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Abstract

In this paper we find a critical condition for nonempty intersection of a limsup ran-
dom fractal and an independent fractal percolation set defined on the boundary of a
spherically symmetric tree. We then use a codimension argument to derive a formula
for the Hausdorff dimension of limsup random fractals.
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1 Introduction

A limsup random fractal on RN can be constructed as follows: (i) for each n ≥
1, let Dn denote the collection of all N -dimensional dyadic hyper-cubes of the form
[k12−n, (k1 + 1)2−n] × · · · × [kN2−n, (kN + 1)2−n], where k ∈ ZN+ is an N -dimensional
positive integer; (ii) for each n ≥ 1, let {Zn(I) : I ∈ Dn} denote a collection of Bernoulli
random variables with distribution P(Zn = 1) = qn; (iii) a limsup random fractal, de-
noted by A, is then defined by

A :=
⋂
n≥1

⋃
k≥n

Ak with An :=
⋃

I∈Dn,Zn(I)=1

I◦, (1.1)

where I◦ denotes the interior of I.
Limsup random fractals arise in the study of stochastic processes. Many interest-

ing random sets are limsup random fractals. For example, the fast points of Brownian
motion considered by Orey and Taylor [16], the thick points of Brownian motion investi-
gated by Dembo, Peres, Rosen, and Zeitouni [1], and the Dvoretzky covering set on the
unit circle studied by Li, Shieh and Xiao [10], to name only a few.

Limsup random fractals have intimate connection to packing dimension. In partic-
ular, if we assume that t = − limn→∞ n−1 log2 qn exists and call it the index of A, it is
shown by Khoshnevisan, Peres, and Xiao [9] that for all Borel set F ⊂ RN , dimP(F∩A) =

dimP(F ) almost surely, provided that dimP(F ) > t and certain correlation bounds on the
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Hausdorff dimension of limsup random fractals

random variables {Zn(I) : I ∈ Dn} hold. Here dimP denotes packing dimension. How-
ever, the Hausdorff dimension of a limsup random fractal is unknown in general. It is
shown in [9] that for all Borel sets F ⊂ RN with dimH(F ) > t,

dimH(F )− t ≤ dimH(F ∩A) ≤ dimP(F )− t a.s., (1.2)

where dimH denotes Hausdorff dimension. For sets with equal Hausdorff and packing
dimension, (1.2) gives the Hausdorff dimension of a limsup random fractal. However,
it is well known that there are sets whose Hausdorff dimension is strictly less than its
packing dimension.

In this paper we strive to derive a formula for the Hausdorff dimension of limsup
random fractals. We notice that the construction of a limsup random fractal on the
unit hypercube [0, 1]N generates a 2N -nary tree T . More specifically, we can associate
each sub-hypercube with a vertex, and connect two sub-hypercubes with an edge if
one contains the other and the ratio of their side lengths is 2. The collection of all
infinite rays of T is called the boundary of T , denoted by ∂T , and it can be made into a
nice metric space. Under the assumption that the Bernoulli random variables Zn’s are
independent, we have succeeded in obtaining a formula for the Hausdorff dimension of
limsup random fractals defined on the boundary of a spherically symmetric tree, where
a tree is said to be spherically symmetric if and only if all the vertices at the same
generation have same number of children. The boundaries of these trees include many
sets whose Hausdorff and packing dimension are different. Thus our result improves
(1.2).

For each s ≥ 0, we define a new index on the boundary ∂T of a spherically symmetric
tree T via the prescription

δs(∂T ) := lim
n→∞

1

−n
log

 inf
µ∈P(∂S)

∫∫
d(x,y)≤e−n

d(x, y)−sµ(dx)µ(dy)

 , (1.3)

where d is the tree metric on the boundary and P(∂T ) denotes the collection of all Borel
probability measures supported on ∂T . By using this index, we are able to obtain a
formula of the Hausdorff dimension of limsup random fractals.

Theorem 1.1. Let T be a spherically symmetric tree and A be a limsup random frac-
tal with parameters {qn}n≥1. Assume that t = − limn→∞ n−1 ln qn exists and 0 < t <

dimP(∂T ). Furthermore, assume the Bernoulli random variable Zn’s in the definition of
the limsup random fractal are independent. Then

||dimH(A)||L∞(P) = sup{s ≥ 0 : δs(∂T ) > t}, (1.4)

with the convention that sup ∅ := 0.

We use a codimension argument developed in Lyons [11] and Peres [17] to prove the
above theorem. We consider a fractal percolation set defined on the same boundary of
a spherically symmetric tree and independently with respect to the limsup random frac-
tal. A fractal percolation set is defined in a similar manner as limsup random fractals,
except that the Bernoulli random variables are independent and identically distributed
and this random fractal consists of rays along which the Bernoulli random variables all
equal to 1. The codimension argument (see Corollary 3.2) tells us that a nonrandom set
will hit a fractal percolation set with positive probability if the Hausdorff dimension of
this nonrandom set is large enough and the set will not hit the fractal percolation set
almost surely if its Hausdorff dimension is too small. In Theorem 5.6, we strive to find
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a critical condition for the limsup random fractal hitting an independent fractal perco-
lation set with positive probability. This critical condition will give us estimates of the
Hausdorff dimension of the limsup random fractal.

The result of Khoshnevisan, Peres, and Xiao [9] also yields a codimension argument
(see Theorem 3.5): a nonrandom set will hit a limsup random fractal almost surely if the
packing dimension of this nonrandom set is large enough and it will not hit the limsup
random fractal if its packing dimension is too small. As a result of the critical condition
derived in Theorem 5.6, we also obtain the packing dimension of a fractal percolation
set defined on a spherically symmetric tree in Corollary 5.7.

The remainder of the article is organized as follows. In Section 2, we give some
background materials, including definitions for trees, Riesz capacity and fractal dimen-
sions as well as their properties. Then we define random fractals on the boundary of
a tree and review some known results in Section 3. In Section 4, we define two new
indices and discuss their properties. Finally in Section 5, we estimates the hitting prob-
ability of a limsup random fractal and an independent fractal percolation set, and use
codimension arguments and the new indices to compute the Hausdorff dimension of
limsup random fractals and packing dimension of fractal percolation sets. We also give
an example in which we explicitly calculate the dimension of the two random fractals.

2 Preliminaries

2.1 Tree Topology

Let T = (V, E) denote a tree with distinct root o, where V is the collection of all
vertices and E ⊂ V × V is the collection of all edges. Figure 1 gives an illustration of a
typical tree. For x, y ∈ V, if x is on the path from o to y, then we call x an ancestor
of y, call y a descendant of x, and use y � x to denote this relation. In particluar if
(x, y) ∈ E, then we call x the parent of y and y a child of x. For each x ∈ V, let deg(x)

denote the number of children x has, that is,

deg(x) := #{v ∈ V : (x, v) ∈ E}. (2.1)

If deg(x) is finite for all x ∈ V, then T is called locally finite. We are interested in locally
finite trees with infinitely many vertices. Moreover, if deg(x) = deg(y) whenever x and
y have the same distance from root o, then the tree is called spherically symmetric.

For a tree T , a ray is an infinite path starting from o, that is, a sequence of vertices
{o, v1, v2, . . . } ⊂ V such that (o, v1) ∈ E and (vn, vn+1) ∈ E for all n ≥ 1. The collection of
all rays is called the boundary of T and denoted by ∂T . For a ray σ = (o, v1, . . . ), define
σ(n) := vn and denote x ∈ σ if x = vn for some n ≥ 1. For two rays σ = (o, v1, . . . ) and
γ = (o, u1, . . . ), σ = γ if and only if vn = un for all n ≥ 1. Furthermore, let σfγ denote
the common vertex on σ and γ which is farthest from o. We can define a metric d on ∂T
by

d(σ, γ) := e−|σfγ| ∀σ, γ ∈ ∂T, (2.2)

where |x| denote the number of edges between x and o. It follows immediately that d is
an ultrametric on ∂T in the sense that d(σ, γ) ≤ max{d(σ, η), d(γ, η)} for all σ, γ, η ∈ ∂T .
For σ ∈ ∂T and r > 0, let B(σ, r) denote the closed ball {γ ∈ ∂T : d(σ, γ) ≤ r}. Moreover,
define

B(x) := {σ ∈ ∂T : x ∈ σ}. (2.3)

In words, B(x) is the collection of all rays that pass through the vertex x. By definition,
we have B(x) = B(σ, r) with r = e−|x| and any σ such that x ∈ σ. Finally, let T denote
the Borel σ-alegbra generated by all closed balls.

The following proposition is well known.
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Figure 1: A General Infinite Tree

Proposition 2.1. (∂T, d) is a complete separable metric space. Moreover, (∂T, d) is
compact and totally disconnected.

Remark 2.2. In (2.2), if we replace e by any b > 1, the resulting topology does not
change. In particular, Proposition 2.1 remains valid.

2.2 Riesz Energy and Capacity

Let (X, d) be a general metric space. For every Borel subset G ⊂ X, let P(G) denote
the collection of all Borel probability measures supported on G. For s ≥ 0 and µ ∈ P(X),
the s-dimensional Riesz energy of µ is defined as

Es(µ) :=

∫∫
d(σ, γ)−sµ(dσ)µ(dγ). (2.4)

And the s-dimensional Riesz capacity of G is defined as

Caps(G) :=

(
inf

µ∈P(G)
Es(µ)

)−1
, (2.5)

with the convention Caps(∅) := 0. When X is the boundary of a tree and d is define in
(2.2), we have special forms for the Riesz energy and capacity. For each µ ∈ P(∂T ), we
write µ(x) := µ(B(x)). Furthermore, for x, y ∈ V, let σx and σy denote two rays such
that x ∈ σx and y ∈ σy. Then we can define

xfy :=

{
σxfσy, if x 6= y

x, if x = y
, and xfγ :=

{
σxfγ, if x /∈ γ
x, if x ∈ γ

. (2.6)

Note that xfy and xfγ do not depend on the choices of σx and σy.

Proposition 2.3. For s ≥ 0, let p = e−s. Then for all µ ∈ P(∂T ) and n ≥ 1,

Es(µ) =
∑∑
|x|=|y|=n
x 6=y

p−|xfy|µ(x)µ(y) +
∑
|x|=n
µ(x)>0

Es(µx)µ(x)2, (2.7)

where µx ∈ P(B(x)) satisfies µx(G) = µ(G ∩ B(x))/µ(x) for all G ∈ T , provided that
µ(x) > 0.

EJP 18 (2012), paper 39.
Page 4/26

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2273
http://ejp.ejpecp.org/


Hausdorff dimension of limsup random fractals

Proof. First note that d(σ, γ)−s = (e−|σfγ|)−s = p−|σfγ|. Consider x 6= y with |x| = |y| = n.
For all σ ∈ B(x) and γ ∈ B(y), we have

σfγ = σfy = xfγ = xfy. (2.8)

Thus ∫∫
B(x)×B(y)

d(σ, γ)−sµ(dγ)µ(dσ) =

∫
B(x)

p−|σfy|µ(y)µ(dσ) = p−|xfy|µ(y)µ(x). (2.9)

Moreover, if µ(x) > 0, then∫∫
B(x)×B(x)

d(σ, γ)−sµ(dγ)µ(dσ) = µ(x)2 ·
∫∫

d(σ, γ)−sµx(dγ)µx(dσ)

= µ(x)2Es(µx).

(2.10)

If µ(x) = 0, then we simply have
∫∫
B(x)×B(x)

d(σ, γ)−sµ(dγ)µ(dσ) = 0. Therefore

Es(µ) =
∑∑
|x|=|y|=n
x 6=y

∫∫
B(x)×B(y)

d(σ, γ)−sµ(dγ)µ(dσ)

+
∑
|x|=n

∫∫
B(x)×B(x)

d(σ, γ)−sµ(dγ)µ(dσ)

=
∑∑
|x|=|y|=n
x 6=y

p−|xfy|µ(x)µ(y) +
∑
|x|=n
µ(x)>0

Es(µx)µ(x)2.

(2.11)

This completes the proof.

Corollary 2.4. For all G ∈ T , s ≥ 0, and n ≥ 1,

Caps(G) = inf
µ∈P(G)


∑∑
|x|=|y|=n
x6=y

p−|xfy|µ(x)µ(y) +
∑
|x|=n
µ(x)>0

µ(x)2

Caps(B(x) ∩G)



−1

.
(2.12)

Proof. From Proposition 2.3, we have

Caps(G) = inf
µ∈P(G)


∑∑
|x|=|y|=n
x 6=y

p−|xfy|µ(x)µ(y) +
∑
|x|=n
µ(x)>0

Es(µx)µ(x)2



−1

,
(2.13)

where µx ∈ P(B(x)∩G) satisfies µx(H) = µ(H ∩B(x))/µ(x) for all H ∈ T , provided that
µ(x) > 0. Let C1 denote the reciprocal of the right hand side of (2.13) and C2 denote
the reciprocal of the right hand side of (2.12).

On one hand, if µ(x) > 0, then Es(µx) ≥ Caps(B(x) ∩ G)−1. Thus we have C1 ≥ C2.
On the other hand, for every ε > 0, we can find some ν ∈ P(G) such that∑∑

|x|=|y|=n
x6=y

p−|xfy|ν(x)ν(y) +
∑
|x|=n
ν(x)>0

ν(x)2

Caps(B(x) ∩G)
≤ C2 + ε. (2.14)
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For each xwith |x| = n and ν(x) > 0, by the definition of Riesz capacity, we can find some
λx ∈ P(B(x) ∩ G) such that Es(λx) ≤ Caps(B(x) ∩ G)−1 + ε. Define a Borel probability
measure µ∗ ∈ P(G) by µ∗(y) = ν(y) if |y| ≤ n and µ∗(y) = ν(x) · λx(y) if |y| > n, where
|x| = n and y � x. Then we have∑∑

|x|=|y|=n
x 6=y

p−|xfy|µ∗(x)µ∗(y) +
∑
|x|=n
µ∗(x)>0

Es(µ∗x)µ∗(x)2

≤
∑∑
|x|=|y|=n
x 6=y

p−|xfy|ν(x)ν(y) +
∑
|x|=n
ν(x)>0

(
(Caps(B(x) ∩G))−1 + ε

)
ν(x)2

≤ C2 + 2ε.

(2.15)

Let ε ↓ 0 to see that C2 ≥ C1.

When the tree T is spherically symmetric, Riesz capacities can be obtained by com-
puting energies of the uniform probability measure.

Lemma 2.5. Let T be a spherically symmetric tree and ν be the uniform probability
measure on ∂T , that is, ν satisfies

ν(x) = ν(y), for all |x| = |y| = m and all m ≥ 1. (2.16)

Then

Es(ν) = (Caps(∂T ))−1 ∀ 0 ≤ s < dimH(∂T ). (2.17)

Proof. Since T is spherically symmetric, the degrees of the vertices at the same gener-
ation are equal. Thus we can let Kn denote the degree of a vertex at generation n. If
for each vertex we fix an order for its children, then each ray σ ∈ ∂T can be identified
by a sequence of integers (ln)n≥1 such that σ(n) is the lnth child of σ(n − 1). We will
simply use σ = (ln)n≥1 to denote this identification. Define a binary operation “+” on
∂T by

σ + γ = ((ln +mn) mod Kn)n≥1 , (2.18)

where σ = (ln)n≥1 and γ = (mn)n≥1. It follows that (∂T,+) is a group. Furthermore,
(∂T,+) is a topological group under the metric d. The proof of Theorem 3.1 of Khoshen-
visan [8] implies that the equilibrium measure that minimizes the Riesz energies on a
topological group is the Haar measure. This completes the proof.

For a Borel set G ⊂ ∂T and s ≥ 0, the collection of Borel probability measures
supported on G with finite s-dimensional Riesz energy is of special interest. Let Ps(G)

denote this collection, that is,

Ps(G) := {µ ∈ P(G) : Es(µ) <∞}. (2.19)

We have a necessary condition for µ ∈ P(G) to have finite s-dimensional Riesz energy.

Proposition 2.6. If Caps(B(z) ∩G) = 0, then µ(z) = 0 for all µ ∈ Ps(G).

Proof. Since Caps(B(z) ∩G) = 0, Es(ν) = ∞ for all ν ∈ P(B(z) ∩G) by the definition of
Riesz capacity. From Proposition 2.3 we have,

Es(µ) =
∑∑
|x|=|y|=|z|

x6=y

p−|xfy|µ(x)µ(y) +
∑
|x|=|z|
µ(x)>0

Es(µx)µ(x)2, (2.20)
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where µx ∈ P(B(x)∩G) satisfies µx(H) = µ(H ∩B(x))/µ(x) for all H ∈ T , provided that
µ(x) > 0. If µ(z) > 0, then we have

Es(µ) ≥ Es(µz)µ(z)2 =∞. (2.21)

Therefore, we must have µ(z) = 0.

Lemma 2.7. For fixed s > 0 and µ ∈ Ps(∂T ), we have

Es(µ) = lim
n→∞

∑∑
|x|=|y|=n
x 6=y

p−|xfy|µ(x)µ(y).
(2.22)

In particular,
lim
n→∞

∑
|x|=n,µ(x)>0

Es(µx)µ(x)2 = 0, (2.23)

where µx ∈ P(B(x)) satisfies µx(G) = µ(G ∩ B(x))/µ(x) for all G ∈ T , provided that
µ(x) > 0.

Proof. Since µ ∈ Ps(∂T ), we have µ× µ({σ = γ}) = 0. Thus∫∫
{σ=γ}

d(σ, γ)−sµ(dσ)µ(dγ) = 0. (2.24)

The fact limn→∞ 1{d(σ, γ) ≥ e−n}d(σ, γ)−s = 1{σ 6= γ}d(σ, γ)−s and an application of the
monotone convergence theorem complete the proof.

2.3 Fractal Dimensions

In this part, we recall the definitions and properties of fractal dimensions. We refer
to Mattila [14] for more details. Let (X, ρ) be a locally compact metric space and B be its
Borel σ-algebra induced by the metric. For every subset F , let |F | denote the diameter
of F , that is, |F | := sup{ρ(x, y) : x, y ∈ F}. For fixed s ≥ 0, define the s-dimensional
Hausdorff measure Hs by

Hs(F ) := lim
δ↓0

inf

∑
n≥1

|Fn|s : F ⊂
⋃
n≥1

Fn, |Fn| < δ for all n ≥ 1

 . (2.25)

Then for every F ⊂ X the Hausdorff dimension of F is defined by

dimH(F ) := inf{s ≥ 0 : Hs(F ) = 0} = sup{s ≥ 0 : Hs(F ) =∞}. (2.26)

We can consider packings instead of coverings to derive a packing measure. This
was first done by Tricott in 1982 [18]. For every F ⊂ X and δ > 0, a δ-packing of F is a
countable collection of disjoint closed balls {B(xn, rn)}n≥1 such that xn ∈ F and rn < δ

for all n ≥ 1. For each fixed s ≥ 0, define

P s(F ) = lim
δ↓0

sup

∑
n≥1

(2rn)s : {B(xn, rn)}n≥1 is a δ-packing of F

 . (2.27)

The set function P s is a premeasure and we regularize it to obtain the s-dimensional
packing measure Ps:

Ps(F ) := inf

{ ∞∑
n=1

P s(Fn) : F ⊂
∞⋃
n=1

Fn

}
. (2.28)
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Then for every F ⊂ X we define the packing dimension of F by

dimP(F ) := inf{s ≥ 0 : Ps(F ) = 0} = sup{s ≥ 0 : Ps(F ) =∞}. (2.29)

Packing dimension can also be defined in terms upper Minkowski dimension. For
every bounded set F ⊂ X and for each ε > 0, let N(F, ε) denote the smallest number of
closed balls with radius ε that are needed to cover F :

N(F, ε) := min

{
N : F ⊂

N⋃
n=1

B(xn, ε)

}
. (2.30)

Then the upper Minkowski dimension and lower Minkowski dimension of F are
defined by

dimM(F ) := lim
ε↓0

lnN(F, ε)

− ln ε
and dimM(F ) := lim

ε↓0

lnN(F, ε)

− ln ε
, (2.31)

respectively. Theorem 5.11 of Matilla [14] states that

dimP(F ) = inf

{
sup
n≥1

dimM(Fn) : F ⊂
∞⋃
n=1

Fn, Fn is bounded

}
, (2.32)

for all F ⊂ X.
Now let T be a tree and consider (X, ρ) = (∂T, d). Since (∂T, d) is an ultrametric

space, Theorem 3 of Haase [4] shows that for each s > 0, Hs(F ) ≤ Ps(F ) for all F ⊂ ∂T .
Therefore

dimH(F ) ≤ dimP(F ) ∀F ⊂ ∂T. (2.33)

In fact, there exists F ⊂ ∂T such that dimH(F ) < dimP(F ).

Lemma 2.8. Let T be a spherically symmetric tree. Then dimH(∂T ) = dimM(∂T ) and
dimP(∂T ) = dimM(∂T ).

Proof. The fact dimH(∂T ) = dimM(∂T ) when T is spherically symmetric is a standard
result in Chapter 1 of Lyons and Peres [13]. In order to show the other equality, we use
a Baire category argument. Let Nn denote the total number of vertices at generation n.
Then a monotone argument shows that

dimM(∂T ) = lim
n→∞

lnNn
n

. (2.34)

For each x ∈ V, the closed ball B(x) can be regarded as the boundary of a subtree
TB(x) = (VB(x), EB(x)), where VB(x) includes x’s ancestors, x, and x’s descendants and

EB(x) = (VB(x)×VB(x))∩E. For each m ≥ 1, let NB(x)
m denote the total number of vertices

at generation m of the subtree TB(x). Since T is spherically symmetric, we have

NB(x)
m ·Nn = Nm ∀m ≥ n, (2.35)

where n = |x|. Thus

dimM(B(x)) = dimM(∂TB(x)) = lim
m→∞

lnN
B(x)
m

m
= lim
m→∞

ln(Nm ·N−1|x| )
m

= dimM(∂T ).

(2.36)

Since B(x) is also an open set, (2.36) implies that dimM(U) = dimM(∂T ) for all open set
U ⊂ ∂T . Then Proposition 3.6 of Falconer [3] implies that dimM(∂T ) = dimP(∂T ).
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Example 2.9. We can use Lemma 2.8 to construct a tree T such that dimH(∂T ) <

dimP(∂T ). Let {nm}m≥1 be a sequence of integers so that

lim
m→∞

nm =∞ and lim
m→∞

nm
nm+1 − nm

= 0. (2.37)

For example, let k1 = 1, k2 = 2 and km = (
∑m−1
i=1 ki)

2 for all m ≥ 3. Then the sequence
{nm}m≥1 with nm =

∑m
i=1 ki satisfies this requirement. Now construct a tree T by the

following scheme: if m = 2k − 1, then all vertices between generation nm + 1 and nm+1

have exactly 3 children; if m = 2k, then all vertices between generation nm + 1 and
nm+1 have exactly 2 children. It follows that

dimM(∂T ) ≥ lim
k→∞

lnNn2k−1

n2k−1
= ln 3 and dimM(∂T ) ≤ lim

k→∞

lnNn2k

n2k
= ln 2. (2.38)

Since this tree is spherically symmetric, we can apply Lemma 2.8 to see that dimH(∂T ) <

dimP(∂T ).

3 Random Fractals On Trees

3.1 Definition of Random Fractals

In this section we define the main object we are studying, namely the limsup ran-
dom fractal . For each x ∈ V, define a random variable Zx with distribution

P(Zx = 1) = qn = 1− P(Zx = 0) , (3.1)

where n = |x| and 0 ≤ qn ≤ 1. Note that qn may vary as n changes. Define the limsup
random fractal A with parameters {qn}n≥1 by

A :=

∞⋂
n=1

∞⋃
k=n

Ak with Ak :=
⋃

|x|=k,Zx=1

B(x) ∀ k ≥ 1. (3.2)

Thus if σ ∈ A, then Zσ(n) = 1 for infinitely many n. Throughout this paper we will
assume that

t = − lim
n→∞

1

n
ln qn exists, (3.3)

and call t the index of the limsup random fractal A. Moreover, we assume that A
satisfies the independence assumption:

Let {Wi}i∈I be a collection of subsets of V so that xi is the youngest (the root o
is the oldest) common ancestor of all x ∈ Wi. We assume that the collections of
random variables {{Zx}x∈Wi

}i∈I are mutually independent if xi � xj for all i, j ∈ I.

There is a dual object of limsup random fractal, namely the fractal percolation set .
Define i.i.d. random variables {Yx}x∈V with

P(Yx = 1) = p = 1− P(Yx = 0) , (3.4)

where 0 ≤ p ≤ 1. Define the fractal percolation set E with parameter p by

E :=

∞⋂
n=1

En with En := {σ ∈ ∂T : Yσ(i) = 1 for 1 ≤ i ≤ n} ∀n ≥ 1. (3.5)

Thus if σ ∈ E, then Yσ(n) = 1 for all n ≥ 1. We will call s := − ln p the index of the
fractal percolation set E.

Figure 2 illustrates part of a limsup random fractal and/or a fractal percolation set.
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Figure 2: A Graphical Interpretation: Solid Line for 1 and Dashed Line for 0

3.2 Fractal Percolation Sets and Hausdorff Dimension

There is a close connection between fractal percolation sets defined in (3.5) and
Hausdorff dimension. The following theorem is due to Lyons [11].

Theorem 3.1. (Lyons [11]) Let T be a tree and E be a fractal percolation set defined
on ∂T with index s. Then:

(i) If dimH(∂T ) > s, then P(E 6= ∅) > 0; and

(ii) If dimH(∂T ) < s, then P(E 6= ∅) = 0.

We can generalize this result to all Borel subsets of ∂T .

Corollary 3.2. Let T be a tree and E be a fractal percolation set defined on ∂T with
index s. Then for all Borel set F ⊂ ∂T :

(i) If dimH(F ) > s, then P(E ∩ F 6= ∅) > 0; and

(ii) If dimH(F ) < s, then P(E ∩ F 6= ∅) = 0.

Proof. (i) First, if F is a closed subset, then we can regard F as the boundary of a
subtree TF . In fact let TF := (VF , EF ), where

VF := {x ∈ V : x ∈ σ for some σ ∈ F} and EF := (VF × VF ) ∩ E. (3.6)

It follows immediately that F ⊂ ∂TF . Conversely, for every σ = (v0, v1, . . . ) ∈ ∂TF with
v0 = o, (3.6) implies that vn ∈ VF and there exists a σn ∈ F such that vn ∈ σn for
each n ≥ 0. Thus d(σn, σ) ≤ e−n. Since F is closed, we must have σ ∈ F . Therefore
∂TF ⊂ F . Now we can apply Theorem 3.1 to the subtree TF to obtain P{E ∩ F 6= ∅} =

P{E ∩ ∂TF 6= ∅} > 0, provided that dimH(F ) > s.
In general, for every Borel subset F with dimH(F ) > s, we can find some t such

that s < t < dimH(F ). Then Corollary 7 of Howroyd [5] implies the existence of a
closed subset F0 ⊂ F such that 0 < Ht(F0) < ∞. Thus dimH(F0) = t > s. Since
P{E ∩ F0 6= ∅} > 0 and F0 ⊂ F , we have P{E ∩ F 6= ∅} > 0.

(ii) For every fixed s > dimH(F ), the definition of Hausdorff dimension implies
Hs(F ) = 0. Then for every ε > 0, we can find a ball covering {Bn}n≥1 of F such
that

∑
n≥1 |Bn|s < ε, where Bn = B(xn) for some xn ∈ V. Since (∂T, d) is an ultrametric

space, (2.3) implies that |Bn| = e−|xn|. Then (3.5) implies that

P{E ∩Bn 6= ∅} ≤ P{E|xn| ∩B(xn) 6= ∅} = p|xn| = e−s|xn|. (3.7)
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Therefore

P{E ∩ F 6= ∅} ≤
∑
n≥1

P{E ∩Bn 6= ∅} ≤
∑
n≥1

e−s|xn| =
∑
n≥1

|Bn|s < ε. (3.8)

Let ε ↓ 0 to see that P{E ∩ F 6= ∅} = 0.

When (∂T, d) is replaced by the Euclidean space RN equipped with the classic met-
ric, the above corollary is same as Lemma 5.1 of Peres [17]. Moreover we can apply the
above corollary to an independent fractal percolation set and estimate the Hausdorff
dimension of E.

Theorem 3.3. (Falconer [2], Mauldin and Williams [15]) Let T be a tree and E be a
fractal percolation set defined on ∂T with index s. Then

||dimH(E)||L∞(P) = dimH(∂T )− s. (3.9)

The fractal percolation set E is also closely related to the Riesz capacity of the
boundary ∂T .

Theorem 3.4. (Lyons [12]) Let T be a tree and E be a fractal percolation set defined
on ∂T with index s. Then

1

2
Caps(∂T ) ≤ P{E 6= ∅} ≤ 2Caps(∂T ). (3.10)

3.3 Limsup Random Fractals and Packing Dimension

Limsup random fractals and packing dimension are closely related. The following
theorem is due to Khoshnevisan, Peres, and Xiao [9].

Theorem 3.5. (Khoshnevisan, Peres, and Xiao [9]) Let T be a tree and A a limsup
random fractal defined on ∂T with index t. Then for all Borel set F ⊂ ∂T :

(i) If dimP(F ) > t, then P(E ∩ F 6= ∅) = 1; and

(ii) If dimP(F ) < t, then P(E ∩ F 6= ∅) = 0.

Remark 3.6. The limsup random fractals studied in [9] are defined on Euclidean
spaces. The proofs there rely on the existence of closed sets with positive finite packing
measure in Euclidean spaces (see Joyce and Preiss [6]). The existence of such closed
sets in an ultrametric space is proved by Haase [4]. Thus Theorem 3.1 of [9] still holds
on the boundary of a tree.

We can compare this theorem to Lyon’s Theorem (Corollary 3.2). Similar to Theorem
3.3, we can apply Theorem 3.5 to an independent limsup random fractal and estimate
the packing dimension of A.

Theorem 3.7. (Khoshnevisan, Peres, and Xiao [9]) Let T be a tree and A a limsup
random fractal defined on ∂T with index t. Assume that 0 < t < dimP(∂T ). Then with
probability one,

dimP(A) = dimP(∂T ). (3.11)

We may ask the Hausdorff dimension of a limsup random fractal and the packing
dimension of a fractal percolation set. This is answered partially in [9].

Theorem 3.8. (Khoshnevisan, Peres, and Xiao [9]) Let T be a tree. Define on the
boundary ∂T a limsup random fractal A with index t and a fractal percolation set E
with index s. Then:

(i) dimH(∂T )− t ≤ dimH(A) ≤ dimP(∂T )− t almost surely, and

(ii) dimP(E) ≤ dimP(∂T )− s almost surely.
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4 New Indices

In order to compute the Hausdorff dimension of limsup random fractals, we intro-
duce two families of indices on the boundary of a tree.

Definition 4.1. Let ∂T be the boundary of a tree T . For each s ≥ 0 and n ≥ 1, define
the optimized energy form Js(n; ∂T ) by

Js(n; ∂T ) := inf
µ∈P(∂T )

∫∫
d(σ,γ)≤e−n

d(σ, γ)−sµ(dσ)µ(dγ). (4.1)

Define a family of indices {δs(∂T )}s≥0 by

δs(∂T ) := lim
n→∞

ln Js(n; ∂T )

−n
. (4.2)

Remark 4.2. The optimized energy form Js(n; ∂T ) satisfies

Js(n; ∂T ) = inf
µ∈P(∂T )

∑
|x|=n,µ(x)>0

Es(µx)µ(x)2 (4.3)

where Es(µ) is the s-dimensional Riesz energy of a probability measure µ defined in
(2.4), x denotes any vertex at generation n and µx ∈ P(B(x)) satisfies µx(G) = µ(G ∩
B(x))/µ(x) for all G ∈ T , provided that µ(x) > 0.

Lemma 4.3. For a fixed tree T , if 0 ≤ s1 < s2, then

δs2(∂T ) + s2 ≤ δs1(∂T ) + s1. (4.4)

In particular, δs(∂T ) is non-increasing in s.

Proof. For all σ, γ with d(σ, γ) ≤ e−n, the definition of the metric d (see eq. (2.2)) implies
that

d(σ, γ)−s2 = es2|σfγ| = e(s2−s1)|σfγ|es1|σfγ|

≥ e(s2−s1)nes1|σfγ| = e(s2−s1)nd(σ, γ)−s1 .
(4.5)

Thus by combining (4.1) and (4.5), we obtain Js2(n; ∂T ) ≥ e(s2−s1)nJs1(n; ∂T ) for all
n ≥ 1. Then (4.4) follows by taking limits.

Lemma 4.4. For a fixed tree T ,

(i) 0 ≤ δs(∂T ) ≤ dimM(∂T ) for all 0 ≤ s < dimH(∂T ), and δ0(∂T ) = dimM(∂T );

(ii) δs(∂T ) < 0 if s > dimH(∂T ); and

(iii) δs2(∂T ) < δs1(∂T ), for all 0 ≤ s1 < s2 < dimH(∂T ), that is, δs(∂T ) is strictly
decreasing in s for 0 ≤ s < dimH(∂T ).

Proof. (i) On one hand (4.3) implies that

J0(n; ∂T ) = inf
µ∈P(∂T )

∑
|x|=n

µ(x)2 = N−1n , (4.6)

where Nn is the number of vertices at generation n. It follows from this and (2.34) that
δ0(∂T ) = dimM(∂T ). On the other hand for every s < dimH(∂T ), Frostman’s lemma
([13], Corollary 15.6) guarantees the existence of a Borel probability measure µ whose
s-dimensional Riesz energy is finite. Then (2.23) implies that limn→∞ Js(n; ∂T ) = 0.
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Therefore δs(∂T ) ≥ 0 for s < dimH(∂T ). The monotonicity of δs(∂T ) completes the proof
of the first part.

(ii) For every s > dimH(∂T ), we have s > dimH(B(x)) for all vertices x ∈ V. Then
Frostman’s lemma implies that Es(µ) = ∞ for all µ ∈ P(B(x)) and x ∈ V. Therefore
Js(n; ∂T ) =∞ for all n ≥ 1. This completes the proof of the second part.

(iii) This follows from the finiteness of δs(∂T ) for 0 ≤ s < dimH(∂T ) and Lemma
4.3.

For each x ∈ V, we can treat the ball B(x) as the boundary of a subtree just as in the
proof of Corollary 3.2. Then we can extend the index δs to closed balls.

Lemma 4.5. If T is a spherically symmetric tree, then δs(∂T ) = δs(B(x)) for all 0 ≤ s <
dimH(∂T ) and all x ∈ V.

Proof. Since Js(n; ∂T ) is an energy form obtained by optimizing over all Borel prob-
ability measures supported on ∂T , we can use a similar argument as in the proof of
Corollary 2.4 to obtain

Js(n; ∂T ) = inf
µ∈P(∂T )

∑
|x|=n,µ(x)>0

µ(x)2

Caps(B(x))
. (4.7)

Since T is spherically symmetric, we have Caps(B(x)) = Caps(B(y)) for all x, y such
that |x| = |y|. Thus

Js(n; ∂T ) = (NnCaps(B(x)))−1, (4.8)

where Nn is the total number of vertices at generation n and x is an arbitrary vertex at
generation n. If we fix n ≥ 1 and treat each closed ball as the boundary of a subtree,
then for all |x| = n and m ≥ n,

Js(m; ∂T ) = N−1n Js(m;B(x)). (4.9)

Since Nn is finite, the above equation implies that δs(∂T ) = δs(B(x)).

Definition 4.6. Let ∂T be the boundary of a tree T . A family of indices {Dt(∂T )}t≥0 is
defined by

Dt(∂T ) := sup{s ≥ 0 : δs(∂T ) > t}, (4.10)

with the convention sup ∅ := 0.

Remark 4.7. The index Dt(∂T ) is well-defined according to Lemma 4.3.

Lemma 4.8. For a fixed tree T :

(i) If 0 ≤ t ≤ dimM(∂T ), then Dt(∂T ) ≤ dimM(∂T )− t;

(ii) If 0 ≤ t ≤ dimH(∂T ), then Dt(∂T ) ≥ dimH(∂T )− t;

(iii) Dt(∂T ) is non-decreasing in t for 0 ≤ t ≤ dimM(∂T ); and

(iv) Dt(∂T ) ≤ dimH(∂T ) for 0 ≤ t ≤ dimM(∂T ).

Proof. (i) Let s0 := dimM(∂T ) − t. Then s0 ≥ 0 and Lemma 4.3 implies that δs0(∂T ) +

s0 ≤ δ0(∂T ) + 0. According to Lemma 4.4 (i), we have δ0(∂T ) = dimM(∂T ). Therefore
δs0(∂T ) ≤ t. This implies Dt(∂T ) ≤ s0 = dimM(∂T )− t.

(ii) Without loss of generality, we assume that dimH(∂T ) − t > 0, otherwise there is
nothing to prove. For s1, s2 such that 0 < s1 < s2 < dimH(∂T )− t, we apply Lemma 4.3
and Lemma 4.4 (i) to get

δs1(∂T ) + s1 ≥ δs1+t(∂T ) + (s1 + t) ≥ δs2+t(∂T ) + (s2 + t) ≥ s2 + t. (4.11)
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Therefore δs1(∂T ) ≥ (s2 − s1) + t > t. This implies Dt(∂T ) ≥ s1. Let s1 ↑ dimH(∂T )− t to
complete the proof.

(iii) For 0 ≤ t1 < t2 ≤ dimM(∂T ), let s1 = Dt1(∂T ) and s2 = Dt2(∂T ). Then for any
s < s2, we have δs(∂T ) > t2 > t1. Therefore s1 ≥ s. This shows that s1 ≥ s2.

(iv) For every s > dimH(∂T ), Lemma 4.4 (ii) shows that δs(∂T ) < 0. Thus Dt(∂T ) ≤ s
for all t ≥ 0. Let s ↓ dimH(∂T ) to complete the proof.

Example 4.9. Consider the spherically symmetric tree T constructed in Example 2.9.
We show that

δs(∂T ) = dimP(∂T )− s = ln 3− s, (4.12)

and
Dt(∂T ) = (dimP(∂T )− t) ∧ dimH(∂T ) = (ln 3− t) ∧ ln 2. (4.13)

For each x ∈ V, let T x := (Vx, Ex) be the subtree rooted at x such that

Vx = {x and all the descendents of x} and Ex = (Vx × Vx) ∩ E. (4.14)

Note that there is a natural one-to-one correspondence between ∂T x and B(x). Let σx

denote the ray in ∂T x which corresponds to σ ∈ B(x). Then

e−|x|d(σx, γx) = d(σ, γ) ∀σ, γ ∈ B(x). (4.15)

For each Borel probability measure µx on ∂T x, it naturally induces a Borel probability
measure µx on B(x), and vice versa. Then (4.15) implies that

es|x|Es(µx) = Es(µx) ∀µx ∈ B(x). (4.16)

According to Lemma 2.5, we have

Es(νx) = Caps(∂T
x) and Es(νx) = Caps(B(x)), (4.17)

where νx and νx are the uniform probability measures on ∂T x and B(x), respectively.
Thanks to (4.8) and (4.17), we obtain

Js(n, ∂T ) = N−1n Es(νx) = es|x|N−1n Es(νx), (4.18)

for any x ∈ V with |x| = n, where the second equality follows from (4.16). Since Es(νx)

only depends on |x|, we denote it by I|x|. Thus

Js(n, ∂T ) = esnN−1n In. (4.19)

For a k-nary tree (all vertices have degree k), it is well known that its boundary has
Hausdorff dimension ln k. The structure of T implies that T x contains a binary tree and
T x is contained in a ternary tree for all x ∈ V. Since s < ln 2 = dimH(∂T ), there exist
constants c and C such that

c ≤ In ≤ C ∀n ≥ 1. (4.20)

This and (4.19) imply that

δs(∂T ) = lim
n→∞

ln Js(n; ∂T )

−n
= lim
n→∞

− lnNn
−n

− s = dimM(∂T )− s. (4.21)

Thanks to Lemma 2.8, we have δs(∂T ) = dimP(∂T )− s.

Remark 4.10. It is not clear whether δs(∂T ) = dimP(∂T )− s holds for a general spher-
ically symmetric tree with bounded degrees.
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5 Hitting Probabilities and Proof for the Main Results

Let T be a tree and A be a limsup random fractal defined on the boundary ∂T .
According to Corollary 3.2, if E is an independent fractal percolation set defined on ∂T ,
then we can find estimates of the Hausdorff dimension ofA by computing the probability
of the event {A ∩ E 6= ∅}.

Recall the definition of limsup random fractals and fractal percolation sets from (3.2)
and (3.5), respectively. We adopt the following notations for certain events:

{o→ x} := {∃σ ∈ B(x) so that Yσ(i) = 1 for all 1 ≤ i ≤ |x|}, and

{x→∞} := {∃σ ∈ B(x) so that Yσ(i) = 1 for all i ≥ |x|},
(5.1)

where σ(i) denotes the ith vertex on the ray σ. Then we have

{o→ x} ∩ {x→∞} = {B(x) ∩ E 6= ∅}, (5.2)

and
{An ∩ E 6= ∅} =

⋃
|x|=n

({o→ x} ∩ {x→∞} ∩ {Zx = 1}) . (5.3)

In order to compute P{A∩E 6= ∅}, we estimate the probabilities of events {An∩E 6=
∅} for all n ≥ 1. According to Theorem 3.4, we have P{B(x) ∩ E 6= ∅} > 0 if and only
if Caps(B(x)) > 0, where s is the index of the fractal percolation set E. We define for
each µ ∈ P(∂T )

Inµ (∂T ) ≡ Inµ :=
∑
|x|=n

1{o→ x}1{x→∞}1{Zx = 1}q−1n aµ(x), (5.4)

where {qn}n≥1 are the parameters associated with the limsup random fractal A and

aµ(x) =

{
0, if Caps(B(x)) = 0,

µ(x)(P{B(x) ∩ E 6= ∅})−1, if Caps(B(x)) > 0.
(5.5)

Lemma 5.1. For fixed s ≥ 0,

P{An ∩ E 6= ∅} ≥ sup
µ∈Ps(∂T )

P{Inµ > 0}, ∀n ≥ 1, (5.6)

where Ps(∂T ) denote the collection of Borel probability measures with finite s-dimensional
Riesz energy.

Proof. This follows from Proposition 2.6 and (5.3).

Before we proceed to estimate the probability of the event {An ∩ E 6= ∅}, we define
a new capacity and give some technical lemmas for this capacity. For fixed constants
s ≥ 0, K > 0 and n ≥ 1, define a kernel function on the boundary ∂T by

f(σ, γ; s,K, n) =

{
d(σ, γ)−s, if d(σ, γ) > e−n,

Kd(σ, γ)−s, if d(σ, γ) ≤ e−n.
(5.7)

Then for each µ ∈ P(∂T ) define an energy form

E(µ; s,K, n) :=

∫∫
f(σ, γ; s,K, n)µ(dσ)µ(dγ). (5.8)

Similar to Proposition 2.3, E(µ; s,K, n) satisfies

E(µ; s,K, n) =
∑∑
|x|=|y|=n
x 6=y

p−|xfy|µ(x)µ(y) +K
∑
|x|=n
µ(x)>0

Es(µx)µ(x)2, (5.9)
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where µx ∈ P(B(x)) satisfies µx(G) = µ(G ∩ B(x))/µ(x) for all G ∈ T , provided that
µ(x) > 0. For each Borel set G ⊂ ∂T , we define a capacity

Cap(G; s,K, n) :=

[
inf

µ∈P(G)
E(µ; s,K, n)

]−1
. (5.10)

Note that when K = 1, the above energy form and capacity are the same as the s-
dimensional Riesz energy and capacity, respectively. We will be interested in the capac-
ity Cap(G; s,K, n) with large K and n.

Lemma 5.2. For fixed constant s ≥ 0, K > 0 and n ≥ 1, and for all Borel set G ⊂ ∂T ,

Cap(G; s,K, n) =

[
inf

µ∈Ps(G)
E(µ; s,K, n)

]−1
. (5.11)

Moreover

Cap(G; s,K, n) = inf
µ∈P(G)


∑∑
|x|=|y|=n
x 6=y

p−|xfy|µ(x)µ(y) +K
∑
|x|=n
µ(x)>0

µ(x)2

Caps(B(x) ∩G)



−1

.
(5.12)

Proof. First, by comparing (5.9) to (2.7), we see that E(µ; s,K, n) = ∞ whenever µ ∈
P(G)\Ps(G). Therefore infµ∈Ps(G) E(µ; s,K, n) = infµ∈P(G) E(µ; s,K, n) and (5.11) follows
immediately. Second, the proof for (2.12) also works for (5.12).

Lemma 5.3. Let T be a tree. For fixed s > 0 and {qn}n≥1 such that t = − limn→∞ n−1 ln qn
exists and t > 0:

(i)
∑
n≥1 Cap(∂T ; s, q−1n , n) <∞, provided that δs(∂T ) < t; and

(ii) limn→∞ Cap(∂T ; s, q−1n , n) ≥ Caps(∂T ), provided that T is spherically symmetric
and δs(∂T ) > t.

Proof. (i) Let {an}n≥1 be a sequence of real numbers such that limn→∞ an = 0 and
qn = e−n(t+an). We can choose r and r0 such that δs(∂T ) < r0 < r < t and t−r < t−r0+an
for all sufficiently large n. Then there exists N > 1 such that Js(n; ∂T ) > e−nr0 and
q−1n Js(n; ∂T ) > en(t−r) for all n > N . This implies that

inf
µ∈P(∂T )


∑∑
|x|=|y|=n
x6=y

p−|xfy|µ(x)µ(y) + q−1n
∑
|x|=n

Es(µx)µ(x)2


≥ inf
µ∈P(∂T )

q−1n ∑
|x|=n

Es(µx)µ(x)2

 = q−1n Js(n; ∂T ) > en(t−r),

(5.13)

for all n > N . Thanks to (5.9), we have Cap(∂T ; s, q−1n , n) < e−n(t−r) for all n > N . Since
t− r > 0, we obtain

∑
n≥1 Cap(∂T ; s, q−1n , n) <∞.

(ii) Choose r and r0 such that δs(∂T ) > r0 > r > t and r − t < r0 − t − an for all
sufficiently large n. Then we can find a subsequence {nk}k≥1 such that Js(nk; ∂T ) <

e−nkr0 and q−1nk
Js(nk; ∂T ) < e−nk(r−t) for all large k. This implies that

lim
n→∞

q−1n inf
µ∈P(∂T )

∑
|x|=n

Es(µx)µ(x)2

 = 0. (5.14)
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Consider the uniform probability measure ν. Since T is spherically symmetric, Lemma
2.5 implies that

Es(ν) = inf
µ∈P(∂T )

Es(µ) = (Caps(∂T ))−1 <∞. (5.15)

Moreover, ∑
|x|=n

Es(νx)ν(x)2 = inf
µ∈P(∂T )

∑
|x|=n

Es(µx)µ(x)2

 . (5.16)

Therefore,

lim
n→∞

inf
µ∈P(∂T )


∑∑
|x|=|y|=n
x6=y

p−|xfy|µ(x)µ(y) + q−1n
∑
|x|=n

Es(µx)µ(x)2


≤ lim
n→∞


∑∑
|x|=|y|=n
x 6=y

p−|xfy|ν(x)ν(y) + q−1n
∑
|x|=n

Es(νx)ν(x)2


= lim
n→∞

∑∑
|x|=|y|=n
x 6=y

p−|xfy|ν(x)ν(y) + lim
n→∞

q−1n
∑
|x|=n

Es(νx)ν(x)2

= (Caps(∂T ))−1,

(5.17)

where the first equality follows from Lemma 2.7 and the last one follows from (5.14),
(5.15), and (5.16).

With the newly defined capacity, we can estimate the probability of the event {An ∩
E 6= ∅}. The following two lemmas generalize the idea of the proof of Theorem 2.1 of
Khoshnevisan [7].

Lemma 5.4. Let A be a limsup random fractal with index t and E be an independent
fractal percolation set with index s. Assume that 0 < t < dimP(∂T ) and 0 < s <

dimH(∂T ). Then for all n ≥ 1,

P{An ∩ E 6= ∅} ≥ Cap(∂T ; s, 2q−1n , n). (5.18)

Proof. We first estimate P{Inµ > 0} for every fixed µ ∈ Ps(∂T ) and then use Lemma
5.1 to derive the desired lower bound. According to the Paley-Zygmund inequality ([7],
Lemma 1.2), if X is a nonnegative random variable with finite second moment, then for
all ε ∈ (0, 1),

P{X > εE[X]} ≥ (1− ε)2 (E[X])2

E[X2]
. (5.19)

Thus in order to estimate P{Inµ > 0}, we will calculate the first two moments of Inµ .
On one hand, from the independence of the random variables {Yx}x∈V and {Zx}x∈V, we
have

E[Inµ ] =
∑
|x|=n

P{o→ x, x→∞}P{Zx = 1}q−1n aµ(x)

=
∑
|x|=n

P{B(x) ∩ E 6= ∅}aµ(x)

= 1,

(5.20)

where the second equality follows from (5.2) and the last equality follows from the
definition of aµ (see (5.5)).
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On the other hand, we apply the independence of the random variables {Yx}x∈V and
{Zx}x∈V again to obtain

E[(Inµ )2]

= q−1n
∑
|x|=n

P{o→ x, x→∞}(aµ(x))2

+
∑∑
|x|=|y|=n
x 6=y

p−|xfy|P{o→ x, x→∞}P{o→ y, y →∞}aµ(x)aµ(y)

= q−1n
∑
|x|=n

µ(x)2

P{B(x) ∩ E 6= ∅}
+
∑∑
|x|=|y|=n
x 6=y

p−|xfy|µ(x)µ(y).,

(5.21)

where we used the identity P{o → x, o → y} = p−|xfy|P{o → x}P{o → y} to derive the
first equality. Thanks to Lyons’ Theorem (Theorem 3.4), we have

E[(Inµ )2] ≤ 2q−1n
∑
|x|=n

µ(x)2

Caps(B(x))
+
∑∑
|x|=|y|=n
x 6=y

p−|xfy|µ(x)µ(y).
(5.22)

Now combine (5.19), (5.20) and (5.22), and let ε ↓ 0 to get

P{Inµ > 0} ≥

2q−1n
∑
|x|=n

µ(x)2

Caps(B(x))
+
∑∑
|x|=|y|=n
x6=y

p−|xfy|µ(x)µ(y)


−1

. (5.23)

Finally, we take supremum over all µ ∈ Ps(B(x)) and apply Lemma 5.1 and Lemma 5.2
to obtain the desired result.

In order to find an upper bound for P{An ∩ E 6= ∅} we need to introduce some new
notations to describe the structure of the tree. For each n ≥ 1, we label all the vertices
at generation n from left to right by xn1 , x

n
2 , . . . , x

n
Nn

, where Nn is the total number of
vertices at generation n. (We use supscript to denote the generation and subscript to
denote the position from left to right.) See Figure 3 for an illustration.

Figure 3: Labeling Vertices from Left to Right

Recall that {Yx}x∈V and {Zx}x∈V are the random variables used to define the fractal
percolation set E and the limsup random fractal A, respectively. For each fixed n ≥ 1,
define Xn

i := (Yx1
i1
, . . . , Yxn

in
) for 1 ≤ i ≤ Nn, where in = i and xkik is the parent of xk+1

ik+1
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for 1 ≤ k ≤ n − 1. In words, Xn
i denotes the vector consisting of the random variables

{Yv} on the path from root o to the vertex xni . In particular, {Xn
i = 1n := (1, . . . , 1) ∈

Rn} = {o → xni }. It follows that {Xn
i }1≤i≤Nn

is a Markov process. For 1 ≤ k ≤ Nn,
define filtrations

Ank := σ
(
{Zxn

i
}1≤i≤k

)
,

Bnk := σ
(
{Xn

i }1≤i≤k
)
,

Cnk := σ
(
{Yy : y � xni }1≤i≤k

)
, and

Fnk := Ank ∨ Bnk ∨ Cnk ,

(5.24)

where y � x means y is a descendant of x. In words, Ank is the information generated
by the Zx random variables at xni for 1 ≤ i ≤ k; Bnk is the information generated by
the Yx random variables at xnk , xnk ’s ancestors, xnk ’s left siblings, and xnk ’s left siblings’
ancestors; Cnk is the information generated by the Yx random variables at xnk ’s descen-
dants and xnk ’s left siblings’ descendants; and Fnk is the information of all three. By
the independence of the Yx and Zx random variables, we know that Ank , Bnk and Cnk are
independent for fixed n ≥ 1 and 1 ≤ k ≤ Nn.

Lemma 5.5. Let A be a limsup random fractal with index t and E be an independent
fractal percolation set with index s. Assume that 0 < t < dimP(∂T ) and 0 < s <

dimH(∂T ). Then for all n ≥ 1,

P{An ∩ E 6= ∅} ≤ 2Cap(∂T ; s, q−1n , n). (5.25)

Proof. Define Tn := inf{k ≥ 1 : Zxn
k

= 1, o → xnk , and xnk → ∞} with the convention
inf ∅ := ∞. In words, Tn is the first time (from left to right) such that An ∩ E 6= ∅ at
generation n. Then Tn is a stopping time with respect to the filtration {Fkn}1≤k≤Nn and

{Tn <∞} = {An ∩ E 6= ∅}. (5.26)

For every fixed µ ∈ Ps(∂T ) and n ≥ 1, (5.4) implies that Inµ is bounded almost surely.
Thus we can define a bounded martingale {Mn

µ (k)}1≤k≤Nn by

Mn
µ (k) := E[Inµ |Fnk ], for 1 ≤ k ≤ Nn. (5.27)

By iterated conditioning and independence, we have

Mn
µ (k) =

∑
1≤i≤k

1{o→ xni }1{xni →∞}1{Zxn
i

= 1}q−1n aµ(xni )+

+
∑

k+1≤i≤Nn

E[1{o→ xni }|Fnk ]P(xni →∞)aµ(xni ).
(5.28)

Since Ank , Bnk and Cnk are independent and {Xn
k }1≤k≤Nn is a Markov process, we have

E[1{o→ xni }|Fnk ] = E[1{o→ xni }|Bnk ] = E[1{o→ xni }|Xn
k ]

≥ pn−|x
n
ifx

n
k |1{Xn

k = 1n},
(5.29)

for k + 1 ≤ i ≤ N . We apply this inequality in (5.28), multiply (5.28) by 1{Tn = k} on
both sides, and notice the facts {Tn = k} ⊂ {o → xnk , x

n
k → ∞, Zxn

k
= 1} and {Tn =
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k} ∩ {o→ xni , x
n
i →∞, Zxn

i
= 1} = ∅ for 1 ≤ i ≤ k − 1, in order to obtain

Mn
µ (k)1{Tn = k}
≥ 1{o→ xnk}1{xnk →∞}1{Zxn

k
= 1}q−1n aµ(xnk )1{Tn = k}

+
∑

k+1≤i≤Nn

pn−|x
n
ifx

n
k |1{Xn

k = 1n}P{xni →∞}aµ(xni )1{Tn = k}

= 1{Tn = k}q−1n aµ(xnk )

+ 1{Tn = k}
∑

Tn+1≤i≤Nn

pn−|x
n
ifx

n
Tn
|P{xni →∞}aµ(xni ).

(5.30)

Since dimH(∂T ) > s and An :=
⋃
|x|=n,Zx=1B(x), the σ-stability of Hausdorff dimension

implies that P{dimH(An) > s} > 0. Thus by first conditioning on An and then applying
Corollary 3.2 and (5.26), we get P(Tn < ∞) > 0. Then we can choose a special Borel
probability measure µ∗n ∈ P(∂T ) that satisfies

µ∗n(xnk ) = P{Tn = k|Tn <∞}, for 1 ≤ k ≤ Nn. (5.31)

By the definition of Tn and Theorem 3.4, we have

µ∗n(xnk )

{
= 0, if Caps(B(xnk )) = 0,

> 0, if Caps(B(xnk )) > 0.
(5.32)

Thus for all xnk with µ∗n(xnk ) > 0, from the definition of Riesz capacity, we can choose
some µ∗n,xn

k
∈ P(B(xnk )) so that its s-dimensional Riesz energy is finite. Moreover,

Proposition 2.3 shows that if µ∗n,xn
k

has finite s-dimensional Riesz energy for all xnk with
µ∗n(xnk ) > 0, then µ∗n has finite s-dimensional Riesz energy too. Therefore µ∗n ∈ Ps(∂T ).

Let J1(k, µ) denote the first summand in the last line of (5.30) and J2(k, µ) the second
summand. If we use the above µ∗n to replace µ, sum over k and take expectations, then
we have

E

[
Nn∑
k=1

J1(k, µ∗n)

]
=

Nn∑
k=1

P{Tn = k}q−1n aµ∗n(xnk )

=

Nn∑
k=1

µ∗(xnk ) · P{Tn <∞}q−1n aµ∗n(xnk )

≥ 1

2
q−1n P{Tn <∞}

Nn∑
k=1

µ∗(xnk )2

Caps(B(xnk ))
,

(5.33)
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where we used Theorem 3.4 to derive the last inequality, and

E

[
Nn∑
k=1

J2(k, µ∗)

]

= E

1{Tn <∞}
 ∑

2≤i≤Nn

pn−|x
n
ifx

n
Tn
|P{xni →∞}aµ∗n(xni )1{Tn < i}


= E

 ∑
2≤i≤Nn

i−1∑
l=1

pn−|x
n
ifx

n
l |P{xni →∞}aµ∗n(xni )1{Tn = l}


= P{Tn <∞}

 ∑
2≤i≤Nn

i−1∑
l=1

pn−|x
n
ifx

n
l |P{xni →∞}aµ∗n(xni )µ∗n(xnl )


= P{Tn <∞}

 ∑
2≤i≤Nn

i−1∑
l=1

p−|x
n
ifx

n
l |µ∗n(xni )µ∗n(xnl )



=
1

2
P{Tn <∞}

 ∑
|x|=|y|=n
x 6=y

p−|xfy|µ∗n(x)µ∗n(y)

 ,

(5.34)

where the last equality follows from the symmetry of the summation indices. We also
change our notation from xni back to x. Now combining (5.30), (5.33) and (5.34), we get

E[Mn
µ∗n

(Tn)1{Tn <∞}]

≥ 1

2
P{Tn <∞}

q−1n ∑
|x|=n

µ∗n(x)2

Caps(B(x))
+

∑
|x|=|y|=n
x 6=y

p−|xfy|µ∗n(x)µ∗n(y)

 .
(5.35)

Since {Mn
µ∗n

(k)}1≤k≤N is a nonnegative bounded martingale and Tn is a stopping time,
by Bounded Convergence Theorem and Optional Stopping Theorem, we have

E[Mn
µ∗n

(Tn)1{Tn <∞}]

≤ E
[

lim
K→∞

Mn
µ∗n

(Tn ∧K)
]

= lim
K→∞

E[Mn
µ∗n

(Tn ∧K)]

= lim
K→∞

E[Mn
µ∗n

(1)] = E[Inµ∗n ] = 1,

(5.36)

where the last equality follows from (5.20). Combining this inequality with (5.35) and
(5.26), we get

P{An ∩ E 6= ∅} ≤ 2

q−1n ∑
|x|=n

µ∗n(x)2

Caps(B(x))
+
∑∑
x 6=y

|x|=|y|=n

p−|xfy|µ∗n(x)µ∗n(y)


−1

, (5.37)

where 0/0 := 0. Finally take sup over µ ∈ P(∂T ) and apply Lemma 5.2 to obtain the
desired result.

Now we can use Lemma 5.4 and Lemma 5.5 to estimate the probability of the event
{A ∩ E 6= ∅}.
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Theorem 5.6. Let T be a tree. On the boundary ∂T , define a limsup random fractal
A with index t and an independent fractal percolation set E with index s. Assume that
0 < t < dimP(∂T ) and 0 < s < dimH(∂T ).

(i) If δs(∂T ) < t, then P{A ∩ E 6= ∅} = 0; and

(ii) if T is spherically symmetric and δs(∂T ) > t, then P{A ∩ E 6= ∅} > 0.

Proof. (i) From Lemma 5.5, we have P{An ∩ E 6= ∅} ≤ 2Cap(∂T ; s, q−1n , n). Since
δs(∂T ) < t, Lemma 5.3 (i) shows that

∑
n≥1P{An ∩ E 6= ∅} < ∞. The definition A =

∩n≥1 ∪k≥n Ak and an application of Borel-Cantelli lemma show that P{A ∩ E 6= ∅} = 0.
(ii) We construct an independent limsup random fractal A′ with parameters {q′n}n≥1

such that t′ = − limn→∞ n−1 ln q′n exists and t < t′ < δs(∂T ). We will show that either

P{A′ ∩ E 6= ∅} > 0, (5.38)

or
P{dimP(E) ≥ t′} = P{E 6= ∅}. (5.39)

In the case P{A′∩E 6= ∅} > 0, by first conditioning on E and then applying Theorem 3.5,
we see that P{dimP(E) ≥ t′} > 0, therefore P{dimP(E) > t} > 0. Now we can condition
on E and apply Theorem 3.5 again to obtain that P{A ∩E 6= ∅} > 0. On the other hand,
if P{dimP(E) ≥ t′} = P{E 6= ∅}, then a similar argument shows that P{A ∩ E 6= ∅} > 0.

In order to show P{A′ ∩ E 6= ∅} > 0, we employ a Baire category argument. Define
C(n) := ∪k≥nA′k for all n ≥ 1. Then A′ = ∩n≥1C(n). Since (∂T, d) is an ultrametric
space, the ball B(x) is both open and closed for each x ∈ V. Therefore both A′n and C(n)

are open sets for all n ≥ 1. If we can show that with positive probability C(n) ∩ E is
dense in E for all n ≥ 1, then the Baire category theorem guarantees that with positive
probability A′ ∩ E is dense in E. In particular, P{A′ ∩ E 6= ∅} > 0. Therefore we strive
to show

P{C(n) ∩ E is dense in E for all n ≥ 1} > 0. (5.40)

Lemma 5.4 shows that

P{A′n ∩ E 6= ∅} ≥ Cap(∂T ; s, 2q′−1n , n) ∀n ≥ 1. (5.41)

Then the fact δs(∂T ) > t′, Lemma 5.3 (ii) and Theorem 3.4 imply that

lim
n→∞

P{A′n ∩ E 6= ∅} ≥ Caps(∂T ) ≥ 1

2
P{E 6= ∅}. (5.42)

Since {A′n ∩ E 6= ∅ for infinitely many n} = ∩n≥1 ∪k≥n {A′k ∩ E 6= ∅}, we have

P{C(n) ∩ E 6= ∅ for all n ≥ 1} = P{A′n ∩ E 6= ∅ for infinitely many n}

≥ lim
n→∞

P{A′n ∩ E 6= ∅} ≥
1

2
P{E 6= ∅}.

(5.43)

We adopt the notation used in the proof of Lemma 5.5 again. We use supscript to denote
the generation and subscript to denote the position from left to right. Thus xmi denotes
the ith vertex at generation m. For each m ≥ 1, define the event

Ωm := {C(n) ∩ E ∩B(xmi ) 6= ∅ for all n ≥ 1 whenever B(xmi ) ∩ E 6= ∅}. (5.44)

It follows that Ωm+1 ⊂ Ωm for m ≥ 1. Moreover⋂
m≥1

Ωm = {C(n) ∩ E is dense in E for all n ≥ 1} ∪ {E = ∅}. (5.45)
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Thus in order to show (5.40), it is equivalent to show

lim
m→∞

P{Ωm} − P{E = ∅} > 0 (5.46)

Recall the subtree defined in Example 4.9. For each x ∈ V, let T x := (Vx, Ex) be the
subtree rooted at x such that

Vx = {x and all the descendents of x} and Ex = (Vx × Vx) ∩ E. (5.47)

Then an application of Lemma 4.5 shows that δs(∂T x) = δs(∂T ) > t′ for all x ∈ V. For
each m ≥ 1 and 1 ≤ i ≤ Nm (Nm is the number of vertices at generation m), we define
the event

Ωm,i = {E(m) ∩ C(n) ∩ ∂T x
m
i 6= ∅ for all n ≥ m}, (5.48)

where E(m) denotes the fractal percolation set on ∂T x
m
i constructed from the same set

of random variables {Yx}x∈V. Then we can apply (5.43) to the subtree T x
m
i to obtain

P{Ωm,i} ≥
1

2
P{E(m) ∩ ∂T x

m
i 6= ∅}. (5.49)

The spherical symmetry of T guarantees that P{Ωm,i} = P{Ωm,j} and P{E(m)∩∂T xm
i 6=

∅} = P{E(m)∩∂T x
m
j 6= ∅} for all 1 ≤ i, j ≤ Nm. For eachm ≥ 1, define a random variable

Um :=
∑

1≤i≤Nm

1{o→ xmi }. (5.50)

From the independence of the random variables {Yx}x∈V and {Zx}x∈V, we have following
observations:

{Ωm,i}1≤i≤Nm
are independent events; (5.51)

and

{Ωm,i}1≤i≤Nm
are independent of σ(Um). (5.52)

Moreover, if I, J ⊂ {1, . . . , Nm} satisfies I ∩ J = ∅, then

{Ωm,i}i∈I are independent of {E(m) ∩ ∂T x
m
j 6= ∅}j∈J . (5.53)

These independences imply that

P{Ωm|Um = l} =

(
l∑

k=0

(
l

k

)
rkm(1− pm)l−k

)
≥
(

1− 1

2
pm

)l
, (5.54)

where pm = P{E(m) ∩ ∂T xm
i 6= ∅}, rm = P{Ωm,i}, and rm ≥ pm/2 by (5.49). Taking

expectation for Um gives

P{Ωm} ≥ E

[(
1− 1

2
pm

)Um
]
. (5.55)

Thus if limm→∞E[(1 − pm/2)Um ] − P{E = ∅} > 0, then (5.46) is proved, which in turn
proves (5.40).

Next we show that if limm→∞E[(1− pm/2)Um ]− P{E = ∅} ≤ 0, then

P{dimM(E) ≥ t′} = P{E 6= ∅}. (5.56)

According to the proof of Theorem 3.1 of [9], for all nonrandom Borel set F ⊂ ∂T , if
dimM(F ) < t′, then P{F ∩ C(n) 6= ∅ for all n ≥ 1} = 0. Thus by conditioning on E(m),
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(5.49) implies that P{dimM(E(m) ∩ ∂T (xmi )) ≥ t′} ≥ 2−1P{E(m) ∩ ∂T (xmi ) 6= ∅}, for all
m ≥ 1 and 1 ≤ i ≤ Nm. Notice that for each fixed m ≥ 1

dimM(E(m) ∩ ∂T (xmi )) = dimM(E ∩B(xmi )) a.s. on {o→ xmi }, (5.57)

and
dimM(E) = max

1≤i≤Nm

dimM(E ∩B(xmi )) a.s. (5.58)

Since T is spherically symmetric, {dimM(E(m) ∩ ∂T (xmi ))}1≤i≤Nm
are i.i.d. random

variables. Therefore

P{dimM(E) < t′} = E
[
P{dimM(E(m) ∩ ∂T x

m
i ) < t′}Um

]
≤ E

[
(1− 1

2
pm)Um

]
,

(5.59)

where Um is defined in (5.50) and pm = P{E(m) ∩ ∂T (xmi ) 6= ∅}. Then (5.59) implies
that P{dimM(E) ≥ t′} = P{E 6= ∅}, since limm→∞E[(1− pm/2)Um ]− P{E = ∅} ≤ 0.

Finally, since each ball B(x) can be regarded as the boundary of a subtree of T , we
can apply Lemma 4.5 and the above arguments to deduce that either

P{C(n) ∩ E ∩B(x) is dense in E ∩B(x) for all n ≥ 1} > 0, (5.60)

or
P{dimM(E ∩B(x)) ≥ t′} = P{E ∩B(x) 6= ∅}. (5.61)

If (5.60) holds for some ball B(x0), then the Baire category argument carried at the
beginning of (ii) shows that P{A′ ∩ E ∩B(x0) 6= ∅} > 0. In particular,

P{A′ ∩ E 6= ∅} > 0. (5.62)

Otherwise (5.61) holds for all x ∈ V. Since V is countable, we can first remove a null
event and then apply Proposition 3.6 of Falconer [3] to deduce that

P{dimP(E) ≥ t′} = P{E 6= ∅}. (5.63)

This completes the proof of the theorem.

Now we can use Theorem 5.6 to prove Theorem 1.1. In fact we prove a little more.

Corollary 5.7. Let T be a spherically symmetric tree. Then:

(i) If A is a limsup random fractal defined on ∂T with index t and 0 < t < dimP(∂T ),
then ||dimH(A)||L∞(P) = Dt(∂T ).

(ii) If E is a fractal percolation set defined on ∂T with index s and 0 < s < dimH(∂T ),
then ||dimP(E)||L∞(P) = δs(∂T ).

Proof. (i) For each s > 0, let E(s) be a fractal percolation set with parameter p = e−s

so that E(s) is independent of A. Since T is spherically symmetric, Lemma 2.8 implies
that dimP(∂T ) = dimM(∂T ).

First, consider Dt(∂T ) = dimH(∂T ). On one hand by the monotonicity of Haudorff
dimension, we have dimH(A) ≤ Dt(∂T ) almost surely. On the other hand, for every 0 <

s < Dt(∂T ), we have δs(∂T ) > t. Then Theorem 5.6 (ii) shows that P{A∩E(s) 6= ∅} > 0.
Now condition on A and apply Corollary 3.2 to obtain P{dimH(A) > s} > 0. This shows
that ‖dimH(A)‖L∞(P) = Dt(∂T ) when Dt(∂T ) = dimH(∂T ).
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Second, consider 0 < Dt(∂T ) < dimH(∂T ). On one hand for any s and s0 with
Dt(∂T ) < s0 < s < dimH(∂T ), we have δs(∂T ) < δs0(∂T ) ≤ t, thanks to Lemma 4.4 (iii).
Now we can apply Theorem 5.6 (i) to derive P{A ∩ E(s) 6= ∅} = 0. Then Corollary 3.2
shows that with probability one dimH(A) ≤ s. Let s ↓ Dt(∂T ) to see that dimH(A) ≤
Dt(∂T ) almost surely. On the other hand we can apply a similar argument as for the
case Dt(∂T ) = dimH(∂T ) to obtain ‖dimH(A)‖L∞(P) = Dt(∂T ).

Finally, consider Dt(∂T ) = 0. Then a similar argument as for the case 0 < Dt(∂T ) <

dimH(∂T ) shows that dimH(A) ≤ Dt(∂T ) almost surely. Therefore ‖dimH(A)‖L∞(P) =

0 = Dt(∂T ). This completes the proof of the first part.
(ii) For each t > 0, let A(t) be a limsup random fractal with parameters {qn}n≥1 such

that t = − limn→∞ n−1 ln qn exists. Furthermore, we assume that A(t) is independent
of E. Since dimP(∂T ) = dimM(∂T ) and s > 0, Lemma 4.4 (i) and (iii) guarantee that
δs(∂T ) < dimP(∂T ).

If δs(∂T ) = 0, then for every t > 0, Theorem 5.6 (i) implies that P{E ∩A(t) 6= ∅} = 0.
Then we can first condition on E and then apply Theorem 3.5 to obtain dimP(E) ≤ t

almost surely. Let t ↓ 0 to see that ‖dimP(E)‖L∞(P) = δs(∂T ).
If 0 < δs(∂T ) < dimP(∂T ), then Theorem 5.6 (ii) implies that P{E ∩ A(t) 6= ∅} >

0 for every 0 < t < δs(∂T ). An application of Theorem 3.5 conditioned on E gives
P{dimP(E) ≥ t} > 0. This means that ‖dimP(E)‖L∞(P) ≥ δs(∂T ). On the other hand, for
all δs(∂T ) < t < dimP(∂T ), we can apply a similar argument as for the case δs(∂T ) = 0 to
obtain dimP(E) ≤ δs(∂T ) almost surely. This completes the proof of the second part.

Remark 5.8. If T is spherically symmetric, then dimM(∂T ) = dimP(∂T ), thanks to
Lemma 2.8. Thus Lemma 4.8 implies dimH(∂T ) − t ≤ Dt(∂T ) ≤ dimP(∂T ) − t and
Lemma 4.4 implies δs(∂T ) ≤ dimP(∂T ) − s. Therefore Corollary 5.7 extends Theorem
3.8.

Example 5.9. On the boundary of the spherically symmetric tree T considered in Ex-
ample 2.9 and 4.9, we have

||dimP(E)||L∞(P) = dimP(∂T )− s = ln 3− s, (5.64)

and
||dimH(A)||L∞(P) = (dimP(∂T )− t) ∧ dimH(∂T ) = (ln 3− t) ∧ ln 2. (5.65)
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