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Abstract

We prove a shape theorem for the internal (graph) distance on the interlacement set
Iu of the random interlacement model on Zd, d ≥ 3. We provide large deviation esti-
mates for the internal distance of distant points in this set, and use these estimates
to study the internal distance on the range of a simple random walk on a discrete
torus.
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1 Introduction and the results

We study properties of the interlacement set Iu of the random interlacement model.
We are mainly interested in its connectivity properties, in particular in the internal
distance (sometimes called the chemical distance) on the interlacement cluster.

The random interlacement model was introduced in [12] in order to describe the
microscopic structure in the bulk which arises when studying the disconnection time
of a discrete cylinder or the vacant set of random walk on a discrete torus. It can be
informally described as a dependent site percolation on Zd, d ≥ 3, which is ‘generated’
by a Poisson cloud of independent simple random walks whose intensity is driven by
a non-negative multiplicative parameter u. The set covered by these random walks is
called the interlacement set at level u and is denoted by Iu. As the precise definition of
Iu is rather lengthy, we postpone it to Section 2 and state our results first.

Let Pu0 = P[ · | 0 ∈ Iu] be the conditional distribution given that the origin is in
the interlacement set Iu. For x, y ∈ Iu we define ρu(x, y) to be the internal distance
between x and y within the interlacement set Iu:

ρu(x, y) = min{n : there exist x0, x1, . . . , xn ∈ Iu such that x0 = x, xn = y,

and ‖xk − xk−1‖1 = 1 for all k = 1, . . . , n},
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Internal distance in the interlacement set

where ‖ · ‖1 denotes the `1-norm in Zd. As we shall see below, the set Iu is P-a.s.
connected for all u, so ρu(x, y) <∞ for all u > 0 and x, y ∈ Iu. Assuming that x ∈ Iu, let
Λu(x, n) = {y ∈ Iu : ρu(x, y) ≤ n} be the ball centred at x with radius n in the internal
distance. We abbreviate Λu(n) := Λu(0, n).

The first main result of this paper is the shape theorem for large balls in the internal
distance.

Theorem 1.1. For every u > 0 and d ≥ 3 there exists a compact convex set Du ⊂ Rd
such that for any ε > 0 there exists a Pu0 -a.s. finite random variable N such that

(
(1− ε)nDu ∩ Iu

)
⊂ Λu(n) ⊂ (1 + ε)nDu

for all n ≥ N .

Remark 1.2. Clearly, the set Du is symmetric under rotations and reflections of Zd and
Du ⊂ {x ∈ Rd : ‖x‖1 ≤ 1} for all u. It is straightforward to show that Du → {x ∈ Rd :

‖x‖1 ≤ 1} as u→∞; it would be interesting, however, to be able to say something about
the behaviour of Du when u → 0 (e.g., does the shape become close to the Euclidean
ball, and what can be said about the size of Du as u→ 0?).

The key technical step in the proof of Theorem 1.1 is a fact (which is of independent
interest) that the distance within the interlacement cluster should typically be of the
same order as the usual distance.

Theorem 1.3. For every u > 0 and d ≥ 3 there exist constants C,C ′ <∞ and δ ∈ (0, 1)

such that

Pu0 [there exists x ∈ Iu ∩ [−n, n]d such that ρu(0, x) > Cn] ≤ C ′e−n
δ

.

A corresponding result for the Bernoulli percolation on Zd was proved by Antal and
Pisztora; in their case the constant δ equals one and is optimal, see [2, Theorem 1.1].
We did not try to optimise the constant δ in Theorem 1.3.

Remark 1.4. It is trivial to replace Pu0 by P in Theorems 1.1 and 1.3. To this end it is
only necessary to extend ρu(x, y) to all x, y ∈ Zd by setting

ρu(x, y) = ρu(xu, yu),

where xu (respectively, yu) is the closest point to x (respectively, y) on Iu (one can
choose the rule how ties are broken in any convenient translational-invariant way).

The methods used to show Theorem 1.1 also imply the following result.

Theorem 1.5. It holds that P[Iu is connected for all u > 0] = 1.

Previously it was known that for every fixed u > 0, the set Iu is P-a.s. connected (see
(2.21) in [12]); the above theorem means that P-a.s. there are no ‘exceptional values’
of the parameter u. Remark also that much more is known about the connectivity of Iu
for fixed u, see [7, 10].

Theorems 1.1 and 1.3 indicate that the interlacement set Iu looks at large scales
very much like Zd. In the same direction, Ráth and Sapozhnikov recently proved that
the interlacement set Iu percolates in slabs [8], and that random walk on Iu is tran-
sient [9].

Theorem 1.3 can be also used to answer a related question: ‘How much the range of
the random walk on the torus resembles the torus?’ To this end we consider (Xk)k∈N to
be a simple random walk on the discrete d-dimensional torus of size N , TdN = (Z/NZ)d,
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and write PN for its law when started from the uniform distribution. We let IuN to
denote the range of the random walk up to time uNd,

IuN = {X0, . . . , XbuNdc}.

Let ρuN (x, y) be the minimal distance of x, y ∈ IuN within IuN , defined similarly as ρu, and
let dN (x, y) be their usual graph distance on the torus.

Theorem 1.6. For large enough C̄ and γ, we have

lim
N→∞

PN
[
ρuN (x, y) ≤ C̄dN (x, y) for all x, y ∈ IuN such that dN (x, y) ≥ lnγ N

]
= 1.

This theorem improves the result of Shellef [11], where a similar claim was proved
for C̄ growing very slowly with N using entirely different methods. More precisely, [11]
requires C̄ = ln(k)N where ln(k) is the k-times iterated logarithm, k ≥ 1 being arbitrary.
On the other hand, Shellef needs γ = 5d only; we do not have control on the size of this
constant.

The main difficulty of the paper stems in proving our results for d < 5, in particular
for d = 3. In fact, for d ≥ 5 there is a rather simple argument, based on the results
of [9], which shows Theorem 1.3 with δ = 1, and which we sketch in the Appendix.
This argument uses the fact that for d ≥ 5 the random interlacement restricted to
a thick-enough two-dimensional slab dominates in some sense the standard Bernoulli
percolation, which allows an application of [2]. Heuristically, in large dimensions it is
possible to construct ‘long straight connections’ within Iu locally, independently of the
connections in other places.

It seems that this argument cannot be extended to d < 5. It is much harder to
construct the straight connections locally in an independent manner. This we do in
Section 6, where we dominate the internal distance between the origin and the point
(n, 0, . . . , 0) by the sum of a sequence of random variables with a finite range of depen-
dence and stretched exponential tails, cf. (6.11) below. To obtain the finite range of
dependence, we should show that connections within a large box of size m can be con-
structed using less than Θ(md−2) random walk trajectories (which is the typical number
of random walks intersecting this box; here and in the sequel we write f(m) = Θ(g(m))

when for positive constants c1, c2 we have c1g(m) ≤ f(m) ≤ c2g(m) for all m). In fact,
in Proposition 4.2 we will show that a ‘backbone’ of Iu in this box can be constructed
using Θ(md−2−h) trajectories only, h < 2/d. This also means that for every u > 0 the
interlacement set Iu is ‘largely supercritical’, that is it remains locally connected, even
when considerably thinned.

The paper is organised as follows. After introducing the notation in Section 2, we
collect in Section 3 some estimates on the hitting probabilities of sets and on the range
of the simple random walk. Section 4 contains the key technical result of this paper,
Proposition 4.2. This proposition roughly states that all points in (a possibly thinned
version of) the set Iu within box of size n are at internal distance n2, with a very high
probability. Using this proposition, in Section 5, we give a short proof of Theorem 1.5.
Sections 6–8 contain the proofs of Theorems 1.3, 1.1, and 1.6.

Acknowledgements. The authors would like to thank Augusto Teixeira for many
useful discussions, and Balázs Ráth for pointing out Shellef’s paper [11]. The work of
Serguei Popov was partially supported by grants CNPq (301644/2011–0) and FAPESP
(2009/52379–8).

2 Preliminaries

In this section we fix the notation and recall the definition of the random interlace-
ment model.
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Let N = {0, 1, . . . } be the set of natural numbers. We denote with e1, . . . , ed the
coordinate vectors in Zd, and write ‖ · ‖, ‖ · ‖1, ‖ · ‖∞ for the Euclidean, `1, and `∞ norms
correspondingly. We use B(x, r) to denote the closed ‖ · ‖∞-ball centred at x with radius
r, and abbreviate B(r) := B(0, r). We say that A ⊂ Zd is connected if for any x, y ∈ A
there is a nearest-neighbor path that lies fully inside A and connects x to y. We write
|A| for the cardinality of A, diam(A) = maxx,y∈A ‖x − y‖∞ for its diameter in `∞-norm,
and ∂A = {x ∈ A : ∃y ∈ Ac, ‖x− y‖ = 1} for its internal boundary.

Let us write Px for the law of a discrete-time simple random walk (Xn)n∈N on Zd

started from x. For A ⊂ Zd we denote with HA, H̃A and TA the entrance time in A, the
hitting time of A, and the exit time from A:

HA = inf{n ≥ 0 : Xn ∈ A},
H̃A = inf{n ≥ 1 : Xn ∈ A},
TA = inf{n ≥ 0 : Xn /∈ A}.

(2.1)

Given A ⊂ Zd finite, we define the equilibrium measure of A by

eA(x) = Px[H̃A =∞]1A(x)

and denote by cap(A) =
∑
x∈A eA(x) its total mass.

We now recall the definition of the random interlacement from [12]. In order to do
this we need to introduce another notation which is, however, mostly used only locally.
Let W be the space of doubly-infinite nearest-neighbour trajectories in Zd which tend to
infinity at positive and negative infinite times, and let W ? be the space of equivalence
classes of trajectories in W modulo time-shift. (These spaces are equipped with σ-
algebras W, W? as in (1.2), (1.10) of [12].) The random interlacement is defined via
a Poisson point process taking values in the space Ω of point measures on the space
W ? × [0,∞) with the intensity measure ν ⊗ du. We denote by P the law of this process.

To describe the measure ν appearing in the intensity of the Poisson point process,
for A ⊂ Zd, u ≥ 0, we denote by µuA the mapping from Ω to the space of point mea-
sures on W which selects from ω ∈ Ω the trajectories with labels smaller than u

intersecting A and parametrises them so that they enter A at time 0. Formally, for
ω =

∑
i≥0 δ(w?i ,ui) ∈ Ω , w?i ∈W ?, ui ≥ 0, we define

µuK(ω) =
∑

i≥0

δsA(w?i )
1{Ran(w?i ) ∩A 6= ∅, ui ≤ u}, (2.2)

where Ran(w?) =
⋃
n∈Z w(n) for an arbitrary w in the equivalence class of w?, and

sA(w?) is the unique w ∈ W in this equivalence class such that w0 ∈ A, w−n /∈ A,
n > 0. As follows from [12], Theorem 1.1, the measure ν is uniquely determined by the
following two properties which we will frequently use:

• For every finite set A ⊂ Zd, under P, the number ηuA := µuA(ω)(W ) of trajecto-
ries in ω with labels smaller than u entering A has the Poisson distribution with
parameter u cap(A).

• Let µuA(ω) =
∑ηuA
i=1 δwi , wi ∈ W . Then, under P, wi are i.i.d., independent of ηuA,

with the law given by

P[(wi(n))n≥0 ∈ F ] =
∑

x∈A

eA(x)

eA(A)
Px[F ],

for any measurable set F in the space of single-infinite nearest-neighbour paths.
It means that wi, restricted to non-negative times, are i.i.d. simple random walk
trajectories started from the normalised equilibrium measure eA(·)/eA(A).
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The interlacement set at level u is then defined as the trace of all trajectories in ω

with labels smaller than u,

Iu(ω) =
⋃

i≥0

Ran(w?i )1{ui ≤ u}.

We now explain the conventions for the use of constants in this paper. We denote by
C,C1, C

′
1, C2, . . . the ‘global’ constants, that is, those that are used all along the paper

and by c, c′, c1, c2, c3, . . . the ‘local’ constants, that is, those that are used only in the
small neighbourhood of the place where they appear for the first time. For the local
constants, we restart the numeration either in the beginning of each subsection or in
the beginning of each long proof. All these constants are positive and finite and may
depend on dimension, u, and other quantities that are supposed to be fixed; usually we
omit expressions like ‘there exist positive constants c1, c2 such that . . . ’ and just directly
insert c’s to the formulas.

Also, the reader will notice that very frequently in this paper the probability of events
(indexed by some integer parameter, say, n) will happen to be bounded from above
by e−cn

δ

or from below by 1− e−cnδ , where δ is typically (but not necessarily) between 0

and 1. So, we decided to use the following definition:

Definition 2.1. We say that f(n) is s.e.-small (s.e. stands for ‘stretched-exponentially’)
if for all n ≥ 1 it holds that

0 ≤ f(n) ≤ c1e−c2n
c3
,

and write f(n) = s.e.(n).

Observe that ncs.e.(n) = s.e.(n) for any fixed c > 0. So, it is quite convenient to use
this notation e.g. in the following situation: assume that we have at most nc events,
each of probability bounded from above by s.e.(n). Then, the probability of their union
is s.e.(n) as well.

3 Estimates on hitting probabilities

In this section we collect several estimates on hitting probabilities of subsets of Zd

by random walk trajectories. We recall that Px denotes the law of the simple random
walk (Xn)n∈N in Zd, d ≥ 3, starting at x. We denote by g the ‘stopped’ Green function:

g(x, y;n) =

n∑

k=0

Px[Xk = y],

and write g(x, y) for g(x, y;∞). For the case d ≥ 3 it holds that g(x, y) is finite for all
x, y ∈ Zd, g(x, y;n) = g(y, x;n) = g(0, y − x;n), and, for all n ≥ ‖x− y‖2

g(x, y;n) ≥ C1

1 + ‖x− y‖d−2
, (3.1)

g(x, y) ≤ C ′1
1 + ‖x− y‖d−2

, (3.2)

for all x, y ∈ Zd. The upper bound (3.2) follows directly from Theorem 1.5.4 of [3]. The
lower bound (3.1) can be proved easily adapting the proof of the same theorem.

For n ≥ 0, x ∈ Zd, A ⊂ Zd, let

qx(A;n) = Px[HA ≤ n]

be the probability that, starting from x, the simple random walk enters A before time n.
We use the abbreviation qx(y;n) := qx({y};n) for the hitting probabilities of one-point
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sets, and qx(A) := qx(A;∞) for the probability that the simple random walk ever enters
the set A. It is elementary to obtain that for all x, y ∈ Zd and n ≥ ‖x − y‖2 (see e.g.
Theorem 2.2 of [1])

qx(y;n) ≥ C2

1 + ‖x− y‖d−2
,

qx(y) ≤ C ′2
1 + ‖x− y‖d−2

.

(3.3)

Next, for x ∈ Zd and a finite set A ⊂ Zd, define

g(x,A;n) =
∑

y∈A
g(x, y;n).

Clearly, g(x,A;n) is the expected number of visits to A up to time n, starting from x. As
before, we set g(x,A) := g(x,A;∞).

The following lemma will be used repeatedly to estimate the hitting probabilities:

Lemma 3.1. For all x ∈ Zd, finite A ⊂ Zd, and 0 ≤ n ≤ ∞

g(x,A;n)

maxy∈A g(y,A;n)
≤ qx(A;n) ≤ g(x,A)

miny∈A g(y,A)
. (3.4)

Proof. Using the definition of g and the strong Markov property,

g(x,A) =
∑

y∈A
Px[HA <∞, XHA = y]g(y,A)

≥ min
y∈A

g(y,A)
∑

y∈A
Px[HA <∞, XHA = y].

Since qx(A;n) ≤ qx(A) =
∑
y∈A Px[HA < ∞, XHA = y], the second inequality in (3.4)

follows. The first inequality is then implied by

g(x,A;n) =

n∑

k=0

∑

y∈A
Px[HA = k,XHA = y]g(y,A;n− k)

≤
n∑

k=0

∑

y∈A
Px[HA = k,XHA = y]g(y,A;n)

≤ max
y∈A

g(y,A;n)

n∑

k=1

∑

y∈A
Px[HA = k,XHA = y],

together with qx(A;n) =
∑n
k=0

∑
y∈A Px[HA = k,XHA = y].

Let us use the notation `(x,A) = maxy∈A ‖x − y‖∞ for the maximal distance be-
tween x and the points of A. Two following simple lemmas contain lower bounds on
hitting probabilities of sets.

Lemma 3.2. Suppose that A is a connected finite subset of Zd, containing at least two
sites. Then, for all x ∈ Zd and n ≥ (`(x,A))2,

qx(A;n) ≥





C3 diam(A)

(`(x,A))d−2 ln diam(A)
, d = 3,

C3 diam(A)

(`(x,A))d−2
, d ≥ 4.
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Proof. Since A is connected, it is possible to find (not necessarily connected) set A′ ⊂ A
with the following properties:

• |A′| = diam(A),

• one can represent A′ = {x1, . . . , xdiam(A)} in such a way that ‖xi − xj‖∞ ≥ |i − j|
for all i, j = 1, . . . ,diam(A).

Indeed, it holds that the size of the projection of A on one of the coordinate axes is at
least diam(A) and this projection is an interval; then, for all points in the projection pick
exactly one element of A that projects there, and erase ‘unnecessary’ points of A. Then,
by (3.1) we have for any n ≥ (`(x,A))2

g(x,A′;n) ≥ C1 diam(A)

1 + (`(x,A))d−2
,

and, by (3.2), for any y ∈ A′,

g(y,A′;n) ≤
diam(A)∑

j=0

2C ′1
1 + jd−2

≤

{
c1 ln diam(A), d = 3,

c1, d ≥ 4.

Since qx(A;n) ≥ qx(A′;n) for all n, the claim follows from Lemma 3.1.

The previous lemma works well for sparse connected sets. For more densely packed
sets we need another estimate:

Lemma 3.3. For all x ∈ Zd, finite A ⊂ Zd containing at least two sites, and all n ≥
(`(x,A))2,

qx(A;n) ≥ C4|A|1−
2
d

(`(x,A))d−2
.

Proof. Again using (3.1), we have for any n ≥ (`(x,A))2

g(x,A;n) ≥ C1|A|
1 + (`(x,A))d−2

.

To obtain an upper bound on g(y,A;n) for y ∈ A, we observe that

|{x ∈ Zd : ‖x‖ ∈ [k, k + 1)}| = Θ(kd−1).

So, using (3.2), we have for y ∈ A

g(y,A;n) ≤
∑

z∈A

C ′1
1 + ‖y − z‖d−2

≤
c3|A|1/d∑

k=0

C ′1c4k
d−1

1 + kd−2

≤ c5|A|2/d,

where we have used an obvious worst-case estimate (all the points of A are grouped
around y, forming roughly a ball of radius Θ(|A|1/d)) on the passage from the first to
the second line of the above display. Then, applying Lemma 3.1 we conclude the proof
of Lemma 3.3.

We end this section by stating a few well-known facts about the behavior of the set
of sites visited by a simple random walk by time n. As we could not locate suitable
references, we also sketch their proofs.
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Lemma 3.4. Suppose that d ≥ 3 and let R(n) = {X0, . . . , Xn} be the set of sites visited
by a simple random walk by time n. Then, for any fixed α1 ∈ (0, 1),

P
[
n1−α1 ≤ diam(R(n2)) ≤ n1+α1 , |R(n2)| ≥ n2−2α1

]
≥ 1− s.e.(n).

Proof. The upper bound on the diameter follows from any convenient large deviation
bound on the displacement of the simple random walk (e.g. Lemma 1.5.1 of [3]).

To control the diameter and the number of visited sites from below, we use the
following simple argument: We divide the temporal interval [0, n2] into c−1n2α1 subin-
tervals of length cn2−2α1 , for a large enough c. Clearly, on each of the subintervals of
length cn2−2α1 the maximal displacement of the simple random walk is at least n1−α1

with a constant probability, e.g., by the central limit theorem. Noting that by time k the
number of visited sites is at most k, and that the expectation of this number is at least
c′k (it is straightforward to obtain this from (3.1)), we deduce that also with at least
constant probability1 the number of different sites visited by the random walk during
a fixed temporal interval of length cn2−2α1 is at least n2−2α1 (if c is large enough). Fi-
nally, to estimate the probability that the event of interest occurs on at least one of the
c−1n2α1 subintervals, use the independence. The claim then follows easily.

We also need an estimate on the number of different sites visited by several random
walks:

Lemma 3.5. Let (X
(1)
j )j≥0, . . . , (X

(k)
j )j≥0 be k independent simple random walks started

from arbitrary points x(1), . . . , x(k), and denote Rj(m) = {X(j)
0 , . . . , X

(j)
m }, j = 1, . . . , k.

Assume that nh ≤ k ≤ nd−2 for some fixed h ∈ (0, d − 2). Then, for any α3 ∈ (0, h) we
have

P
[∣∣∣

k⋃

j=1

Rj(n
2)
∣∣∣ ≥ kn2−α3

]
≥ 1− s.e.(n).

Proof. We use a similar argument as in the previous proof. We divide the k walks into
c−1nα3 groups, each containing ckn−α3 walks. Consider now the ckn−α3 walks of the,
say, first group, suppose that they are labelled from 1 to ckn−α3 . Let

V =

ckn−α3⋃

j=1

Rj(n
2)

be the set of sites visited by the walks from the first group. For y ∈ Zd, define

ζ(y) =

ckn−α3∑

j=1

1{‖x(j) − y‖ ≤ n}

to be the number of walks of the first group that start at distance at most n from y.
By (3.3), using ζ(y) ≤ k ≤ nd−2, we have

P [y ∈ V ] = 1−
ckn−α3∏

j=1

(
1− qx(j)(y;n2)

)
≥ c′ζ(y)

nd−2
.

1For any random variable ξ with 0 ≤ ξ ≤ a a.s. and Eξ ≥ b, it is true that P [ξ ≥ b/2] ≥ b/(2a).
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So, if c is large enough

E|V | =
∑

y∈Zd
P [y ∈ V ]

≥ c′

nd−2

∑

y∈Zd
ζ(y)

≥ c′ckn−α3

nd−2
∣∣{y : ‖y‖ ≤ n}

∣∣

≥ 2kn2−α3 .

Since, trivially, |V | ≤ ckn2−α3 , it holds that |V | ≥ kn2−α3 with at least a constant prob-
ability. As the same reasoning applies to each of the c−1nα3 groups, the claim of the
lemma follows by independence.

4 Intersections of random walks

In this section we show that the set of points visited by sufficiently many walks
started inB(n) is typically well connected; the precise statement of this fact is contained
in Proposition 4.2.

To state this proposition we need some notation. We consider two sequences of
positive random variables η̂(n)1 , η̂

(n)
2 satisfying η̂(n)1 ≤ η̂(n)2 and

P[η̂
(n)
1 ≥ C5n

d−2−h] ≥ 1− s.e.(n), (4.1)

P[η̂
(n)
2 ≤ C6n

M ] ≥ 1− s.e.(n), (4.2)

for some h < 2
d and M > 0. Let X(1), . . . , X(η̂

(n)
2 ) be η̂

(n)
2 independent simple random

walks starting from some sites x(1), . . . , x(η̂
(n)
2 ) ∈ B(n). We write P for the joint distribu-

tion of these walks. Let Rk(m) = {X(k)
0 , . . . , X

(k)
m } be the set of different sites visited by

kth random walk until time m. We write Hk
A, H̃k

A for the entrance and hitting time of A
by random walk X(k) (recall (2.1)).

Definition 4.1. For integers s,m ≥ 1 we say that X(i) is (s,m)-connected to X(j) if
there exist a sequence of integers i = k0, k1, . . . , ks = j such that

kt ≤ η̂(n)1 , for all t = 0, . . . , s

Rkt(m) ∩Rkt−1(m) 6= ∅, for all t = 1, . . . , s.

(We do not indicate the dependence on n in order to keep the notations not too heavy.)

In words, the definition says that the trajectories are (s,m)-connected if one can go
from the starting point of the ith trajectory to the starting point of the jth trajectory
within the cluster of the first η̂(n)1 trajectories, by changing no more than s times the
trajectory, and using at most m sites in the beginning of each trajectory.

Let us define for k ≤ η̂(n)2 the following set of integers:

Lk =
{
m ≥ 1 : {X(k)

3mn2 , . . . , X
(k)
3(m+1)n2−1} ∩B(n) 6= ∅

}
,

and let
J (n) = {k ≤ η̂(n)2 : |Lk| = 0} (4.3)

be the index set of the walks that do not come back to B(n) after the time 3n2.
For d ≥ 3 and h < 2

d , define

β(d, h) := min
{
k ≥ 1 :

dh

2
+
(
d− 3 + h− dh

2

)(
1− 2

d

)k−1
< 1
}

(4.4)
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(in fact, this quantity represents the necessary number of steps in the recursive con-
struction used in the proof of Proposition 4.2, see (4.8) and (4.15); at this point we only
observe that β(d, h) is finite since dh

2 < 1).
The following proposition plays the key role in this paper:

Proposition 4.2. Let η̂(n)1 , η̂(n)2 and X(k), k ≤ η̂(n)2 , be as above. Then

P
[
∀i, j ≤ η̂(n)1 , X(i) and X(j) are

(
2β(d, h) + 1, 2n2

)
-connected

]
≥ 1− s.e.(n). (4.5)

Moreover,

P
[
∀i ≤ η̂(n)2 ∃j ≤ η̂(n)1 such that Ri(n

2) ∩Rj(2n2) 6= ∅
]
≥ 1− s.e.(n), (4.6)

and

P
[
∀i ≤ η̂(n)2 ∀m ∈ Li ∃j ≤ η̂(n)1 such that

{X(i)
3mn2 , . . . , X

(i)
3(m+1)n2−1} ∩Rj(2n

2) 6= ∅
]
≥ 1− s.e.(n).

(4.7)

Remark 4.3. (a) The estimates in the above proposition only depend on the number
of walks that we consider, they are uniform with respect to the choice of the starting
positions.

(b) Typically, when applying Proposition 4.2 to the interlacement set (say, in the ball
B(n)), the variables η̂(n)1 , η̂(n)2 will be of order nd−2, so that h = 0. The proposition implies
that the model of random interlacements is ‘far from the criticality’ with respect to the
connectedness of the interlacement cluster; we typically need much less than Θ(nd−2)

walks to ensure that the interlacement set is ‘well connected’.
(c) In the most important case h = 0, it holds that β(3, 0) = 1, β(4, 0) = 2, β(5, 0) =

3, β(6, 0) = 4, but then β(7, 0) = 6. Comparing this with the results of [10, 7] (where it
is proved that every two points in Iu can be joined by a path switching the trajectory
at most (dd/2e − 1)-times) indicates that the constants β(d, h) are not optimal. The
authors did not check if the formula (4.4) can be further simplified, but it is clear that
β(d, h) = Θ(d ln d) as d→∞. In any case, for our needs it is enough to know that β(d, h)

is finite for any d ≥ 3 and h < 2/d, and this fact is quite obvious.

First, let us describe informally the idea of the proof for the particular case h = 0

(one may note that there are many similarities with the proof of Theorem 3.2 of [1],
and with techniques used in [10]). Consider the random walk X(1) and run it up to
time n2. Then, diam(R1(n2)) is typically of order n, so any other random walk X(k)

hits the set R1(n2) with probability at least of order roughly n−(d−3) (with logarithmic
correction for d = 3) by Lemma 3.2. Since there are Θ(nd−2) other available walks, with
high probability R1(n2) will be hit by Θ(n) different other walks. In dimension d = 3,
running these Θ(n) walks for n2 time units more after the respective hitting moments of
R1(n2) is already enough to meet all the other trajectories (again applying Lemma 3.2,
one obtains that the probability that any other trajectory hits none of those walks is
almost exponentially small in n). In dimension d ≥ 4 this argument, however, just
barely does not work.

So, what to do in dimension 4? Consider those Θ(n) trajectories (of length n2) that
intersect the initial one. Together with the initial trajectory, they form a connected
set of cardinality roughly n3. We then apply Lemma 3.3 to obtain that a random walk
starting somewhere at the boundary of B(n) will hit such a set with probability at least
of order n−2 × n3(1−

2
d ). Since (recall that now d = 4) we have Θ(n2) walks in total,

typically Θ(n3(1−
2
d )) of them will hit that set. Since in four dimensions Lemma 3.2 gives

lower bound of order n−1 for the hitting probability of the initial piece of length n2 of
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a generic trajectory and 3(1 − 2
4 ) = 3

2 > 1, running these Θ(n3/2) walks a bit more we
meet all the other trajectories with high probability (see on Figure 1 an illustration of
the proof for d = 4).

B(n)

1
2

2

2

3

3

3
3

Figure 1: On the proof of Proposition 4.2 for d = 4. One considers first the trajectory of
some particle (labelled here by ‘1’) up to time n2. The trajectories of particles labelled
by ‘2’ meet the first trajectory (the small boxes indicate the corresponding places of
first hitting). The particles labelled by ‘3’ then hit the set formed by the trajectories
with labels ‘1’ and ‘2’. Continuing the trajectories of ‘3’-particles a bit more, one finds a
‘generic’ trajectory (the thick one on this picture) with very high probability.

Again, in dimension d = 5 this fails since Lemma 3.2 now gives a lower bound of
order n−2. However, iterating the same construction as above, we then obtain roughly
Θ(n(2+3(1− 2

d ))(1−
2
d )) independent walks, and, since (2 + 3(1− 2

5 ))(1− 2
5 ) = 57

25 > 2, these
are enough to detect all the other walks. For any fixed d one can perform enough
iterations to make this construction work.

If we recursively define the sequence

a
(d)
1 = 1, a

(d)
n+1 = (a(d)n + 2)

(
1− 2

d

)
, (4.8)

then the necessary number of iterations β(d, 0) can be calculated as follows:

β(d, 0) = min{k : a
(d)
k > d− 3}.

Since it is straightforward to obtain from the recursion (4.8) that

a(d)n = d− 2− (d− 3)
(

1− 2

d

)n−1
,
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we see that the above definition of β(d, 0) agrees to (4.4).
In order to make the above argument rigorous, we have to address several issues,

for example:

• Deal with the dependence of the walks that participate in different stages of the
above construction. This can be done by dividing the walks we use into β(d, h)

groups and use one group on each stage.

• In fact, the trajectories can go back to the ballB(n) at later epochs (i.e., much later
then n2). To prove (4.7), we have to assure that the random walks constructed on
the β(d, h)th stage would meet these pieces of the trajectories too, otherwise we
would have no good control on the distance within the interlacement cluster. So,
we have to control the ‘total number of returns’ (see (4.11) below). In addition, in
the above construction we shall use only the walks conditioned on not returning
to B(n) after time 3n2 (in order not to be obliged to condition on a too much
detailed future behaviour of the trajectory).

• Finally, all the events described in the informal construction should not only be
‘typical’ in some sense, but hold with probability at least 1 − s.e.(n). For that, we
need to ‘adjust’ (by sufficiently small amounts) the values in the power of n on
each stage.

Proof of Proposition 4.2. We start with the formal proof of Proposition 4.2. To simplify
the notation we write β = β(d, h). Recall (4.3) and define for m = 1, . . . , β

J (n)
m =

{
k ∈ J (n) :

(m− 1)η̂
(n)
1

β
≤ k < mη̂

(n)
1

β

}
.

Since, clearly, there is a constant c4 > 0 such that for all x ∈ B(n) we have

Px[Xm /∈ B(n) for all m ≥ n2] > c4, (4.9)

we obtain that

P
[
|J (n)
m | ≥ c5nd−2−h for all m = 1, . . . , β

]
≥ 1− s.e.(n). (4.10)

Inequality (4.9) further implies that that for every k,m ≥ 1

P[|Lk| > m] ≤ e−c7m. (4.11)

In the sequel, we will repeatedly use the following observation. For a simple random
walk X, let X[0,2n2] be the piece of trajectory of the walk X up to time 2n2. Then there
is a constant c8 > 0 such that for any event A which depends only on the initial piece of
the trajectory of length 2n2

P [X[0,2n2] ∈ A | Xm /∈ B(n) for all m > 3n2] ≥ c8P [X[0,2n2] ∈ A]. (4.12)

Indeed, to prove (4.12), we write

P [X[0,2n2] ∈ A | Xm /∈ B(n) for all m > 3n2]

≥ P [X[0,2n2] ∈ A,Xm /∈ B(n) for all m > 3n2]

= P [X[0,2n2] ∈ A]P [Xm /∈ B(n) for all m > 3n2 | X[0,2n2] ∈ A],

≥ P [X[0,2n2] ∈ A] inf
x∈Zd

Px

[
Xm /∈ B(n) for all m > n2

]

and use (4.9) to argue that the last term is at least of constant order.
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As a last preparatory observation, note that, for any ε > 0, by Lemma 3.4 and the
observation following Definition 2.1,

P

[
for all k ≤ η̂(n)2 ,diam(Rk(n2)) ≥ n1−ε,
diam({X(k)

3mn2 , . . . , X
(k)
3(m+1)n2−1}) ≥ n

1−ε for all m ∈ Lk

]
≥ 1− s.e.(n). (4.13)

Let i1 = min{j : j ∈ J (n)
1 }, and define

V1 = Ri1
(
n2 ∧ T i1B(2n)

)
.

For any j we obtain using Lemma 3.2, and (4.12) with A = {Rj(n2) ∩ V1 6= ∅},

P [Rj(n
2) ∩ V1 6= ∅ | j ∈ J (n)

1 ] ≥





c9 diam(V1)

n lnn
, d = 3,

c9 diam(V1)

nd−2
, d ≥ 4.

(4.14)

We introduce the set of indices K1 =
{
j ∈ J

(n)
1 \ {i1} : Rj(n

2) ∩ V1 6= ∅
}

. By (4.10),
(4.13), and (4.14), using the independence the random walks X(j), it holds that

P [|K1| ≥ n1−h−ε1 ] ≥ 1− s.e.(n),

where ε1 := 2ε (ε is supposed to be sufficiently small so that 1− h− ε1 > 0).
For d = 3, everything is ready to finish the proof of Proposition 4.2, but for other

values of d we first need to describe a general step of the construction (recall that β
steps are necessary). Define recursively (recall (4.8))

a1 = a1(d, h) = 1− h,

an+1 = an+1(d, h) = (an(d, h) + 2)
(

1− 2

d

)
− h.

(4.15)

From the above recursion it is straightforward to obtain that

an = d− 2− dh

2
−
(
d− 3 + h− dh

2

)(
1− 2

d

)n−1
.

So, with β defined by (4.4), it holds that aβ > d− 3.
Assume that for some 1 ≤ m ≤ β−1 we have constructed the connected sets Vm ⊂ Zd

and also the sets Km ⊂ J
(n)
m of indices of the walks which hit Vm before time n2, such

that with probability at least 1− s.e.(n)

|Km| ≥ nam−εm . (4.16)

Then, define

Vm+1 = Vm ∪
( ⋃

j∈Km

Rj
(
2n2 ∧ T jB(2n)

))
.

By Lemma 3.5 (observe that, by (4.12), its proof still goes through in this situation)
and (4.16) it holds that

P
[
|Vm+1| ≥ n2+am−2εm

]
≥ 1− s.e.(n). (4.17)

Define Km+1 = {j ∈ J (n)
m+1 : Rj(n

2) ∩ Vm 6= ∅}. Observe that, by Lemma 3.3 and (4.12)

with A = {R(n2) ∩ Vm+1 6= ∅}, for any j ∈ J (n)
m+1

P [Rj(n
2) ∩ Vm+1 6= ∅] ≥

c|Vm+1|1−
2
d

nd−2
. (4.18)
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So, using (4.10), (4.13), (4.17), and (4.18), we obtain

P
[
|Km+1| ≥ n(2+am−2εm)(1− 2

d )−h−εm
]
≥ 1− s.e.(n),

and (for the next induction step) denote εm+1 = am+1 − (2 + am − 2εm)(1 − 2
d ) + εm, so

that (4.16) would hold with m+ 1 instead of m.
Now we describe the last step needed for the proof of (4.5), (4.6), and (4.7). Assume

that on the initial step the parameter ε was chosen to be so small that aβ−εβ > d−3+ε.
Consider the walks with indices in Kβ; after hitting Vβ the rest of the trajectory is
conditionally independent from the initial part, so Lemma 3.2 and (4.12) imply that, for
j ∈ Kβ

P
[{
X

(j)

HjVβ
+1
, . . . , X

(j)

HjVβ
+n2

}
∩A 6= ∅

]
≥





cn−ε

lnn
, d = 3,

cn−ε

nd−3
, d ≥ 4,

for any connected set A ⊂ B(2n) such that diam(A) ≥ n1−ε. Using this together
with (4.11) and (4.13), we conclude the proof of Proposition 4.2.

5 Proof of Theorem 1.5

Using Proposition 4.2, it is straightforward to show Theorem 1.5. Denote by η(n)u the
number of trajectories at level u entering B(n), that is the number of trajectories in the
support µuB(n) (recall (2.2) for the notation). By the definition of random interlacement,

η
(n)
u has Poisson distribution with parameter u cap(B(n)) = Θ(und−2). Therefore, using

e.g. Chernoff bounds we obtain for small enough c1 and large enough c2 that

P[c1un
d−2 < η(n)u < c2un

d−2] ≥ 1− s.e.(n). (5.1)

Assume for the moment that

P[there exists u > 0 such that Iu is not connected] > 0. (5.2)

Then, one can find ε > 0 and 0 < u < û <∞ such that

P[there exists u′ ∈ [u, û] such that Iu
′

is not connected] ≥ ε,

and so, denoting by Iu(n) :=
⋃
i:wi∈suppµuB(n)

Ranwi the interlacement set generated by

the trajectories that intersect B(n), we have

lim inf
n→∞

P[there exists u′ ∈ [u, û] such that Iu
′

(n) is not connected] ≥ ε.

This, however, contradicts Proposition 4.2: putting η̂
(n)
1 = η

(n)
u , η̂(n)2 = η

(n)
û , and us-

ing (5.1), we see that, if both events in the left-hand sides of (4.5) and (4.6) occur, then
Iu′(n) should be connected for all u′ ∈ [u, û]; on the other hand, the probability of these
events approaches 1 as n→∞. So, (5.2) cannot be true.

6 Large deviations for the internal distance

In this section we prove Theorem 1.3. To this end we fix a ∈ (0, 1/3) and investigate
the properties of Iu when restricted to

G(n)
a =

n⋃

k=0

B(ke1, n
a).
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In words, G(n)
a is the na-neighbourhood of the segment between the origin and ne1

(recall that B(x, r) denotes the ball in the ‖ · ‖∞-distance).
First, we need the following elementary estimate on e

G
(n)
a

(A).

Lemma 6.1. Let Fk be the hyperplane {x ∈ Zd : x · e1 = k}. Then, for any k ∈
{−bnac+ 1, . . . , bn+ nac − 1}, it holds that

e
G

(n)
a

(Fk) =
∑

x∈∂G(n)
a ∩Fk

Px[H̃
G

(n)
a

=∞] ≥





cna(d−3)

lnn
, d = 3,

cna(d−3), d ≥ 4.

Proof. We adapt the proof of Proposition 2.4.5 of [3]. Let

G̃n = ([−4n, 4n]× [−na, na]d−1) ∩Zd.

As G̃n − `e1 ⊃ G(n)
a − ke1 for any k as in the statement and ` ∈ {−2n, . . . , 2n},

∑

z∈∂G(n)
a ∩Fk

Pz[H̃G
(n)
a

=∞] ≥
∑

z∈∂G̃n∩F`

Pz[H̃G̃n
=∞]. (6.1)

Let W = G̃n∩{x : |x ·e1| > 2n}. It is elementary to see that P0[HW =∞] ≥ c. Inspecting
the proof of [3, Proposition 2.4.1(c)], denoting by L the last time the random walk visits
G̃n, we get

c ≤ P0[HW =∞]

≤ P0[|XL · e1| ≤ 2n]

=
∑

z∈∂G̃n,|z·e1|≤2n

g(0, z)Pz[H̃G̃n
=∞]

≤
2n∑

`=−2n

sup
z∈∂G̃n∩F`

g(0, z)
∑

z∈∂G̃n∩F`

Pz[H̃G̃n
=∞].

Using (6.1), we then get

c ≤
∑

z∈∂G(n)
a ∩Fk

Pz[H̃G̃n
=∞]

2n∑

`=−2n

sup
z∈∂G̃n∩F`

g(0, z).

The lemma then follows using the elementary asymptotics g(0, z) � ‖z‖2−d (recall (3.1)–
(3.2)).

Let ηn = ηn(u, a) be the number of trajectories of µu
G

(n)
a

(recall (2.2)). As before, we

enumerate the corresponding random walks as X(1), . . . , X(ηn), denote their starting
positions by x(1), . . . , x(ηn), and let Rk(m) be the set of different sites visited by kth
random walk by time m.

Let us define

Uk = B(bknace1, na) = {y ∈ G(n)
a : |y · e1 − bknac| < na}, k = 0, . . . , n. (6.2)

Due to Lemma 6.1, for any k ∈ {0, . . . , n},

e
G

(n)
a

(Uk) ≥ fd(n) :=





cna(d−2)

lnn
, d = 3,

cna(d−2), d ≥ 4.
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Let ηn,k = |{i ≤ ηn : X
(i)
0 ∈ Uk}| be the number of walks starting in Uk. Using the

large deviation properties of the Poisson distribution, as in (5.1), we obtain

P
[
c1fd(n) ≤ ηn,k ≤ c2fd(n)

]
≥ 1− s.e.(n). (6.3)

We now fix a small positive constant ε > 0, and define for 1 ≤ k ≤ ηn

jk = inf{j ≥ 0 : X
(k)

n2(a+ε)+(j−1)n2a+i
/∈ G(n)

a ,∀i = 0, . . . , n2a},

t̂k = n2(a+ε) + jkn
2a,

t̃k = inf{j ≥ 0 : diam(Rk(j)) ≥ 2n2(a+ε)} ∧ t̂k.

Denote by Î (respectively, Ĩ) the ‘interlacement’ set formed only by the initial pieces of
length t̂k (respectively, t̃k) of the trajectories (X(k), k = 1, . . . , ηn):

Î =

ηn⋃

k=1

Rk(t̂k), Ĩ =

ηn⋃

k=1

Rk(t̃k).

Observe that Iu ⊃ Î ⊃ Ĩ. Further, by the central limit theorem, for any x ∈ G
(n)
a ,

Px[T
G

(n)
a
≤ n2a] ≥ c. Therefore, using the strong Markov property recursively on the

definition of jk,
P[jk ≥ nε] ≤ s.e.(n).

When jk ≤ nε, then diam(Rk(t̂k)) ≤ 2n2(a+ε). Therefore,

P[Î 6= Ĩ] ≤ s.e.(n). (6.4)

Heuristically, the set Î, is ‘well suited’ for application of Proposition 4.2 as it has no
‘dangling ends’ in G(n)

a . By this we mean that knowing that X(k) is in G(n)
a at some time

j, its next n2a steps will be contained in Î:

{X(k)
j ∈ G(n)

a , j ≤ t̂k} =⇒ {t̂k ≥ j + n2a}.

On the other hand, the trajectories in Ĩ are ‘short range’, which will introduce some
independence later.

We now introduce a notation that will be useful many times, see Figure 2 for its
illustration. For x ∈ Zd \ {0} and y ∈ Zd, we define

ζ
(x)
0 (y) = max{m ≤ 0 : mx+ y ∈ Iu},

ζ
(x)
k+1(y) = min{m > ζ

(x)
k (y) : mx+ y ∈ Iu}, k ≥ 0.

We set ψ(x)
k (y) := y+

(
ζ
(x)
k (y)

)
x to be the site on Iu corresponding to ζ(x)k (y). When y = 0

and/or x = e1, we omit them from the notation, that is e.g. ζk := ζ
(e1)
k (0).

As the first step of the proof of Theorem 1.3, we control the distance between the
left- and right-most intersection of Iu with the segment (0, ne1]. More precisely, we
want to show that

P[ρu(ψ1, ψ0(ne1)) ≥ cn] ≤ s.e.(n) (6.5)

for a c large. (Observe that Pu0 [ψ0 = 0] = 1.)

We write ρ̂(x, y) for the internal distance of x, y on Î and define ψ̂(x)
i (y) similarly as

ψ
(x)
i (y), using Î instead of Iu. Observe that ψ̂(x)

i (y) depends on n. It may happen that
ψ̂1 = ψ1, ψ̂0(ne1) = ψ0(ne1), but that is not certain. In any case,

ρu(ψ1, ψ0(ne1)) ≤ ρu(ψ1, ψ̂1) + ρ̂(ψ̂1, ψ̂0(ne1)) + ρu(ψ̂0(ne1), ψ0(ne1)). (6.6)

To bound the right-hand side, we need few lemmas.
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y
y + x

ψ
(x)
1 (y) = y + 2x

ψ
(x)
0 (y) = y − x

Figure 2: Construction of ζ(x)i (y) and ψ(x)
i (y). Here ζ(x)0 (y) = −1, ζ(x)1 (y) = 2, ζ(x)2 (y) = 3

and ζ(x)3 (y) = 5.

Lemma 6.2. Let gd(k) = e−c4k when d ≥ 4, and g3(k) = e−c4k/ ln k. Then, for every
a ∈ (0, 1/3), ε > 0, x ∈ Zd \ {0}, y ∈ Zd,

P
[
‖ψ(x)

1 (y)‖∞ ≥ k
]
≤ gd(k), (6.7)

Further, for y such that B(y, na/2) ⊂ G(n)
a ,

P
[
‖ψ̂(e1)

1 (y)‖∞ ≥ k
]
≤ gd(k) + s.e.(n).

Proof. Let Sk = {y + jx : 0 ≤ j ≤ k}. The first claim follows directly from the definition
of Iu (observe that for any A ⊂ Zd it holds that Pu[A ∩ Iu = ∅] = e−u cap(A)) and the
simple estimate on the capacity of the ‘segment’ Sk (see e.g. [3], Proposition 2.4.5)

capSk =

{
Θ(k/ ln k), d = 3,

Θ(k), d ≥ 4.

For the second statement, we assume without loss of generality that y = 0, and
define An = {0 ≤ k ≤ nε, k even}. For every j ∈ An, and x ∈ Uj , by Lemma 3.2,

qx(Sk;n2(a+ε)) ≥





ck

((j + 1)na)d−2 ln k
, d = 3,

ck

((j + 1)na)d−2
, d ≥ 4.

Combining this estimate with (6.3), using t̂k ≥ n2(a+ε), we obtain in d = 3,

P
[
‖ψ̂1‖∞ ≥ k

]
≤ s.e.(n) +

∏

j∈An

(
1− ck

((j + 1)na)d−2 ln k

)c1na(d−2)/ lnn

≤ s.e.(n) + exp

{
− c3k

lnn ln k

∑

j∈An

1

(j + 1)d−2

}

≤ e−c4k/ ln k + s.e.(n).

For d ≥ 4 the calculation is very similar. Actually, it is sufficient to consider only the
term j = 0, as there are no logarithmic terms in the denominator.
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As a consequence of the last lemma and Proposition 4.2 we obtain,

P[ρu(ψ̂1, ψ1) ≤ c′n2a] ≥ 1− s.e.(n), (6.8)

P[ρu(ψ̂0(ne1), ψ0(ne1)) ≤ c′n2a] ≥ 1− s.e.(n). (6.9)

Indeed, obviously

P[ρu(ψ1, ψ̂1) ≥ c′n2a]

≤ P[{ψ1, ψ̂1} 6⊂ B(na)] + P
[
{ψ1, ψ̂1} ⊂ B(na), ρu(ψ1, ψ̂1) ≥ c′n2a

]
.

(6.10)

The first term in the right-hand side is s.e.(n) by Lemma 6.2. For the second one, it
suffices to set c′ = 3(2β(h, d) + 1) and apply Proposition 4.2 to U0 (recall (6.2)) and

η̂
(n)
1 = η̂

(n)
2 = ηn,0 which satisfy the assumptions (4.1) and (4.2) due to (6.3). Claim (6.8)

then follows. The proof of (6.9) is completely analogous.
Similarly, applying Proposition 4.2 to the sequence of sets Uk, k = 0, . . . , n, we obtain

that
P[Î is connected] ≥ 1− s.e.(n).

To bound the middle term on the right-hand side of (6.6), we consider the sequence
of random variables

T̂nk =

{
ρ̂(ke1, ψ̂1(ke1)), if ke1 ∈ Î, ‖ψ̂1(ke1)− ke1‖ ≤ na

0, otherwise .

It is clear that on the event {‖ψ̂1(ke1) − ke1‖ ≤ na : k = 0, . . . , n}, which by Lemma 6.2
has probability 1− s.e.(n), we have

ρ̂(ψ̂1, ψ̂0(ne1)) ≤
n∑

k=0

T̂nk . (6.11)

To control the sum, we need a tail estimate on T̂nk that is uniform in n.

Lemma 6.3. For every k = 0, . . . , n, uniformly in k, we have

P[T̂nk ≥ `] ≤ s.e.(n) + s.e.(`).

Proof. Without loss of generality we consider k = 0 only. First, we fix m ≤ na/2 and
control the number of trajectories entering B(m). We claim that

P[|{i ≤ ηn : Hi
B(m) ≤ t̂i} ≥ c5m

d−2] ≥ 1− s.e.(m). (6.12)

To prove (6.12) we use an argument similar to the proof of Lemma 6.2. We define
An = {0 ≤ k ≤ nε/2, k even}. For every j ∈ An, and x ∈ Uj , by Lemma 3.3,

qx(B(m);n2(a+ε)) ≥ cmd−2

((j + 1)na)d−2
.

Using (6.3), the number of walks starting in Uj hitting B(m) has a Poisson distribution
with parameter at least

cfd(n)md−2

((j + 1)na)d−2
≥





c′md−2

(j + 1)d−2 lnn
, d = 3,

c′md−2

(j + 1)d−2
, d ≥ 4.
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Using the stability of the Poisson distribution, this yields that the number of walks
starting in

⋃
j∈An Uj hitting B(m) has a Poisson distribution with mean at least c′′md−2.

Claim (6.12) then follows from the large deviation properties of the Poisson distribution
again.

We now apply Proposition 4.2 with m instead of n, Gm = B(m) and η̂(m)
1 , η̂(m)

2 being
the number of walks entering B(m). Assumptions (4.1), (4.2) are satisfied by the pre-
vious discussion. The construction of Î assures that the walks do not stop earlier than
after making 2m2 ≤ 2n2a steps. Therefore, by an argument similar to proof of (6.8), for
c′ = 2(2β(h, d) + 3)

P[T̂n0 ≥ c′m2] ≤ P[0 ∈ Î]
(
Pu0 [ψ̂1 /∈ B(m)] + Pu0 [T̂n0 ≥ c′m2, ψ̂1 ∈ B(m)]

)
.

Both terms in the parentheses are s.e.(m), the first one by Lemma 6.2, the second one by
Proposition 4.2. Taking m` such that c′m2

` = `, the lemma follows for for ` < c′(n/2)2a.
For the remaining `’s it suffices to observe that s.e.(`) ≤ s.e.(n) and apply the same

reasoning as before with B(na) instead of B(m).

We can now control the sum (6.11). To this end we define ρ̃, ψ̃(x)
i (y), T̃nk in the same

way as ρ̂, ψ̂(x)
i (y), T̂nk , using Ĩ instead of Î. Due to (6.4),

P[there exists 0 ≤ k ≤ n : T̂ kn 6= T̃ kn ] ≤ s.e.(n). (6.13)

Therefore, by the previous lemma, for every k,

P[T̃nk ≥ `] ≤ s.e.(n) + s.e.(`).

The random variable T̃nk depends only on the random walks that can enter the ball
B(ke1, n

a). As diam(Ri(t̃k)) ≤ 2n2(α+ε) by definition, setting bn = 5n2(α+ε), this im-
plies that for every j ∈ {1, . . . , bn} the random variables (Tkbn+j : k = 1, . . . , n/bn) are
independent.

Therefore, for large enough c, using the observation above (6.11), and (6.13),

P[ρ̂(ψ̂1, ψ̂0(ne1)) ≥ cn/2] ≤ P
[ n∑

k=0

T̂k ≥ cn/2
]

+ s.e.(n)

≤ P
[ n∑

k=0

T̃k ≥ cn/2
]

+ s.e.(n)

≤ P
[
∃j ∈ [1, bn] :

n/bn∑

k=0

Tkbn+j ≥ cn/(2bn)
]

≤ 1− s.e.(n),

(6.14)

where for the last inequality we used the fact that a < 1
3 and then applied a large

deviation bound for random variables without exponential moments (e.g., Theorem 1.1
of [6]).

Combining (6.14), (6.8), (6.9) with (6.6), the inequality (6.5) follows.
To conclude the proof of Theorem 1.3, observe that (6.5) implies that for large

enough c

P[∃k ∈ [n/2, n] such that ke1 ∈ Iu and ρu(ψ1, ke1) ≥ cn]

≤ P
[ ⋃

j∈[n/2,n]

{ρu(ψ1, ψ0(je1)) ≥ cn}
]

≤ s.e.(n),
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and then, since for any k ∈ [0, n/2] such that ke1 ∈ Iu one can write ρu(ψ1, ke1) ≤
ρu(ψ1, ψ0(ne1)) + ρu(ψ0(ne1), ke1), we have

P[∃k ∈ [−n, n] such that ke1 ∈ Iu and ρu(ψ1, ke1) ≥ cn] ≤ s.e.(n). (6.15)

Observe that, by symmetry, (6.15) also holds if one substitutes e1 by any coordinate
vector ej , j = 2, . . . , d. The claim of the lemma then follows if one writes, on x =

(x1, . . . , xd) ∈ Iu and 0 ∈ Iu,

ρu(0, x) ≤ ρu(0, ψ
(e1)
1 (0)) + ρu(ψ

(e1)(0)
1 , ψ

(e1)
0 (x1e1))

+ ρu(ψ
(e1)
0 (x1e1), ψ

(e2)
1 x1e1) + ρu(ψ

(e2)
1 x1e1, ψ

(e2)
0 (x1e1 + x2e2))

+ . . .

+ ρu(ψ
(ed−1)
0 (x1e1 + · · ·+ xd−1ed−1), ψ

(ed)
1 (x1e1 + · · ·+ xd−1ed−1))

+ ρu(ψ
(ed)
1 (x1e1 + · · ·+ xd−1ed−1), ψ

(ed)
0 (x)),

and uses the same reasoning for the even terms in the right-hand side, and bounds the
odd terms using (6.7) and Proposition 4.2, using the same argument as e.g. in (6.10).
This completes the proof of Theorem 1.3.

7 Proof of the shape theorem

In this section, to prove Theorem 1.1, we use more or less standard argument based
on the Subadditive Ergodic Theorem. For reader’s convenience, let us state this theo-
rem here (we use the version of [5]):

Theorem 7.1. Suppose that {Y (m,n)} is a collection of positive random variables in-
dexed by integers satisfying 0 ≤ m < n such that

(i) Y (0, n) ≤ Y (0,m) + Y (m,n) for all 0 ≤ m < n;

(ii) The joint distribution of {Y (m+1,m+k+1), k ≥ 1} is the same as that of {Y (m,m+

k), k ≥ 1} for each m ≥ 0;

(iii) For each k ≥ 1 the sequence of random variables {Y (nk, (n + 1)k), n ≥ 1} is a
stationary ergodic process;

(iv) EY (0, 1) <∞.

Then, it holds that

lim
n→∞

Y (0, n)

n
= inf
n≥0

EY (0, n)

n
a.s.

We are going to verify the hypotheses of Theorem 7.1 for the sequence of random
variables

Y (m,n) = ρu(ψ(x)
m , ψ(x)

n ),

under the measure Pu0 . First, (i) is obvious since ρu is a metric. Stationarity and ergod-
icity in (ii)–(iii) follow from the corresponding properties of Iu, see Theorem 2.1 of [12].
The property (iv) then follows from the estimate

Pu0 [ρu(0, ψ
(x)
1 ) > n] ≤ s.e.(n),

which can be proved by applying the same procedure as in (6.10), using Lemma 6.2 and
Proposition 4.2.

Theorem 7.1 implies that for any x ∈ Zd there exists a positive number σ′u(x) such
that

Pu0

[
lim
n→∞

ρu(0, ψ
(x)
n )

n
= σ′u(x)

]
= 1. (7.1)

EJP 17 (2012), paper 29.
Page 20/25

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-1936
http://ejp.ejpecp.org/


Internal distance in the interlacement set

0 x

y
x+ y

ψ
(x)

b−1
x n

ψ
(x+y)

b−1
x+y

n

ψ
(y)

b−1
y n

(
ψ
(x)

b−1
x n

)

Figure 3: On the proof of Lemma 7.2

Then, define for x 6= 0

σu(x) =
σ′u(x)

Eu0ζ
(x)
1

, (7.2)

and σu(0) := 0. With (7.1) it is straightforward to obtain (observe that, according to our

notations, ψ(x)
0 (nx) is either nx itself in the case nx ∈ Iu, or it is the ‘last site before nx’

on the discrete ray {kx, k ≥ 0} if nx /∈ Iu), using also the usual Ergodic Theorem and
(6.7), that

lim
n→∞

ρu(0, ψ
(x)
0 (nx))

n
= σu(x) Pu0 -a.s. (7.3)

It is also straightforward to obtain that for any integer m and x ∈ Zd, it holds that
σu(mx) = mσu(x); this permits us to extend σu to Qd by σu(x) := m−1σu(mx), where m
is such that mx ∈ Zd. Also, it is clear that σu(x) ≥ ‖x‖1 for any x ∈ Qd.

Next, the goal is to prove that σu is a norm.

Lemma 7.2. For all x, y ∈ Qd we have

σu(x+ y) ≤ σu(x) + σu(y). (7.4)

Proof. Abbreviate bx = Eu0ζ
(x)
1 ; from the Ergodic Theorem we obtain

lim
n→∞

‖ψ(x)

b−1
x n
− nx‖
n

= 0 Pu0 -a.s. (7.5)

Since ρu is a metric, we have (see Figure 3)

ρu
(
0, ψ

(y)

b−1
y n

(ψ
(x)

b−1
x n

)
)

n
≤
ρu(0, ψ

(x)

b−1
x n

)

n
+
ρu
(
ψ
(x)

b−1
x n

, ψ
(y)

b−1
y n

(ψ
(x)

b−1
x n

)
)

n
(7.6)

for any n. Then, the trick is to take the limit as n→∞ in (7.6) in probability. First of all,
a direct application of (7.1)–(7.2) shows that the first term in the right-hand side of (7.6)
converges to σu(x), even Pu0 -a.s. Next, under Pu0 it holds that ρu

(
ψ
(x)

b−1
x n

, ψ
(y)

b−1
y n

(ψ
(x)

b−1
x n

)
)

is

equal to ρu
(
0, ψ

(y)

b−1
y n

)
in distribution, so the second term in the right-hand side of (7.6)
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converges to σu(y) in distribution and hence in probability. As for the term in the left-
hand side of (7.6), write

ρu
(
0, ψ

(y)

b−1
y n

(ψ
(x)

b−1
x n

)
)

n
≥
ρu
(
0, ψ

(x+y)

b−1
x+yn

)

n
−
ρu
(
ψ
(y)

b−1
y n

(ψ
(x)

b−1
x n

), ψ
(x+y)

b−1
x+yn

)

n
. (7.7)

Again, the first term in the right-hand side of (7.7) converges Pu0 -a.s. to σu(x + y). To
obtain that the second term in the right-hand side of (7.7) converges to 0 in probability,
observe that

‖ψ(y)

b−1
y n

(ψ
(x)

b−1
x n

)− ψ(x+y)

b−1
x+yn
‖

n
≤
‖(x+ y)n− ψ(x+y)

b−1
x+yn
‖

n
+
‖nx− ψ(x)

b−1
x n
‖

n

+
‖ψ(y)

b−1
y n

(ψ
(x)

b−1
x n

)− ψ(x)

b−1
x n
− ny‖

n
. (7.8)

Since the third term in the right-hand side of (7.8) equals in distribution to n−1‖ny −
ψ
(y)

b−1
y n
‖, (7.5) implies that the left-hand side of (7.8) converges to 0 in probability, and so

Theorem 1.3 implies that the second term in the right-hand side of (7.7) converges to 0

in probability. This proves (7.4).

Now, Lemma 7.2 shows that σu can be extended to a norm in Rd by continuity, and
we are able to finish the proof of Theorem 1.1.

Proof of Theorem 1.1. At this point the argument is quite standard. Let

Du = {x ∈ Rd : σu(x) ≤ 1}.

Let ε′ = (1 − ε)−1 − 1, and ε′′ = 1 − (1 + ε)−1. To prove Theorem 1.1, it is enough
to prove that nDu ∩ Iu ⊂ Λu((1 + ε′)n) and Λu((1− ε′′)n) ⊂ nDu for all n large enough,
Pu0 -a.s.

Since Du is compact, one can find a finite set F := {x1, . . . , xk} ⊂ Du ∩Qd such that
σu(xi) < 1 for i = 1, . . . , k, and (with C from Theorem 1.3)

Du ∩ Iu ⊂
k⋃

i=1

B(xi, C
−1ε′).

Consider any xi ∈ F ; let mi be the minimal positive integer such that mixi ∈ Zd.
Let n = jmi + s, where 0 ≤ s ≤ mi− 1. Then, for all n large enough it holds by (7.3) that
ψ
(mixi)
0 (jmixi) ∈ Λu(n), Pu0 -a.s.

Now, Theorem 1.3, (6.7) and the Borel-Cantelli lemma imply that Pu0 -a.s. for all n
large enough we have

B(nxi, C
−1nε′) ∩ Iu ⊂ Λu(jmixi, nε

′),

for all i = 1, 2, . . . , k. So nDu ∩ Iu ⊂ Λu((1 + ε′)n), which completes the first part of the
proof.

For the second, choose G := {y1, . . . , yk} ⊂ (2Du \Du) ∩Qd in such a way that

2Du \Du ⊂
k⋃

i=1

B(yi, ε
′′δ).

Notice that σu(yi) > 1 for i = 1, . . . , k. Again, nG ∩ Λu(n) = ∅ for all n large enough Pu0 -
a.s. Analogously, by Theorem 1.3 and Borel-Cantelli we get that for all n large enough, if
Λu((1−ε′′)n)∩n(2Du\Du) 6= ∅, then Λu(n)∩nG 6= ∅. This shows that Λu((1−ε′′)n) ⊂ nDu

for all n large enough, Pu0 -a.s., and so concludes the proof of Theorem 1.1.
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8 Random walk on the torus

It remains to show Theorem 1.6. We recall that TdN denotes the d-dimensional dis-
crete torus of size N , PN the law of the simple random walk on TdN started from the
uniform distribution, and ρuN (x, y) the internal distance within the set IuN of sites visited
by the random walk before time uNd, IuN = {X0, . . . , XbuNdc}.

Let BN (x, r) ⊂ TdN be the ball of radius r around x in the usual distance, dN , on the
torus. We first control the internal distance in balls of radius lnγ N .

Lemma 8.1. Let x ∈ TdN ⊂ Zd. Then, for c1, γ large enough,

PN
[
there exist y, z ∈ BN (x, lnγ N) such that ρuN (y, z) ≥ c1 lnγ N

]
= o(N−d). (8.1)

Before proving this lemma, let us explain how it implies Theorem 1.6.

Proof of Theorem 1.6. By the lemma and a simple union bound, with probability tending
to 1, the event in (8.1) is satisfied for all x ∈ TdN . If this is the case, we can chain
these boxes to obtain the claim of the theorem. More precisely, consider x, y such that
dn(x, y) > lnγ N . Then, one can find points x = x1, x2, . . . , xn = y such that xi+1 ∈
B(xi, ln

γ N), i < n, and
∑n−1
i=1 dN (xi, xi+1) ≤ 2dN (x, y). As we assume that the event in

(8.1) is satisfied for all balls, for all i < n,

ρuN (xi, xi+1) ≤ c1dN (xi, xi+1).

The theorem then follows using the triangular inequality, setting C̄ = 2c1.

Proof of Lemma 8.1. Let r = lnγ N and R = Cr, with C of Theorem 1.3. By Theorem 1.1
of [13], for any α > 0, there exists a coupling Q of random interlacement on Zd and
random walk on the torus, such that

Q
[(
Iu(1−ε) ∩B(x,R)

)
⊂
(
IuN ∩BN (x,R)

)
⊂
(
Iu(1+ε) ∩B(x,R)

)]
≥ 1−N−α.

For points that are in Iu(1−ε) ∩B(x, r) we can use Theorem 1.3 and obtain the required
statement. For points in IuN \ Iu(1−ε), however, this simple argument fails and we need
more details on the coupling construction.

The construction starts by splitting the random walk trajectory into so-called ex-
cursions. These excursions are independent simple random walk trajectories started
at the boundary of BN (x,R) and stopped when staying a sufficiently long time out of
BN (x,N1−ε), see Section 4 of [13] for the precise definition.

We denote the excursions started before time uNd by X(1), . . . , X(η), where η is ran-
dom. These excursions are constructed in such a way that

( η−1⋃

i=1

RanX(i) ∩B(x,R)
)
⊂
(
IuN ∩B(x,R)

)
⊂
( η⋃

i=1

RanX(i) ∩B(x,R)
)
. (8.2)

Using Lemma 4.3 of [13], it is easy to see that the random variable η satisfies

PN [(u+ ε) capB(x,R) ≥ η ≥ (u− ε) capB(x,R)] ≥ 1− e−c capB(x,R). (8.3)

Further, combining Lemmas 3.9, 3.10 of [13], it follows that the distribution of the
starting points satisfies for every z ∈ ∂B(x,R) and i = 2, . . . , R

PN [X
(i)
0 = z] ≥

(1− ε)eB(x,R)(z)

capB(x,R)
, (8.4)
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that is, it is close to the normalised equilibrium measure. The distribution of the first
excursion cannot be controlled so precisely, as in principle it can start inside of B(x,R),
but it is not issue for us.

The proof of Lemma 8.1 is then completely analogous to proof of Theorem 1.3. It
suffices to observe that the only property of the random interlacement that we used
in the proof of Theorem 1.3 are the bounds on the number and starting distribution
of trajectories entering a fixed set. These bounds follow from (8.3), (8.4). Finally one
should observe that s.e.(R) = o(N−d) if γ is chosen large enough.

There is a small issue with the fact that the last point of the trajectory, XbuNdc,
might be contained in the last excursion, cf. (8.2). To solve this issue, observe that
our techniques apply to the both ‘clusters’ C :=

⋃η−1
i=1 RanX(i) and C̄ :=

⋃η
i=1 RanX(i).

Hence, with probability 1−s.e.(R), the internal distances on these clusters within B(x, r)

are bounded by c1r. If this is the case, then the trajectory of X(η) must intersect C at
least every (2c1 + 1)-steps. For any x ∈ B(x, r)∩X(η) ∩ IuN there is thus a path of length
at most (2c1 + 1) lying inside of IuN which connects x to C. Lemma 8.1 then follows by
triangular inequality, by increasing c1 to 2(2c1 + 1) + c1.

A Domination by Bernoulli percolation

We sketch here a simple argument proving Theorem 1.3 in d ≥ 5, with δ = 1. This ar-
gument is based on the domination of the interlacement set Iu in thick two-dimensional
slabs by the standard Bernoulli percolation. This domination seems to be folklore in
the random interlacement community, but to our knowledge it does not appear in any
previous publications.

Let K be a sufficiently large constant and ε ∈ (0, 1). Let E2 be the set of nearest-
neighbour edges of Z2, and for every e = (x, y) ∈ E2, let

Ge =

K⋃

i=0

B(Kx+ i(y − x),Kε) ⊂ Zd,

where we standardly identify x = (x1, x2) ∈ Z2 with (x1, x2, 0, . . . , 0) ∈ Zd. Ge is a thin
parallelepiped of length K + 2Kε and width 2Kε along the scaled edge Ke.

Let W ?
e ⊂ W ? (recall Section 2 for the notation) be the set of all doubly-infinite

trajectories modulo time shift that hit Ge but not
⋃
e′:dist(e,e′)≥1Ge′ . The fact that the co-

dimension of Z2 is larger than 3, that is, the random walk is transient in the direction
perpendicular to Z2, can be used to show that

P

[
ω ∈ Ω contains a trajectory with label smaller than u
that intersects Ge but is not in W ?

e

]
K→∞−−−−→ 1. (A.1)

From Lemma 2 of [9], it follows that the probability that there is a connection along
the long direction of Ge within Iu can be made arbitrarily large by increasing K. Let Ce
be the event that this connection uses only the trajectories in W ?

e . Using (A.1), it follows
that the probability of Ce can be made arbitrarily large by increasing K too.

Moreover, Proposition 1 of [9] (or our Proposition 4.2) can be used to show that for
any x ∈ Z2 ⊂ Zd and v, w ∈ Iu ∩ B(Kx,Kε) there is connection of v and w within
Iu ∩ B(Kx, 2Kε) with probability tending to 1 as K increases. We denote by Dx the
event that this connection uses only the trajectories in

⋃
e3xW

?
e . Again, applying (A.1)

and choosing K large, the probability of Dx can be made arbitrarily large.
Finally, call the edge e = (x, y) ∈ E2 good, when Ce ∩ Dx ∩ Dy occur. It follows that

the probability that e is good can be made arbitrarily large by choosing K large. Since
W ?
e and W ?

e are disjoint subsets of W ? when dist(e, e′) ≥ 1, the events ‘e is good’ and

EJP 17 (2012), paper 29.
Page 24/25

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-1936
http://ejp.ejpecp.org/


Internal distance in the interlacement set

‘e′ is good’ are independent when dist(e, e′) ≥ 4. Moreover, using the events Dx, the
connections realising Ce, Ce′ in two adjacent good edges e, e′ can be connected to form
one path.

Using the domination argument of [4], we see that for K large the good edges domi-
nate the supercritical Bernoulli percolation on Z2, in particular, there is with probability
one an infinite cluster C ⊂ Z2 of good edges. Moreover, when x, y ∈ C are connected by
a path of length ` in C, B(xK,Kε) and B(yK,Kε) are connected by a path of length at
most `{(K + 2Kε)(2Kε + 1)d−1 + 2(4Kε + 1)d} within Iu (the factor in braces is simply
the volume of the parallelepiped Ge plus volume of the two boxes B(x, 2Kε), B(y, 2Kε)).

Theorem 1.1 of [2] then implies that the claim of Theorem 1.3 holds (with δ = 1) for
all x ∈ Iu∩

⋃
y∈C B(y,Nε). The extension to all x ∈ Iu is then trivial by repeating the ar-

gument for other coordinate directions and using Proposition 1 of [9] or Proposition 4.2
to made the final connections to those x’s that are not in the Kε-neighbourhood of KC.
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