨ({O})=0, where O stands for the null function. Set Ap,q = {Ztq >εp}.
Then, NΨ(Ap,q)<∞ by (1.18). Since D([0,∞), [0,∞]) = {O} ∪

⋃
p,q≥1Ap,q, NΨ is sigma-

finite. Properties (b) and (c) are easily derived from (1.19), (1.18) and standard limit-
procedures: the details are left to the reader.

1.3 Proof of Theorem 0.2.

1.3.1 Poisson decomposition of CSBP.

From now on, we fix (Ω,F ,P), a probability space on which are defined all the random
variables that we mention, unless the contrary is explicitly specified. We also fix x ∈
(0,∞) and we recall that ` stands for the Lebesgue measure on R or on [0, x], according
to the context.

We first briefly recall Palm formula for Poisson point measures: let E be a Polish
space equipped with its Borel sigma-field E . Let An ∈ E , n ∈ N, be a partition of E.
We denote by Mpt(E) the set of point measures m on E such that m(An)<∞ for any
n∈N; we equip Mpt(E) with the sigma-field generated by the applications m 7→ m(A),
where A ranges in E . Let N =

∑
i∈I δzi be a Poisson point measure on E whose intensity

measure µ satisfies µ(An)<∞ for every n ∈N. We shall refer to the following as the
Palm formula: for any measurable F : E×Mpt(E)−→ [0,∞),

E
[∑
i∈I

F (zi ,N−δzi)
]

=

∫
E

µ(dz)E
[
F (z ,N )

]
. (1.20)

If one applies twice this formula, then we get for any measurable F : E×E×Mpt(E)−→
[0,∞),

E
[ ∑
i,j∈I
i6=j

F (zi , zj ,N−δzi−δzj )
]

=

∫
E

µ(dz)

∫
E

µ(dz′)E
[
F (z , z′ ,N )

]
. (1.21)

We next introduce the Poisson point measures that are used to define the population
associated with a CSBP.
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Infinite variation cases. We assume that Ψ is of infinite variation type. Let

P =
∑
i∈I

δ(xi,Zi) (1.22)

be a Poisson point measure on [0, x]×D([0,∞), [0,∞]), with intensity 1[0,x](y)`(dy)NΨ(dZ),
where NΨ is the cluster measure associated with Ψ as specified in Theorem 1.8. Then,
for any t∈(0,∞), we define the following random point measures on [0, x]:

Zt =
∑
i∈I

Zit δxi and Zt− =
∑
i∈I

Zit− δxi . (1.23)

We also set Z0 = `( · ∩ [0, x]). �

Finite variation cases. We assume that Ψ is of finite variation type and not linear.
Recall from (0.6) the definition of D. Let

Q =
∑
j∈J

δ(xj ,tj ,Zj) (1.24)

be a Poisson point measure on [0, x]×[0,∞)×D([0,∞), [0,∞]), whose intensity measure
is

1[0,x](y)`(dy) e−Dt`(dt)

∫
(0,∞)

π(dr)Pr(dZ) ,

where Pr is the canonical law of a CSBP(Ψ, r) and π is the Lévy measure of Ψ. Then, for
any t∈(0,∞), we define the following random measures on [0, x]:

Zt=e−Dt`( · ∩ [0, x])+
∑
j∈J

1{tj≤t}Z
j
t−tjδxj , Zt−=e−Dt`( · ∩ [0, x])+

∑
j∈J

1{tj≤t}Z
j
(t−tj)−δxj .

(1.25)
We also set Z0 = `( · ∩ [0, x]). �

In both cases, for any t ∈ [0,∞) and any B ∈ B([0, x]), Zt(B) and Zt−(B) are
[0,∞]-valued F -measurable random variables. The finite dimensional marginals of
(Zt(B))t∈[0,∞) are those of a CSBP(Ψ, `(B)): in the infinite variation cases, it is a simple
consequence of Theorem 1.8 (c); in the finite variation cases, it comes from direct com-
putations: we leave the details to the reader. Moreover, if B1, . . . , Bn are disjoint Borel
subsets of [0, x], note that the processes (Zt(Bk))t∈[0,∞), 1≤ k≤ n are independent. To
simplify notation, we also set

∀t ∈ [0,∞), Zt = Zt([0, x]) , (1.26)

that has the finite dimensional marginals of a CSBP(Ψ, x).

1.3.2 Regularity of Z.

Since we deal with possibly infinite measures, we introduce the following specific no-
tions. We fix a metric d on [0,∞] that generates its topology. For any positive Borel
measures µ and ν on [0, x], we define their variation distance by setting

dvar(µ, ν) := sup
B∈B([0,x])

d
(
µ(B), ν(B)

)
. (1.27)

The following proposition deals with the regularity of Z on (0,∞), which is sufficient
for our purpose. The regularity at time 0 is briefly discussed later.
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Proposition 1.10. Let Z be as in (1.23) or (1.25). Then,

P-a.s. ∀t ∈ (0,∞), lim
h→0+

dvar

(
Zt+h,Zt

)
= 0 and lim

h→0+
dvar

(
Zt−h,Zt−

)
= 0. (1.28)

Proof. We first prove the infinite variation cases. We proceed by approximation. Let us
fix s0 ∈ (0,∞). For any ε ∈ (0, 1), we set

∀t ∈ (0,∞) , Zεt =
∑
i∈I

1{Zis0>ε}
Zit δxi .

Note that #{i∈ I : Zis0 >ε} is a Poisson r.v. with mean xNΨ(Zs0 >ε) = xνs0((ε,∞])<∞.
Therefore, Zε is a finite sum of weighted Dirac masses whose weights are cadlag [0,∞]-
valued processes. Then, by an easy argument, P-a.s. Zε is dvar-cadlag on (0,∞).

For any v ∈ [0,∞], then set ϕ(v) = sup{d(y, z) ; y ≤ z ≤ y+v}, which is well-defined,
bounded, non-decreasing and such that limv→0 ϕ(v) = 0. For any ε > ε′ > 0, ob-

serve that Zε′t = Zεt +
∑
i∈I 1{Zis0∈(ε′,ε]} Z

i
t δxi . Then, we fix T ∈ (0,∞), we set Y ε

′, ε
t :=∑

i∈I 1{Zis0∈(ε′,ε]} Z
i
s0+t and we get

sup
t∈[s0,s0+T ]

dvar

(
Zε
′

t ,Zεt
)
≤ ϕ(Vε′, ε) where Vε′, ε := sup

t∈[0,T ]

Y ε
′, ε

t .

Note that Y ε
′, ε is a cadlag CSBP(Ψ). The exponential formula for Poisson point measures

and Theorem 1.8 (b) imply for any λ∈(0,∞),

− 1

x
logE

[
exp

(
−λY ε

′, ε
0

)]
=

∫
(ε′,ε]

νs0(dr)
(
1− e−λr

)
≤ λ

∫
(0,ε]

νs0(dr) r −−−→
ε→0

0 .

For any η ∈ (0,∞), it easily implies limε→0 supε′∈(0,ε] P(Y ε
′, ε

0 > η) = 0. Next, note that
r 7−→ Pr(supt∈[0,T ] Zt > η) is non-decreasing and recall that limr→0+Pr(supt∈[0,T ] Zt >

η) = 0, by Lemma 1.5. This limit, combined with the previous argument, entails that
limε→0 supε′∈(0,ε] E[ϕ(Vε′, ε)] = 0.

Therefore, we can find a sequence εp ∈ (0, 1), p ∈N, that decreases to 0 such that∑
p≥0 E[ϕ(Vεp+1,εp)] <∞, and there exists Ω0 ∈ F such that P(Ω0) = 1 and such that

Rp :=
∑
q≥p ϕ(Vεq+1,εq ) −→ 0 as p→∞, on Ω0. We then work determininistically on

Ω0: by the previous arguments, for all Borel subsets B of [0, x], for all t ∈ (s0, s0 + T )

and for all q > p, we get d(Zεqt (B),Zεpt (B)) ≤ Rp and d(Zεqt−(B),Zεpt−(B)) ≤ Rp, since
d is a distance on [0,∞]. Since t > s0, the monotone convergence for sums entails
that limq→∞Z

εq
t (B) = Zt(B) and limq→∞Z

εq
t−(B) = Zt−(B). By the continuity of the

distance d, for all B, all t ∈ (s0,∞) and all p ∈ N, we get d(Zt(B),Zεpt (B)) ≤ Rp and
d(Zt−(B),Zεpt−(B))≤Rp. This easily implies that Z is dvar-cadlag on (s0, s0 +T ) since the
processes Zεp are also dvar-cadlag on the same interval. This completes the proof in the
infinite variation cases since s0 can be taken arbitrarily small and T arbitrarily large.

We next consider the finite variation cases: we fix s0 ∈ (0,∞) and for any ε ∈ (0, 1),
we set

∀t ∈ [0, s0] , Zεt =
∑
j∈J

1{tj≤t , Zj0>ε}
Z
j
t−tj δxj .

Since #{j∈J : tj ≤ s0 , Z
j
0>ε} is a Poisson r.v. with mean xπ((ε,∞])

∫ s0
0
e−Dtdt<∞, Zε,

as a process indexed by [0, s0], is a finite sum of weighted Dirac masses whose weights
are cadlag [0,∞]-valued processes on [0, s0]: by an easy argument, it is dvar-cadlag on
[0, s0]. Next observe that for any ε > ε′ > 0, Zε′t = Zεt +

∑
j∈J 1{tj≤t , Zj0∈(ε′,ε]} Z

j
t−tj δxj .

Thus,

sup
t∈[0,s0]

dvar

(
Zε
′

t ,Zεt
)
≤ ϕ(Vε′, ε) where Vε′, ε :=

∑
j∈J

1{tj≤s0 , Zj0∈(ε′,ε]} sup
t∈[0,s0]

Z
j
t .
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The exponential formula for Poisson point measures then implies for any λ∈(0,∞),

− 1

x
logE

[
exp

(
−λVε′, ε

)]
=

∫ s0

0

e−Dt dt

∫
(ε′,ε]

π(dr)Er

[
1−e−λ sup[0,s0] Z

]
.

We now use Lemma 1.7: if D∈ (0,∞), we set Ψ∗(λ) = Ψ(λ)−Dλ and if D∈ (−∞, 0], we
simply take Ψ∗ = Ψ. Denote by u∗ the function derived from Ψ∗ as u is derived from Ψ

by (0.9). As a consequence of Lemma 1.7, we get Er[1 − e−λ sup[0,s0] Z] ≤ 1 − e−ru∗(s0,λ).
Thus,

− 1

x
logE

[
exp

(
−λVε′, ε

)]
≤

∫ s0

0

e−Dt dt

∫
(ε′,ε]

π(dr)
(
1−e−ru

∗(s0,λ)
)

≤ s0e
|D|s0u∗(s0, λ)

∫
(0,ε]

π(dr) r −−−→
ε→0

0.

This easily entails limε→0 supε′∈(0,ε] E[ϕ(Vε′, ε)] = 0. We then argue as in the infinite
variation cases: there exists a sequence εp ∈ (0, 1), p∈N, that decreases to 0 and there
exists Ω0 ∈ F with P(Ω0) = 1, such that Rp :=

∑
q≥p ϕ(Vεq+1,εq ) −→ 0 as p→∞, on Ω0.

We work determininistically on Ω0: we set Z∗t = Zt − e−Dt`( · ∩ [0, x]), that is the purely
atomic part of Zt. Then, for all B, for all t∈ [0, s0] and for all p∈N, d(Z∗t (B),Zεpt (B))≤Rp
and d(Z∗t−(B),Zεpt−(B))≤Rp. This implies that P-a.s. Z∗ is dvar-cadlag on [0, s0], by the
same arguments as in the infinite variation cases. Clearly, a similar result holds true
for Z on [0, s0], which completes the proof of Proposition 1.10, since s0 can be chosen
arbitrarily large.

Note that in the finite variation cases, Z is dvar-right continuous at 0. In the infinite
variation cases, this cannot be so: indeed, set B = [0, x]\{xi ; i∈ I}, then Zt(B) = 0 for
any t∈(0,∞) but Z0(B)=`(B)=x. However, we have the following lemma.

Lemma 1.11. Assume that Ψ is of infinite variation type. Let Z be defined on (Ω,F ,P)

by (1.23). Then
∀B ∈ B([0, x]), P-a.s. lim

t→0+
Zt(B) = `(B).

This implies that P-a.s. Zt → Z0 weakly as t→ 0+.

Proof. Since (Zt(B))t∈[0,∞) has the finite dimensional marginal laws of a CSBP(Ψ, `(B)),
it admits a modification Y = (Yt)t∈[0,∞) that is cadlag on [0,∞). By Proposition 1.10,
observe that Z · (B) is cadlag on (0,∞). Therefore, P-a.s. Y and Z · (B) coincide on
(0,∞), which implies the lemma.

1.3.3 Proof of Theorem 0.2 and of Theorem 0.3 (i).

Recall the notation Zt = Zt([0, x]). By Proposition 1.10, Z is cadlag on (0,∞) and by
arguing as in Lemma 1.11, without loss of generality, we can assume that Z is right con-
tinuous at time 0: it is therefore a cadlag CSBP(Ψ, x). Recall from (0.11) the definition
of the absorption times ζ0, ζ∞ and ζ of Z. We first set

∀t ∈ [0, ζ), ∀B ∈ B([0, x]), Mt(B) =
Zt(B)

Zt
. (1.29)

Observe thatM has the desired regularity on [0, ζ) by Proposition 1.10 and Lemma 1.11.
Moreover M satisfies property (0.17). It only remains to define M for the times t≥ζ on
the event {ζ <∞}.

Let us first assume that P(ζ0 <∞)> 0, which can only happen if Ψ satisfies (0.15).
Note that in this case, Ψ is of infinite variation type. Now recall P from (1.22) and Z
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from (1.23). Thus, ζ0 = supi∈I ζ
i
0, where ζi0 stands for the extinction time of Zi. Then,

P(ζ0 < t) = exp(−xNΨ(ζ0 ≥ t)). Thus, NΨ(ζ0 ≥ t) = v(t), that is the function defined
right after (0.15) which satisfies

∫∞
v(t)

dr/Ψ(r) = t. Since v is C1, the law (restricted to

(0,∞)) of the extinction time ζ0 under NΨ is diffuse. This implies that P-a.s. on {ζ0<∞}
there exists a unique i0 ∈ I such that ζ0 = ζi00 . Then, we set ξ0 := sup{ζi0 ; i ∈ I\{i0}},
e = xi0 and we get Mt = δe for any t ∈ (ξ0, ζ0). Thus, on the event {ζ0<∞} and for any
t>ζ0, we set Mt = δe and M has the desired regularity on the event {ζ0<∞}. An easy
argument on Poisson point measures entails that conditional on {ζ0<∞}, e is uniformly
distributed on [0, x].

Let us next assume that P(ζ∞<∞)>0, which can only happen if Ψ satisfies (0.13).
We first consider the infinite variation cases: note that ζ∞=infi∈I ζ

i
∞, where ζi∞ stands

for the explosion time of Zi. Then, P(ζ∞ ≥ t) = exp(−xNΨ(ζ∞ < t)). Thus, NΨ(ζ∞ <

t) = κ(t) that is the function defined right after (0.13) which satisfies
∫ κ(t)

0
dr/(Ψ(r))− =

t. Since κ is C1, the law (restricted to (0,∞)) of the explosion time ζ∞ under NΨ is
diffuse. This implies that P-a.s. on {ζ∞ < ∞} there exists a unique i1 ∈ I such that
ζ∞ = ζi1∞. Then, on {ζ∞ <∞}, we set e = xi1 and Mt = δe, for any t ≥ ζ∞. Then, we
get limt→ζ∞−‖Mt−δe‖var = 0 and an easy argument on Poisson point measures entails
that conditional on {ζ∞ <∞}, e is uniformly distributed on [0, x]. This completes the
proof when Ψ is of infinite variation type. In the finite variation cases, we argue in
the same way: namely, by simple computations, one shows that for any t ∈ (0,∞),
#{j ∈ J : tj ≤ t, Zjt−tj =∞} is a Poisson r.v. with mean xκ(t); it is therefore finite and the
times of explosion of the population have diffuse laws: this proves that the descendent
population of exactly one ancestor explodes strictly before the others, and it implies the
desired result in the finite variation cases: the details are left to the reader. �

Remark 1.12. Note that the above construction of M entails Theorem 0.3 (i). �

2 Proof of Theorem 0.3.

2.1 Results on Grey martingales.

We briefly discuss the limiting laws of Grey martingales (see [14]) associated with
CSBP that are involved in describing the asymptotic frequencies of the settlers. Recall
from (1.23) and (1.25) the definition of Zt: for any y fixed, t 7−→Zt([0, y]) is a CSBP(Ψ, y)
and for any t fixed, y 7−→ Zt([0, y]) is a subordinator. Let θ ∈ (0,∞) and y ∈ (0, x].
We assume that u(−t, θ) is well-defined for any t ∈ (0,∞): namely, we assume that
κ(t)<θ<v(t), for all t∈ (0,∞). Recall that (0.8) extends to negative times. Therefore,
t 7−→ exp(−u(−t, θ)Zt([0, y])) is a [0, 1]-valued martingale that a.s. converges to a limit
in [0, 1] denoted by exp(−W θ

y ), where W θ
y is a [0,∞]-valued random variable. Since

y 7−→u(−t, θ)Zt([0, y]) is a subordinator, y 7−→W θ
y is a (possibly killed) subordinator. We

denote by φθ its Laplace exponent that has therefore the general Lévy-Khintchine form:

∀λ ∈ [0,∞), φθ(λ) = κθ + dθλ+

∫
(0,∞)

%θ(dr)
(
1− e−λr

)
,

where κθ, dθ ∈ [0,∞) and
∫

(0,∞)
(1∧r) %θ(dr)<∞. Note that φθ(1) = θ, by definition. We

first consider the behaviour of CSBP when they tend to∞.

Proposition 2.1. We assume that Ψ is not linear and that Ψ′(0+) ∈ (−∞, 0), which
implies that Ψ is conservative and γ∈(0,∞]. Let θ∈(0, γ). Then, u(−t, θ) is well-defined
for all t∈(0,∞) and limt→∞ u(−t, θ) = 0. For any θ′∈(0, γ) and any y∈(0, x], we then get
P-a.s.

W θ
y = Rθ′,θW

θ′

y where Rθ′,θ := exp
(

Ψ′(0+)

∫ θ

θ′

dλ

Ψ(λ)

)
. (2.1)
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W θ is a conservative subordinator without drift: namely κθ = dθ = 0. Moreover,

∀λ ∈ (0,∞), φθ(λ) = u
( log λ

−Ψ′(0+)
, θ
)

and %θ
(
(0,∞)

)
= γ . (2.2)

Thus, if γ < ∞, W θ is a compound Poisson process with jump-rate γ and jump-law 1
γ %θ

whose Laplace transform is λ 7→ 1− 1
γu( log λ

−Ψ′(0+) , θ).

Proof. Let θ∈(0, γ) and t∈(0,∞). Note that v(t)>γ and since Ψ is conservative, κ(t)=0.
Thus, for all t∈ (0,∞), u(−t, θ) is well-defined. Note that Ψ is negative on (0, γ), then,
by (0.9), limt→∞ u(−t, θ)=0 and limt→∞ u(t, θ)=γ, even if γ=∞. Next, observe that

u(−t, θ)
u(−t, θ′)

= exp
(∫ θ

θ′
dλ ∂λ log(u(−t, λ))

)
= exp

(∫ θ

θ′

Ψ(u(−t, λ))

u(−t, λ)

dλ

Ψ(λ)

)
. (2.3)

This entails (2.1) since limλ→0 Ψ(λ)/λ = Ψ′(0+). Thus, φθ(1/Rθ′,θ) = φθ′(1) = θ′.
Then, take θ′ = u(t, θ): by (0.9), it implies that φθ(e−Ψ′(0+)t) = u(t, θ), for any t ∈ R,
which proves the formula for φθ in (2.2). Next observe that κθ = limλ→0 φθ(λ) =

limt→∞ u(−t, θ) = 0. Namely, W θ is conservative. Also note that limλ→∞ φθ(λ) =

limt→∞ u(t, θ) = γ. Thus, if γ < ∞, dθ = 0 and the last part of the proposition holds
true.

We next assume that γ = ∞. Then, −Ψ is the Laplace exponent of a conservative
subordinator and we are in the finite variation cases. We set A(t) := log(eΨ′(0+)tu(t, θ))

and we observe that log dθ = limt→∞A(t), by taking λ = e−Ψ′(0+)t in (2.2). An easy
comptutation using (0.8) entails

A(t)− log θ =

∫ t

0

(
Ψ′(0+) + ∂s log u(s, θ)

)
ds =

∫ t

0

(
Ψ′(0+)−Ψ(u(s, θ))

u(s, θ)

)
ds

= t

∫ 1

0

(
Ψ′(0+)−Ψ(u(st, θ))

u(st, θ)

)
ds .

Recall that limλ→∞Ψ(λ)/λ = D. Then, for any s ∈ (0, 1],

lim
t→∞

Ψ′(0+)−Ψ(u(st, θ))

u(st, θ)
= Ψ′(0+)−D = −

∫
(0,∞)

r π(dr) < 0 ,

since π 6= 0. This implies that limt→∞A(t) = −∞ and thus dθ = 0.

We complete this result by the following lemma.

Lemma 2.2. We assume that Ψ is not linear and that Ψ′(0+)∈(−∞, 0), which implies Ψ

is conservative and γ∈(0,∞]. Let θ∈(0, γ). Then, u(−t, θ) is well-defined for all t∈(0,∞)

and limt→∞ u(−t, θ) = 0. Moreover, there exists a cadlag subordinator W θ whose initial
value is 0 and whose Laplace exponent is φθ as defined by (2.2) such that

P-a.s. ∀y ∈ [0, x], lim
t→∞

u(−t, θ)Zt([0, y]) = W θ
y and lim

t→∞
u(−t, θ)Zt({y}) = ∆W θ

y ,

where ∆W θ
y stands for the jump of W θ at y.

Proof. We first assume that Ψ is of finite variation type. Fix ε, s0 ∈ (0,∞). Recall from
(1.24) the definition of Q and observe that∑

j∈J
1{tj≤s0,Zj0>ε}

δ(xj ,tj ,Zj) =
∑

1≤n≤N

δ(Xn,Tn,Z(n)),
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where N is a Poisson r.v. with mean C := xD−1(1−e−Ds0)π((ε,∞)) and conditionally
given N , the variables Xn, Tn, Z(n), 1≤ n≤N are independent: the Xn are uniformly
distributed on [0, x], the law of Tn is (1−e−Ds0)−1De−Dt1[0,s0](t)`(dt) and the processes
Z(n) are distributed as CSBP(Ψ) whose entrance law is π((ε,∞))−11(ε,∞)(r)π(dr). When
D = 0, one should replace (1 − e−Dt)D−1 by t in the last two expressions. We next

observe that u(−t, θ)Z(n)
t−Tn = u(−(t− Tn), u(−Tn, θ))Z(n)

t−Tn → Vn exists as t→∞ and by
Proposition 2.1,

E
[
e−λVn

]
=

1

π((ε,∞))

∫
(ε,∞)

π(dr)E
[
e−rφu(−Tn,θ)(λ)

]
=xC−1

∫ s0

0

dt e−Dt
∫

(ε,∞)

π(dr)e−rφu(−t,θ)(λ) (2.4)

As ε→ 0 and s0 →∞, this proves that there exists Ω0 ∈ F such that P(Ω0) = 1 and on
Ω0, for any j ∈ J , limt→∞ u(−t, θ)Zt({xj}) = limt→∞ u(−t, θ)Zjt−tj =: ∆j exists in [0,∞).

Then, on Ω0, for any y ∈ [0, x], we set W θ
y =

∑
j∈J 1[0,y](xj)∆j and we take W θ as the

null process on Ω\Ω0. Clearly, W θ is a cadlag subordinator whose initial value is 0. We
next prove that its Laplace exponent is φθ. To that end fix y ∈ (0, x]; by (2.4)

E
[

exp
(
−λ
∑
j∈J

1{xj≤y ; Zj0>ε ; tj≤s0}∆j

)]
= E

[
exp

(
−λ

∑
1≤n≤N

1{Xn≤y}Vn

)]
= exp

(
−y
∫ s0

0

dt e−Dt
∫

(ε,∞)

π(dr)
(
1− e−rφu(−t,θ)(λ)

))
.

Let ε→ 0 and s0 →∞ to get

− 1

y
logE

[
e−λW

θ
y
]

=

∫ ∞
0

dt e−Dt
∫

(0,∞)

π(dr)
(
1− e−rφu(−t,θ)(λ)

)
=

∫ ∞
0

dt e−Dt
(
Dφu(−t,θ)(λ)−Ψ(φu(−t,θ)(λ))

)
. (2.5)

Then, we set g(t) := e−Dtφu(−t,θ)(λ). By (2.2) and (0.8), g(t) = e−Dtu(−t, φθ(λ)). Thus,
∂tg(t) = e−Dt(Ψ(φu(−t,θ)(λ))−Dφu(−t,θ)(λ)) and to compute (2.5), we need to specify the
limit of g as t tends to∞: since limt→∞ u(−t, φθ(λ)) = 0,

∂t log g(t) =
Ψ(u(−t, φθ(λ)))

u(−t, φθ(λ))
−D −−−−→

t→∞
Ψ′(0+)−D = −

∫
(0,∞)

π(dr) r < 0

which easily implies that limt→∞ g(t) = 0 and by (2.5), we obtain that E[exp(−λW θ
y )] =

exp(−yφθ(λ)). Namely, the Laplace exponent of W θ is φθ.
From Proposition 2.1, for any y ∈ [0, x], we get P-a.s. limt→∞ u(−t, θ)Zt([0, y]) =: W ′y,

where the random variable W ′y has the same law as W θ
y . Next observe that

u(−t, θ)Zt([0, y]) = u(−t, θ)e−Dty +
∑
j∈J

1{xj≤y}u(−t, θ)Zt({xj}) .

Recall from above that limt→∞ e−Dtu(−t, θ) = 0. Thus, by Fatou for sums, we get P-
a.s. W ′y ≥

∑
j∈J 1{xj≤y}∆j = W θ

y , which implies W ′y = W θ
y . Then, there exists Ω1 ∈ F

such that P(Ω1) = 1 and on Ω1, for any q∈Q ∩ [0, x], limt→∞ u(−t, θ)Zt([0, q]) = W θ
q .

We next work deterministically on Ω2 =Ω0 ∩ Ω1. First observe that if y /∈ {xj ; j∈J},
Zt({y}) = 0. Thus, by definition ofW θ, for any y ∈ [0, x], we get limt→∞ u(−t, θ)Zt({y}) =

∆W θ
y . Moreover, for any y ∈ [0, x) and any q ∈ Q ∩ [0, x] such that q > y, we get

W θ
y ≤ lim inf

t→∞
u(−t, θ)Zt([0, y]) ≤ lim sup

t→∞
u(−t, θ)Zt([0, y]) ≤W θ

q ,
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the first equality being a consequence of Fatou. Since W θ is right continuous, by letting
q go to y in the previous inequality we get limt→∞ u(−t, θ)Zt([0, y]) = W θ

y for any y ∈
[0, x] on Ω2, which completes the proof of the lemma when Ψ is of finite variation type.

When Ψ is of infinite variation type the proof follows the same lines. Fix ε, s0 ∈
(0,∞), recall from (1.22) the definition of P and recall the Markov property in Theorem
1.8 (c). Then observe that

∑
i∈I 1{Zis0>ε}

δ(xi,Zis0+ · )
=
∑

1≤n≤N δ(Xn,Z(n)), where N is a

Poisson random variable with mean C := xNΨ(Zs0 > ε) and, conditionally on N , the
variables Xn, Z(n), 1≤n≤N , are independent: Xn is uniformly distributed on [0, x] and
the processes Z(n) are CSBP(Ψ) whose entrance law is given by NΨ(Zs0 ∈ dr | Zs0 > ε).

Then, note that u(−t, θ)Z(n)
t−s0 = u(−(t − s0), u(−s0, θ))Z

(n)
t−s0 → Vn exists as t → ∞ and

by Proposition 2.1, E[exp(−λVn)] = NΨ(exp(−φu(−s0,θ)(λ)Zs0)|Zs0 > ε). By letting ε and
s0 go to 0, this proves that there exists Ω0 ∈ F such that P(Ω0) = 1 and on Ω0, for any
i ∈ I, limt→∞ u(−t, θ)Zt({xi}) = limt→∞ u(−t, θ)Zit =: ∆i exists in [0,∞). Then, on Ω0,
for any y ∈ [0, x], we set W θ

y =
∑
i∈I 1[0,y](xi)∆i and we take W θ as the null process on

Ω\Ω0. Clearly, W θ is a cadlag subordinator whose initial value is 0 and we prove that
its Laplace exponent is φθ as follows. First note that

E
[

exp
(
−λ
∑
i∈I

1{xi≤y ; Zis0>ε }
∆i

)]
= E

[
exp

(
−λ

∑
1≤n≤N

1{Xn≤y}Vn

)]
(2.6)

= exp
(
− yNΨ

(
1{Zs0>ε}

(
1− e−φu(−s0,θ)(λ)Zs0

)))
.

By (2.2) and (0.8), we get NΨ

(
1 − e−φu(−s0,θ)(λ)Zs0

)
= φθ(λ). Then, by letting ε, s0 → 0

in (2.6), we get E[exp(−λW θ
y )] = exp(−yφθ(λ)). We next proceed exactly as in the finite

variation cases to complete the proof of the lemma.

We next consider the behaviour of finite variation sub-critical CSBP.

Proposition 2.3. Let Ψ be a branching mechanism of finite variation type such that
Ψ′(0+) ∈ [0,∞). Then, Ψ is conservative and persistent, D ∈ (0,∞), and for all θ, t ∈
(0,∞), u(−t, θ) is well-defined and limt→∞ u(−t, θ) =∞. For any θ, θ′ ∈ (0,∞), and any
y∈(0, x], we also get P-a.s.

W θ
y = Sθ′,θW

θ′

y where Sθ′,θ := exp
(
D

∫ θ

θ′

dλ

Ψ(λ)

)
. (2.7)

W θ is a conservative subordinator. Namely, κθ = 0. Moreover,

∀λ ∈ (0,∞), φθ(λ) = u
(
− log λ

D
, θ
)

and %θ
(
(0,∞)

)
= π

(
(0,∞)

)
/D . (2.8)

The subordinator W θ has a positive drift iff
∫

(0,1)
π(dr) rlog 1/r <∞. In this case,

log dθ = log θ −
∫ ∞
θ

( D

Ψ(λ)
− 1

λ

)
dλ . (2.9)

Proof. Since Ψ is conservative and persistent, κ(t) = 0 and v(t) = ∞ and u(−t, θ) is
well-defined for any θ ∈ (0,∞). Moreover, (0.9) implies that limt→∞ u(−t, θ) =∞ and
limt→∞ u(t, θ) = 0. Recall that limλ→∞Ψ(λ)/λ = D. Then, (2.3) entails (2.7). We then
argue as in the proof of Proposition 2.1 to prove that φθ(e−Dt) = u(t, θ) for any t ∈ R,
which entails the first part of (2.8). Thus, κθ = limλ→0 φθ(λ) = limt→∞ u(t, θ) = 0 and
W θ is conservative.
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We next compute the value of dθ. To that end, we set B(t) = log(e−Dtu(−t, θ)) and we
observe that log dθ = limt→∞B(t), by taking λ = eDt in (2.8). By an easy computation
using (0.8), we get

log θ −B(t)=

∫ 0

−t
ds
(
D + ∂s log u(s, θ)

)
=

∫ t

0

ds
(
D − Ψ(u(−s, θ))

u(−s, θ)

)
=

∫ u(−t,θ)

θ

dλ
( D

Ψ(λ)
− 1

λ

)
.

(2.10)
Now recall that D − λ−1Ψ(λ) =

∫
(0,∞)

π(dr)(1− e−λr)/λ. Thus,

log θ −B(t) =

∫
(0,∞)

π(dr)

∫ u(−t,θ)

θ

dλ
1− e−λr

λΨ(λ)
−−→
t→∞

∫
(0,∞)

π(dr)

∫ ∞
θ

dλ
1− e−λr

λΨ(λ)
=: I . (2.11)

Now observe that λ 7→ λ−1Ψ(λ) is increasing and tends to D as λ→∞. Thus, 1
DJ ≤ I ≤

θ
Ψ(θ)J where

J :=

∫
(0,∞)

π(dr)

∫ ∞
θ

dλ
1− e−λr

λ2
=

∫
(0,∞)

π(dr) r

∫ ∞
θr

dµ
1− e−µ

µ2
.

Clearly, J < ∞ iff
∫

(0,1)
π(dr) r log 1/r < ∞, which entails the last point of the proposi-

tion. By an easy computation, (2.10) implies (2.9).
It remains to prove the second equality in (2.8). First assume that dθ = 0. This

implies that π((0,∞)) =∞ and the first part of (2.8) entails %θ((0,∞)) = limλ→∞ φθ(λ) =

limt→∞ u(−t, θ) =∞, which proves the second part of (2.8) in this case. We next assume
that dθ > 0. We set C(t) = u(−t, θ) − dθeDt. Thus, %θ((0,∞)) = limt→∞ C(t). By (2.10),
we get

C(t)

u(−t, θ)
= 1− dθ

e−Dtu(−t, θ)
= 1− exp

(
−
∫ ∞
u(−t,θ)
dλ
( D

Ψ(λ)
− 1

λ

))
∼t→∞

∫ ∞
u(−t,θ)
dλ
( D

Ψ(λ)
− 1

λ

)
.

Then, C(t) ∼t→∞ F (u(−t, θ)) where F (x) = x
∫∞
x

(
D

Ψ(λ) −
1
λ

)
dλ. We then set ϕ(λ) =

Dλ−Ψ(λ) and we observe that limλ→∞ ϕ(λ) = π((0,∞)). Thus,

F (x) = x

∫ ∞
x

ϕ(λ)

λΨ(λ)
dλ =

∫ ∞
1

ϕ(xµ)x

µΨ(xµ)
dµ −−→

x→∞

π((0,∞))

D

∫ ∞
1

dµ

µ2
=
π((0,∞))

D
,

which implies the second part of (2.8).

We complete this result by the following lemma.

Lemma 2.4. Let Ψ be a branching mechanism of finite variation type such that Ψ′(0+)∈
[0,∞). Then, Ψ is conservative and persistent, D∈(0,∞), and for all θ, t∈(0,∞), u(−t, θ)
is well-defined and limt→∞ u(−t, θ) =∞. Moreover, there exists a cadlag subordinator
W θ whose initial value is 0 and whose Laplace exponent is φθ as defined by (2.8) such
that

P-a.s. ∀y ∈ [0, x], lim
t→∞

u(−t, θ)Zt([0, y]) = W θ
y and lim

t→∞
u(−t, θ)Zt({y}) = ∆W θ

y ,

where ∆W θ
y stands for the jump of W θ at y.

Proof. The proof Lemma 2.2 works verbatim, except that in (2.5)∫ ∞
0

dt e−Dt
(
Dφu(−t,θ)(λ)−Ψ(φu(−t,θ)(λ))

)
= φθ(λ)− dθλ ,

which is easy to prove since e−Dtφθ(eDtλ)→ dθλ as t→∞.
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2.2 Proof of Theorem 0.3 (ii-b), (ii-c) and (iii-b).

We now consider the cases where there is no Eve property. Recall that x ∈ (0,∞) is
fixed and that ` stands for Lebesgue measure on R or on [0, x] according to the context.
Recall that Ψ is not linear and recall the notation Zt := Zt([0, x]). We first need the
following elementary lemma.

Lemma 2.5. For any t∈(0,∞], let mt∈M1([0, x]) be of the form

mt = at`+
∑
y∈S

mt({y})δy,

where S is a fixed countable subset of [0, x] and at∈ [0,∞). We assume that for any y∈S,
limt→∞mt({y})=m∞({y}) and limt→∞ at=a∞. Then, limt→∞‖mt−m∞‖var =0.

Proof. For all ε∈(0,∞), there is Sε⊂S, finite and such that
∑
y∈S\Sε m∞({y})<ε. Then,

for any A⊂ [0, x]

|mt(A)−m∞(A)| ≤ x |at−a∞|+
∑
y∈Sε

|mt({y})−m∞({y})|+
∑

y∈S\Sε

mt({y}) +
∑

y∈S\Sε

m∞({y})

≤ x |at−a∞|+
∑
y∈Sε

|mt({y})−m∞({y})|+ 1−atx−
∑
y∈Sε

mt({y}) + ε.

Thus,

lim sup
t→∞

sup
A⊂[0,x]

|mt(A)−m∞(A)| ≤ 1−a∞x−
∑
y∈Sε

m∞({y}) + ε = ε+
∑

y∈S\Sε

m∞({y}) ≤ 2ε ,

which implies the desired result.

Proof of Theorem 0.3 (ii-b) and (ii-c). Recall that B={ζ=∞ ; limt→∞ Zt=∞}. We
assume that Ψ′(0+)∈ (−∞, 0), which implies γ ∈ (0,∞] and that Ψ is conservative. Let
θ ∈ (0, γ) and let W θ be a cadlag subordinator as in Lemma 2.2. Recall that its Laplace
exponent is φθ as defined by (2.2). It is easy to prove that P-a.s. 1{W θ

x>0}=1B. We now
work a.s. on B: it makes sense to set M∞(dr) = dW θ

r /W
θ
x that does not depend on θ

as proved by (2.1) in Proposition 2.1. Note that Mt = at`+
∑
y∈SMt({y})δy either with

at = 0 and S = {xi ; i∈ I} if Ψ is of infinite variation type, or with at = e−Dt/Zt and S =

{xj ; j ∈J} if Ψ is of finite variation type. Next note that {y∈ [0, x] : ∆W θ
y > 0} ⊂ S and

since W θ has no drift, we get M∞=
∑
y∈SM∞({y}) δy. Then, Lemma 2.2 easily entails

that a.s. on B, for any y ∈ S, limt→∞Mt({y}) = M∞({y}). Next, recall from the proof
of Proposition 2.1 that limt→∞ u(−t, θ)e−Dt = dθ = 0, which implies that limt→∞ at = 0.
Then, Lemma 2.5 entails that a.s. on B, limt→∞‖Mt −M∞‖var = 0.

If γ <∞, then Proposition 2.1 entails that W θ is a compound Poisson process: in this
case and on B, there are finitely many settlers and conditionally on B, the number of
settlers is distributed as a Poisson r.v. with parameter xγ conditionned to be non zero,
which completes the proof of Theorem 0.3 (ii-b ). If γ =∞, then the same proposition
shows that W θ has a dense set of jumps. Therefore, a.s. on B there are a dense count-
able set of settlers, which completes the proof of Theorem 0.3 (ii-c). In both cases, the
asymptotic frequencies are described by Proposition 2.1 and Lemma 2.2 �

Proof of Theorem 0.3 (iii-b). Recall that C = {ζ =∞ ; limt→∞ Zt = 0}. We assume
that Ψ is of finite variation type, which implies that Ψ is persistent. Also recall that
P(C)=e−γx>0. Thus, we also assume that γ<∞. Then, observe that Z under P( · |C)

is distributed as the process derived from the finite variation sub-critical branching
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mechanism Ψ(· + γ). So, without loss of generality, we can assume that Ψ is of finite
variation and sub-critical, namely Ψ′(0+)∈ [0,∞), which implies that Ψ is conservative
and D∈(0,∞).

Let θ∈ (0,∞) and let W θ be a cadlag subordinator as in Lemma 2.4 whose Laplace
exponent φθ is defined by (2.8). Since Ψ is conservative and persistent, it makes sense
to set M∞(dr) = dW θ

r /W
θ
x that does not depend on θ as proved by (2.7) in Proposition

2.3. Note that Mt = at` +
∑
y∈SMt({y}) where at = e−Dt/Zt and S = {xj ; j ∈ J}, and

observe that {y∈ [0, x] : ∆W θ
y >0} ⊂ S. Recall that dθ stands for the (possibly null) drift

of W θ. Then, we get M∞ = a∞`+
∑
y∈SM∞({y}) δy, where a∞=dθ/W

θ
x . By Lemma 2.4,

a.s. for any y ∈ S, limt→∞Mt({y}) =M∞({y}) and recall from the proof of Proposition
2.1 that limt→∞ u(−t, θ)e−Dt=dθ, which implies that limt→∞ at = a∞. Then, Lemma 2.5
entails that a.s. limt→∞‖Mt −M∞‖var = 0.

If π((0, 1)) < ∞, then π((0,∞)) < ∞ and
∫

(0,1)
π(dr) r log 1/r < ∞. Proposition 2.3

entails that W θ has a drift part and finitely many jumps in [0, x]: there is dust and
finitely many settlers. More precisely, conditionally given C, the number of settlers
is distributed as a Poisson r.v. with parameter x

D

∫
(0,∞)

e−γrπ(dr) since e−γrπ(dr) is

the Lévy measure of Ψ(· + γ). This proves Theorem 0.3 (iii-b1 ). If π((0, 1)) =∞ and∫
(0,1)

π(dr) r log 1/r<∞, Proposition 2.3 entails that W θ has a drift part and a dense set

of jumps in [0, x]: thus, a.s. on C, there is dust and infinitely many settlers. This proves
Theorem 0.3 (iii-b2 ). Similarly, if

∫
(0,1)

π(dr) r log 1/r =∞, Proposition 2.3 entails that
a.s. on C, there is no dust and there are infinitely many settlers, which proves Theorem
0.3 (iii-b3 ). In all cases, conditionally on C, the asymptotic frequencies are described
thanks to Proposition 2.3 and Lemma 2.4 applied to the branching mechanism Ψ(·+ γ).
�

2.3 Proof of Theorem 0.3 (ii-a) and (iii-a).

2.3.1 Preliminary lemmas.

Recall that x ∈ (0,∞) is fixed and recall that M1([0, x]) stands for the set of Borel
probability measures on [0, x]. We first recall (without proof) the following result – quite
standard – on weak convergence in M1([0, x]).

Lemma 2.6. For any t ∈ [0,∞), let mt ∈M1([0, x]) be such that for all q ∈ Q ∩ [0, x],
limt→∞mt([0, q]) exists. Then, there exists m∞ ∈M1([0, x]) such that limt→∞mt =m∞
with respect to the topology of the weak convergence.

Recall the definition of (Mt)t∈[0,∞) from Theorem 0.2 and Section 1.3.

Lemma 2.7. We assume that Ψ is not linear and conservative. Then, there exists a
random probability measure M∞ on [0, x] such that P-a.s. limt→∞Mt=M∞ with respect
to the topology of the weak convergence.

Proof. Based on Lemma 2.6, it is sufficient to prove that for any q ∈ Q ∩ [0, x], P-
a.s. limt→∞Mt([0, q]) exists. To that end, we use a martingale argument: for any t ∈
[0,∞), we denote by Gt the sigma-field generated by the r.v. Zs([0, q]) and Zs((q, x]),
where s ranges in [0, t]. Recall that Zt = Zt([0, q]) + Zt((q, x]) and that (Zt([0, q]))t∈[0,∞)

and (Zt((q, x]))t∈[0,∞) are two independent conservative CSBP(Ψ). Then, for any λ, µ ∈
(0,∞) and any t, s ∈ [0,∞)

E
[

exp
(
−µZt+s([0, q])−λZt+s

) ∣∣Gt] = exp
(
−u(s, λ+µ)Zt([0, q])−u(s, λ)Zt((q, x])

)
By differentiating in µ = 0, we get

E[1{Zt+s>0}Zt+s([0, q]) e−λZt+s |Gt] = 1{Zt>0}Zt([0, q]) e−u(s,λ)Zt ∂λu (s, λ) . (2.12)
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By continuity in λ, (2.12) holds true P-a.s. for all λ ∈ [0,∞). We integrate (2.12) in
λ: note that for any z ∈ (0,∞), I(z) :=

∫∞
0
dλ e−u(s,λ)z ∂λu (s, λ) = z−1(1−e−v(s)z) if Ψ is

non-persistent (here v is the function defined right after (0.15)) and I(z) = z−1 if Ψ is
persistent. In both cases, I(z)≤z−1 and thus we get

E[1{Zt+s>0}Mt+s([0, q]) |Gt] = E[1{Zt+s>0}
Zt+s([0,q])

Zt+s
|Gt] ≤ 1{Zt>0}

Zt([0,q])
Zt

≤ 1{Zt>0}Mt([0, q]).

Then, t 7−→ 1{Zt>0}Mt([0, q]) is a nonnegative super-martingale: it almost surely con-
verges and Lemma 2.6 applies on the event {ζ0 =∞}. Since we already proved that M
has an Eve on the event {ζ0<∞}, the proof is complete.

For any v ∈ [0, 1) and any t ∈ (0,∞], we set

R−1
t (v) = inf

{
y ∈ [0, x] : Mt([0, y]) > v

}
. (2.13)

Let U, V : Ω → [0, 1) be two independent uniform r.v. that are also independent of
the Poisson point measures P and Q. Then, for any t, s ∈ (0,∞], the conditional law
of (R−1

t (U), R−1
s (V )) given P and Q is Mt⊗Ms. Moreover, Lemma 2.7 and standard

arguments entail

P-a.s. lim
t→∞

R−1
t (U) = R−1

∞ (U) and lim
t→∞

R−1
t (V ) = R−1

∞ (V ). (2.14)

For any t∈(0,∞), we recall the definition of the function v(t) = limλ→∞ u(t, λ) that is in-
finite if Ψ is persistent and finite if Ψ is non-persistent. Recall that u(−t, ·) : (κ(t), v(t))→
(0,∞) is the reciprocal function of u(t, ·). It is increasing and one-to-one, which implies
that limλ→v(t) u(−t, λ) =∞.

Lemma 2.8. Let us assume that Ψ is conservative. Then, for all t, θ ∈ (0,∞) and all
s∈ [0,∞),

E
[
1{R−1

t (U)6=R−1
t+s(V )}

(
1−e−θZt+s

)]
=x2

∫ v(t)

0

dwΨ(w) e−xw
u(−t, w)−

(
u(−t, w)−u(s, θ)

)
+

Ψ(u(−t, w))
,

(2.15)
where ( · )+ stands for the positive part function.

Proof. We first prove the lemma when Ψ is of infinite variation type. Recall from (1.22)
the definition of P and observe that the jumps of the distribution function of the random
measure Mt are given by the collection Zit/

∑
k∈I Z

k
t , i ∈ I. Recall that R−1

t stands for
the inverse of this distribution function. If i ∈ I (resp. j ∈ I) is the index of the jump in
which R−1

t (U) (resp. R−1
t+s(V )) falls then {R−1

t (U) 6= R−1
t+s(V )} is the event where i and j

are distinct. Consequently on the event {Zt+s>0} we get,

E
[
1{R−1

t (U) 6=R−1
t+s(V )}

∣∣P ]
=
∑
i,j∈I
i 6=j

Zit Z
j
t+s(

Zit+Z
j
t+
∑
k∈I\{i,j} Z

k
t

)(
Zit+s+Z

j
t+s+

∑
k∈I\{i,j} Z

k
t+s

) .
Hence E

[
1{R−1

t (U) 6=R−1
t+s(V )}

(
1−e−θZt+s

)∣∣P]
is equal to

∑
i,j∈I
i 6=j

Zit Z
j
t+s

(
1−e−θ

(
Zit+s+Z

j
t+s+

∑
k∈I\{i,j} Z

k
t+s

))
(
Zit+Z

j
t+
∑
k∈I\{i,j}Z

k
t

)(
Zit+s+Z

j
t+s+

∑
k∈I\{i,j}Z

k
t+s

) .
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To simplify notation, we denote by A the left member in (2.15). By applying formula
(1.21), we get

A = x2

∫
NΨ(dZ)

∫
NΨ(dZ′) E

[
1{Zt+s+Z′t+s+Zt+s>0}Zt Z

′
t+s

(
1− e−θ(Zt+s+Z′t+s+Zt+s)

)
(Zt + Z′t + Zt)(Zt+s + Z′t+s + Zt+s)

]
.

For any λ1, λ2 ∈ (0,∞), we then set

B(λ1, λ2) =

∫
NΨ(dZ)

∫
NΨ(dZ′) E

[
ZtZ
′
t+se

−λ1(Zt+Z′t+Zt)e−λ2(Zt+s+Z′t+s+Zt+s)
]

= NΨ

(
Zte
−λ1Zt−λ2Zt+s

)
NΨ

(
Zt+se

−λ1Zt−λ2Zt+s
)
E
[
e−λ1Zt−λ2Zt+s

]
Recall that NΨ(1− e−λZt) = u(t, λ) and recall Theorem 1.8 (c). Then, we first get

NΨ

(
Zte
−λ1Zt−λ2Zt+s

)
= NΨ

(
Zte
−(λ1+u(s,λ2))Zt

)
= ∂λu (t, λ1+u(s, λ2)).

By the same argument we get

NΨ

(
Zt+se

−λ1Zt−λ2Zt+s
)

= ∂λ2
NΨ

(
1− e−λ1Zt−λ2Zt+s

)
= ∂λ2

NΨ

(
1− e−(λ1+u(s,λ2))Zt

)
= ∂λu(s, λ2) ∂λu(t, λ1+u(s, λ2)).

This implies that

B(λ1, λ2) = ∂λu(s, λ2)
(
∂λu(t, λ1+u(s, λ2))

)2
e−xu(t,λ1+u(s,λ2)) . (2.16)

An easy argument then entails that

A = x2

∫ ∞
0

∫ ∞
0

dλ1dλ2

(
B(λ1, λ2)−B(λ1, λ2+θ)

)
.

Set C(θ) := x2
∫∞

0

∫∞
0
B(λ1, λ2+θ) dλ1dλ2. The previous equality shows that A = C(0)−

C(θ). We recall that v(s) = limλ→∞ u(s, λ) and let us compute C(θ). To that end we use
the changes of variable y = u(s, λ2+θ) and λ = λ1 + y to get

C(θ) = x2

∫ ∞
0

dλ1

∫ v(s)

u(s,θ)

dy
(
∂λu( t , λ1+y )

)2
e−xu(t,λ1+y).

= x2

∫ ∞
0

dλ1

∫ λ1+v(s)

λ1+u(s,θ)

dλ
(
∂λu( t , λ)

)2
e−xu(t,λ).

Recall from (0.9) that ∂λu(t, λ) = Ψ(u(t, λ))/Ψ(λ) and note that Ψ(λ) = Ψ(u(−t, u(t, λ))).
Then, by the change of variable w = u(t, λ), we get

C(θ) = x2

∫ ∞
0

dλ1

∫ u(t,λ1+v(s))

u(t,λ1+u(s,θ))

dw
Ψ(w)

Ψ(u(−t, w))
e−xw .

Thus,

A = C(0)− C(θ) = x2

∫ ∞
0

dλ1

∫ u(t,λ1+u(s,θ))

u(t,λ1)

dw
Ψ(w)

Ψ(u(−t, w))
e−xw

= x2

∫ v(t)

0

dw

∫ ∞
0

dλ1 1{u(t,λ1)≤w≤u(t,λ1+u(s,θ))}
Ψ(w)

Ψ(u(−t, w))
e−xw

= x2

∫ v(t)

0

dwΨ(w) e−xw
u(−t, w)−

(
u(−t, w)−u(s, θ)

)
+

Ψ(u(−t, w))
,
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which is the desired result in the infinite variation cases.
The proof in the finite variation cases is similar except that Z and M are derived

from the Poisson point measure Q defined by (1.24). Note that Ψ is persistent. We
moreover assume it to be conservative: thus, Zt∈(0,∞), for any t ∈ [0,∞). Let A stand
for the left member in (2.15). Then, A = A1 +A2 where

A1 := E
[

1

ZtZt+s

∑
j∈J

1{tj≤t}Z
j
t−tj (Zt+s−1{tj≤t+s}Z

j
t+s−tj )(1−e

−θZt+s)
]
,

A2 := E
[
xe−Dt

Zt
(1−e−θZt+s)

]
.

A1 corresponds to the event where U falls on a jump of Rt, while A2 deals with the
event where it falls on the dust. The latter gives

A2 = xe−Dt
∫ ∞

0

dλE
[
e−λZt−e−λZt−θZs+t

]
= xe−Dt

∫ ∞
0

dλ
(
e−xu(t,λ) − e−xu(t, λ+u(s,θ))

)
.

We next observe that A1 =
∫∞

0

∫∞
0
dλ1dλ2

(
B̃(λ1, λ2)−B̃(λ1, λ2+θ)

)
, where for any λ1, λ2∈

(0,∞) we have set

B̃(λ1, λ2) = E
[
e−λ1Zt−λ2Zt+s

∑
j∈J

1{tj≤t}Z
j
t−tj

(
xe−D(t+s) +

∑
k∈J\{j}

1{tk≤t+s}Z
k
t+s−tk

)]
= E

[
Zt+se

−λ1Zte−λ2Zt+s
]
x

∫ t

0

e−Dbdb

∫
(0,∞)

π(dr)Er
[
Zt−be

−λ1Zt−be−λ2Zt+s−b
]
.

(2.17)

Here we apply Palm formula to derive the second line from the first one. The first
expectation in (2.17) yields

E
[
Zt+se

−λ1Zte−λ2Zt+s
]

= ∂λu(s, λ2)∂λu(t, λ1 + u(s, λ2))x e−xu(t,λ1+u(s,λ2)).

The second term of the product in (2.17) gives

x

∫ t

0

e−Dbdb

∫
(0,∞)

π(dr) ∂λu (t−b, λ1+u(s, λ2)) re−ru(t−b,λ1+u(s,λ2))

= x

∫ t

0

e−Dbdb ∂λu (t−b, λ1+u(s, λ2))
(
D−Ψ′

(
u(t−b, λ1+u(s, λ2))

))
= x

(
∂λu (t, λ1+u(s, λ2))− e−Dt

)
Here, to derive the second line from the first one, we use

∫∞
0
π(dr) re−rλ = D −

Ψ′(λ). To derive the third one from the second one, we use the identity ∂λu (t, λ) =

−Ψ(λ)−1∂tu(t, λ) and we do an integration by part. Recall B(λ1, λ2) from (2.16). By the
previous computations we get

B̃(λ1, λ2) = x2B(λ1, λ2)− x2∂λu(s, λ2)∂λu(t, λ1 + u(s, λ2))e−Dte−xu(t,λ1+u(s,λ2))

Recall that we already proved that x2
∫∞

0

∫∞
0
dλ1dλ2

(
B(λ1, λ2)−B(λ1, λ2 +θ)

)
equals the

right member of (2.15). So, to complete the proof, we set

F (θ) :=

∫ ∞
0

∫ ∞
0

dλ1 dλ2 ∂λu(s, λ2 + θ) ∂λu(t, λ1 + u(s, λ2 + θ)) e−Dte−xu(t,λ1+u(s,λ2+θ))

and calculations similar as in the infinite variation case yield x2(F (0) − F (θ)) = −A2,
which entails the desired result in the finite variation cases.

To complete the proof of Theorem 0.3, we need the following technical lemma whose
proof is postponed.

Lemma 2.9. Assume that Ψ is not linear. Then, P-a.s. for all y ∈ [0, x], limt→∞Mt({y})
exists.
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2.3.2 Proof of Theorem 0.3 (ii-a).

We temporarily admit Lemma 2.9. We assume that γ>0 and that Ψ is conservative. To
simplify notation, we denote by {Z→∞} the event {limt→∞ Zt=∞}. Recall from (1.22)
and (1.24) the definition of the Poisson point measures P and Q. For any t∈(0,∞), we
define the following:

Pt =
∑
i∈I

δ(xi,Zi·∧t) and Qt =
∑
j∈J

1{tj≤t}δ(xj ,tj ,Zj·∧(t−tj))
. (2.18)

We then define Gt as the sigma-field generated either by Pt if Ψ is of infinite variation
type, or by Qt if Ψ is of finite variation type. The Markov property (see Lemma 2.10)
applied to the process (Zt, t ≥ 0) in the filtration Gt, t ≥ 0 yields

P(R−1
t (U) 6= R−1

t+s(V ) ;Z→∞) = E
[
1{R−1

t (U) 6=R−1
t+s(V )}

(
1−e−γZt+s

)]
By Lemma 2.8 and the identity u(s, γ) = γ, we then get

P(R−1
t (U) 6= R−1

t+s(V ) ;Z→∞) = x2

∫ v(t)

0

dwΨ(w)e−xw
u(−t, w)−

(
u(−t, w)−γ

)
+

Ψ(u(−t, w))
=: A(t)

We set e = R−1
∞ (V ). Using the Portmanteau theorem as s→∞ on the law of the pair

(R−1
t (U), R−1

t+s(V )) with the complement of the closed set {(y, y) : y ∈ [0, x]}, we get
P(R−1

t (U) 6= e;Z→∞)≤A(t). But now observe that E[1{R−1
t (U) 6=e;Z→∞} |P, V ] = (1 −

Mt({e}))1{Z→∞}. Thus ,

E
[
(1−Mt({e}))1{Z→∞}

]
≤ A(t) (2.19)

We next prove that limt→∞A(t) = 0. First note that for all w ∈ (0, γ), w < v(t) and
u(−t, w)<γ, moreover u(−t, w)↓0 as t↑∞. Since Ψ′(0+)=−∞, λ/Ψ(λ)↑0 as λ↓0. This
implies that

x2

∫ γ

0

dwΨ(w) e−xw
u(−t, w)−

(
u(−t, w)−γ

)
+

Ψ(u(−t, w))
= x2

∫ γ

0

dwΨ(w) e−xw
u(−t, w)

Ψ(u(−t, w))
−−−→
t→∞

0.

If γ=∞, then, this proves limt→∞A(t) = 0. Let us assume that γ<∞: for all w∈(γ, v(t)),
u(−t, w)>γ and we get

x2

∫ v(t)

γ

dwΨ(w) e−xw
u(−t, w)−

(
u(−t, w)−γ

)
+

Ψ(u(−t, w))
= x2

∫ v(t)

γ

dwΨ(w) e−xw
γ

Ψ(u(−t, w))
.

(2.20)
There are two cases to consider: if Ψ is persistent, then v(t) =∞. Moreover, for all
w ∈ (γ,∞), u(−t, w) is well-defined and u(−t, w) ↑∞ as t ↑∞, which implies that (2.20)
tends to 0 as t→∞. If Ψ is non-persistent, then v(t)<∞. Observe that limt→∞ v(t) = γ

and use (1.2) with λ=u(−t, w) to prove that w < u(−t, w) for any w∈ (γ, v(t)). Since Ψ

increases, we get

x2

∫ v(t)

γ

dwΨ(w) e−xw
γ

Ψ(u(−t, w))
≤ γx2

∫ v(t)

γ

dw e−xw −−−→
t→∞

0.

This completes the proof of limt→∞A(t) = 0.

By (2.19) and Lemma 2.9, we get P-a.s. on {Z→∞}, Mt({e})→ 1. Thus, it entails
‖Mt−δe‖var→0 by Lemma 2.5, as t→∞, which implies Theorem 0.3 (ii-a). �
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2.3.3 Proof of Theorem 0.3 (iii-a).

We assume that Ψ is persistent, of infinite variation type and such that γ < ∞. Ob-
serve that P under P( · | limt→∞ Zt = 0) is a Poisson point measure associated with
the branching mechanism Ψ(· + γ) that is sub-critical (and therefore conservative). So
the proof of Theorem 0.3 (iii-a) reduces to the cases of sub-critical persistent branch-
ing mechanisms and without loss of generality, we now assume that Ψ is so. Thus,
limθ→∞ u(t, θ)=v(t)=∞. By letting θ go to∞ in Lemma 2.8, we get

P(R−1
t (U) 6= R−1

t+s(V )) = x2

∫ ∞
0

u(−t, w)

Ψ(u(−t, w))
Ψ(w) e−xw dw =: B(t) ,

which does not depend on s. Then, set e=R−1
∞ (V ). By the Portmanteau theorem as s→

∞, we get P(R−1
t (U) 6=e)≤B(t). Next observe that E[1{R−1

t (U) 6=e} |P, V ] = 1−Mt({e}).
Therefore,

0 ≤ 1−E
[
Mt({e})

]
≤ B(t) (2.21)

Since Ψ is sub-critical and persistent for all w∈(0,∞), u(−t, w) increases to∞ as t↑∞.
Moreover, since Ψ is of infinite variation type, λ/Ψ(λ) decreases to 0 as λ ↑ ∞, which
implies that limt→∞B(t) = 0. By (2.21) and Lemma 2.9, we get P-a.s. Mt({e})→1, and
thus ‖Mt−δe‖var→0 by Lemma 2.5, as t→∞, which completes the proof of Theorem 0.3
(iii-a). �

2.3.4 Proof of Lemma 2.9.

To complete the proof of Theorem 0.3, it only remains to prove Lemma 2.9. We shall
proceed by approximation, in several steps. Recall the filtration Gt, t ≥ 0 introduced
below (2.18).

Lemma 2.10. Assume that Ψ is conservative and not linear. Then, for all s, t, λ ∈ [0,∞)

P-a.s. E
[
e−λZt+s

∣∣Gt ] = e−u(s,λ)Zt .

Proof. We first consider the infinite variation cases. We fix s0, ε ∈ (0,∞). For any
t ∈ (s0,∞), we set

P>ε
t =

∑
i∈I

1{Zis0>ε}
δ(xi , Zi· ∧t) and Zεt =

∑
i∈I

1{Zis0>ε}
Zitδxi . (2.22)

Since t > s0, and by monotone convergence for sums, limε→0Zεt+s([0, x]) =Zt+s. Then,
observe that Zεt+s is independent from Pt−P>ε

t . Thus,

P-a.s. E[e−λZt+s |Gt] = lim
ε→0

E[e−λZ
ε
t+s([0,x])|P>ε

t ].

Next, note that P>ε
t is a Poisson point measure whose law is specified as follows. By

Theorem 1.8 (b) and Lemma 1.4, first note that NΨ(Zs0 >ε) =νs0((ε,∞])∈ (0,∞). Then,
Qs0,ε = NΨ( · | Zs0 > ε) is a well-defined probability on D([0,∞), [0,∞]). Theorem 1.8 (c)
easily entails that

Qs0,ε-a.s. Qs0,ε
[
e−λZt+s

∣∣ Z · ∧t ] = e−u(s,λ)Zt . (2.23)

Next, note that P>ε
t can be written as

∑
1≤k≤S δ(Xk,Y k· ∧t), where (Xk, Y

k), k ≥ 1, is
an i.i.d. sequence of [0, x]×D([0,∞), [0,∞])-valued r.v. whose distribution is given by
x−11[0,x](y)`(dy)Qs0,ε(dZ) and where S is a Poisson r.v. with mean xνs0((ε,∞]) that is
independent from the (Xk, Y

k)k≥1. By an easy argument, we derive from (2.23) that

P-a.s. E[e−λZ
ε
t+s([0,x])|P>ε

t ] = e−u(s,λ)Zεt ([0,x]),
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which entails the desired result as ε→ 0.

In the finite variation cases, we also proceed by approximation: for any ε ∈ (0,∞),
we set

Q>ε
t =

∑
j∈J

1{tj≤t ; Zj0>ε}
δ(xj , tj , Zj· ∧(t−tj))

, Zεt =
∑
j∈J

1{tj≤t ; Zj0>ε}
Z
j
t−tjδxj andZ∗t = Zt − xe−Dt.

Then, note that limε→0Zεt+s([0, x]) = Z∗t+s and observe that Zεt+s is independent from
Qt−Q>ε

t . Thus, P-a.s. E[e−λZ
∗
t+s |Gt] = limε→0 E[e−λZ

ε
t+s([0,x])|Q>ε

t ]. Next, note that
Q>ε
t is a Poisson point measure that can be written as

∑
1≤k≤S δ(Xk,Tk,Y k· ∧(t−Tk)

) where

(Xk, Tk, Y
k)k≥1, is an i.i.d. sequence of [0, x]× [0, t]×D([0,∞), [0,∞])-valued r.v. whose

law is x−11[0,x](y)`(dy) (1− e−Dt)−1De−Ds`(ds)Qε(dZ) where

Qε(dZ) :=
1

π((ε,∞))

∫
(ε,∞)

π(dr)Pr(dZ)

and S is an independent Poisson r.v. with mean x(1−e−Dt)D−1π((ε,∞)). When D = 0,
one should replace (1−e−Dt)D−1 by t in the last two expressions. Note that the Markov
property applies under Qε. Namely, Qε-a.s. Qε[e−λZt+s |Z · ∧t] = e−u(s,λ)Zt . This implies
P-a.s. the following

E
[
e
−λ

∑
j∈J 1

{tj≤t , Z
j
0>ε}

Z
j
t+s−tj

∣∣Q>ε
t

]
= e
−u(s,λ)

∑
j∈J 1

{tj≤t , Z
j
0>ε}

Z
j
t−tj = e−u(s,λ)Zεt ([0,x]).

(2.24)
Then, note that

∑
j∈J 1{t<tj≤t+s , Zj0>ε}

Z
j
t+s−tj is independent from Q>ε

t . By the exponen-
tial formula for Poisson point measures, we thus P-a.s. get

−logE
[
e
−λ

∑
j∈J 1

{t<tj≤t+s , Z
j
0>ε}

Z
j
t+s−tj

∣∣Q>ε
t

]
= xe−Dt

∫ s

0

da e−Da
∫

(ε,∞)

π(dr)
(
1−e−ru(s−a,λ)

)
.

(2.25)
As ε → 0, the right member of (2.25) tends to xe−Dt

∫ s
0
da e−Da

(
Du(s−a, λ)−Ψ(u(s−

a, λ))
)

that is equal to xe−Dtu(s, λ) − xλe−D(s+t) by a simple integration by parts. This
computation combined with (2.24) and (2.25), implies

lim
ε→0
− logE

[
e−λZ

ε
t+s([0,x])

∣∣Q>ε
t

]
= u(s, λ) lim

ε→0
Zεt ([0, x]) + xe−Dtu(s, λ)− xλe−D(s+t)

Namely, − logE[e−λZ
∗
t+s |Gt] = u(s, λ)(Z∗t + xe−Dt)− λxe−D(s+t) = u(s, λ)Zt − λxe−D(s+t),

which implies the desired result.

Lemma 2.11. We assume that Ψ is conservative and non-linear. We fix s0, ε ∈ (0,∞).
For any t∈(s0,∞), we define Zεt as follows:

– If Ψ is of infinite variation type, then Zεt =
∑
i∈I 1{Zis0>ε}

Zitδxi .

– If Ψ is of finite variation type, then Zεt =
∑
j∈J 1{tj≤s0 ; Zj0>ε}

Z
j
t−tjδxj .

Recall the definition of the sigma-field Gt. Then, for all t∈(s0,∞), all s, θ∈ [0,∞) and all
y∈ [0, x],

P-a.s E
[
1{Zt+s>0}

Zεt+s([0,y])

Zt+s

(
1− e−θZt+s

) ∣∣Gt ] = 1{Zt>0}
Zεt ([0,y])

Zt

(
1− e−u(s,θ)Zt

)
.

(2.26)

Proof. We first consider the infinite variation cases. Note that in these cases, Zεt is
defined as in (2.22). Let λ ∈ (0,∞). Recall the notation Qs0,ε = NΨ( · |Zs0 > ε) from the
proof of Lemma 2.10: by differentiating (2.23), we get

Qs0,ε-a.s Qs0,ε
[
Zt+se

−λZt+s
∣∣ Z · ∧t ] = Zt e

−u(s,λ)Zt ∂λu (s, λ). (2.27)
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Recall from (2.18), the definition of Pt. Let F be a bounded nonnegative measurable
function on the space of point measures on [0, x]×D([0,∞), [0,∞]). We then set A(λ) =

E[Zεt+s([0, y]) e−λZt+sF (Pt)]. By Palm formula (1.20), Lemma 2.10 and (2.27), we get

A(λ) = E
[∑
i∈I

1{xi∈[0,y] ; Zis0
>ε}Z

i
t+s e

−λZit+s e−λ
∑
k∈I\{i} Z

k
t+s F

(
δ(xi , Zi· ∧t)+Pt−δ(xi , Zi· ∧t)

) ]
= νs0((ε,∞])

∫ y

0

dr

∫
Qs0,ε(dZ)E

[
Zt+se

−λZt+s e−λZt+sF
(
δ(r , Z · ∧t)+Pt

) ]
=
(
∂λu(s, λ)

)
νs0((ε,∞])

∫ y

0

dr

∫
Qs0,ε(dZ)E

[
Zte
−u(s,λ)Zt e−u(s,λ)ZtF

(
δ(y , Z · ∧t)+Pt

) ]
=
(
∂λu(s, λ)

)
E
[
Zεt ([0, y])e−u(s,λ)ZtF (Pt)

]
.

By an easy argument, it implies that P-a.s. for all λ∈(0,∞),

E
[
Zεt+s([0, y]) e−λZt+s

∣∣Gt ] = Zεt ([0, y]) e−u(s,λ)Zt ∂λu(s, λ).

Thus, P-a.s. for all λ, θ∈(0,∞),

E
[
1{Zt+s>0}Zεt+s([0, y])e−λZt+s

(
1− e−θZt+s

) ∣∣Pt

]
=

1{Zt>0}Zεt ([0, y])
(
e−u(s,λ)Zt∂λu(s, λ)− e−u(s,λ+θ)Zt∂λu(s, λ+θ)

)
.(2.28)

When we integrate the first member of (2.28) in λ on (0,∞), we get the first member of
(2.26). Then, by an easy change of variable, we get

∀λ0 ∈ [0,∞), ∀z ∈ (0,∞),

∫ ∞
λ0

dλ e−u(s,λ)z ∂λu(s, λ) =
1

z

(
e−u(s,λ0)z−ev(s)z

)
, (2.29)

where we recall that v(s) = limλ→∞ u(s, λ), which is infinite if Ψ is persistent and finite
otherwise. Since Ψ is conservative, recall that κ(s) = limλ→0+ u(s, λ) = 0. Thus, when
we integrate the second member of (2.28) in λ on (0,∞), we obtain the second member
of (2.26), which completes the proof of the lemma in the infinite variation cases.

We next consider the finite variation cases. Note that the definition of Zε is slightly
different from the proof of Lemma 2.10. Recall from (2.18), the definition of Qt. Let
F be a bounded nonnegative measurable function on the space of point measures on
[0, x]× [0,∞)×D([0,∞), [0,∞]). We set A(λ) = E[Zεt+s([0, y]) e−λZt+sF (Qt)]. By Palm
formula (1.20) and Lemma 2.10 we get

A(λ) =E
[∑
j∈J

1{xj∈[0,y] ; tj≤s0 ; Zj0>ε}
Z
j
t+s−tj e

−λZjt+s−tj e−λ
∑
k∈J\{j} 1{tk≤t+s}Z

k
t+s−tk

×e−λxe
−D(t+s)

F
(
δ(xj , tj , Zj· ∧(t−tj))

+ Qt−δ(xj , tj , Zj· ∧(t−tj))
) ]

=

∫ y

0

da

∫ s0

0

db e−Db
∫

(ε,∞)

π(dr)Er

[
E
[
Zt+s−be

−λZt+s−be−λZt+sF
(
δ(a , b , Z · ∧(t−b))+Qt

) ]]
= ∂λu(s, λ)

∫ y

0

da

∫ s0

0

db e−Db
∫

(ε,∞)

π(dr)Er

[
E
[
Zt−be

−u(s,λ)Zt−be−u(s,λ)Zt

×F
(
δ(a , b , Z · ∧(t−b))+Qt

) ]]
= ∂λu(s, λ)E[Zεt ([0, y]) e−u(s,λ)ZtF (Qt)].

Then, we argue exactly as in the infinite variation cases.
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We now complete the proof of Lemma 2.9. If Ψ is not conservative, then we have
already proved that on {ζ∞<∞}, M has an Eve in finite time. Moreover, conditionally
on {limt→∞ Zt= 0}, M is distributed as the frequency process of a CSBP(Ψ(· + γ)) that
is sub-critical, and therefore conservative. Thus, without loss of generality, we assume
that Ψ is conservative. In this case, Lemma 2.11 applies: we fix s0, ε∈(0,∞) and we let
θ go to∞ in (2.26); this implies that t 7→ 1{Zt>0}

Zεt ([0,y])
Zt

is a super-martingale. Then,

P-a.s. ∀q ∈ Q ∩ [0, x] , lim
t→∞

1{Zt>0}
Zεt ([0,q])

Zt
=: Rεq exists.

Then observe there exists a finite subset Ss0,ε :={X1<. . .<XN}⊂ [0, x] such that a.s. for
all t ∈ (s0,∞), Zεt ([0, x]\Ss0,ε) = 0. Then, for any 1≤ k≤N , there exists q, q′ ∈ Q∩ [0, x]

such that q<Xk<q
′ and 1{Zt>0}Mt({Xk})=1{Zt>0}Zεt ((q, q′])/Zt−→Rεq′−Rεq, as t→∞.

Now observe that if Ψ is of infinite variation type, {xi ; i ∈ I} =
⋃
n,m∈N S2−m,2−n .

Thus, on the event {ζ0 =∞} (no extinction in finite time), this entails that P-a.s. for
all i ∈ I, limt→∞Mt({xi}) exists. Moreover, for all y /∈ {xi ; i ∈ I} and all t ∈ (0,∞),
Mt({y}) = 0. Finally, on {ζ0 <∞}, we have already proved that M has an Eve in finite
time. This completes the proof of Lemma 2.9 when Ψ is of infinite variation type.

If Ψ is finite variation type, note that {xj ; j∈J} =
⋃
n,m∈N Sm,2−n . Since there is no

extinction in finite time, we get that P-a.s. for all j ∈ J , limt→∞Mt({xj}) exists, which
completes the proof since for all y /∈{xj ; j ∈J} and all t∈ (0,∞), we have Mt({y}) = 0.
�

References

[1] Romain Abraham and Jean-François Delmas, Williams’ decomposition of the Lévy continuum
random tree and simultaneous extinction probability for populations with neutral mutations,
Stochastic Process. Appl. 119 (2009), no. 4, 1124–1143. MR-2508567

[2] Jean Bertoin, The structure of the allelic partition of the total population for Galton-Watson
processes with neutral mutations, Ann. Probab. 37 (2009), no. 4, 1502–1523. MR-2546753

[3] Jean Bertoin, Joaquin Fontbona, and Servet Martínez, On prolific individuals in a supercrit-
ical continuous-state branching process, J. Appl. Probab. 45 (2008), no. 3, 714–726. MR-
2455180

[4] Jean Bertoin and Jean-François Le Gall, The Bolthausen-Sznitman coalescent and the ge-
nealogy of continuous-state branching processes, Probability Theory and Related Fields 117
(2000), no. 2, 249–266. MR-1771663

[5] Jean Bertoin and Jean-François Le Gall, Stochastic flows associated to coalescent processes,
Probability Theory and Related Fields 126 (2003), 261–288. MR-1990057

[6] Patrick Billingsley, Convergence of probability measures, second ed., Wiley Series in Prob-
ability and Statistics: Probability and Statistics, John Wiley & Sons Inc., New York, 1999, A
Wiley-Interscience Publication. MR-1700749

[7] N. H. Bingham, Continuous branching processes and spectral positivity, Stochastic Pro-
cesses Appl. 4 (1976), no. 3, 217–242. MR-0410961

[8] E. Bolthausen and A.-S. Sznitman, On Ruelle’s probability cascades and an abstract cavity
method, Comm. Math. Phys. 197 (1998), no. 2, 247–276. MR-1652734

[9] Maria-Emilia Caballero, Amaury Lambert, and Geronimo Uribe Bravo, Proof(s) of the Lam-
perti representation of continuous-state branching processes, Probability Surveys 6 (2009),
62–89. MR-2592395

[10] Peter Donnelly and Thomas G. Kurtz, Particle representations for measure-valued population
models, Ann. Probab. 27 (1999), no. 1, 166–205. MR-1681126

[11] Thomas Duquesne and Jean-François Le Gall, Random trees, Lévy processes and spatial
branching processes, Astérisque (2002), no. 281, vi+147. MR-1954248

EJP 19 (2014), paper 6.
Page 30/31

ejp.ejpecp.org

http://www.ams.org/mathscinet-getitem?mr=2508567
http://www.ams.org/mathscinet-getitem?mr=2546753
http://www.ams.org/mathscinet-getitem?mr=2455180
http://www.ams.org/mathscinet-getitem?mr=2455180
http://www.ams.org/mathscinet-getitem?mr=1771663
http://www.ams.org/mathscinet-getitem?mr=1990057
http://www.ams.org/mathscinet-getitem?mr=1700749
http://www.ams.org/mathscinet-getitem?mr=0410961
http://www.ams.org/mathscinet-getitem?mr=1652734
http://www.ams.org/mathscinet-getitem?mr=2592395
http://www.ams.org/mathscinet-getitem?mr=1681126
http://www.ams.org/mathscinet-getitem?mr=1954248
http://dx.doi.org/10.1214/EJP.v19-2831
http://ejp.ejpecp.org/


On the Eve property for CSBP

[12] E. B. Dynkin and S. E. Kuznetsov, N-measures for branching exit Markov systems and their
applications to differential equations, Probab. Theory Related Fields 130 (2004), no. 1, 135–
150. MR-2092876

[13] Alison M. Etheridge, An introduction to superprocesses, University Lecture Series, vol. 20,
American Mathematical Society, Providence, RI, 2000. MR-1779100

[14] D. R. Grey, Asymptotic behaviour of continuous time, continuous state-space branching pro-
cesses, J. Appl. Probability 11 (1974), 669–677. MR-0408016

[15] Anders Grimvall, On the convergence of sequences of branching processes, Ann. Probab. 2
(1974), 1027–1045. MR-0362529

[16] Inge S. Helland, Continuity of a class of random time transformations, Stochastic Processes
Appl. 7 (1978), no. 1, 79–99. MR-0488203

[17] C. C. Heyde, Extension of a result of Seneta for the super-critical Galton-Watson process,
Ann. Math. Statist. 41 (1970), 739–742. MR-0254929
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