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Abstract

The TCP window size process appears in the modelling of the famous Transmission
Control Protocol used for data transmission over the Internet. This continuous time
Markov process takes its values in [0,∞), is ergodic and irreversible. The sample
paths are piecewise linear deterministic and the whole randomness of the dynamics
comes from the jump mechanism. The aim of the present paper is to provide quanti-
tative estimates for the exponential convergence to equilibrium, in terms of the total
variation and Wasserstein distances.
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1 Introduction and main results

The TCP protocol is one of the main data transmission protocols of the Internet.
It has been designed to adapt to the various traffic conditions of the actual network.
For a connection, the maximum number of packets that can be sent at each round
is given by a variable W , called the congestion window size. If all the W packets
are successfully transmitted, then W is increased by 1, otherwise it is divided by 2

(detection of a congestion). As shown in [9, 12, 26], a correct scaling of this process
leads to a continuous time Markov process, called the TCP window size process. This
process X = (Xt)t>0 has [0,∞) as state space and its infinitesimal generator is given,
for any smooth function f : [0,∞)→ R, by

Lf(x) = f ′(x) + x(f(x/2)− f(x)). (1.1)
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Total variation estimates for the TCP process

The semigroup (Pt)t>0 associated to (Xt)t>0 is classically defined by

Ptf(x) = E(f(Xt)|X0 = x),

for any smooth function f . Moreover, for any probability measure ν on [0,∞), νPt stands
for the law of Xt when X0 is distributed according to ν.

The process Xt increases linearly between jump times that occur with a state-
dependent rateXt. The first jump time ofX starting at x > 0 has the law of

√
2E + x2−x

where E is a random variable with exponential law of parameter 1. In other words, the
law of this jump time has a density with respect to the Lebesgue measure on (0,+∞)

given by
fx : t ∈ (0,+∞) 7→ (x+ t)e−t

2/2−xt, (1.2)

see [6] for further details.
The sample paths of X are deterministic between jumps, the jumps are multiplica-

tive, and the whole randomness of the dynamics relies on the jump mechanism. Of
course, the randomness of X may also come from a random initial value. The process
(Xt)t>0 appears as an Additive Increase Multiplicative Decrease process (AIMD), but
also as a very special Piecewise Deterministic Markov Process (PDMP). In this direc-
tion, [23] gives a generalisation of the scaling procedure to interpret various PDMPs as
limits of discrete time Markov chains. In the real world (Internet), the AIMD mecha-
nism allows a good compromise between the minimisation of network congestion time
and the maximisation of mean throughput. One could consider more general processes
(introducing a random multiplicative factor or modifying the jump rate) but their study
is essentially the same than the one of the present process.

The TCP window size process X is ergodic and admits a unique invariant law µ, as
can be checked using a suitable Lyapunov function (for instance V (x) = 1 + x, see e.g.
[2, 8, 24, 14] for the Meyn-Tweedie-Foster-Lyapunov technique). It can also be shown
that µ has a density on (0,+∞) given by

x ∈ (0,+∞) 7→
√

2/π∏
n>0

(
1− 2−(2n+1)

) ∑
n>0

(−1)n22n∏n
k=1 (22k − 1)

e−22n−1x2

, (1.3)

(this explicit formula is derived in [9, Prop. 10], see also [12, 23, 22, 11] for further de-
tails). In particular, one can notice that the density of µ has a Gaussian tail at +∞ and
that all its derivatives are null at the origin. Nevertheless, this process is irreversible
since time reversed sample paths are not sample paths and it has infinite support (see
[20] for the description of the reversed process). In [29], explicit bounds for the expo-
nential rate of convergence to equilibrium in total variation distance are provided for
generic Markov processes in terms of a suitable Lyapunov function but these estimates
are very poor even for classical examples as the Ornstein-Uhlenbeck process. They can
be improved following [30] if the process under study is stochastically monotone that
is if its semigroup (Pt)t>0 is such that x 7→ Ptf(x) is non decreasing as soon as f is
nondecreasing. Unfortunately, due to the fact that the jump rate is an nondecreasing
function of the position, the TCP process is not stochastically monotone. Moreover, we
will see that our coupling provides better estimates for the example studied in [30].

The work [6] was a first attempt to use the specific dynamics of the TCP process
to get explicit rates of convergence of the law of Xt to the invariant measure µ. The
answer was partial and a bit disappointing since the authors did not succeed in proving
explicit exponential rates.

Our aim in the present paper is to go one step further providing exponential rate of
convergence for several classical distances: Wasserstein distance of order p > 1 and
total variation distance. Let us recall briefly some definitions.
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Total variation estimates for the TCP process

Definition 1.1. If ν and ν̃ are two probability measures on R, we will call a coupling
of ν and ν̃ any probability measure on R × R such that the two marginals are ν and ν̃.
Let us denote by Γ(ν, ν̃) the set of all the couplings of ν and ν̃.

Definition 1.2. For every p > 1, the Wasserstein distance Wp of order p between two
probability measures ν and ν̃ on R with finite pth moment is defined by

Wp(ν, ν̃) =

(
inf

Π∈Γ(ν,ν̃)

∫
R2

|x− y|p Π(dx, dy)

)1/p

. (1.4)

Definition 1.3. The total variation distance between two probability measures ν and ν̃
on R is given by

‖ν − ν̃‖TV = inf
Π∈Γ(ν,ν̃)

∫
R2

1{x 6=y}Π(dx, dy).

It is well known that, for any p > 1, the convergence in Wasserstein distance of order
p is equivalent to weak convergence together with convergence of all moments up to
order p, see e.g. [28, 31]. A sequence of probability measures (νn)n>1 bounded in Lp

which converges to ν in total variation norm converges also for the Wp metrics. The
converse is false: if νn = δ1/n then (νn)n>1 converges to δ0 for the distance Wp whereas
‖νn − δ0‖TV is equal to 1 for any n > 1.

Any coupling (X, X̃) of (ν, ν̃) provides an upper bound for these distances. One can
find in [18] a lot of efficient ways to construct smart couplings in many cases. In the
present work, we essentially use the coupling that was introduced in [6]. Firstly, we im-
prove the estimate for its rate of convergence in Wasserstein distances from polynomial
to exponential bounds.

Theorem 1.4. Let us define

M =

√
2(3 +

√
3)

8
∼ 0.84 and λ =

√
2(1−

√
M) ∼ 0.12. (1.5)

For any λ̃ < λ, any p > 1 and any t0 > 0, there is a constant C = C(p, λ̃, t0) such that,
for any initial probability measures ν and ν̃ and any t > t0,

Wp(νPt, ν̃Pt) 6 C exp

(
− λ̃
p
t

)
.

Secondly, we introduce a modified coupling to get total variation estimates.

Theorem 1.5. For any λ̃ < λ and any t0 > 0, there exists C such that, for any initial
probability measures ν and ν̃ and any t > t0,

‖νPt − ν̃Pt‖TV 6 C exp

(
−2λ̃

3
t

)
,

where λ is given by (1.5).

Remark 1.6. In both Theorems 1.4 and 1.5, no assumption is required on the moments
nor regularity of the initial measures. Note however that following Remark 3.4, one can
obtain contraction’s type bounds when the initial measures ν and ν̃ have initial moments
of sufficient orders. In particular they hold uniformly over the Dirac measures. If ν̃ is
chosen to be the invariant measure µ, these theorems provide exponential convergence
to equilibrium.
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Total variation estimates for the TCP process

The remainder of the paper is organised as follows. We derive in Section 2 precise
upper bounds for the moments of the invariant measure µ and the law of Xt. Section 3
and Section 4 are respectively devoted to the proofs of Theorem 1.4 and Theorem 1.5.
Unlike the classical approach "à la" Meyn-Tweedie, our total variation estimate is ob-
tained by applying a Wasserstein coupling for most of the time, then trying to couple the
two paths in one attempt. This idea is then adapted to others processes: Section 5 deals
with two simpler PDMPs already studied in [27, 17, 6, 30] and Section 6 is dedicated to
diffusion processes.

2 Moment estimates

The aim of this section is to provide accurate bounds for the moments of Xt. In
particular, we establish below that any moment of Xt is bounded uniformly over the
initial value X0. Let p > 0 and αp(t) = E(Xp

t ). Then one has by direct computation

α′p(t) = pαp−1(t)−
(
1− 2−p

)
αp+1(t). (2.1)

2.1 Moments of the invariant measure

Equation (2.1) implies in particular that, if mp denotes the p-th moment of the in-
variant measure µ of the TCP process (mp =

∫
xpµ(dx)), then for any p > 0

mp+1 =
p

1− 2−p
mp−1.

It gives all even moments of µ: m2 = 2, m4 = 48
7 , . . . and all the odd moments in terms

of the mean. Nevertheless, the mean itself cannot be explicitly determined. Applying
the same technique to logXt, one gets the relation log(2)m1 = m−1. With Jensen’s
inequality, this implies that 1/

√
log 2 6 m1 6

√
2.

2.2 Uniform bounds for the moments at finite times

The fact that the jump rate goes to infinity at infinity gives bounds on the moments
at any positive time that are uniform over the initial distribution.

Lemma 2.1. For any p > 1 and t > 0

Mp,t := sup
x>0

Ex(Xp
t ) 6

(√
2p+

2p

t

)p
.

Proof. One deduces from (2.1) and Jensen’s inequality that

α′p(t) 6 pαp(t)
1−1/p − (1− 2−p)αp(t)

1+1/p.

Let βp(t) = αp(t)
1/p −

√
2p. Then, using the fact that 1− 2−p > 1

2 ,

β′p(t) =
1

p
αp(t)

1/p−1α′p(t) 6 1− 1

2p
αp(t)

2/p = −
√

2

p
βp(t)−

βp(t)
2

2p
.

In particular, β′p(t) < 0 as soon as βp(t) > 0.

Let us now fix t > 0. If βp(t) 6 0, then αp(t) 6 (2p)
p/2 and the lemma is proven.

We assume now that βp(t) > 0. By the previous remark, this implies that the function
s 7→ βp(s) is strictly decreasing, hence positive, on the interval [0, t]. Consequently, for
any s ∈ [0, t],

β′p(s) 6 −
βp(s)

2

2p
.
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Total variation estimates for the TCP process

Integrating this last inequality gives

1

βp(t)
>

1

βp(0)
+

t

2p
>

t

2p
,

hence the lemma.

Let us derive from Lemma 2.1 some upper bounds for the right tails of δxPt and µ.

Corollary 2.2. For any t > 0 and r > 2e(1 + 1/t), one has

Px(Xt > r) 6 exp

(
− t

2e(t+ 1)
r

)
. (2.2)

Moreover, ifX is distributed according to the invariant measure µ then, for any r >
√

2e,
one has

P(X > r) 6 exp

(
− r

2

4e

)
.

Proof. Let t > 0 and a = 2(1 + 1/t). Notice that, for any p > 1, Ex(Xp
t ) is smaller than

(ap)p. As a consequence, for any p > 1 and r > 0,

Px(Xt > r) 6 exp (p log(ap/r)).

Assuming that r > ea, we let p = r/(ea) to get:

Px(Xt > r) 6 e−r/(ea).

For the invariant measure, the upper bound is better: E(Xp) 6 (2p)p/2. Then, the
Markov inequality provides that, for any p > 1,

P(X > r) 6 exp

(
p log

√
2p

r

)
.

As above, if r2 > 2e, one can choose p = r2/(2e) to get the desired bound.

Remark 2.3. A better deviation bound should be expected from the expression (1.3)
of the density of µ. Indeed, one can get a sharp result (see [6]). However, in the sequel
we only need the deviation bound (2.2).

3 Exponential convergence in Wasserstein distance

This section is devoted to the proof of Theorem 1.4. We use the coupling introduced
in [6]. Let us briefly recall the construction and the dynamics of this stochastic process
on R2

+ whose marginals are two TCP processes. It is defined by the following generator

Lf(x, y) = (∂x + ∂y)f(x, y) + y
(
f(x/2, y/2)− f(x, y)

)
+ (x− y)

(
f(x/2, y)− f(x, y)

)
when x > y and symmetric expression for x < y. We will call the dynamical coupling
defined by this generator the Wasserstein coupling of the TCP process (see Figure 1
for a graphical illustration of this coupling). This coupling is the only one such that the
lower component never jumps alone. Let us give the pathwise interpretation of this
coupling. Between two jump times, the two coordinates increase linearly with rate 1.
Moreover, two "jump processes" are simultaneously in action:

1. with a rate equal to the minimum of the two coordinates, they jump (i.e. they are
divided by 2) simultaneously,
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Total variation estimates for the TCP process
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Figure 1: Two trajectories following the Wasserstein coupling; the bigger jumping alone
can be good, making the distance between both trajectories smaller, or bad.

2. with a rate equal to the distance between the two coordinates (which is constant
between two jump times), the bigger one jumps alone.

The existence of non-simultaneous jumps implies that the generator does not act in a
good way on functions directly associated to Wasserstein distances. To see this, let us
define Vp(x, y) = |x− y|p. When we compute LVp, the term coming from the determinis-
tic drift disappears (since Vp is unchanged under the flow), and we get for x/2 6 y 6 x:

LVp(x, y) = −y(1− 2−p)Vp(x, y) + (x− y)((y − x/2)p − (x− y)p).

For example, choosing p = 1 gives:

LV1(x, y) = −V1(x, y)(y/2− (y − x/2) + (x− y)) = −(3/2)V1(x, y)2.

This shows that E[|Xt − Yt|] decreases, but only gives a polynomial bound: the problem
comes from the region where x− y is already very small.

Choosing p = 2, we get

LV2(x, y) = −(3/4)yV2(x, y) + (x− y)(−(3/4)x2 + xy).

The effect of the jumps of X is even worse: if x = 1 and x − y is small, LV2(x, y) is
positive (≈ (1/4)(x− y)).

For p = 1/2, the situation is in fact more favourable: indeed, for 0 < y 6 x,

LV1/2(x, y) = −y
(

1−
√

2

2

)
V1/2(x, y) + (x− y)(

√
|y − x/2| −

√
x− y)

= −V1/2(x, y)

[
x−
√

2

2
y −

√
(x− y)(y − x/2)

]
= −x

[
1− ϕ

(y
x

)]
V1/2(x, y) ,

with

ϕ(u) =

√
2

2
u+

√
(1− u)|u− 1/2| for u ∈ [0, 1].

By a direct computation, one gets that

M := max
06u61

ϕ(u) = ϕ
(9 +

√
3

12

)
=

√
2(3 +

√
3)

8
∼ 0.8365.
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Total variation estimates for the TCP process

Hence, when 0 < y 6 x,

LV1/2(x, y) 6 −xλV1/2(x, y), (3.1)

with λ = 1−M ∼ 0.1635. This would give an exponential decay for V1/2 if x was bounded
below: the problem comes from the region where x is small and the process does not
jump.

To overcome this problem, we replace V1/2 with the function

Ṽ (x, y) = ψ(x ∨ y)|x− y|1/2 = ψ(x ∨ y)V1/2(x, y),

where

ψ(x) =

{
1 + α(1− x/x0)2, x 6 x0,

1, x > x0,

the two positive parameters α and x0 being chosen below. The negative slope of ψ for
x small will be able to compensate the fact that the bound from (3.1) tends to 0 with x,
hence to give a uniform bound. Indeed, for 0 < y 6 x,

LṼ (x, y) = ψ′(x)(x− y)p + yψ(x/2)
(x− y)p

2p
+ (x− y)ψ(x/2 ∨ y)|x/2− y|p − xṼ (x, y)

= −Ṽ (x, y)

[
−ψ
′(x)

ψ(x)
+ x− ψ(x/2)

ψ(x)

y

2p
− ψ(x/2 ∨ y)

ψ(x)
(x− y)1−p|x/2− y|p

]
6 −Ṽ (x, y)

[
−ψ
′(x)

ψ(x)
+ x

(
1− ψ(x/2)

ψ(x)
ϕ
(y
x

))]
6 −Ṽ (x, y)

[
− ψ′(x)

(1 + α)
+ x (1− (1 + α)M)

]

=

{
−Ṽ (x, y)

[
2α

x0(1+α) + x
(

1− (1 + α)M − 2α
x2
0(1+α)

)]
when x 6 x0,

−Ṽ (x, y)x (1− (1 + α)M) when x > x0.

Finally, as soon as (1 + α)M < 1, one has

LṼ (x, y) 6 −λα,x0 Ṽ (x, y) ∀x, y > 0

with

λα,x0
= min

(
2α

x0(1 + α)
, x0(1− (1 + α)M)

)
.

By direct computations, one gets that the best possible choice of parameters α and
x0 is α = 1/

√
M − 1 ∼ 0.0934 and x0 =

√
2. We obtain finally, for any x, y > 0,

LṼ (x, y) 6 −λṼ (x, y), (3.2)

with λ = λα,x0 =
√

2(1−
√
M) ∼ 0.1208. Hence, directly from (3.2), for any x, y > 0

Ex,y[Ṽ (Xt, Yt)] 6 e−λtṼ (x, y). (3.3)

Immediate manipulations lead to the following estimate.

Proposition 3.1. Let

M =

√
2(3 +

√
3)

8
∼ 0.84 and λ =

√
2(1−

√
M) ∼ 0.12. (3.4)

Then, for any x, y > 0, one has

Ex,y

(
|Xt − Yt|1/2

)
6

1√
M
e−λt|x− y|1/2. (3.5)
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Total variation estimates for the TCP process

Moreover, for any initial conditions (X0, Y0) and any t > t0 > 0,

E
(
|Xt − Yt|1/2

)
6

√
2
√

2 + 4t−1
0

M
e−λ(t−t0). (3.6)

Proof. Equation (3.5) is a straightforward consequence of Equation (3.2) since ψ(R+)

is the interval [1, 1 + α]. As a consequence, for any t > t0 > 0, one has

E
(
|Xt − Yt|1/2

)
6

1√
M
e−λ(t−t0)E

(
|Xt0 − Yt0 |1/2

)
6
eλt0√
M

√
E(Xt0) + E(Yt0)e−λt.

Then, Lemma 2.1 provides the estimate (3.6).

0 2 4 6 8 10 12 14
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 2: The “true” function Ex,y
(
|Xt − Yt|1/2

)
(solid, black; by Monte Carlo method

with m = 10 000 copies) and the bound given in Equation (3.5) (dashed, blue), for x = 2

and y = 10.

Remark 3.2. The upper bound obtained in Proposition 3.1 is compared graphically to
the “true” function t 7→ Ex,y

(
|Xt − Yt|1/2

)
in Figure 2. By linear regression on this data,

one gets that the exponential speed of convergence of this function is on the order of
0.4.
Note also that this method can be adapted to any Vp with 0 < p < 1, giving even better
(but less explicit) speed of convergence for some p 6= 1

2 : we estimated numerically that
the best value for λ would be approximately 0.1326, obtained for p close to 2/3.

We may now deduce from Proposition 3.1 estimates for the Wasserstein distance
between the laws of Xt and Yt.

Theorem 3.3. Let p > 1. Then, for any t0 > 0 and any θ ∈ (0, 1), there exists a finite
constant C(p, t0, θ) such that, for any initial conditions (X0, Y0) and for all t > t0,

E(|Xt − Yt|p) 6 C(p, t0, θ) exp (−λθt)

where λ is defined by (3.4).

Proof of Theorem 3.3. Let p > 1. For any 0 < θ < 1, Hölder’s inequality gives, for any
t > 0,

E(|Xt − Yt|p) 6
[
E
(
|Xt − Yt|

2p−θ
2(1−θ)

)]1−θ[
E
(
|Xt − Yt|1/2

)]θ
.
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Thanks to Lemma 2.1 and the inequality (a+ b)q 6 2q−1(aq + bq), when q > 1, one gets[
E
(
|Xt − Yt|

2p−θ
2(1−θ)

)]1−θ
6
(

2
2p−θ

2(1−θ)M 2p−θ
2(1−θ) ,t

)1−θ

6 2p−θ/2

(√
2p− θ
1− θ

+
2p− θ

(1− θ)t

)p−θ/2
.

Then, it suffices to use Equation (3.6) to conclude the proof with

C(p, t0, θ) =
2p

Mθ/2

(√
2p− θ
1− θ

+
2p− θ

(1− θ)t0

)p−θ/2(√
2 +

2

t0

)θ/2
eλθt0 .

Since Wp(L(Xt),L(Yt))
p 6 E(|Xt − Yt|p), Theorem 1.4 is a direct consequence of this

result.

Remark 3.4. Let us remark that we can obtain "contraction’s type bounds" using Equa-
tion (3.5) instead of (3.6) : for any p > 1, any 0 < θ < 1, any t > 0 and any x, y > 0,

Ex,y(|Xt − Yt|p) 6
2p−θ/2

Mθ/2

(√
2p− θ
1− θ

+
2p− θ

(1− θ)t

)p−θ/2
e−λθt |x− y|θ/2 .

We then obtain that if ν and ν̃ have finite θ/2-moments then for p > 1 and t > 0,

Wp(νPt, ν̃Pt) 6

2p−θ/2

Mθ/2

(√
2p− θ
1− θ

+
2p− θ

(1− θ)t

)p−θ/2 1
p

e−
λθ
p tW θ

2
(ν, ν̃)

2
pθ .

which still allows a control by some Wasserstein "distance" (in fact, this is not a distance,
since θ/2 < 1) of the initial measures.

Remark 3.5. We estimated numerically the exponential speed of convergence:

• of the function t 7→ Ex,y(|Xt − Yt|) for the Wasserstein coupling (by Monte Carlo
method and linear regression). It seems to be on the order of 0.5 (we obtained 0.48

for x = 2, y = 10, m = 10 000 copies, and linear regression between times 2 and
10);

• of the Wasserstein distance t 7→ W1(δxPt, δyPt), using the explicit representation
of this distance for measures on R to approximate it by the L1-distance between
the two empirical quantile functions. It is on the order of 1.6 (we get 1.67 for x = 2,
y = 0.5, m = 1 000 000 copies, and linear regression on 20 points until time 4).

In conclusion, our bound from Theorem 3.3 seems reasonable (at least when compared
to those given by [29], see section 4.2 below), but is still off by a factor of 4 from the
true exponential speed of convergence. Since the coupling itself seems to converge
approximately 3 times slower than the true Wasserstein distance, one probably needs
to find another coupling to get better bounds.

Remark 3.6. Let us end this section by advertising on a parallel work by B. Cloez [7]
who uses a completely different approach, based on a particular Feynman-Kac formula-
tion, to get some related results.
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4 Exponential convergence in total variation distance

In this section, we provide the proof of Theorem 1.5 and we compare our estimate
to the ones that can be deduced from [29].

4.1 From Wasserstein to total variation estimate

The fact that the evolution is partially deterministic makes the study of convergence
in total variation quite subtle. Indeed, the law δxPt can be written as a mixture of a
Dirac mass at x+ t (the first jump time has not occurred) and an absolutely continuous
measure (the process jumped at some random time in (0, t)):

δxPt = pt(x)δx+t + (1− pt(x))L(Xt|X0 = x, T1 6 t)

where, according to Equation (1.2),

pt(x) := Px(T1 > t) = e−t
2/2−xt. (4.1)

This implies that the map y 7→ ‖δxPt − δyPt‖TV is not continuous at point x since one
has, for any y 6= x,

‖δxPt − δyPt‖TV > pt(x) ∨ pt(y) = e−t
2/2−(x∧y)t.

Nevertheless, one can hope that

‖δxPt − δyPt‖TV ∼
y→x

pt(x).

The lemma below makes this intuition more precise.

Lemma 4.1. Let t > ε > x − y > 0. There exists a coupling
(

(Xt)t>0, (Yt)t>0

)
of two

processes driven by (1.1) starting at (x, y) such that the probability P(Xs = Ys, s > t)

is larger than

qt(x, y) =

(∫ t

x−y
(fx(s) ∧ fy(s− x+ y)) ds

)
px−y

(
x+ t

2

)
> (pε(x)− pt(x)− 2εα(x))pε

(
x+ t

2

)
, (4.2)

where fx is defined in Equation (1.2) and α(x) :=
∫∞

0
e−u

2/2−ux du.
Moreover, for any x0 > 0 and ε > 0, let us define

Ax0,ε = {(x, y) : 0 6 x, y 6 x0, |x− y| 6 ε}. (4.3)

Then,

inf
(x,y)∈Ax0,ε

qt(x, y) > exp

(
−ε2 − 3x0 + t

2
ε

)
− e−t

2/2 −
√

2πε.

Proof. The idea is to construct an explicit coalescent coupling starting from x and y.
The main difficulty comes from the fact that the jump are deterministic. Assume for
simplicity that y < x. Let us denote by (T xk )k>1 and (T yk )

k>1
the jump times of the two

processes. If
T x1 = T y1 + x− y and T y2 − T

y
1 > x− y (4.4)

then the two paths are at the same place at time T x1 since in this case

XTx1
=
x+ T x1

2
=
y + T y1

2
+ T x1 − T

y
1 = YTx1 .
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The law of T x1 has a density fx given by (1.2). As a consequence, the density of T 1
y +x−y

is given by s 7→ fy(s− x+ y). The best way of obtaining the first equality in (4.4) before
a time t > x − y is to realise an optimal coupling of the two continuous laws of T x1 and
T y1 + x− y. This makes these random variables equal with probability

I(x, y, t) =

∫ t

x−y
(fx(s) ∧ fy(s− x+ y)) ds.

Assume now that 0 6 x− y 6 ε 6 t. For any s > x− y, one has

fy(s− x+ y) = (2y − x+ s) exp

(
−1

2
(s− x+ y)2 − y(s− x+ y)

)
= (s+ x− 2(x− y)) exp

(
−s

2

2
− xs+ (2s+ x− 3(x− y)/2)(x− y)

)
> (s+ x− 2ε) exp

(
−s

2

2
− xs

)
.

As a consequence, if 0 6 x− y 6 ε 6 t,

I(x, y, t) >
∫ t

x−y
(s+ x− 2ε) exp

(
−s

2

2
− xs

)
ds

> pε(x)− pt(x)− 2εα(x)

where pt(x) is defined in (4.1) and α(x) =
∫∞

0
e−u

2/2−ux du.
Finally, one has to get a lower bound for the probability of the set {T y2 − T

y
1 > x− y}.

For this, we notice that

z ∈ [0,+∞) 7→ P(T z1 > s) = ps(z) = e−s
2/2−sz

is decreasing and that YTy1 6 (y + t)/2 as soon as T y1 6 t. As a consequence,

inf
06z6(x+t)/2

P(T z1 > s) > px−y

(
x+ t

2

)
> pε

(
x+ t

2

)
.

This provides the bound (4.2). The uniform lower bound on the set Ax0,ε is a direct
consequence of the previous one.

Let us now turn to the proof of Theorem 1.5.

Proof of Theorem 1.5. We are looking for an upper bound for the total variation dis-
tance between δxPt and δyPt for two arbitrary initial conditions x and y. To this end,
let us consider the following coupling: during a time t1 < t we use the Wasserstein
coupling. Then during a time t2 = t− t1 we try to stick the two paths using Lemma 4.1.
Let ε > 0 and x0 > 0 be as in Lemma 4.1. If, after the time t1, one has

(Xt1 , Yt1) ∈ Aε,x0

where Aε,x0 is defined by (4.3), then the coalescent coupling will work with a proba-
bility greater than the one provided by Lemma 4.1. As a consequence, the coalescent
coupling occurs before time t1 + t2 with a probability greater than

P((Xt1 , Yt1) ∈ Aε,x0
) inf

(x,y)∈Aε,x0
qt2(x, y).

Moreover,

P((Xt1 , Yt1) /∈ Aε,x0) 6 P(Xt1 > x0) + P(Yt1 > x0) + P(|Xt1 − Yt1 | > ε).
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>From the deviation bound (2.2), we get that, for any x0 > 2e(1 + 1/t1),

P(Xt1 > x0) 6 e−a(t1)x0 with a(t1) =
t1

2e(t1 + 1)
.

The estimate of Proposition 3.1 concerning the Wasserstein coupling ensures that

P(|Xt1 − Yt1 | > ε) 6
C√
ε
e−λt1 with C =

√
2
√

2 + 4t−1
0

M
eλt0 ,

for any 0 < t0 6 t1. As a consequence, the total variation distance between δxPt and
δyPt is smaller than

D := 1− e−ε
2− 3x0+t2

2 ε + e−t
2
2/2 +

√
2πε+ 2e−a(t1)x0 +

C√
ε
e−λt1 .

In order to get a more tractable estimate, let us assume that t2 6 x0 and use that
1− e−u 6 u to get

D 6 ε2 + 2εx0 + e−t
2
2/2 +

√
2πε+ 2e−a(t0)x0 +

C√
ε
e−λt1 .

Finally let us set

t2 =
√

2 log(1/ε), t1 =
3

2λ
log(1/ε), x0 =

1

a(t0)
log(1/ε).

Obviously, for ε small enough, x0 > max(t2, 2e(1 + 1/t1)) and t1 > t0. Then, one gets that

‖δxPt1+t2 − δyPt1+t2‖TV 6
2

a(t0)
ε log(1/ε) + (3 + C +

√
2π + ε)ε.

One can now express ε as a function of t1 to get that there exists K = K(t0) > 0 such
that

‖δxPt1+t2 − δyPt1+t2‖TV 6 K(1 + t1)e−
2λ
3 t1 .

Since t2 =
√

(4λ/3)t1, one gets that

‖δxPt − δyPt‖TV 6 K(1 + t)eK
√
te−

2λ
3 t.

This provides the conclusion of Theorem 1.5 when both initial measures are Dirac
masses. The generalisation is straightforward.

4.2 A bound via small sets

We describe here briefly the approach of [29] and compare it with the hybrid Wasser-
stein/total variation coupling described above. The idea is once more to build a suc-
cessful coupling between two copies X and Y of the process. In algorithmic terms, the
approach is the following:

• let X and Y evolve independently until they both reach a given set C,

• once they are in C, try to stick them together,

• repeat until the previous step is successful.

To control the time to come back to C × C, [29] advocates an approach via a Lyapunov
function. The second step works with positive probability if the set is “pseudo-small”,
i.e. if one can find a time t?, an α > 0 and probability measures νxy

∀x, y ∈ C2, L(Xt? |X0 = x) > ανxy and L(Xt? |X0 = y) > ανxy. (4.5)

The convergence result can be stated as follows.
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Theorem 4.2 ([29], Theorem 3, Corollary 4 and Theorem 8). 1 Suppose that there
exists a set C, a function V > 1, and positive constants λ,Λ such that

LV 6 −λV + Λ1C . (4.6)

Suppose that δ = λ−Λ/ infx/∈C V > 0. Suppose additionally that C is pseudo-small, with
constant α.

Then for A = Λ
δ + e−δt

?

supx∈C V , A′ = Aeδt
?

, and for any r < 1/t?,

‖L(Xt)− µ‖TV 6 (1− α)brtc + e−δ(t−t
?)(A′)brtc−1EV (X0).

If A′ is finite, this gives exponential convergence: just choose r small enough so that
(A′)rte−δt decreases exponentially fast.

To compute explicit bounds we have to make choices for C and V and estimate the
corresponding value of α. Our best efforts for the case of the TCP process only give
decay rates of the order 10−14. We believe this order cannot be substantially improved
even by fine-tuning C and V .

5 Two other models

This section is devoted to the study of two simple PDMPs. The first one is a sim-
plified version of the TCP process where the jump rate is assumed to be constant and
equal to λ. It has been studied with different approaches: PDE techniques (see [27, 17])
or probabilistic tools (see [21, 25, 6]). The second one is studied in [30]. It can also be
checked that our method gives sharp bounds for the speed of convergence to equi-
librium of the PDMP which appears in the study of a penalised bandit algorithm (see
Lemma 7 in [16]).

5.1 The TCP model with constant jump rate

In this section we investigate the long time behavior of the TCP process with con-
stant jump rate given by its infinitesimal generator:

Lf(x) = f ′(x) + λ(f(x/2)− f(x)) (x > 0).

The jump times of this process are the ones of a homogeneous Poisson process with
intensity λ. The convergence in Wasserstein distance is obvious.

Lemma 5.1 ([27, 6]). For any p > 1,

Wp(δxPt, δyPt) 6 |x− y|e−λpt with λp =
λ(1− 2−p)

p
. (5.1)

Remark 5.2. The case p = 1 is obtained in [27] by PDEs estimates using the following
alternative formulation of the Wasserstein distance on R. If the cumulative distribution
functions of the two probability measures ν and ν̃ are F and F̃ then

W1(ν, ν̃) =

∫
R

|F (x)− F̃ (x)| dx.

The general case p > 1 is obvious from the probabilistic point of view: choosing
the same Poisson process (Nt)t>0 to drive the two processes provides that the two
coordinates jump simultaneously and

|Xt − Yt| = |x− y|2−Nt .
1In fact, in [29], the result is given with A instead of A′ in the upper bound. Joaquin Fontbona pointed out

to us that Lemma 6 from [29] has to be corrected, adding the exponential term eδt
?

to the estimate. We thank
him for this remark.
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As a consequence, since the law of Nt is the Poisson distribution with parameter λt, one
has

Ex,y(|Xt − Yt|p) = |x− y|pE
(
2−pNt

)
= |x− y|pe−pλpt.

This coupling turns out to be sharp. Indeed, one can compute explicitly the moments
of Xt (see [21, 25]): for every n > 0, every x > 0, and every t > 0,

Ex((Xt)
n) =

n!∏n
k=1 θk

+ n!

n∑
m=1

( m∑
k=0

xk

k!

n∏
j=k
j 6=m

1

θj − θm

)
e−θmt, (5.2)

where θn = λ(1−2−n) = nλn for any n > 1. Obviously, assuming for example that x > y,

Wn(δxPt, δyPt)
n > Ex((Xt)

n)− Ey((Yt)
n)

∼
t→∞

n!

( n∑
k=0

xk − yk

k!

n−1∏
j=k

1

θj − θn

)
e−θnt.

As a consequence, the rate of convergence in Equation (5.1) is optimal for any n > 1.
Nevertheless this estimate for the Wasserstein rate of convergence does not provide

on its own any information about the total variation distance between δxPt and δyPt. It
turns out that this rate of convergence is the one of the W1 distance. This is established
by Theorem 1.1 in [27]. It can be reformulated in our setting as follows.

Theorem 5.3 ([27]). Let µ be the invariant measure of X. For any measure ν with a
finite first moment and t > 0,

‖νPt − µ‖TV 6 e−λt/2(3λW1(ν, µ) + ‖ν − µ‖TV).

Let us provide here an improvement of this result by a probabilistic argument.

Proposition 5.4. For any x, y > 0 and t > 0,

‖δxPt − δyPt‖TV 6 λe−λt/2|x− y|+ e−λt. (5.3)

As a consequence, for any measure ν with a finite first moment and t > 0,

‖νPt − µ‖TV 6 λe−λt/2W1(ν, µ) + e−λt‖ν − µ‖TV. (5.4)

Remark 5.5. Note that the upper bound obtained in Equation (5.3) is non-null even
for x = y. This is due to the persistence of a Dirac mass at any time, which implies that
taking y arbitrarily close to x for initial conditions does not make the total variation
distance arbitrarily small, even for large times.

Proof of Proposition 5.4. The coupling is a slight modification of the one used to control
Wasserstein distance. The paths of (Xs)06s6t and (Ys)06s6t starting respectively from

x and y are determined by their jump times (TXn )n>0 and (TYn )n>0 up to time t. These
sequences have the same distribution than the jump times of a Poisson process with
intensity λ.

Let (Nt)t>0 be a Poisson process with intensity λ and (Tn)n>0 its jump times with the
convention T0 = 0. Let us now construct the jump times of X and Y . Both processes
make exactly Nt jumps before time t. If Nt = 0, then

Xs = x+ s and Ys = y + s for 0 6 s 6 t.

Assume now that Nt > 1. The Nt−1 first jump times of X and Y are the ones of (Nt)t>0:

TXk = TYk = Tk 0 6 k 6 Nt − 1.
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In other words, the coupling used to control Wasserstein distance (see Lemma 5.1) acts
until the penultimate jump time TNt−1. At that time, we have

XTNt−1
− YTNt−1

=
x− y
2Nt−1

.

Then we have to define the last jump time for each process. If they are such that

TXNt = TYNt +XTNt−1
− YTNt−1

then the paths of X and Y are equal on the interval (TXNt , t) and can be chosen to be
equal for any time larger than t.

Recall that conditionally on the event {Nt = 1}, the law of T1 is the uniform distribu-
tion on (0, t). More generally, if n > 2, conditionally on the set {Nt = n}, the law of the
penultimate jump time Tn−1 has a density s 7→ n(n− 1)t−n(t− s)sn−21(0,t)(s) and condi-
tionally on the event {Nt = n, Tn−1 = s}, the law of Tn is uniform on the interval (s, t).

Conditionally on Nt = n > 1 and Tn−1, TXn and TYn are uniformly distributed on
(Tn−1, t) and can be chosen such that

P

(
TXn = TYn +

x− y
2n−1

∣∣∣NX
t = NY

t = n, TXn−1 = TYn−1 = Tn−1

)
=

(
1− |x− y|

2n−1(t− Tn−1)

)
∨ 0 > 1− |x− y|

2n−1(t− Tn−1)
.

This coupling provides that

‖δxPt − δyPt‖TV 6 1− E
[(

1− |x− y|
2Nt−1(t− TNt−1)

)
1{Nt>1}

]
6 e−λt + |x− y|E

(
2−Nt+1

(t− TNt−1)
1{Nt>1}

)
.

For any n > 2,

E

(
1

t− TNt−1

∣∣∣Nt = n

)
=
n(n− 1)

tn

∫ t

0

un−2 du =
n

t
.

This equality also holds for n = 1. Thus we get that

E

(
2−Nt+1

(t− TNt−1)
1{Nt>1}

)
=

1

t
E
(
Nt2

−Nt+1
)

= λe−λt/2,

since Nt is distributed according to the Poisson law with parameter λt. This provides
the estimate (5.3).

To treat the case of general initial conditions and to get (5.4), we combine the cou-
pling between the dynamics constructed above with the choice of the coupling of the
initial measures µ and ν as a function of the underlying Poisson process (Nt)t>0: the
time horizon t > 0 being fixed, if Nt = 0, one chooses for L(X0, Y0) the optimal total
variation coupling of ν and µ; if Nt > 1, one chooses their optimal Wasserstein coupling.
One checks easily that this gives an admissible coupling, in the sense that its first (resp.
second) marginal is a constant rate TCP process with initial distribution ν (resp. µ). And
one gets with this construction, using the same estimates as above in the case where
Nt > 1:

P(Xt 6= Yt) = P(Xt 6= Yt, Nt > 1) + P(Xt 6= Yt, Nt = 0)

6 E

(
|X0 − Y0|

2−Nt+1

(t− TNt−1)
1{Nt>1}

)
+ P(X0 6= Y0, Nt = 0)

= λe−λt/2W1(ν, µ) + e−λt‖ν − µ‖TV ,

which clearly implies (5.4).
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5.2 A storage model example

In [30], Roberts and Tweedie improve the approach from [29] via Lyapunov functions
and minorization conditions in the specific case of stochastically monotonous processes.
They get better results on the speed of convergence to equilibrium in this case. They
give the following example of a storage model as a good illustration of the efficiency of
their method. The process (Xt)t>0 on R+ is driven by the generator

Lf(x) = −βxf ′(x) + α

∫ ∞
0

(f(x+ y)− f(x))e−y dy.

In words, the current stock Xt decreases exponentially at rate β, and increases at ran-
dom exponential times by a random (exponential) amount. Let us introduce a Pois-
son process (Nt)t>0 with intensity α and jump times (Ti)i>0 (with T0 = 0) and a se-
quence (Ei)i>1 of independent random variables with law E(1) independent of (Nt)t>0.
The process (Xt)t>0 starting from x > 0 can be constructed as follows: for any i > 0,

Xt =

{
e−β(t−Ti)XTi if Ti 6 t < Ti+1,

e−β(Ti+1−Ti)XTi + Ei+1 if t = Ti+1.

Proposition 5.6. For any x, y > 0 and t > 0,

Wp(δxPt, δyPt) 6 |x− y|e−βt,

and (when α 6= β)

‖δxPt − δyPt‖TV 6 e−αt + |x− y|αe
−βt − e−αt

α− β
. (5.5)

Moreover, if µ is the invariant measure of the process X, we have for any probability
measure ν with a finite first moment and t > 0,

‖νPt − µ‖TV 6 ‖ν − µ‖TVe
−αt +W1(ν, µ)α

e−βt − e−αt

α− β
.

Remark 5.7. In the case α = β, the upper bound (5.5) becomes

‖δxPt − δyPt‖TV 6 (1 + |x− y|αt)e−αt.

Remark 5.8 (Optimality). Applying L to the test function f(x) = xn allows us to com-
pute recursively the moments of Xt. In particular,

Ex(Xt) =
α

β
+

(
x− α

β

)
e−βt.

This relation ensures that the rate of convergence for the Wasserstein distance is sharp.
Moreover, the coupling of total variation distance requires at least one jump. As a con-
sequence, the exponential rate of convergence is greater than α. Thus, Equation (5.5)
provides the optimal rate of convergence α ∧ β.

Remark 5.9 (Comparison with previous work). By way of comparison, the original
method of [30] does not seem to give these optimal rates. The case α = 1 and β = 2

is treated in this paper (as an illustration of Theorem 5.1), with explicit choices for
the various parameters needed in this method. With these choices, in order to get the
convergence rate, one first needs to compute the quantity θ (defined in Theorem 3.1),
which turns out to be approximately 5.92. The result that applies is therefore the first
part of Theorem 4.1 (Equation (27)), and the convergence rate is given by β̃ defined
by Equation (22). The computation gives the approximate value 0.05, which is off by a
factor 20 from the optimal value α ∧ β = 1.
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Proof of Proposition 5.6. Firstly, consider two processes X and Y starting respectively
at x and y and driven by the same randomness (i.e. Poisson process and jumps). Then
the distance between Xt and Yt is deterministic:

Xt − Yt = (x− y)e−βt.

Obviously, for any p > 1 and t > 0,

Wp(δxPt, δyPt) 6 |x− y|e−βt.

Let us now construct explicitly a coupling at time t to get the upper bound (5.5) for the
total variation distance. The jump times of (Xt)t>0 and (Yt)t>0 are the ones of a Poisson
process (Nt)t>0 with intensity α and jump times (Ti)i>0. Let us now construct the jump

heights (EXi )16i6Nt
and (EYi )16i6Nt

of X and Y until time t. If Nt = 0, no jump occurs.

If Nt > 1, we choose EXi = EYi for 1 6 i 6 Nt − 1 and EXNt and EYNt in order to maximise
the probability

P
(
XTNt

+ EXNt = YTNt + EYNt
∣∣XTNt

, YTNt
)
.

This maximal probability of coupling is equal to

exp
(
−|XTNt

− YTNt |
)

= exp
(
−|x− y|e−βTNt

)
> 1− |x− y|e−βTNt .

As a consequence, we get that

‖δxPt − δyPt‖TV 6 1− E
[(

1− |x− y|e−βTNt
)
1{Nt>1}

]
6 e−αt + |x− y|E

(
e−βTNt1{Nt>1}

)
.

The law of Tn conditionally on the event {Nt = n} has the density

u 7→ n
un−1

tn
1[0,t](u).

This ensures that

E
(
e−βTNt1{Nt>1}

)
=

∫ 1

0

e−βtvE
(
Ntv

Nt−1
)
dv.

Since the law of Nt is the Poisson distribution with parameter λt, one has

E
(
Ntv

Nt−1
)

= αteαt(v−1).

This ensures that

E
(
e−βNt1{Nt>1}

)
= α

e−βt − e−αt

α− β
which completes the proof. Finally, to get the last estimate, we proceed as follows: if
Nt is equal to 0, a coupling in total variation of the initial measures is done, otherwise,
we use the coupling above (the method is exactly the same as for the equivalent result
in Proposition 5.4, see its proof for details).

6 The case of diffusion processes

Let us consider the process (Xt)t>0 on Rd solution of

dXt = A(Xt) dt+ σ(Xt) dBt, (6.1)

where (Bt)t>0 is a standard Brownian motion on Rn, σ is a smooth function from Rd

to Md,n(R) and A is a smooth function from Rd to Rd. Let us denote by (Pt)t>0 the
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semigroup associated to (Xt)t>0. If ν is a probability measure on Rd, νPt stands for the
law of Xt when the law of X0 is ν.

Under ergodicity assumptions, we are interested in getting quantitative rates of
convergence of L(Xt) to its invariant measure in terms of classical distances (Wasser-
stein distances, total variation distance, relative entropy,. . . ). Remark that if A is not
in gradient form (even if σ is constant), Xt is not reversible and the invariant mea-
sure is usually unknown, so that it is quite difficult to use functional inequalities such
as Poincaré or logarithmic Sobolev to get a quantitative rate of convergence in total
variation or Wasserstein distance (using for example Pinsker’s inequality or more gen-
erally transportation-information inequality). Therefore the only general tool seems to
be Meyn-Tweedie’s approach, via small sets and Lyapunov functions, as explained in
Section 4.2. However, we have seen that in practical examples the resulting estimate
can be quite poor.

The main goal of this short section is to recall the known results establishing the
decay in Wasserstein distance and then to propose a strategy to derive control in total
variation distance.

6.1 Decay in Wasserstein distance

The coupling approach to estimate the decay in Wasserstein distance was recently
put forward, see [5] and [4] or [10]. It is robust enough to deal with nonlinear diffusions
or hypoelliptic ones. In [3], the authors approach the problem directly, by differentiating
the Wasserstein distance along the flow of the SDE.

Let us gather some of the results in these papers in the following statement.

Proposition 6.1. 1. Assume that there exists λ > 0 such that for p > 1

p− 1

2
(σ(x)− σ(y))(σ(x)− σ(y))t + (A(x)−A(y)) · (x− y) 6 −λ|x− y|2, x, y ∈ Rd.

(6.2)
Then, for any ν, ν′ ∈ Pp(Rd), one has

Wp(νPt, ν
′Pt) 6 e−λtWp(ν, ν

′). (6.3)

2. Assume that for all x, σ(x) = α Id for some constant α and that A is equal to −∇U
where U is a C2 function such that Hess(U) 6 −K Id outside a ball B(0, r0) and
Hess(U) 6 ρ Id inside this ball for some positive ρ. Then there exists c > 1, α > 0

such that
W1(νPt, ν

′Pt) 6 c e−αtW1(ν, ν′). (6.4)

3. Suppose that the diffusion coefficient σ is constant. Assume that A is equal to
−∇U where U a C2 convex function such that Hess(U) 6 ρ Id outside a ball B(0, r0),
with ρ > 0. Then there exists an invariant probability measure ν∞ and α > 0 such
that

W2(νPt, ν∞) 6 e−αtW2(ν, ν∞). (6.5)

Proof. The first point is usually proved using a trivial coupling (and it readily extends
to p = 1 in the case of constant diffusion coefficient), namely considering the same
Brownian motion for two different solutions of the SDE starting with different initial
measures. Note also that, in the case p = 2, the coercivity condition (6.2) is equivalent
to the uniform contraction property (6.3) for the W2 metric (see [32]).

The second point is due in this form to Eberle [10], using reflection coupling as
presented by [19], used originally in this form by Chen and Wang to prove spectral gap
estimates (see a nice short proof in [15, Prop. 2.8]) in the reversible case.

Finally, the third part was proved by [3] establishing the dissipation of the Wasser-
stein distance by an adequate functional inequality.
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Remark 6.2. • Let us remark that the contraction property of the two first points
ensures the existence of an invariant probability measure ν∞ and an exponential
rate of convergence towards this invariant measure in Wasserstein distance.

• Note also that in the hypoelliptic case of a kinetic Fokker-Planck equation:{
dxt = vtdt

dvt = dBt − F (xt)dt− V (vt)dt

with F (x) ∼ ax and V (v) ∼ bv for positive a and b, one has

W2(νPt, ν
′Pt) ≤ c e−αtW2(ν, ν′)

for c > 1 and a positive α (see [5]).

6.2 Total variation estimate

If Σ = 0 in Equation (6.1), the process (Xt)t>0 is deterministic and its invariant mea-

sure is a Dirac mass at the unique point x̄ ∈ Rd such that A(x̄) = 0. As a consequence,
for any x 6= x̄,

‖δxPt − δx̄‖TV = 1 and H(δxPt|δx̄) = +∞.

A non-zero variance is needed to get a convergence estimate in total variation distance.
Classically, the Brownian motion creates regularity and density. There are a lot of
results giving regularity, in terms of initial points, of semigroup in small time. Let
us quote the following result of Wang, which holds for processes living on a manifold.

Lemma 6.3 ([33]). Suppose that σ is constant and denote by η the infimum of its
spectrum. If A is a C2 function such that

1

2
(JacA+ JacAT ) > K Id

then there exists Kη such that, for small ε > 0,

‖δxPε − δyPε‖TV 6 Kη
|x− y|√

ε
.

Remark 6.4.

• There are many proofs leading to this kind of results, see for example Aronson [1]
for pioneering works, and [33] using Harnack’s and Pinsker’s inequalities.

• Note that in [13], an equivalent bound was given for the kinetic Fokker-Planck
equation but with ε replaced by ε3.

Now that we have a decay in Wasserstein distance and a control on the total variation
distance after a small time, we can use the same idea as for the TCP process. As a
consequence, we get the following result.

Theorem 6.5. Assume that σ is constant. Under Points 1. or 2. of Proposition 6.1, one
has, for any ν and ν̃ in P1(Rd),

‖νPt − ν̃Pt‖TV 6
Keλε√

ε
W1(ν, ν̃)e−λt.

Under Point 3. of Proposition 6.1, one has, for any ν and ν̃ in P2(Rd),

‖νPt − ν̃Pt‖TV 6
Keλε√

ε
W2(ν, ν̃)e−λt.

EJP 18 (2013), paper 10.
Page 19/21

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-1720
http://ejp.ejpecp.org/


Total variation estimates for the TCP process

Proof. Using first Lemma 6.3 and then Point 1. of Proposition 6.1, we get

‖νPt − ν̃Pt‖TV = ‖νPt−εPε − ν̃Pt−εPε‖TV

≤ K√
ε
W1(νPt−ε, ν̃Pt−ε)

≤ Keλε√
ε
W1(ν, ν̃)e−λt.

The proof of the second assertion is similar, except the use of Point 3. of Proposition 6.1
in the second step.

Remark 6.6. Once again, one can give in the case of kinetic Fokker-Planck equation
estimate in total variation distance, using the previous remarks (see [2] for qualitative
results).
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