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Abstract

We present some limit theorems for the normalized laws (with respect to functionals
involving last passage times at a given level a up to time t) of a large class of null
recurrent diffusions. Our results rely on hypotheses on the Lévy measure of the dif-
fusion inverse local time at 0. As a special case, we recover some of the penalization
results obtained by Najnudel, Roynette and Yor in the (reflected) Brownian setting.
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1 Introduction

1.1 A few notation

We consider a linear regular null recurrent diffusion (Xt, t ≥ 0) taking values in
R+, with 0 an instantaneously reflecting boundary and +∞ a natural boundary. Let
Px and Ex denote, respectively, the probability measure and the expectation associated
with X when started from x ≥ 0. We assume that X is defined on the canonical space
Ω := C(R+ → R+) and we denote by (Ft, t ≥ 0) its natural filtration, with F∞ :=

∨
t≥0

Ft.

We denote by s its scale function, with the normalization s(0) = 0, and by m(dx) its
speed measure, which is assumed to have no atoms. It is known that (Xt, t ≥ 0) admits a
transition density q(t, x, y) with respect to m, which is jointly continuous and symmetric
in x and y, that is: q(t, x, y) = q(t, y, x). This allows us to define, for λ > 0, the resolvent
kernel of X by:

uλ(x, y) =

∫ ∞
0

e−λtq(t, x, y)dt. (1.1)

We also introduce, for every a ∈ R+, (Lat , t ≥ 0) the local time of X at a, with the
normalization:

Lat := lim
ε↓0

1

m([a, a+ ε[)

∫ t

0

1[a,a+ε[(Xs)ds

and (τ
(a)
l , l ≥ 0) the right-continuous inverse of (Lat , t ≥ 0):

τ
(a)
l := inf{t ≥ 0;Lat > l}.
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Penalizing null recurrent diffusions

As is well-known, when X0 = a, (τ
(a)
l , l ≥ 0) is a subordinator, and we denote by ν(a) its

Lévy measure. To simplify the notation, we shall write in the sequel τl for τ (0)
l and ν for

ν(0). We shall also denote sometimes by µ(t) = µ([t,+∞[) the tail of the measure µ.

1.2 Motivations

Our aim in this paper is to establish some penalization results involving null recur-
rent diffusions. Let us start by giving a definition of penalization:

Definition 1.1. Let (Γt, t ≥ 0) be a measurable process taking positive values, and such
that 0 < Ex[Γt] < ∞ for any t > 0 and every x ≥ 0. We say that the process (Γt, t ≥ 0)

satisfies the penalization principle if there exists a probability measure Q(Γ)
x defined on

(Ω,F∞) such that:

∀s ≥ 0, ∀Λs ∈ Fs, lim
t→+∞

Ex[1ΛsΓt]

Ex[Γt]
= Q(Γ)

x (Λs).

This problem has been widely studied by Roynette, Vallois and Yor when Px is the
Wiener measure or the law of a Bessel process (see [21] for a synthesis and further ref-
erences). They showed in particular that Brownian motion may be penalized by a great
number of functionals involving local times, supremums, additive functionals, numbers
of downcrossings on an interval... Most of these results were then unified by Najnudel,
Roynette and Yor (see [15]) in a general penalization theorem, whose proof relies on
the construction of a remarkable measureW.

Later on, Salminen and Vallois managed in [28] to extend the class of diffusions for
which penalization results hold. They proved in particular that under the assumption
that the (restriction of the) Lévy measure 1

ν([1,+∞[)ν|[1,+∞[ of the subordinator (τl, l ≥ 0)

is subexponential, the penalization principle holds for the functional (Γt = h(L0
t ), t ≥ 0)

with h a non-negative and non-increasing function with compact support.
Let us recall that a probability measure µ is said to be subexponential (µ belongs to
class S) if, for every t ≥ 0,

lim
t→+∞

µ∗2([t,+∞[)

µ([t,+∞[)
= 2,

where µ∗2 denotes the convolution of µwith itself. The main examples of subexponential
distributions are given by measures having a regularly varying tail (see Chistyakov [4]
or Embrechts, Goldie and Veraverbek [6]):

µ([t,+∞[) ∼
t→+∞

η(t)

tβ

where β ≥ 0 and η is a slowly varying function. When β ∈]0, 1[, we shall say that such a
measure belongs to class R. Let us also remark that a subexponential measure always
satisfies the following property:

∀x ∈ R, lim
t→+∞

µ([t+ x,+∞[)

µ([t,+∞[)
= 1.

The set of such measures shall be denoted by L, hence:

R ⊂ S ⊂ L.

Now, following Salminen and Vallois, one may reasonably wonder what kind of penal-
ization results may be obtained for diffusions whose normalized Lévy measure belongs
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Penalizing null recurrent diffusions

to classes R or L. This is the main purpose of this paper, i.e. we shall prove that the
results of Najnudel, Roynette and Yor remain true for diffusions whose normalized Lévy
measure belongs to R, and we shall give an “integrated version” when it belongs to L1.

1.3 Statement of the main results

Let a ≥ 0, g(t)
a := sup{u ≤ t;Xu = a} and (Ft, t ≥ 0) be a positive and predictable

process such that

0 < Ex

[∫ +∞

0

FudL
a
u

]
<∞.

Theorem 1.2.

1. If ν belongs to class L, then

∀a ≥ 0,

∫ t

0

ν(a)([s,+∞[)ds ∼
t→+∞

∫ t

0

ν([s,+∞[)ds

and

Ex

[∫ t

0

F
g
(s)
a
ds

]
∼

t→+∞

(
Ex[F0](s(x)− s(a))+ + Ex

[∫ +∞

0

FudL
a
u

])∫ t

0

ν([s,+∞[)ds.

2. If ν belongs to class R:

∀a ≥ 0, ν(a)([t,+∞[) ∼
t→+∞

ν([t,+∞[)

and if F is decreasing:

Ex

[
F
g
(t)
a

]
∼

t→+∞

(
Ex[F0](s(x)− s(a))+ + Ex

[∫ +∞

0

FudL
a
u

])
ν([t,+∞[)

Remark 1.3. Point 2. does not hold for every ν ∈ L. Indeed, otherwise, taking a = 0

and Ft = 1{L0
t≤`} with ` > 0, one would obtain:

P0(L0
t ≤ `) = P0(τ` > t) ∼

t→+∞
`ν([t,+∞[),

a relation which is known to hold if and only if ν ∈ S, see [6] or [27, p.164].

Remark 1.4. If (Xt, t ≥ 0) is a positively recurrent diffusion, then
∫ +∞

0
ν([s,+∞[)ds =

m(R+) (see Remark 3.2 below) and the limit in Point 1. equals:

lim
t→+∞

Ex

[∫ t

0

F
g
(s)
a
ds

]
= Ex

[∫ +∞

0

F
g
(s)
a
ds

]
= Ex[F0]Ex [Ta] + Ex

[∫ +∞

0

FudL
a
u

]
m(R+).

In the following penalization result, we shall choose the weighting functional Γ accord-
ing to ν:

Theorem 1.5. Assume that:

a) either ν belongs to class L, and Γt =

∫ t

0

F
g
(s)
a
ds,

1In the remainder of the paper, we shall make a slight abuse of notation and say that the measure ν
belongs to L orR instead of 1

ν([1,+∞[)
ν|[1,+∞[ belongs to L orR. This is of no importance since the fact that

a probability measure belongs to classes L or R only involves the behavior of its tail at +∞.
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Penalizing null recurrent diffusions

b) or ν belongs to class R and Γt = F
g
(t)
a

with F decreasing.

Then, the penalization principle is satisfied by the functional (Γt, t ≥ 0), i.e. there exists

a probability measure Q(F )
x on (Ω,F∞), which is the same in both cases, such that,

∀s ≥ 0, ∀Λs ∈ Fs, lim
t→+∞

Ex [1ΛsΓt]

Ex [Γt]
= Q(F )

x (Λs).

Furthermore:

1. The measure Q(F )
x is weakly absolutely continuous with respect to Px:

Q
(F )
x|Ft =

Mt(Fga)

Ex[F0](s(x)− s(a))+ + Ex

[∫ +∞
0

FudLau

] · Px|Ft
where the martingale (Mt(Fga), t ≥ 0) is given by:

Mt(Fga) = F
g
(t)
a

(s(Xt)− s(a))+ + Ex

[∫ +∞

t

FudL
a
u|Ft

]
.

2. Define ga := sup{s ≥ 0, Xs = a}. Then, under Q(F )
x :

i) ga is finite a.s.,

ii) conditionally to ga, the processes (Xt, t ≤ ga) and (Xga+t, t ≥ 0) are indepen-
dent,

iii) the process (Xga+u, u ≥ 0) is transient, goes towards +∞ and its law does not
depend on the functional F .

We shall give in Theorem 5.1 a precise description of Q(F )
x through an integral repre-

sentation.

Remark 1.6. The main example of diffusion satisfying Theorems 1.2 and 1.5 is of
course the Bessel process with dimension δ ∈]0, 2[ reflected at 0. Indeed, setting
β = 1− δ

2 ∈]0, 1[, the tail of its Lévy measure at 0 equals:

ν([t,+∞[) =
21−β

Γ (β)

1

tβ

i.e. ν ∈ R. This may be obtained by integrating Formula (3.28) of [28] (where the
computations are made via Bessel processes killed at 0), or by inverting the Laplace

transform of Lemma 3.1 below with uλ(0, 0) =

(
2

λ

)β
Γ(β)

2Γ(1− β)
, see [2, p.133].

Remark 1.7. Let us also mention that this kind of results no longer holds for positively
recurrent diffusions. Indeed, it is shown in [16] that if (Xt, t ≥ 0) is a recurrent diffusion
reflected on an interval, then, under mild assumptions, the penalization principle is
satisfied by the functional (Γt = e−αL

0
t , t ≥ 0) with α ∈ R, but unlike in Theorem 1.5, the

penalized process so obtained remains a positively recurrent diffusion.

Example 1.8. Assume that ν ∈ R and let h be a positive and decreasing function with
compact support on R+.
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Penalizing null recurrent diffusions

• Let us take (Ft, t ≥ 0) = (h(Lat ), t ≥ 0).

Then E0

[∫ +∞

0

h(Las)dLas

]
=

∫ +∞

0

h(`)d` <∞ and, since La
g
(t)
a

= Lat ,

E0 [h(Lat )] ∼
t→+∞

ν([t,+∞[)

∫ +∞

0

h(`)d`,

and the martingale (Mt(L
a
ga), t ≥ 0) is an Azéma-Yor type martingale:

Mt(L
a
ga) = h(Lat )(s(Xt)− s(a))+ +

∫ +∞

Lat

h(`)d`.

• Let us take (Ft, t ≥ 0) = (h(t), t ≥ 0).

Then E0

[∫ +∞

0

h(u)dLau

]
=

∫ +∞

0

h(u)E0[dLau] =

∫ +∞

0

h(u)q(u, 0, a)du <∞ and there-

fore:

E0

[
h(g(t)

a )
]
∼

t→+∞
ν([t,+∞[)

∫ +∞

0

h(u)q(u, 0, a)du,

and the martingale (Mt(ga), t ≥ 0) is given by:

Mt(ga) = h(g(t)
a )(s(Xt)− s(a))+ +

∫ +∞

0

h(v + t)q(v,Xt, a)dv.

• One may also take for instance (Ft, t ≥ 0) = (h(St), t ≥ 0) where St := sup
s≤t

Xs or

(Ft, t ≥ 0) = h
(∫ t

0
f(Xs)ds

)
where f : R+ −→ R+ is a Borel function. These were the

first kind of weights studied by Roynette, Vallois and Yor, see [19] and [20].

1.4 Organization

The remainder of the paper is organized as follows:

• In Section 2, we introduce some notation and recall a few known results that we shall
use in the sequel. They are mainly taken from [26] and [29].

• Section 3 is devoted to the proof of Theorem 1.2. The two Points 1. and 2. are dealt
with separately: when ν ∈ R, the asymptotic is obtained via a Laplace transform and
a Tauberien theorem, while in the case ν ∈ L, we shall use a basic result on integrated
convolution products.

• Section 4 gives the proof of Point 1. of Theorem 1.5, which essentially relies on a
meta-theorem, see [21].

• In Section 5, we derive a integral representation for the penalized measure Q(F )
x

which implies Point 2. of Theorem 1.5.

• Finally, we shall use several times in the paper the fact that, with our normalizations,
the process (N

(a)
t := (s(Xt) − s(a))+ − Lat , t ≥ 0) is a martingale. The proof of this

result is postponed to Section 6.

2 Preliminaries

In this section, we essentially recall some known results that we shall need in the sequel.
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Penalizing null recurrent diffusions

• Let Ta := inf{u ≥ 0;Xu = a} be the first passage time of X to level a. Its Laplace
transform is given by

Ex
[
e−λTa

]
=
uλ(a, x)

uλ(a, a)
. (2.1)

Since (Xt, t ≥ 0) is assumed to be null recurrent, we have for x > a, Ex[Ta] = +∞.
• We define (X̂t, t ≥ 0) as the diffusion (Xt, t ≥ 0) killed at a:

X̂t :=

{
Xt t < Ta,

∂ t ≥ Ta.

where ∂ is a cemetary point. We denote by q̂(t, x, y) its transition density with respect
to m:

P̂x(X̂t ∈ dy) = q̂(t, x, y)m(dy) = Px (Xt ∈ dy; t < Ta) .

• We also introduce (X↑at , t ≥ 0) the diffusion (X̂t, t ≥ 0) conditionned not to touch
a, following the construction in [29]. For x > a and Ft a positive, bounded and Ft-
measurable r.v.:

E↑ax [Ft] =
1

s(x)− s(a)
Ex
[
Ft(s(Xt)− s(a))1{t<Ta}

]
.

By taking Ft = f(Xt), we deduce in particular that, for x, y > a:

q↑a(t, x, y) =
q̂(t, x, y)

(s(x)− s(a))(s(y)− s(a))
and m↑a(dy) = (s(y)− s(a))2m(dy).

Letting x tend towards a, we obtain:

q↑a(t, a, y) =
ny,a(t)

s(y)− s(a)
where Py(Ta ∈ dt) =: ny,a(t)dt.

• We finally define (Xx,t,y
u , u ≤ t) the bridge of X of length t going from x to y. Its law

may be obtained as a h-transform, for u < t:

Ex,t,y [Fu] = Ex

[
q(t− u,Xu, y)

q(t, x, y)
Fu

]
. (2.2)

With these notation, we may state the two following Propositions which are essen-
tially due to Salminen.

Proposition 2.1 ([26]).

1. The law of g(t)
a := sup{u ≤ t;Xu = a} is given by:

Px(g(t)
a ∈ du) = Px(Ta > t)δ0(du) + q(u, x, a)ν(a)([t− u,+∞[)du. (2.3)

2. On the event {Xt > a}, the density of the couple (g
(t)
a , Xt) reads :

Px

(
g(t)
a ∈ du,Xt ∈ dy

)
= Px(Ta > t,Xt ∈ dy)δ0(du)+

q(u, x, a)

s(y)− s(a)
P↑aa (Xt−u ∈ dy)du (y > a)

(2.4)

Remark 2.2. From the definitions of q↑a and m↑a, Equation (2.4) may be rewritten:

Px

(
g(t)
a ∈ du,Xt ∈ dy

)
= Px(Ta > t,Xt ∈ dy)δ0(du)+q(u, x, a)ny,a(t−u)m(dy) 1{0<u≤t}du,

(2.5)
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Penalizing null recurrent diffusions

and this last expression is actually valid for every y ≥ 0, see [26]. Observe now that we
may deduce Point 1. of Proposition 2.1 from this relation as follow. First, integrating
(2.5) with respect to dy, we obtain:

Px(g(t)
a ∈ du) = Px(Ta > t)δ0(du) + q(u, x, a)

(∫ +∞

0

ny,a(t− u)m(dy)

)
1{0<u≤t}du,

so it remains to show that, for 0 < u ≤ t:∫ +∞

0

ny,a(t− u)m(dy) = ν(a)([t− u,+∞[).

To this end, let us take the Laplace transform of the left hand side:∫ +∞

u

e−λt
∫ +∞

0

ny,a(t− u)m(dy)dt

=

∫ +∞

0

e−λu
∫ +∞

0

e−λvny,a(v)dvm(dy)

= e−λu
∫ +∞

0

Ey
[
e−λTa

]
m(dy)

=
e−λu

λuλ(a, a)
(from (2.1), (1.1) and Fubini’s theorem)

=

∫ +∞

0

e−λ(u+v)ν(a)([v,+∞[)dv (from Lemma 3.1 below)

=

∫ +∞

u

e−λtν(a)([t− u,+∞[)dt,

and (2.3) follows from the injectivity of the Laplace transform. We also refer to [29,
Section 2] where some similar relationships between hitting times and Lévy measures
are discussed via Itô excursion measure.

We now study the pre- and post- g(t)
a -process:

Proposition 2.3. Under Px:

i) Conditionnally to g(t)
a , the process (Xs, s ≤ g

(t)
a ) and (X

g
(t)
a +s

, s ≤ t − g(t)
a ) are inde-

pendent.

ii) Conditionnally to g(t)
a = u,

(Xs, s ≤ u)
(law)
= (Xx,u,a

s , s ≤ u).

iii) Conditionnally to g(t)
a = u and Xt = y > a,

(Xu+s, s ≤ t− u)
(law)
=

(
X↑a a,t−u,ys , s ≤ t− u

)
.

Proof. i) Point (i) follows from Proposition 5.5 of [14] applied to the diffusion

X(t)
s :=

{
Xs s < t

∂ s ≥ t

so that ξ := inf{s ≥ 0; X
(t)
s /∈ R+} = t.
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Penalizing null recurrent diffusions

ii) Point (ii) is taken from [26].

iii) As for Point (iii), still from [26], conditionnally to g(t)
a = u and Xt = y > a, we have:

(Xu+s, s ≤ t− u)
(law)
=

(
X̂a,t−u,y
s , s ≤ t− u

)
.

But the bridges of X̂ et X↑ have the same law. Indeed, for y, x > a:

P̂ x,t,y (Xt1 ∈ dx1, . . . , Xtn ∈ dxn)

= Êx

[
q̂(t− tn, Xtn , y)

q̂(t, x, y)
1{Xt1∈dx1,...,Xtn∈dxn}

]
(from (2.2))

= Ex

[
(s(Xtn)− s(a))q↑a(t− tn, Xtn , y)

(s(x)− s(a))q↑a(t, x, y)
1{Xt1∈dx1,...,Xtn∈dxn}1{tn<Ta}

]
= E↑ax

[
q↑a(t− tn, Xtn , y)

q↑a(t, x, y)
1{Xt1∈dx1,...,Xtn∈dxn}

]
(by definition of P↑ax )

= P↑a x,t,y (Xt1 ∈ dx1, . . . , Xtn ∈ dxn) .

and the result follows by letting x tend toward a.

3 Study of asymptotics

The aim of this section is to prove Theorem 1.2. We start with the case ν ∈ R.

3.1 Proof of Theorem 1.2 when ν ∈ R
Let (Ft, t ≥ 0) be a decreasing, positive and predictable process such that

0 < Ex

[∫ +∞

0

FudL
a
u

]
<∞.

Our approach in this section is based on the study of the Laplace transform of

t 7−→ Ex

[
F
g
(t)
a

]
. Indeed, from Propositions 2.1 and 2.3, we may write, applying Fu-

bini’s Theorem:∫ +∞

0

e−λtEx

[
F
g
(t)
a

]
dt

=

∫ +∞

0

e−λt
∫ t

0

Ex

[
Fu|g(t)

a = u
]
P(g(t)

a ∈ du)dt

= Ex[F0]

∫ +∞

0

e−λtPx(Ta > t)dt+

∫ +∞

0

e−λt
∫ t

0

Ex [Fu|Xu = a] q(u, x, a)ν(a)([t− u,+∞[)du dt

= Ex [F0]
1− Ex

[
e−λTa

]
λ

+

∫ +∞

0

e−λtPx,t,a(Ft)q(t, x, a)dt×
∫ +∞

0

e−λtν(a)([t,+∞[)dt

(3.1)

We shall now study the asymptotic (when λ → 0) of each term separately. To this end,
we state and prove two Lemmas.

3.1.1 The Laplace transform of t→ ν(a)([t,+∞[)

Lemma 3.1. The following formula holds:

1

λuλ(a, a)
=

∫ +∞

0

e−λtν(a)([t,+∞[)dt
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Proof. Since τ is a subordinator and m has no atoms, from the Lévy-Khintchine formula:

Ea

[
e−λτ

(a)
l

]
= exp

(
−l
∫ +∞

0

(1− e−λt)ν(a)(dt)

)
.

Then, from the classic relation (see [18] for instance):

Ea

[
e−λτ

(a)
l

]
= e−l/uλ(a,a),

we deduce that
1

uλ(a, a)
=

∫ +∞

0

(1− e−λt)ν(a)(dt).

Now, let ε > 0 :∫ ∞
ε

(1− e−λt)ν(a)(dt) =
[
(e−λt − 1)ν(a)([t,+∞[)

]+∞
ε

+

∫ ∞
ε

λe−λtν(a)([t,+∞[)dt

= (1− e−λε)ν(a)([ε,+∞[) +

∫ ∞
ε

λe−λtν(a)([t,+∞[)dt

Since both terms are positive, we may let ε→ 0 to obtain:

1

λuλ(a, a)
=

∫ ∞
0

e−λtν(a)([t,+∞[)dt+ `,

where ` := lim
ε→0

εν([ε,+∞[), and it remains to prove that ` = 0. Assume that ` > 0. Then:

ν(a)([ε,+∞[) ∼
ε→0

`

ε
and :

∫ 1

ε

tν(a)(dt) =
[
− tν(a)([t, 1])

]1
ε

+

∫ 1

ε

ν(a)([t, 1])dt

= εν(a)([ε, 1]) +

∫ 1

ε

ν(a)([t, 1])dt

−−−→
ε→0

+∞,

since, from our hypothesis, ν(a)([t, 1]) ∼
t→0

`

t
, i.e. t 7→ ν(a)([t, 1]) is not integrable at 0.

This contradicts the fact that ν(a) is the Lévy measure of a subordinator, hence ` = 0

and the proof is completed.

Remark 3.2. Since we assume that (Xt, t ≥ 0) is a null recurrent diffusion, we have
m(R+) = +∞ and from Salminen [24]:

lim
λ→0

λuλ(a, a) =
1

m(R+)
= 0. (3.2)

Thus, from the monotone convergence theorem, the function t → ν(a)([t,+∞[) is not
integrable at +∞. On the other hand, if (Xt, t ≥ 0) is positively recurrent, we obtain:∫ +∞

0

ν(a)([t,+∞[)dt = m(R+) < +∞.

We now study the asymptotic of the first hitting time of X to level a.

Lemma 3.3. Let x > a and assume that ν belongs to class R. Then:
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Penalizing null recurrent diffusions

i) The tails of ν and ν(a) are equivalent:

ν(a)([t,+∞[) ∼
t→+∞

ν([t,+∞[).

ii) The survival function of Ta satisfies the following property:

Px(Ta ≥ t) ∼
t→+∞

(s(x)− s(a))ν([t,+∞[). (3.3)

Proof. We shall use the following Tauberian theorem (see Feller [7, Chap. XIII.5, p.446]
or [1, Section 1.7]):

Let f be a positive and decreasing function, β ∈]0, 1[ and η a slowly varying function.
Then,

f(t) ∼
t→+∞

η(t)

tβ
⇐⇒

∫ ∞
0

e−λtf(t)dt ∼
λ→0

Γ(1− β)

λ1−β η

(
1

λ

)
. (3.4)

In particular, with f(t) = ν([t,+∞[) (since ν ∈ R), we obtain:∫ ∞
0

e−λtν([t,+∞[)dt =
1

λuλ(0, 0)
∼
λ→0

Γ(1− β)

λ1−β η

(
1

λ

)
.

Now, from Krein’s Spectral Theory (see for instance [5, Chap.5], [10], [12] or [9]),
uλ(x, y) admits the representation, for x ≤ y:

uλ(x, y) = Φ(x, λ) (uλ(0, 0)Φ(y, λ)−Ψ(y, λ)) (3.5)

where the eigenfunctions Φ and Ψ are solutions of:
Φ(x, λ) = 1 + λ

∫ x

0

s′(dy)

∫ y

0

Φ(z, λ)m(dz),

Ψ(x, λ) = s(x) + λ

∫ x

0

s′(dy)

∫ y

0

Ψ(z, λ)m(dz),

We deduce then, since lim
λ→0

Φ(x, λ) = 1, lim
λ→0

Ψ(x, λ) = s(x) and lim
λ→0

uλ(0, 0) = +∞ that:

uλ(a, a)

uλ(0, 0)
= Φ(a, λ)2 − Φ(a, λ)Ψ(a, λ)

uλ(0, 0)
−−−→
λ→0

1.

Therefore, from the Tauberien theorem (3.4) with f(t) = ν(a)([t,+∞[), we obtain:

ν(a)([t,+∞[) ∼
t→+∞

η(t)

tβ

i.e. Point (i) of Lemma 3.3.
To prove Point (ii), let us compute the Laplace transform of Px(Ta ≥ t), using (2.1):∫ +∞

0

e−λtPx(Ta ≥ t)dt =
1− Ex

[
e−λTa

]
λ

=
1

λ
− uλ(x, a)

λuλ(a, a)
=
uλ(a, a)− uλ(x, a)

λuλ(a, a)
. (3.6)

Now, for x > a, we get from (3.5):

uλ(a, a)− uλ(a, x) = Φ(a, λ)(uλ(0, 0)Φ(a, λ)−Ψ(a, λ))− Φ(a, λ)(uλ(0, 0)Φ(x, λ)−Ψ(x, λ))

= Φ(a, λ)uλ(0, 0) (Φ(a, λ)− Φ(x, λ)) + Φ(a, λ) (Ψ(x, λ)−Ψ(a, λ))

= Φ(a, λ)uλ(0, 0)

(
λ

∫ x

a

s′(y)dy

∫ y

0

Φ(z, λ)m(dz)

)
+ Φ(a, λ) (Ψ(x, λ)−Ψ(a, λ)) ,
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Penalizing null recurrent diffusions

and, letting λ tend toward 0 and using (3.2):

lim
λ→0

(uλ(a, a)− uλ(a, x)) = s(x)− s(a).

Therefore,∫ +∞

0

e−λtPx(Ta ≥ t)dt ∼
λ→0

s(x)− s(a)

λuλ(a, a)
∼
λ→0

(s(x)− s(a))
Γ(1− β)

λ1−β η

(
1

λ

)
and Point (ii) follows once again from the Tauberian theorem (3.4).

3.1.2 Proof of Point 2. of Theorem 1.2

We now let λ tend toward 0 in (3.1). Observe first that, from our hypothesis on (Fu, u ≥
0):∫ +∞

0

Px,u,a(Fu)q(u, x, a)du =

∫ +∞

0

Ex [Fu|Xu = a]Ex[dLau] = Ex

[∫ +∞

0

FudL
a
u

]
< +∞.

Then, from Lemmas 3.1 and 3.3, we obtain

• if x ≤ a, ∫ +∞

0

e−λtEx

[
F
g
(t)
a

]
dt ∼

λ→0

1

λuλ(a, a)
Ex

[∫ +∞

0

FudL
a
u

]
since lim

λ→0

∫ +∞

0

e−λtPx(Ta ≥ t)dt = Ex [Ta] < +∞,

• if x > a,∫ +∞

0

e−λtEx

[
F
g
(t)
a

]
dt ∼

λ→0

1

λuλ(a, a)

(
Ex[F0](s(x)− s(a)) + Ex

[∫ +∞

0

FudL
a
u

])
.

Therefore, for every x ≥ 0:∫ +∞

0

e−λtEx

[
F
g
(t)
a

]
dt ∼

λ→0

(
Ex[F0](s(x)− s(a))+ + Ex

[∫ +∞

0

FudL
a
u

])
Γ(β)

λ1−β η

(
1

λ

)
and Point 2. follows from the Tauberian theorem (3.4) since t 7−→ Ex

[
F
g
(t)
a

]
is decreas-

ing.

3.2 Proof of Theorem 1.2 when ν ∈ L
Let (Ft, t ≥ 0) be a positive and predictable process such that

0 < Ex

[∫ +∞

0

FudL
a
u

]
<∞.

From Propositions 2.1 and 2.3 we have the decomposition:∫ t

0

Ex

[
F
g
(s)
a

]
ds =

∫ t

0

∫ s

0

Ex

[
Fu|g(s)

a = u
]
P(g(s)

a ∈ du) ds

= Ex [F0]

∫ t

0

Px(Ta > s)ds+

∫ t

0

∫ s

0

Ex [Fu|Xu = a] q(u, a, x)ν(a)([s− u,+∞[)du ds.

(3.7)
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But, inverting the Laplace transform (3.6), we deduce that:

Px(Ta > s) =

∫ s

0

(q(u, a, a)− q(u, a, x))ν(a)([s− u,+∞[)du,

hence, we may rewrite: ∫ t

0

Ex

[
F
g
(s)
a

]
ds =

∫ t

0

f ∗ ν(a)(s)ds

with f(u) = Ex[F0](q(u, a, a)−q(u, a, x))+Px,u,a(Fu)q(u, x, a) and ν(a)(u) = ν(a)([u,+∞[).
As in the previous section, the study of the asymptotic (when t → +∞) will rely on a
few Lemmas.

3.2.1 Asymptotic of an integrated convolution product

Lemma 3.4. Let µ be a measure whose tail µ(t) = µ([t,+∞[) satisfies the following
property:

for every u ≥ 0,

∫ t−u

0

µ(s)ds ∼
t→+∞

∫ t

0

µ(s)ds,

and let f : R+ → R be a continuous function such that
∫ +∞

0
f(u)du < +∞. Then,∫ t

0

f ∗ µ(s) ds ∼
t→+∞

∫ +∞

0

f(u)du

∫ t

0

µ(s)ds.

Proof. Let ε > 0. There exists A > 0 such that, for every t ≥ A,

∣∣∣∣∫ +∞

t

f(u)du

∣∣∣∣ < ε. From

Fubini’s Theorem, we may write:∫ t

0

f ∗ µ(s)ds =

∫ t

0

f(u)du

∫ t

u

µ(s− u)ds

=

∫ t

0

f(u)du

∫ t−u

0

µ(s)ds

=

∫ A

0

f(u)du

∫ t−u

0

µ(s)ds+

∫ t

A

f(u)du

∫ t−u

0

µ(s)ds

Using this decomposition, we obtain∣∣∣∣∣
∫ +∞

0

f(u)du−
∫ t

0
f ∗ µ(s)ds∫ t
0
µ(s)ds

∣∣∣∣∣
≤

∣∣∣∣∣
∫ A

0

f(u)

(
1−

∫ t−u
0

µ(s)ds∫ t
0
µ(s)ds

)
du

∣∣∣∣∣+

∣∣∣∣∣
∫ t

A

f(u)

∫ t−u
0

µ(s)ds∫ t
0
µ(s)ds

du

∣∣∣∣∣+

∣∣∣∣∫ +∞

A

f(u)du

∣∣∣∣
≤
∫ A

0

|f(u)|

(
1−

∫ t−A
0

µ(s)ds∫ t
0
µ(s)ds

)
du+

∣∣∣∣∣
∫ t

A

f(u)

∫ t−u
0

µ(s)ds∫ t
0
µ(s)ds

du

∣∣∣∣∣+ ε. (3.8)

Then, applying the second mean value theorem, there exists c ∈]A, t[ such that∫ t

A

f(u)

∫ t−u
0

µ(s)ds∫ t
0
µ(s)ds

du =

∫ t−A
0

µ(s)ds∫ t
0
µ(s)ds

∫ c

A

f(u)du

hence,∣∣∣∣∣
∫ t

A

f(u)

∫ t−u
0

µ(s)ds∫ t
0
µ(s)ds

du

∣∣∣∣∣ =

∫ t−A
0

µ(s)ds∫ t
0
µ(s)ds

∣∣∣∣∫ +∞

A

f(u)du−
∫ +∞

c

f(u)du

∣∣∣∣ ≤ 2ε

∫ t−A
0

µ(s)ds∫ t
0
µ(s)ds
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Penalizing null recurrent diffusions

and, letting t tend to +∞ in (3.8), we finally obtain:

lim sup
t→+∞

∣∣∣∣∣
∫ +∞

0

f(u)du−
∫ t

0
f ∗ µ(s)ds∫ t
0
µ(s)ds

∣∣∣∣∣ ≤ 3ε.

Remark 3.5. Assume that ν ∈ L. Then ν satisfies the hypothesis of Lemma 3.4. Indeed
for u ≥ 0, since ν(s− u) ∼

s→+∞
ν(s) and ν is not integrable at +∞ (see Remark 3.2), we

have: ∫ t

0

ν(s)ds ∼
t→+∞

∫ t

u

ν(s)ds ∼
t→+∞

∫ t

u

ν(s− u)ds =

∫ t−u

0

ν(s)ds.

Lemma 3.6. The following formula holds, for x > a:

∫ +∞

0

(q(u, a, a)− q(u, a, x))du = s(x)− s(a).

Proof. We set f(t) =
∫ t

0
(q(u, a, a) − q(u, a, x))du. From Borodin-Salminen [2, p.21], we

have:

f(t) = Ea [Lat ]− Ea [Lxt ] .

Since (N
(a)
t = (s(Xt)− s(a))+ −Lat , t ≥ 0) is a martingale (see Lemma 6.1), this relation

may be rewritten:

f(t) = Ea
[
(s(Xt)− s(a))+

]
− Ea

[
(s(Xt)− s(x))+

]
= (s(x)− s(a))Pa(Xt ≥ x) + Ea

[
(s(Xt)− s(a))1{a≤Xt≤x}

]
.

Then

|f(t)− (s(x)− s(a))| ≤ (s(x)− s(a))Pa(Xt ≤ x) + Ea
[
(s(Xt)− s(a))1{a≤Xt≤x}

]
≤ (s(x)− s(a)) (Pa(Xt ≤ x) + Pa(a ≤ Xt ≤ x))

≤ 2(s(x)− s(a))Pa(Xt ≤ x)

≤ 2(s(x)− s(a))P0(Xt ≤ x) −−−−→
t→+∞

0

from [17, Chap.8, p.226], since (Xt, t ≥ 0) is null recurrent.

Lemma 3.7. Assume that ν belongs to class L. Then:

∀a ≥ 0,

∫ t

0

ν(a)([s,+∞[)ds ∼
t→+∞

∫ t

0

ν([s,+∞[)ds

Proof. Let us define the function:

fa(t) =

∫ t

0

q(u, 0, 0)ν(a)([t− u,+∞[)du.
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We claim that lim
t→+∞

fa(t) = 1. Indeed, let us decompose fa as follows, with ε > 0:

fa(t) =

∫ t

0

(q(u, 0, 0)− q(u, 0, a))ν(a)([t− u,+∞[)du+ P0(Ta ≤ t)

=

∫ t−ε

0

(q(u, 0, 0)− q(u, 0, a))ν(a)([t− u,+∞[)du

+

∫ t

t−ε
(q(u, 0, 0)− q(u, 0, a))ν(a)([t− u,+∞[)du+ P0(Ta ≤ t).

=

∫ +∞

0

(q(u, 0, 0)− q(u, 0, a))1{u≤t−ε}ν
(a)([t− u,+∞[)du

+

∫ ε

0

(q(t− u, 0, 0)− q(t− u, 0, a))ν(a)([u,+∞[)du+ P0(Ta ≤ t).

From [17, Chap.8, p.224], we know that for every u ≥ 0 the function z 7−→ q(u, 0, z) is
decreasing, hence the function

u 7−→ q(u, 0, 0)− q(u, 0, a)

is a positive and integrable function from Lemma 3.6. Therefore, from the dominated
convergence theorem, the first integral tends toward 0 as t → +∞. Moreover, it is
known from Salminen [25] that for every x, y ≥ 0,

lim
t→+∞

q(t, x, y) =
1

m(R+)
= 0,

which proves, still from the dominated convergence theorem, that the second integral
also tends toward 0 as t→ +∞. Finally, we deduce that lim

t→+∞
fa(t) = P0(Ta < +∞) = 1.

Observe now that, since ν ∗ q(t) =
∫ t

0
ν([u,+∞[)q(t−u, 0, 0)du = 1, we have from Fubini-

Tonelli:∫ t

0

ν(a)([s,+∞[)ds = 1 ∗ ν(a)(t) = (ν ∗ q) ∗ ν(a)(t) = ν ∗ fa(t) =

∫ t

0

fa(s)ν([t− s,+∞[)ds.

Let ε > 0. There exists A > 0 such that, for every s ≥ A:

1− ε ≤ fa(s) ≤ 1 + ε.

Integrating this relation, we deduce that, for t > A:

(1− ε)
∫ t

A

ν(t− s)ds ≤
∫ t

A

fa(s)ν(t− s)ds ≤ (1 + ε)

∫ t

A

ν(t− s)ds.

Therefore:∣∣∣∣∣
∫ t

0

fa(s)ν(t− s)ds−
∫ t

A

ν(t− s)ds−
∫ A

0

fa(s)ν(t− s)ds

∣∣∣∣∣ ≤ ε
∫ t

A

ν(t−s)ds = ε

∫ t−A

0

ν(s)ds,

and it only remains to divide both terms by
∫ t

0
ν(s)ds and let t tend toward +∞ to

conclude, thanks to Remark 3.5, that:

lim sup
t→+∞

∣∣∣∣∣
∫ t

0
ν(a)(s)ds∫ t
0
ν(s)ds

− 1

∣∣∣∣∣ ≤ ε.
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3.2.2 Proof of Point 1. of Theorem 1.2

Going back to (3.7), we have, with f(u) = Px,u,a(Fu)q(u, x, a) and ν(a)(u) = ν(a)([u,+∞[):∫ t

0

Ex

[
F
g
(s)
a

]
ds =

(
Ex [F0]

∫ t

0

Px(Ta > s)ds+

∫ t

0

f ∗ ν(a)(s)ds

)
.

From Lemmas 3.4 and 3.6, we deduce that:

lim
t→+∞

1∫ t
0
ν(s)ds

∫ t

0

Px(Ta > s)ds = (s(x)− s(a))+

since, for x ≤ a,

∫ +∞

0

Px(Ta > s)ds = Ex [Ta] < +∞. Then, Point 1. of Theorem 1.2

follows from Lemmas 3.4 and 3.7 and the fact that:∫ +∞

0

f(u)du =

∫ +∞

0

Px,u,a(Fu)q(u, x, a)du = Ex

[∫ +∞

0

FudL
a
u

]
< +∞.

4 The penalization principle

4.1 Preliminaries: a meta-theorem and some notations

To prove Theorem 1.5, we shall apply a meta-theorem, whose proof relies mainly on
Scheffé’s Lemma (see Meyer [13, p.37]):

Theorem 4.1 ([21]). Let (Γt, t ≥ 0) be a positive stochastic process satisfying for every
t > 0, 0 < E[Γt] < +∞. Assume that, for every s ≥ 0:

lim
t→+∞

E[Γt|Fs]
E[Γt]

=: Ms

exists a.s., and that,
E[Ms] = 1.

Then,

i) for every s ≥ 0 and Λs ∈ Fs:

lim
t→+∞

E[1ΛsΓt]

E[Γt]
= E[Ms1Λs ].

ii) there exists a probability measure Q on (Ω,F∞) such that for every s ≥ 0:

Q(Λs) = E[Ms1Λs ].

In the following, we shall use Biane-Yor’s notations [3]. We denote by Ωloc the set of
continuous functions ω taking values inR+ and defined on an interval [0, ξ(ω)] ⊂ [0,+∞].
Let P and Q be two probability measures, such that P(ξ = +∞) = 0. We denote by P◦Q
the image measure P⊗Q by the concatenation application :

◦ : Ωloc × Ωloc −→ Ωloc

(ω1, ω2) 7−→ ω1 ◦ ω2

defined by ξ(ω1 ◦ ω2) = ξ(ω1) + ξ(ω2), and

(ω1 ◦ ω2)(t) =

{
ω1(t) if 0 ≤ t ≤ ξ(ω1)

ω1(ξ(ω1)) + ω2(t− ξ(ω1))− ω2(0) if ξ(ω1) ≤ t ≤ ξ(ω1) + ξ(ω2).

To simplify the notations, we define the following measure, which was first intro-
duced by Najnudel, Roynette and Yor [15]:

EJP 17 (2012), paper 69.
Page 15/23

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-2267
http://ejp.ejpecp.org/


Penalizing null recurrent diffusions

Definition 4.2. LetW(a)
x be the measure defined by:

W(a)
x =

∫ +∞

0

du q(u, x, a)Px,u,a ◦ P↑aa + (s(x)− s(a))+P↑ax

W(a)
x is a sigma-finite measure with infinite mass.

This measure enjoys many remarkable properties, and was the main ingredient in
the proof of the penalization results they obtained for Brownian motion. A similar con-
struction was made by Yano, Yano and Yor for symmetric stable Lévy processes, see
[30].
With this new notation, we shall now write:

W(a)
x (Fga) = Ex

[∫ +∞

0

FudL
a
u

]
+ E↑ax [F0](s(x)− s(a))+

= Ex

[∫ +∞

0

FudL
a
u

]
+ Ex[F0](s(x)− s(a))+.

4.2 Proof of Point i) of Theorem 1.5

Let 0 ≤ u ≤ t. Using Biane-Yor’s notation, we write:

(Xs, s ≤ t) = (Xs, s ≤ u) ◦ (Xs+u, 0 ≤ s ≤ t− u)

hence, from the Markov property, denoting F
g
(t)
a

= F (Xs, s ≤ t):

Ex[F (Xs, s ≤ t)1{u≤t}|Fu] = ÊXu

[
F ((Xs, s ≤ u) ◦ (X̂s, 0 < s ≤ t− u))1{u≤t}

]
.

Let us assume first that ν ∈ R and that (Ft, t ≥ 0) is decreasing. Then, from Theorem
1.2 with Γt = F

g
(t)
a

:

lim
t→+∞

ÊXu

[
F ((Xs, s ≤ u) ◦ (X̂s, 0 ≤ s ≤ t− u))1{u≤t}

]
ν([t,+∞[)

= ÊXu

[
F ((Xs, s ≤ u) ◦ X̂0)

]
(s(Xu)− s(a))+ + ÊXu

[∫ +∞

u

F ((Xs, s ≤ u) ◦ (X̂s, 0 ≤ s ≤ v − u))dL̂av

]
= F (Xs, s ≤ u)(s(Xu)− s(a))+ + Ex

[∫ +∞

u

F ((Xs, s ≤ u) ◦ (Xs, 0 ≤ s ≤ v − u))dLav |Fu
]

= F
g
(u)
a

(s(Xu)− s(a))+ + Ex

[∫ +∞

u

F
g
(v)
a
dLav |Fu

]
= F

g
(u)
a

(s(Xu)− s(a))+ + Ex

[∫ +∞

u

FvdL
a
v |Fu

]
,

hence,

lim
t→+∞

Ex

[
F
g
(t)
a
|Fu
]

Ex

[
F
g
(t)
a

] =
Mu(Fga)

W(a)
x (Fga)

.

On the other hand, if ν ∈ L and Γt =
∫ t

0
F
g
(s)
a
ds, a similar computation gives:

lim
t→+∞

∫ t
0
ÊXu

[
F ((Xs, s ≤ u) ◦ (X̂s, 0 ≤ s ≤ v − u))1{u≤t}

]
dv∫ t

0
ν([s,+∞[)ds

= F
g
(u)
a

(s(Xu)− s(a))+ + Ex

[∫ +∞

u

FvdL
a
v |Fu

]
,
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and

lim
t→+∞

Ex

[∫ t
0
F
g
(s)
a
ds|Fu

]
Ex

[∫ t
0
F
g
(s)
a
ds
] =

Mu(Fga)

W(a)
x (Fga)

.

Therefore, to apply Theorem 4.1, it remains to prove that:

∀t ≥ 0, Ex [Mt(Fga)] =W(a)
x (Fga).

We shall make a direct computation, applying Proposition 2.1:

• if x > a,

Ex [Mt(Fga)] = Ex

[
F
g
(t)
a

(s(Xt)− s(a))+ + Ex

[∫ +∞

t

FudL
a
u|Ft

]]
=

∫ +∞

a

Ex[F0|Xt = y, Ta > t](s(y)− s(a))Px(Ta > t,Xt ∈ dy)

+

∫ t

0

∫ +∞

a

Px,u,a(Fu)q(u, a, x)P↑a(Xt−u ∈ dy)du+

∫ +∞

t

Px,u,a(Fu)q(u, a, x)du

= Ex[F0(s(Xt)− s(a))1{t<Ta}] +

∫ +∞

0

Px,u,a(Fu)q(u, a, x)du

= E↑ax [F0](s(x)− s(a)) +

∫ +∞

0

Px,u,a(Fu)q(u, a, x)du =W(a)
x (Fga),

• if x ≤ a, then, for y > a, Px (Ta > t,Xt ∈ dy) = 0 since X has continuous paths, and
the same computation leads to:

Ex [Mt(Fga)] =

∫ +∞

0

Px,u,a(Fu)q(u, a, x)du =W(a)
x (Fga).

Therefore, for every x ≥ 0, Ex

[
Mt(Fga)

W(a)
x (Fga)

]
= 1, and the proof is completed.

Remark 4.3. Consider the martingale (N
(a)
t = (s(Xt) − s(a))+ − Lat , t ≥ 0). We apply

the balayage formula to the semimartingale ((s(Xt)− s(a))+, t ≥ 0):

F
g
(t)
a

(s(Xt)− s(a))+ = F0(s(x)− s(a))+ +

∫ t

0

F
g
(u)
a
d(s(Xu)− s(a))+

= F0(s(x)− s(a))+ +

∫ t

0

F
g
(u)
a
dN (a)

u +

∫ t

0

F
g
(u)
a
dLau

= F0(s(x)− s(a))+ +

∫ t

0

F
g
(u)
a
dN (a)

u +

∫ t

0

FudL
a
u.

Therefore, the martingale (Mt(Fga), t ≥ 0) may be rewritten:

Mt(Fga) = F0(s(x)− s(a))+ +

∫ t

0

F
g
(u)
a
dN (a)

u + Ex

[∫ +∞

0

FsdL
a
s |Ft

]
.

5 An integral representation of Q(Fga )
x

Finally, Point 2. of Theorem 1.5 is a direct consequence of the following result:
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Theorem 5.1. Q
(Fga )
x admits the following integral representation:

Q
(Fga )
x =

1

W(a)
x (Fga)

(∫ +∞

0

q(u, x, a)FuP
x,u,a ◦ P↑aa + (s(x)− s(a))+F0P

↑a
x

)

Proof. Let G,H and ϕ be three bounded Borel functionals, with H depending only on
the trajectory up to a finite time. We write:

W(a)
x (Fga)Q

(Fga )
x

(
G(Xs, s ≤ g(t)

a )ϕ(g(t)
a )H(X

g
(t)
a +s

, s ≤ t− g(t)
a )
)

= Ex

[
G(Xs, s ≤ g(t)

a )ϕ(g(t)
a )H(X

g
(t)
a +s

, s ≤ t− g(t)
a )Mt(Fga)

]
= Ex

[
G(Xs, s ≤ g(t)

a )ϕ(g(t)
a )H(X

g
(t)
a +s

, s ≤ t− g(t)
a )

(
F
g
(t)
a

(s(Xt)− s(a))+ + Ex

[∫ +∞

t

FudL
a
u|Ft

])]
= I1(t) + I2(t).

On the one hand,

I2(t) = Ex

[
G(Xs, s ≤ g(t)

a )ϕ(g(t)
a )H(X

g
(t)
a +s

, s ≤ t− g(t)
a )

∫ +∞

t

FudL
a
u

]
−−−−→
t→+∞

0

from the dominated convergence theorem.
On the other hand, from Propositions 2.1 and 2.3:

I1(t) =

∫ +∞

a

∫ t

0

Px

(
g(t)
a ∈ du,Xt ∈ dy

)
×

Ex

[
G(Xs, s ≤ u)ϕ(u)H(Xu+s, s ≤ t− u)Fu(s(y)− s(a))|g(t)

a = u,Xt = y
]

=

∫ +∞

a

∫ t

0

Px

(
g(t)
a ∈ du,Xt ∈ dy

)
×

Px,u,a (G(Xs, s ≤ u)Fu)ϕ(u)(s(y)− s(a))Ex

[
H(Xu+s, s ≤ t− u)|g(t)

a = u,Xt = y
]
.

We now separate the two cases g(t)
a = 0 and g(t)

a > 0 as in relation (2.4).

• First, when g(t)
a = 0 and x ≤ a, this term is null. Indeed, for x ≤ a < y, Px (Ta > t,Xt ∈ dy) =

0 since X has continuous paths. Next, for x > a:

∫ +∞

a

Px (Ta > t,Xt ∈ dy)G(x)Ex[F0]ϕ(0)(s(y)− s(a))Ex [H(Xs, s ≤ t)|Ta > t,Xt = y]

= G(x)Ex[F0]ϕ(0)Ex
[
(s(Xt)− s(a))+H(Xs, s ≤ t)1{Ta>t}

]
= G(x)Ex[F0]ϕ(0)(s(x)− s(a))E↑ax [H(Xs, s ≤ t)]
−−−−→
t→+∞

G(x)Ex[F0]ϕ(0)(s(x)− s(a))+E↑ax [H(Xs, s ≥ 0)] .
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• Second, when g(t)
a > 0:∫ +∞

a

∫ t

0

q(u, x, a)

s(y)− s(a)
P↑aa (Xt−u ∈ dy)du ×

Px,u,a (G(Xs, s ≤ u)Fu)ϕ(u)(s(y)− s(a))Ex

[
H(Xu+s, s ≤ t− u)|g(t)

a = u,Xt = y
]

=

∫ +∞

a

∫ t

0

q(u, x, a)P↑aa (Xt−u ∈ dy)du ×

Px,u,a (G(Xs, s ≤ u)Fu)ϕ(u)E↑aa [H(Xs, s ≤ t− u)|Xt−u = y]

=

∫ t

0

du q(u, x, a)Px,u,a (G(Xs, s ≤ u)Fu)ϕ(u)E↑aa [H(Xs, s ≤ t− u)]

−−−−→
t→+∞

∫ +∞

0

du q(u, x, a)Px,u,a (G(Xs, s ≤ u)Fu)ϕ(u)E↑aa [H(Xs, s ≥ 0)] .

Remark 5.2. From Theorem 5.1, Q
(Fga )
x (ga < +∞) = 1 and we deduce that, condition-

ally to ga,

1. on the event ga > 0, the law of the process (Xga+u, u ≥ 0) under Q
(Fga )
x is the same

as the law of (Xu, u ≥ 0) under P↑aa ,

2. on the event ga = 0, the law of the process (Xu, u ≥ 0) under Q
(Fga )
x is the same as

the law of (Xu, u ≥ 0) under P↑ax .

Observe that the process (Fu, u ≥ 0) plays no role in these results.

Example 5.3. Let h be a positive and decreasing function on R+.

• Let us take (Ft, t ≥ 0) = (h(Lat ), t ≥ 0) and assume that

∫ +∞

0

h(`)d` = 1:

Q
(h(Laga ))

0 =

∫ +∞

0

du q(u, 0, a)h(Lau)P0,u,a ◦ P↑aa .

Now, if G and ϕ are two bounded Borel functionals, we may write

Q
(h(Laga ))

0

(
G(Xt, t ≤ ga)ϕ(La∞)

)
=

∫ +∞

0

du q(u, 0, a)P0,u,a
(
G(Xt, t ≤ u)ϕ(Lau)h(Lau)

)
= E0

[∫ +∞

0

G(Xt, t ≤ u)ϕ(Lau)h(Lau)dLau

]
= E0

[∫ +∞

0

G
(
Xt, t ≤ τ (a)

`

)
ϕ(`)h(`)d`

]
,

which leads to:∫ +∞

0

Q
(h(Laga ))

0

(
G(Xt, t ≤ ga)|La∞ = `

)
ϕ(`)Q

(h(Laga ))

0 (La∞ ∈ d`)

=

∫ +∞

0

E0

[
G(Xt, t ≤ τ (a)

` )
]
ϕ(`)h(`)d`.

Thus, taking G = 1, we deduce that, under Q
(h(Laga ))

0 , the r.v. La∞ is a.s. finite and
admits ` 7−→ h(`) as its density function. Furthermore, conditionally to La∞ = ` the

process (Xt, t ≤ ga) has the same law as (Xt, t ≤ τ (a)
` ) under P0.
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• Let us take (Ft, t ≥ 0) = (h(t), t ≥ 0) and assume that

∫ +∞

0

h(u)q(u, 0, a)du = 1:

Q
(h(ga))
0 =

∫ +∞

0

du q(u, 0, a)h(u)P0,u,a ◦ P↑aa .

Then, under P(h(ga))
0 , the r.v. ga admits as density function u 7−→ h(u)q(u, 0, a) and,

conditionally to ga = u the process (Xt, t ≤ ga) has the same law as (Xt, t ≤ u) under
P0,u,a.

6 Appendix

Let a ≥ 0 and define (N
(a)
t := (s(Xt) − s(a))+ − Lat , t ≥ 0). The aim of this section is

to prove the following lemma:

Lemma 6.1. The process (N
(a)
t , t ≥ 0) is a martingale in the filtration (Ft, t ≥ 0).

Proof. Applying the Markov property to the diffusion (Xt, t ≥ 0) we deduce that:

E0

[
N

(a)
t+s|Fs

]
= ÊXs

[
(s(X̂t)− s(a))+

]
− Las − ÊXs

[
L̂at

]
.

We set x = Xs, so we need to prove that for every x ≥ 0:

(s(x)− s(a))+ = Ex
[
(s(Xt)− s(a))+

]
− Ex [Lat ] ,

or rather: ∫ +∞

0

(s(y)− s(a))+q(t, x, y)m(dy) =

∫ t

0

q(u, x, a)du+ (s(x)− s(a))+.

Let us take the Laplace transform of this last relation (applying Fubini-Tonelli):∫ +∞

0

(s(y)− s(a))+uλ(x, y)m(dy) =
uλ(x, a)

λ
+

(s(x)− s(a))+

λ
. (6.1)

Our aim now is to prove (6.1). To this end, we shall use the following representation of
the resolvent kernel uλ(x, y) (see [2, p.19]):

uλ(x, y) = ω−1
λ ψλ(x)ϕλ(y) x ≤ y

where ψλ and ϕλ are the fundamental solutions of the generalized differential equation

d2

dm ds
u = λu (6.2)

such that ψλ is increasing (resp. ϕλ is decreasing) and the Wronskian ωλ is given, for
all z ≥ 0 by:

ωλ = ϕλ(z)
dψλ
ds

(z)− ψλ(z)
dϕλ
ds

(z).

Note that since m has no atoms, the meaning of (6.2) is as follows:

∀y ≥ x, λ

∫ y

x

u(z)m(dz) =
d u

ds
(y)− d u

ds
(x) where

d u

ds
(x) := lim

h→0

u(x+ h)− u(x)

s(x+ h)− s(x)
.
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• Assume first that x ≤ a.∫ +∞

a

(s(y)− s(a))uλ(x, y)m(dy)

=
1

ωλ

∫ +∞

a

(∫ y

a

ds(z)

)
ψλ(x)ϕλ(y)m(dy)

=
ψλ(x)

ωλ

∫ +∞

a

ds(z)

∫ +∞

z

ϕλ(y)m(dy) (applying Fubini-Tonelli’s theorem since ϕλ ≥ 0)

= −ψλ(x)

λωλ

∫ +∞

a

ds(z)
dϕλ
ds

(z)

(
since lim

y→+∞

dϕλ
ds

(y) = 0 as +∞ is a natural boundary

)
=
ψλ(x)

λωλ
ϕλ(a)

(
since lim

z→+∞
ϕλ(z) = 0 as +∞ is a natural boundary

)
=
uλ(x, a)

λ

which gives (6.1) for x ≤ a.

• Now, let us suppose that x > a. We have, with the same computation:∫ +∞

a

(s(y)− s(a))uλ(x, y)m(dy)

=

∫ x

a

(s(y)− s(a))uλ(x, y)m(dy) +

∫ +∞

x

(s(y)− s(a))uλ(x, y)m(dy)

= I1 + I2.

On the one hand:

I1 =
ϕλ(x)

ωλ

∫ x

a

ds(z)

∫ x

z

ψλ(y)m(dy)

=
ϕλ(x)

λωλ

∫ x

a

ds(z)

(
dψλ
ds

(x)− dψλ
ds

(z)

)
=
ϕλ(x)

λωλ

(
(s(x)− s(a))

dψλ
ds

(x)− (ψλ(x)− ψλ(a))

)
=
s(x)− s(a)

λωλ
ϕλ(x)

dψλ
ds

(x)− uλ(x, x)

λ
+
uλ(x, a)

λ
.

On the other hand:

I2 =

∫ +∞

x

(s(y)− s(x))uλ(x, y)m(dy) + (s(x)− s(a))

∫ +∞

x

uλ(x, y)m(dy)

=
uλ(x, x)

λ
+
s(x)− s(a)

ωλ
ψλ(x)

∫ +∞

x

ϕλ(y)m(dy) (from the previous computations)

=
uλ(x, x)

λ
− s(x)− s(a)

λωλ
ψλ(x)

dϕλ
ds

(x).

Finally, gathering both terms, we obtain for x > a:∫ +∞

a

(s(y)− s(a))uλ(x, y)m(dy) =
s(x)− s(a)

λωλ

(
ϕλ(x)

dψλ
ds

(x)− ψλ(x)
dϕλ
ds

(x)

)
+
uλ(x, a)

λ
,

=
s(x)− s(a)

λ
+
uλ(x, a)

λ
,

which is the desired result (6.1) from the definition of the Wronskian.
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