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Abstract

We give a necessary and sufficient condition for the convergence in distribution of
a conditioned Galton-Watson tree to Kesten’s tree. This yields elementary proofs of
Kesten’s result as well as other known results on local limits of conditioned Galton-
Watson trees. We then apply this condition to get new results in the critical case
(with a general offspring distribution) and in the sub-critical cases (with a generic
offspring distribution) on the limit in distribution of a Galton-Watson tree conditioned
on having a large number of individuals with out-degree in a given set.
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1 Introduction

Galton-Watson (GW) processes constitute a very simple model of population growth
where all individuals give birth independently of each others to a random number of
children with the same offspring distribution p. This population growth can be de-
scribed by a genealogical tree τ that we call the GW tree. It is well-known that in the
sub-critical case (the mean number of children of a single individual is strictly less than
1) and in the (non-degenerate) critical case (the mean number of children of an indi-
vidual is 1) the population becomes a.s. extinct. However, one can define in these two
cases a tree τ∗ with an infinite spine, that we call Kesten’s tree in this paper, which can
be seen as the tree conditioned on non-extinction, defined as the local limit in distribu-
tion of the tree τ conditioned to reach height n, when n tends to infinity, see Kesten [16].
This result is recalled here in Section 2.4. The tree τ∗ happens to be the size-biased
tree already studied earlier, see e.g. Hawkes [10], Joffe and Waugh [13] as well as
Lyons, Pemantle and Peres [19]. It also appears (for GW processes only) as a Q-process
and can be viewed as a GW tree with immigration, see Athreya and Ney [4]. We want
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Conditioned Galton-Watson trees

to stress that we only consider here local limits i.e. we look at the trees up to a fixed
height h. Other limits can be considered such as scaling limits of conditioned GW trees
(see [7, 18, 24]) but this is not the purpose here.

It is also known that, at least in the critical case, other conditionings such as con-
ditioning by the total progeny, see Kennedy [15] and Geiger and Kaufmann [9], or by
the number of leaves, see Curien and Kortchemski [6], lead to the same local limit in
distribution. See also the survey from Janson [12].

For all those cases, the conditioning event can be written as {τ ∈ An} with An of
the form:

An = {t, A(t) ≥ n} or An = {t, A(t) = n},

where A : t 7→ A(t) is a functional defined on the set of trees and satisfying an additive
property, see Equation (3.1). The main result of this paper, see Theorem 3.1 for a precise
statement, unifies all the previous conditionings and gives a necessary and sufficient
condition to obtain Kesten’s tree as a limit. In the non-degenerate critical case, if A
satisfies the additive property (3.1) , then the following two statements are equivalent
(with some additional aperiodic condition for the converse):

• limn→+∞P(τ ∈ An+1)/P(τ ∈ An) = 1,

• The distribution of τ conditionally on {τ ∈ An} converges to the distribution of
Kesten’s tree τ∗.

Using this result, we give elementary proofs for the convergence in distribution to
Kesten’s tree τ∗ of the GW tree conditioned on:

(i) Extinction after or at a large time (sub-critical and critical case), with A(t) = H(t)

the height of the tree t and conditioning event {H(τ) = n} or {H(τ) ≥ n}. See
Sections 4.1 and 4.2.

(ii) Large total population size (critical case), with A(t) = Card (t) the total size of the
tree and conditioning event {Card (τ) = n} or {Card (τ) ≥ n}. See Section 4.3.

(iii) Large number of leaves (critical case), with A(t) = L0(t) the total number of
leaves of t and conditioning event {L0(τ) = n} or {L0(τ) ≥ n}. See Section 4.4.

Let us mention that assertion (i) with the conditioning event {H(τ) ≥ n} was first
proved by Kesten [16] in the critical case under a finite variance condition, and in [12],
Theorem 7.1, in full generality. Property (ii) is also proved in full generality in [12], The-
orem 7.1 (the sub-critical case is also studied in [12], see the discussion below). Finally,
assertion (iii) with the conditioning event {L0(τ) = n} has been proved by Curien and
Kortchemski [6], Theorem 4.1, in the critical and finite variance case only.

In fact the conditioning on the large total population size or on the large number
of leaves are particular cases of conditioning trees on large number of individuals with
a given number of children. This corresponds to the functional A(t) = LA(t) which
gives the total number of individuals of the tree t whose number of children belongs to
a given set A of nonnegative integers. Such conditioning has already been studied by
Rizzolo [24], see also Mimami [20], but for global scaling limits and not local limits. We
obtain the convergence in distribution to Kesten’s tree τ∗ of a critical GW tree without
any additional moment condition on the offspring distribution, conditioned on:

(iv) Large number of individuals with number of children in a given set A (critical
case), with A(t) = LA(t) and conditioning event {LA(τ) = n} or {LA(τ) ≥ n}.
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Conditioned Galton-Watson trees

Here, we use the fact that LA(τ) is distributed according to the total progeny of another
critical GW tree, as was noticed by Minami [20] in a particular case and Rizzolo [24]
in general, which allows to use (ii). Let us remark that the total progeny (A = N),
the number of leaves (A = {0}) and the number of internal nodes (A = N \ {0}) are
particular cases of this conditioning.

The main ingredients in the proof for (ii), (iii) and (iv) are Dwass formula for the rep-
resentation of the total progeny of a GW tree using random walks, and the strong ration
theorem for these random walks which has some links with the local sub-exponential
property of the total progeny of GW trees, see [3].

We then study the subcritical case and define a one-parameter family (pθ, θ ∈ I) of
distributions on the set of integers such that the GW tree τ associated with the off-
spring distribution p and the GW tree τθ associated with the offspring distribution pθ
have the same conditional distributions given LA, see Proposition 5.5. This generalizes
Kennedy’s transformation [15] concerning the total progeny, and the pruning of Abra-
ham, Delmas and He [2] concerning the number of leaves. According to [12], we say
that p is generic (with respect to A) if there exists θc such that pθc is critical. We then
immediately deduce, see Corollary 5.7, that if p is generic, then the distribution of τ
conditionally on {LA(τ) = n} (in the aperiodic case) or on {LA(τ) ≥ n} converges to the
distribution of the Kesten’s tree τ∗θc associated with the critical offspring distribution
pθc . When there is no such θc, then a condensation phenomenon may appear: Jonsson
and Stefansson [14] or [12] proved for the conditioning on the total progeny that the
limiting tree in that case is not Kesten’s tree but a tree with a unique node with an
infinite number of offsprings. We shall investigate this condensation phenomenon for
other conditionings in a forthcoming paper [1]. Let us add that an example is given in
[1] of an offspring distribution which is generic with respect to a set A and non-generic
with respect to another set. Hence, it seems difficult to give a sufficient condition for
an offspring distribution to be generic (i.e. to have existence of the critical value θc).

Finally, we consider another conditioning which does not enter in the framework
of Theorem 3.1 : conditioning on the size on the n-th generation. However, we can
adapt the proof of Theorem 3.1 to get an analogous result in that case, see Proposition
6.1. We apply this result to a critical geometric offspring distribution where explicit
computations can be performed to prove that the corresponding GW tree conditioned
on the n-th generation being positive but smaller that n2 converges in distribution to
Kesten’s tree. Using results on local limit of GW processes from Nagaev and Vakhtel
[21, 22], this result can be extended to very general critical offspring distributions.

The paper is organized as follows. In Section 2, we recall the framework we use for
discrete trees and define the GW tree τ and Kesten’s tree τ∗ associated with offspring
distribution p. In Section 3, we state and prove the necessary and sufficient condition
for convergence in distribution of the conditioned tree to Kesten’s tree. We apply this
result in Section 4 to recover the classical results on critical conditioned GW trees and
we study in Section 5 the case of the number of individuals with out-degree in a given
set for the critical and sub-critical case. Finally, we study in Section 6 the conditioning
on the size of the n-th generation of the GW tree.

2 Technical background on GW trees

2.1 First notations

We denote byN = {0, 1, 2, . . .} the set of non-negative integers and byN∗ = {1, 2, . . .}
the set of positive integers.
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If K is a subset of N∗, we call the span of K the greatest common divisor of K. If X
is an integer-valued random variable, we call the span of X the span of {n > 0, P(X =

n) > 0} the restriction to N∗ of its support.

2.2 The set of discrete trees

We recall Neveu’s formalism [23] for ordered rooted trees. We let

U =
⋃
n≥0

(N∗)n

be the set of finite sequences of positive integers with the convention (N∗)0 = {∅}.
For u ∈ U let |u| be the length or generation of u defined as the integer n such that
u ∈ (N∗)n. If u and v are two sequences of U , we denote by uv the concatenation of the
two sequences, with the convention that uv = u if v = ∅ and uv = v if u = ∅. The set of
ancestors of u is the set:

Au = {v ∈ U ; there exists w ∈ U , w 6= ∅, such that u = vw}. (2.1)

The most recent common ancestor of a subset s of U , denoted by M(s), is the unique
element u of

⋂
u∈sAu with maximal length |u|.

For u, v ∈ U , we denote by u < v the lexicographic order on U i.e. u < v if u ∈ Av or,
if we set w = M(u, v), then u = wiu′ and v = wjv′ for some i, j ∈ N∗ with i < j.

A tree t is a subset of U that satisfies:

• ∅ ∈ t,

• If u ∈ t, then Au ⊂ t.

• For every u ∈ t, there exists a non-negative integer ku(t) such that, for every
positive integer i, ui ∈ t iff 1 ≤ i ≤ ku(t).

The integer ku(t) represents the number of offspring of the vertex u ∈ t. The vertex
u ∈ t is called a leaf if ku(t) = 0. The vertex ∅ is called the root of t. Let us remark that,
for a tree t, we have ∑

u∈t
ku = Card (t)− 1. (2.2)

Let t be a tree. The set of its leaves is L0(t) = {u ∈ t; ku(t) = 0}, its height is defined
by

H(t) = sup{|u|, u ∈ t}

and can be infinite. For u ∈ t, we define the sub-tree Su(t) of t “above” u as:

Su(t) = {v ∈ U , uv ∈ t}.

We denote by T the set of trees, by

T0 = {t ∈ T; Card (t) < +∞}

the subset of finite trees, by

T(h) = {t ∈ T;H(t) ≤ h}

the subset of trees with height at most h ∈ N, and by

T1 = {t ∈ T; lim
n→+∞

|M({u ∈ t; |u| = n})| = +∞}
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the subset of trees with a unique infinite spine. Notice that T0 and T(h) are count-
able and T1 is uncountable as the set of infinite sequences of positive integers can be
embedded in T1. For h ∈ N the restriction function rh from T to T is defined by:

rh(t) = {u ∈ t, |u| ≤ h}.

We endow the set T with the ultrametric distance

d(t, t′) = 2−max{h∈N, rh(t)=rh(t′)}.

A sequence (tn, n ∈ N) of trees converges to a tree t with respect to the distance d if
and only if, for every h ∈ N,

rh(tn) = rh(t) for n large enough.

The Borel σ-field associated with the distance d is the smallest σ-field containing the
singletons for which the restrictions functions (rh, h ∈ N) are measurable. With this
distance, the restriction functions are contractant. Since T0 is dense in T and (T, d) is
complete, we get that (T, d) is a Polish metric space.

Consider the closed ball B(t, 2−h) = {t′ ∈ T; d(t, t′) ≤ 2−h} for some t ∈ T and h ∈ N
and notice that:

B(t, 2−h) = r−1h ({rh(t)}).
Since the distance is ultrametric, the closed balls are open and the open balls are closed,
and the intersection of two balls is either empty or one of them. We deduce that the
family ((r−1h ({t}), t ∈ T(h)), h ∈ N) is a π-system, and Theorem 2.3 in [5] implies that this
family is convergence determining for the convergence in distribution. Let (Tn, n ∈ N∗)
and T be T-valued random variables. We denote by dist (T ) the distribution of the
random variable T (which is uniquely determined by the sequence of distributions of
rh(T ) for every h ≥ 0), and we denote

dist (Tn) −→
n→+∞

dist (T )

for the convergence in distribution of the sequence (Tn, n ∈ N∗) to T . We deduce from
the portmanteau theorem that the sequence (Tn, n ∈ N∗) converge in distribution to T
if and only if for all h ∈ N, t ∈ T(h):

lim
n→+∞

P(rh(Tn) = t) = P(rh(T ) = t).

For t ∈ T and u 6∈ t, set ku(t) = −1. The convergence in distribution of the sequence
(Tn, n ∈ N∗) to T is also equivalent to the finite dimensional convergences in distribution
of the sequence ((ku1

(Tn), . . . , kum(Tn)), n ∈ N∗) to (ku1
(T ), . . . , kum(T )) for all m ∈ N∗

and u1, . . . , um ∈ U .
As we shall only consider T0-valued random variables that converge in distribution

to a T1-valued random variable, we shall give an alternative characterization of conver-
gence in distribution that holds for this restriction. To present this result, we introduce
some notations. If t, s ∈ T and x ∈ L0(t) we denote by:

t~ (s, x) = {u ∈ t} ∪ {xv, v ∈ s}

the tree obtained by grafting the tree s on the leaf x of the tree t. For every t ∈ T and
every x ∈ L0(t), we shall consider the set of trees obtained by grafting a tree on the
leaf x of t:

T(t, x) = {t~ (s, x), s ∈ T}.
It is easy to see that T(t, x) is closed. It is also open, as for all s ∈ T(t, x) we have that
B(s, 2−H(t)−1) ⊂ T(t, x).

Moreover, notice that the set T1 is a Borel subset of the set T.
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Lemma 2.1. Let (Tn, n ∈ N∗) and T be T-valued random variables which belong a.s.
to T0

⋃
T1. The sequence (Tn, n ∈ N∗) converges in distribution to T if and only if for

every t ∈ T0 and every x ∈ L0(t), we have:

lim
n→+∞

P(Tn ∈ T(t, x)) = P(T ∈ T(t, x)) and lim
n→+∞

P(Tn = t) = P(T = t). (2.3)

Proof. The subclass F = {T(t, x), t ∈ T0, x ∈ L0(t)} ∪ {{t}, t ∈ T0} of the Borel sets
on T0

⋃
T1 forms a π-system since we have

T(t1, x1) ∩T(t2, x2) =


T(t1, x1) if t1 ∈ T(t2, x2),
T(t2, x2) if t2 ∈ T(t1, x1),
{t1} if t1 = t2 and x1 6= x2,

∅ in the other cases.

For every h ∈ N and every t ∈ T(h), we have that t′ belongs to r−1h ({t})
⋂
T1 if and

only if t′ belongs to some T(s, x) where x is a leaf of t such that |x| = h and s belongs
to r−1h ({t})

⋂
T0 such that x is also a leaf of s. Since T0 is countable, we deduce that F

generates the Borel σ-field on T0 ∪T1. In particular F is a separating class on T0

⋃
T1.

Since A ∈ F is closed and open as well, according to Theorem 2.3 of [5], to prove
that the family F is a convergence determining class, it is enough to check that for all
t ∈ T0

⋃
T1 and h ∈ N, there exists A ∈ F such that:

t ∈ A ⊂ B(t, 2−h). (2.4)

If t ∈ T0, this is clear as {t} = B(t, 2−h) for all h > H(t). If t ∈ T1, for all s ∈ T0 and
x ∈ L0(s) such that t ∈ T(s, x), we have t ∈ T(s, x) ⊂ B(t, 2−|x|). Since we can find such
a s and x such that |x| is arbitrary large, we deduce that (2.4) is satisfied. This proves
that the family F is a convergence determining class on T0

⋃
T1.

Since, for t ∈ T0 and x ∈ L0(t) the sets T(t, x) and {t} are open and closed, we
deduce from the portmanteau Theorem that if (Tn, n ∈ N∗) converges in distribution to
T , then (2.3) holds for every t ∈ T0 and every x ∈ L0(t).

2.3 GW trees

Let p = (p(n), n ∈ N) be a probability distribution on the set of the non-negative
integers. We assume that

p(0) > 0, p(0) + p(1) < 1, and µ :=

+∞∑
n=0

np(n) < +∞. (2.5)

A T-valued random variable τ is a Galton-Watson (GW) tree with offspring distribu-
tion p if the distribution of k∅(τ) is p and for n ∈ N∗, conditionally on {k∅(τ) = n}, the
sub-trees (S1(τ),S2(τ), . . . ,Sn(τ)) are independent and distributed as the original tree
τ . Equivalently, for every h ∈ N∗ and every t ∈ T(h), we have

P(rh(τ) = t) =
∏

u∈rh−1(t)

p(ku(t)).

In particular, the restriction of the distribution of τ on the set T0 is given by:

∀t ∈ T0, P(τ = t) =
∏
u∈t

p(ku(t)). (2.6)

The GW tree is called critical (resp. sub-critical, super-critical) if µ = 1 (resp. µ < 1,
µ > 1).
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2.4 Conditioning on non-extinction

Let p be an offspring distribution satisfying Assumption (2.5) with µ ≤ 1 (i.e. the as-
sociated GW process is critical or sub-critical). We denote by p∗ = (p∗(n) = np(n)/µ, n ∈
N) the corresponding size-biased distribution.

We define an infinite random tree τ∗ (the size-biased tree that we call Kesten’s tree
in this paper), whose distribution is as follows. There exists a unique infinite sequence
(Vk, k ∈ N∗) of positive integers such that, for every h ∈ N, V1 · · ·Vh ∈ τ∗, with the
convention that V1 · · ·Vh = ∅ if h = 0. The joint distribution of (Vk, k ∈ N∗) and τ∗ is
determined recursively as follows: for each h ∈ N, conditionally given (V1, . . . , Vh) and
rh(τ

∗), we have:

• The number of children (kv(τ
∗), v ∈ τ∗, |v| = h) are independent and distributed

according to p if v 6= V1 · · ·Vh and according to p∗ if v = V1 · · ·Vh.

• Given also the numbers of children (kv(τ
∗), v ∈ τ∗, |v| = h), the integer Vh+1 is

uniformly distributed on the set of integers {1, . . . , kV1···Vh(τ
∗)}.

Notice that by construction, τ∗ ∈ T1 a.s.
Following Kesten [16], the random tree τ∗ can be viewed as the tree τ conditioned

on non-extinction as:

∀h ∈ N∗, ∀t ∈ T(h), P(rh(τ
∗) = t) = lim

n→+∞
P(rh(τ) = t

∣∣ H(τ) ≥ n).

As a direct consequence we get that for all h ∈ N, t ∈ T(h), u ∈ t such that |u| = h:

P(rh(τ
∗) = t, V1 · · ·Vh = u) = µ−hP(rh(τ) = t),

and for all t ∈ T0, x ∈ L0(t):

P(τ∗ ∈ T(t, x)) = µ−|x|P(τ ∈ T(t, x)). (2.7)

Since, for t ∈ T0 and x ∈ L0(t), P(τ = t) = P(τ ∈ T(t, x), kx(τ) = 0) = P(τ ∈
T(t, x))p(0), we deduce that:

P(τ∗ ∈ T(t, x)) = 1

µ|x|p(0)
P(τ = t). (2.8)

Since τ∗ is in T1 a.s., this implies that (2.8) with t ∈ T0 and x ∈ L0(t) characterizes the
distribution of τ∗.

3 Main result

Let A be an integer-valued function defined on T which is finite on T0 and satisfies
the following additivity property: there exists an integer-valued function D defined on
T such that, for every t ∈ T0, every x ∈ L0(t) and for every t̃ such that A(t ~ (t̃, x)) is
large enough,

A(t~ (t̃, x)) = A(t̃) +D(t, x). (3.1)

Let n0 ∈ N ∪ {+∞} be given. We define for all n ∈ N∗, the subset of trees

An = {t ∈ T;A(t) ∈ [n, n+ n0)}.

Common values of n0 that will be considered are 1 and +∞.
The following theorem states that the distribution of the GW tree τ conditioned to

be in A∞, the limit of An, is distributed as τ∗ as soon as the probability of An satisfies
some regularity. We denote by

dist (τ |τ ∈ An)
the conditional law of τ given {τ ∈ An}.
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Theorem 3.1. Assume that Assumptions (2.5) and (3.1) hold, that P(τ ∈ An) > 0 for n
large enough and that one of the two following conditions

• µ = 1 or

• µ < 1 and D(t, x) = |x| for all t ∈ T0, x ∈ L0(t).

Then, if

lim
n→+∞

P(τ ∈ An+1)

P(τ ∈ An)
= µ, (3.2)

we have:
dist (τ |τ ∈ An) −→

n→+∞
dist (τ∗).

Conversely, if dist (τ |τ ∈ An) −→
n→+∞

dist (τ∗) and if the span of {D(t, x); t ∈ T0 and x ∈
L0(t)}

⋂
N∗ is one, then (3.2) holds.

Recall that the local convergence in distribution towards τ∗ is equivalent to

∀h ∈ N∗, ∀t ∈ T(h), lim
n→+∞

P(rh(τ) = t
∣∣ τ ∈ An) = P(rh(τ∗) = t). (3.3)

Proof. Let us first remark that, as we supposed that µ ≤ 1, we have a.s. τ ∈ T0 and
thus we are in the setting of Lemma 2.1.

Using (2.6), we have for every t ∈ T0, x ∈ L0(t) and t̃ ∈ T0:

P(τ = t~ (t̃, x)) =
1

p(0)
P(τ = t)P(τ = t̃).

Let t ∈ T0 and x ∈ L0(t). Then, if n is large enough so that we can apply Equation (3.1),
we get:

P(τ ∈ T(t, x), τ ∈ An) =
∑
t̃∈T0

P(τ = t~ (t̃, x))1{n≤A(t~(t̃,x))<n+n0}

=
1

p(0)

∑
t̃∈T0

P(τ = t)P(τ = t̃)1{n≤A(t̃)+D(t,x)<n+n0}

=
1

p(0)
P(τ = t)P(n−D(t, x) ≤ A(τ) < n+ n0 −D(t, x))

= µ|x|P(τ∗ ∈ T(t, x))P(τ ∈ An−D(t,x)),

where we used (2.8) for the last equality. Therefore we have

P(τ ∈ T(t, x)
∣∣ τ ∈ An) = P(τ∗ ∈ T(t, x))µ|x| P(τ ∈ An−D(t,x))

P(τ ∈ An)
· (3.4)

Then, using (3.2) and that D(t, x) = |x| if µ < 1, we obtain that:

lim
n→+∞

P(τ ∈ T(t, x)
∣∣ τ ∈ An) = P(τ∗ ∈ T(t, x)). (3.5)

For all t ∈ T0 and all n > A(t), we have

P(τ = t, τ ∈ An) = P(τ = t, t ∈ An) ≤ 1{t∈An} = 0

and thus:
lim

n→+∞
P(τ = t

∣∣ τ ∈ An) = 0 = P(τ∗ = t). (3.6)

We deduce from Lemma 2.1 that (3.3) holds.
Conversely, if (3.3) holds, then Lemma 2.1 implies that (3.5) and (3.6) hold. The fact

that the span of {D(t, x); t ∈ T0 and x ∈ L0(t)}
⋂
N∗ is one and (3.4) imply, with Bezout

theorem, that (3.2) holds.
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4 Examples

4.1 Conditioning on extinction after large time

We give here a simple proof of Kesten’s result for the convergence in distribution of
a critical or sub-critical GW tree conditioned on non-extinction, see [16] under a finite
variance condition and [12] for the general case.

Proposition 4.1. Let τ be a critical or sub-critical GW tree with offspring distribution
p satisfying Assumption (2.5). Then, we have

dist (τ |H(τ) ≥ n) −→
n→+∞

dist (τ∗). (4.1)

Proof. Consider A(t) = H(t) and n0 = +∞ that is An = {t ∈ T; H(t) ≥ n}. Notice that
in this case for a tree t̃ such that H(t̃) is larger than H(t), we have for every x ∈ L0(t)

A(t~ (t̃, x)) = A(t̃) + |x|. (4.2)

Therefore, Condition (3.1) is satisfied by A.
According to Theorem 3.1, it suffices to prove

lim
n→+∞

P(H(τ) ≥ n+ 1)

P(H(τ) ≥ n)
= µ (4.3)

to get (4.1).
We denote by ϕ the generating function of p and we define recursively ϕ1 = ϕ

and for n ≥ 1, ϕn+1 = ϕn ◦ ϕ. As ϕn is the generating function of the distribution of
{u ∈ τ ; |u| = n} the number of individuals at height n, we have P(τ ∈ An) = 1 − ϕn(0).
We also have limn→+∞ ϕn(0) = 1 and

lim
n→+∞

P(τ ∈ An+1)

P(τ ∈ An)
= lim
n→+∞

1− ϕ(ϕn(0))
1− ϕn(0)

= ϕ′(1) = µ

which is (4.3).

4.2 Conditioning on extinction at large time

Proposition 4.2. Let τ be a critical or sub-critical GW tree with offspring distribution
p satisfying Assumption (2.5). Then we have

dist (τ |H(τ) = n) −→ dist (τ∗). (4.4)

Proof. We consider A(t) = H(t) with n0 = 1 that is An = {t ∈ T; H(t) = n}. Since (4.2)
is in force, we get that Condition (3.1) still holds. Again it suffices to prove

lim
n→+∞

P(H(τ) = n+ 1)

P(H(τ) = n)
= µ (4.5)

to get (4.4). Recall notation ϕn introduced in Section 4.1 and that limn→+∞ ϕn(0) = 1.
We have P(τ ∈ An) = ϕn+1(0)− ϕn(0) and:

lim
n→+∞

P(τ ∈ An+1)

P(τ ∈ An)
= lim
n→+∞

1−ϕ(ϕn(0))
1−ϕn(0) −

1−ϕ2(ϕn(0))
1−ϕn(0)

1− 1−ϕ(ϕn(0))
1−ϕn(0)

=
µ− µ2

1− µ
= µ,

which is (4.5).
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4.3 Conditioning on the total population size, critical case

We recover here results from Theorem 7.1 in [12] on the convergence in distribution
of a critical GW tree conditioned on the size of its total progeny to Kesten’s tree.

Our proof is based on Dwass formula (see [8]) that we recall now. Let (τk, k ∈ N∗)
be independent GW trees distributed as τ . Set Wk = Card (τk). Let (Xk, k ∈ N∗) be
independent integer-valued random variables distributed according to p. For k ∈ N∗
and n ≥ k, we have:

P(W1 + . . .+Wk = n) =
k

n
P(X1 + . . .+Xn = n− k). (4.6)

We also recall some results on random walks. Let Y be an integrable random vari-
able taking values in Z, such that E[Y ] = 0, P(Y = 0) < 1 and the span of |Y | is 1. We
consider the random walk S = (Sn, n ∈ N) defined by:

S0 = 0 and Sn =

n∑
k=1

Yk for n ∈ N∗. (4.7)

Then the random walk S is recurrent. We define the period of S as the span of the set
{n > 0, P(Sn = 0) > 0}. If S is aperiodic (i.e. has period 1), the strong ratio theorem for
recurrent aperiodic random walks, see Theorem T1 p49 of [25], gives that, for ` ∈ Z:

lim
n→+∞

P(Sn = `)

P(Sn = 0)
= lim
n→+∞

P(Sn = 0)

P(Sn+1 = 0)
= 1. (4.8)

If S has period d, then for all k ∈ {1, . . . , d}, there exist jk ∈ Z and nk ∈ N∗ such that

∀n ≥ nk, P(Snd+k = jk) > 0. (4.9)

The strong ratio theorem can then easily be adapted to get that, for ` ∈ Z, k ∈ {1, . . . , d}:

lim
m→+∞

P(Smd+k = `d+ jk)

P(Smd = 0)
= 1. (4.10)

Notice that (4.6) and (4.10) directly imply that the total progeny distribution enjoys the
local sub-exponential property that is

lim
x→+∞

P(W1 ∈ [x+ t, x+ t+ T ))

P(W1 ∈ [x, x+ T ))
= 1

uniformly in t ∈ [0, 1] and

lim
x→+∞

P(W1 +W2 ∈ [x, x+ T ))

2P(W1 ∈ [x, x+ T ))
= 1

for some fixed T > 0, see [3].

Proposition 4.3. Let τ be a critical GW tree with offspring distribution p satisfying
Assumption (2.5). Let d be the span of Card (τ) − 1 (that is the span of the set {k >
0, p(k) > 0}). Then we have

dist (τ |Card (τ) = nd+ 1) −→
n→+∞

dist (τ∗) (4.11)

and
dist (τ |Card (τ) ≥ n) −→

n→+∞
dist (τ∗). (4.12)
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Remark 4.4. If we considerA(t) = Card (t) and n0 = +∞ that isAn = {t ∈ T, Card (t) ≥
n}, the converse of Theorem 3.1 gives the sub-exponential property:

lim
n→+∞

P(Card (τ) ≥ n+ 1)

P(Card (τ) ≥ n)
= 1. (4.13)

Proof of Proposition 4.3. Consider A(t) = Card (t) and n0 = d. Then we have

An = {t ∈ T; Card (t) ∈ [n, n+ d)}.

We have for every t ∈ T, without any additional assumption,

A(t~ (t̃, x)) = A(t̃) +A(t), (4.14)

so Condition (3.1) holds. Again, it therefore suffices to prove

lim
n→+∞

P(Card (τ) ∈ [n+ 1, n+ 1 + d))

P(Card (τ) ∈ [n, n+ d))
= 1 (4.15)

to get (4.11). By the definition of d, a.s. we have A(τ) ∈ dN+ 1. We consider an integer
valued random variable X distributed according to p and we set Y = X − 1 so that
E[Y ] = 0 since we supposed that µ = 1. The random walk defined by (4.7) has period
d and we can choose j1 = −1 in (4.9) as P(Y = −1) > 0. Dwass formula (4.6) implies
that, for k = b(n− 1)/dc:

P(τ ∈ An) = P(A(τ) ∈ [n, n+ d)) = P(A(τ) = kd+ 1) =
1

kd+ 1
P(Skd+1 = −1).

Using (4.10), we deduce that:

lim
n→+∞

P(τ ∈ An+1)

P(τ ∈ An)
= lim
k→+∞

P(S(k+1)d+1 = −1)
P(Skd+1 = −1)

= 1

which readily implies (4.15).
The second assertion (4.12) is then a straightforward consequence of (4.15).

Remark 4.5. Notice that the local limit theorem gives asymptotics for P(Sn = −1)
when the distribution of X belongs to the domain of attraction of a stable law, see
Theorem 4.2.1 of [11] or Theorem 1.10 in [17]. This gives asymptotics for P(τ ∈ An)
which in turns allow to recover Condition (3.2).

4.4 Conditioning on the number of leaves, critical case

For a finite tree t ∈ T0, we denote by L0(t) = Card (L0(t)) the number of leaves of
t. The next proposition (which seems to be a new result) is in fact a particular case of
the proposition of the next section. However, we prove it separately for methodological
purpose as its proof and in particular the construction of the GW tree that codes L0(t)

of Remark 4.8 are much simpler in that particular case.

Proposition 4.6. Let τ be a critical GW tree with offspring distribution p satisfying
Assumption (2.5). Let d0 be the span of the random variable L0(τ)− 1. Then we have

dist (τ |L0(τ) = nd0 + 1) −→
n→+∞

dist (τ∗) (4.16)

and
dist (τ |L0(τ) ≥ n) −→

n→+∞
dist (τ∗). (4.17)
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Proof. We consider A(t) = L0(t) and n0 = d0 which yields An = {t ∈ T; L0(t) ∈
[n, n+ d0)}. We have for every trees t, t̃ ∈ T0 and every x ∈ L0(t)

A(t~ (t̃, x)) = A(t̃) +A(t)− 1. (4.18)

According to [20], see also Remark 4.8 below, L0(τ) is distributed as the total size of
a critical GW tree τ0 with offspring distribution given by the distribution of:

X0 =

N−1∑
k=1

Zk, (4.19)

with (Zk, k ∈ N∗) and N independent random variables such that (Zk, k ∈ N∗) are
independent and distributed as X − 1 conditionally on {X ≥ 1} (where X is a random
variable distributed according to p) and N has a geometric distribution with parameter
p(0). As E[X0] = 1, we get that τ0 is critical. Notice that d0 is also the span of the
random variable X0.

It follows from (4.15) that:

lim
n→+∞

P(L0(τ) ∈ [n+ 1, n+ 1 + d0))

P(L0(τ) ∈ [n, n+ d0))
= 1. (4.20)

Then use Theorem 3.1 to get that (4.16) holds.
If we consider n0 = +∞ that is:

An = {t ∈ T0; L0(t) ≥ n},

arguing as in the proof of the second part of Proposition 4.3, we get (4.17).

Remark 4.7. We deduce from Remark 4.4 that (4.17) implies

lim
n→+∞

P(L0(τ) ≥ n+ 1)

P(L0(τ) ≥ n)
= 1.

Remark 4.8. We shall briefly recall how one can prove that L0(τ) is distributed as
the total size of a GW process by mapping the set of leaves L0(τ) onto a GW tree, see
[20, 24] for details.

Let t be a tree. For u ∈ t, we define the left branch starting from u as:

Bt
g(u) = {uv; |v| ≥ 1 and v = {1}|v|} ∩ t.

We also define the left leaf G(u) of u and the left ancestors Ag(v) of a leaf v as:

Gt(u) = Bt
g(u) ∩ L0(t) and At

g(v) = {u ∈ Av; Gt(u) = v}.

For a leaf v ∈ L0(t), we define its leaf-children as:

Ct(v) = {Gt(ui); u ∈ At
g(v), 1 < i ≤ ku(t)},

labeled according to the following order: Gt(ui) < Gt(u′i′) if u < u′ in the lexicographic
order or if u = u′ and i < i′. This defines a tree, obtained from the leaves of t, denoted
by t{0} = F{0}(t). And we have Card (t{0}) = L0(t).

If τ is a GW tree then τ{0} = F{0}(τ) is also a GW tree with offspring distribution
given by the distribution of X0 in (4.19).
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Figure 1: A tree t on the left and the coding of L0(t) by a tree t0 = F (t) tree on the
right.

5 Conditioning on the number of individuals having a given num-
ber of children

Let A be a non-empty subset of N. For a tree t ∈ T, we write LA(t) = {u ∈
t; ku(t) ∈ A} the set of individuals whose number of children belongs to A and LA(t) =
Card (LA(t)) its cardinal. The case A = {0} represents the set of leaves of t and has
been treated in Section 4.4. We can also have LA(t) = Card (t) by taking A = N or
LA(t) can also be the number of internal nodes by taking A = N∗.

We set:
p(A) =

∑
k∈A

p(k).

5.1 The critical case

Let us first remark that for every t ∈ T0, every x ∈ L0(t) and every t̃ ∈ T

LA(t~ (t̃, x)) =

{
LA(t) + LA(t̃)− 1 if 0 ∈ A,
LA(t) + LA(t̃) if 0 6∈ A,

and hence LA satisfies the additive property (3.1) with D(t, x) = LA(t)− 1{0∈A}.

Theorem 5.1. Let τ be a critical GW tree with offspring distribution p satisfying As-
sumption (2.5) and such that p(A) > 0. Let dA be the span of the random variable
LA(τ)− 1. Then we have

dist (τ |LA(τ) = ndA + 1) −→
n→+∞

dist (τ∗) (5.1)

and
dist (τ |LA(τ) ≥ n) −→

n→+∞
dist (τ∗). (5.2)

Remark 5.2. It is interesting to note that previous works [24, 17] studying conditioned
GW trees involving LA required additional assumptions on the moments of p or on A
(finite variance offspring distribution and 0 ∈ A in [24], and offspring distribution p

in the domain of attraction of a stable law with either A or N \ A finite in the case of
infinite variance offspring distribution in [17]).

Remark 5.3. In the proof of Theorem 5.1, we will see that if 0 6∈ A, then dA = 1.

Remark 5.4. As a corollary, we get the following result, which is proved using the same
technique as in Remark 4.4:

lim
n→+∞

P(LA(τ) ≥ n+ 1)

P(LA(τ) ≥ n)
= 1. (5.3)
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Proof of Theorem 5.1. In what follows, we denote by X a random variable distributed
according to p. We consider only P(X ∈ A) < 1, as the case P(X ∈ A) = 1 corresponds
to the critical case with A = N of Section 4.3.

For a tree t such that LA(t) 6= ∅, following [24], we can map the set LA(t) onto a
tree tA. We first define a map φ from LA(t) to U and a sequence (tk)1≤k≤n of trees
(where n = LA(t)) as follows. Recall that we denote by < the lexicographic order on U .
Let u1 < · · · < un be the ordered elements of LA(t).

• φ(u1) = ∅, t1 = {∅}.
• For 1 < k ≤ n, recall that SM({uk−1,uk})(t) denotes the tree above the most re-

cent common ancestor of uk−1 and uk, and we set s = {M({uk−1, uk})u, u ∈
SM({uk−1,uk})(t)} and v = min(LA(s)). Then, we set

φ(uk) = φ(v)(kφ(v)(tk−1) + 1)

the concatenation of the node φ(v) with the integer kφ(v)(tk−1) + 1, and

tk = tk−1 ∪ {φ(uk)}.

In other words, φ(uk) is a child of φ(v) in tk and we add it “on the right” of the
other children (if any) of φ(v) in the previous tree tk−1 to get tk.

It is clear by construction that tk is a tree for every k ≤ n. We set tA = tn. Then φ is
a one-to-one map from LA(t) onto tA. The construction of the tree tA is illustrated on
Figure 2. When D = {0}, this construction coincides with those of Remark 4.8.

Figure 2: left: a tree t, right: the tree tA for A = {3}

If τ is a GW tree with offspring distribution p, the tree τA associated with LA(τ),
conditioned on LA(τ) 6= ∅, is then, according to [24] Theorem 6, a GW tree whose
offspring distribution is the law of the random variable XA defined as follows:

• Let (Xi, i ≥ 1) be a sequence of independent random variables distributed accord-
ing to p.

• Let N = inf{k, Xk ∈ A} and T = inf{k,
∑k
i=1(Xi − 1) = −1}.

• Let X̃ be a r.v. distributed as

1 +

N∑
i=1

(Xi − 1)

conditioned on N ≤ T .

• Then XA is distributed conditionally given {X̃ = k} as a binomial r.v. with param-
eters k and q = P(N ≤ T ) = P(LA(τ) 6= ∅).
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Moreover, as τ is critical, τA (conditioned on {LA(τ) 6= ∅}) is also critical, see [24]
Lemma 6.

Then, LA(τ) is just the total progeny of τA. Remark that dA is also the span of XA.
Remark that, if 0 ∈ A, then LA(τ) > 0 and thus q = 1 and XA = X̃. Notice that we may
have dA > 1. On the contrary, if 0 6∈ A, we have q < 1 and therefore P(XA = 1) > 0. As
a consequence, we have dA = 1.

Consider n0 = dA which gives

An = {t ∈ T; LA(t) ∈ [n, n+ dA)}.

As LA(τ) , conditioned on being positive, is distributed as the total size of a critical GW
tree, we deduce from Subsection 4.3 that

lim
n→+∞

P(LA(τ) ∈ [n+ 1, n+ 1 + dA))

P(LA(τ) ∈ [n, n+ dA))
= 1 (5.4)

and thus by Theorem 3.1 that (5.1) holds. �

5.2 The sub-critical case

Let p be an offspring distribution. Let A ⊂ N such that p(A) > 0. For every θ > 0

such that
∑
k∈N θ

kp(k) is finite, we define on N the function pθ by

∀k ≥ 0, pθ(k) =

{
cA(θ)θ

kp(k) if k ∈ A,
θk−1p(k) if k 6∈ A

where the normalizing constant cA(θ) is given by:

cA(θ) =
1−

∑
k 6∈A θ

k−1p(k)∑
k∈A θ

kp(k)
·

We denote by I the set of θ such that pθ defines a probability distribution on N.
Notice that I is an interval with bounds θ0 < 1 ≤ θ1. We have the special cases θ0 = 0 if
0 ∈ A and θ0 = p(0) if A = N∗.

Proposition 5.5. Let τ be a GW tree with offspring distribution p satisfying p(0) > 0

and p(0) + p(1) < 1. Let A ⊂ N such that p(A) > 0. For every θ ∈ I, let τθ be a GW tree
with offspring distribution pθ. Then the conditional distributions of τ given {LA(τ) = n}
and of τθ given {LA(τθ) = n} are the same.

Remark 5.6. This proposition covers Kennedy’s result [15] for A = N and the pruning
procedure of [2] for A = {0}.

Proof. Let t ∈ T0. Then we have, using the definition of pθ and (2.2):

P(τθ = t) =
∏
v∈t

pθ(kv(t))

=
∏

v∈t,kv(t)∈A

cA(θ)θ
kv(t)p(kv(t))

∏
v∈t,kv(t) 6∈A

θkv(t)−1p(kv(t))

= cA(θ)
LA(t)θ

∑
v∈t kv(t)−LAc (t)P(τ = t)

= cA(θ)
LA(t)θCard (t)−1−LAc (t)P(τ = t)

= θ−1(θcA(θ))
LA(t)P(τ = t).
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We deduce that

P(LA(τθ) = n) =
∑

t∈T0, LA(t)=n

P(τθ = t)

= θ−1(θcA(θ))
n

∑
t∈T0, LA(t)=n

P(τ = t)

= θ−1(θcA(θ))
nP(LA(τ) = n)

and finally, for every t ∈ T0 such that LA(t) = n, we have

P(τθ = t
∣∣ LA(τθ) = n) =

P(τθ = t)

P(LA(τθ) = n)

=
θ−1(θcA(θ))

nP(τ = t)

θ−1(θcA(θ))nP(LA(τθ) = n)
= P(τ = t

∣∣ LA(τ) = n).

We shall say that the offspring distribution p is generic (with respect to A) if there
exists θc ∈ I such that pθc is critical.

Corollary 5.7. Let τ be a sub-critical GW tree with offspring distribution p satisfying
Assumption (2.5). Let A ⊂ N such that p(A) > 0. For every θ ∈ I, let τθ be a GW tree
with offspring distribution pθ. If p is generic, that is there exists θc ∈ I such that pθc is
critical, then

dist (τ |LA(τ) = ndA + 1) −→
n→+∞

dist (τ∗θc)

and
dist (τ |LA(τ) ≥ n) −→

n→+∞
dist (τ∗θc).

Remark 5.8. The first convergence of the corollary remains valid for a super-critical
offspring distribution but not the second one as the conditional distribution cannot be
written as a mixture of the first one as the tree may be infinite.

Remark 5.9. If the critical value θc of Corollary 5.7 does not exist, then we observe a
condensation phenomenon: the limiting tree does not have an infinite spine, but exhibits
a unique vertex with an infinite number of children, see [14, 12] for A = N and the
forthcoming paper [1] for the general case.

6 Conditioning by the size of a high generation

We end this paper with a conditioning which does not enter into the framework of
Theorem 3.1. However its proof can be easily adapted. For a tree t, we denote by

Gn(t) = Card ({u ∈ t, |u| = n})

the size of the n-th generation of t. Then we have

Proposition 6.1. Let τ be a critical GW tree with offspring distribution p satisfying
Assumption (2.5). Let (αn, n ∈ N) be a sequence of positive integers. If for all j ∈ N∗

lim
n→+∞

P(Gn−j(τ) = αn)

P(Gn(τ) = αn)
= 1, (6.1)

then we have
dist (τ |Gn(τ) = αn) −→

n→+∞
dist (τ∗). (6.2)

EJP 19 (2014), paper 2.
Page 16/19

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-2747
http://ejp.ejpecp.org/


Conditioned Galton-Watson trees

Proof. For every tree t ∈ T0, every x ∈ L0(t) and every tree t̃ ∈ T, we have

Gn(t~ (t̃, x)) = Gn(t) + Gn−|x|(t̃)

which generalizes Assumption (3.1).
The same computations as in the proof of Theorem 3.1 give for t ∈ T0, x ∈ L0(t) and

n ≥ H(t):

P(τ ∈ T(t, x),Gn(τ) = αn) =
1

p(0)
P(τ = t)P(Gn−|x|(τ) = αn − Gn(t))

= P(τ∗ ∈ T(t, x))P(Gn−|x|(τ) = αn).

Therefore, we obtain by Assumption (6.1):

lim
n→+∞

P(τ ∈ T(t, x)|Gn(τ) = αn) = lim
n→+∞

P(τ∗ ∈ T(t, x))
P(Gn−|x|(τ) = αn)

P(Gn(τ) = αn)

= P(τ∗ ∈ T(t, x)).

The result follows from Lemma 2.1.

Corollary 6.2. Let τ be a critical GW tree with offspring distribution p given by a
mixture of a geometric distribution with parameter q ∈ (0, 1) and a Dirac mass at 0, i.e.
p(0) = 1− q and p(k) = q2(1− q)k−1 for k ≥ 1. Let (αn, n ∈ N) be a sequence of positive
integers such that limn→+∞ n−2αn = 0. Then we have:

dist (τ |Gn(τ) = αn) −→
n→+∞

dist(τ∗).

Proof. In that particular case, the generating function ϕn of Gn(τ) is explicitly known
and we have for every s ∈ [0, 1]

ϕn(s) =
nc− (nc− 1)s

(nc+ 1)− ncs

with c = (1− q)/q. Expanding ϕn gives for every k ≥ 1:

P(Gn(τ) = k) =
(nc)k−1

(nc+ 1)k+1
,

and therefore for j ≥ 1

lim
n→+∞

P(Gn−j(τ) = αn)

P(Gn(τ) = αn)
= lim
n→+∞

n(nc+ 1)

(n− j)((n− j)c+ 1)

(
1 + 1

nc

1 + 1
(n−j)c

)αn
= 1.

Then use Proposition 6.1 to conclude.

Remark 6.3. As for Theorem 3.1, we can obtain the converse of Proposition 6.1. We
deduce that, in the geometric case of Corollary 6.2, the GW tree τ conditioned on
{Gn(τ) = kbnac}, with k ∈ N∗, converges in distribution to Kesten’s tree if and only
if a ∈ [0, 2).

Let X be a random variable with distribution p, d the span of X and set B = E[X(X−
1)]. We recall the theorem of [22]. Assume that p is critical, that Assumption (2.5) holds
and that B is finite. If

lim
n→+∞

αn = +∞ and lim sup
n→+∞

αn
n
< +∞, (6.3)
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then we have:

lim
n→+∞

B2n2
(
1 +

2d

Bn

)αn
P(Gn(τ) = dαn) = 4d.

We also recall Theorem 1 of [21]. Let ρ be the convergence radius of the generating
function of p. Assume that p is critical, that Assumption (2.5) holds and that ρ > 1.
Assume also that

lim
n→+∞

αn
n

= +∞ and lim
n→+∞

αn
n2

= 0. (6.4)

Then there exists c ∈ R such that:

lim
n→+∞

B2n2 e
2dαn
Bn +cαn

n2 log(αn/n)P(Gn(τ) = dαn) = 4d.

Then using Proposition 6.1, we give an immediate extension of Corollary 6.2 to a
large class of offspring distributions.

Proposition 6.4. Let p be a critical offspring distribution satisfying Assumption (2.5)
and such that B is finite. Assume either that (αn, n ∈ N) is a sequence of positive
integers satisfying (6.3) or that ρ > 1 and (αn, n ∈ N) is a sequence of positive integers
satisfying (6.4). Let τ be a critical GW tree with offspring distribution p. Then we have

dist (τ |Gn(τ) = dαn) −→
n→+∞

dist (τ∗).
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