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Abstract

Letting {δn} be a refining sequence of Rademacher functions on the interval [0, T ],
we introduce a functional on processes in the G-expectation space by

d(K) = lim sup
n

Ê[

∫ T

0

δn(s)dKs].

We prove that d(K) > 0 if Kt =
∫ t

0
ηsd〈B〉s with nontrivial η ∈ M1

G(0, T ) and that

d(K) = 0 if Kt =
∫ t

0
ηsds with η ∈ M1

G(0, T ). This implies the uniqueness of the
representation for G-martingales with finite variation, which is the main purpose of
this article.
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1 Introduction

Recently, [4], [5], [6] introduced the notion of G-expectation space, which is a gener-
alization of probability space. As the counterpart of Wiener space in the linear case, the
notions of G-Brownian motion, G-martingale, and Itô integral w.r.t G-Brownian motion
were also introduced.

In this article, we consider only the G-expectation space (ΩT , L
1
G(ΩT ), Ê) with ΩT =

C0([0, T ], R) and σ2 = Ê(B2
1) > −Ê(−B2

1) = σ2 ≥ 0. Here, the canonical process
{Bt}t∈[0,T ] is called a G-Brownian motion. In this 1-dimensional case, the function G :

R→ R is defined by G(a) = 1/2(σ2a+ − σ2a−).

[5] proposed one fundamental and challenging question: to show the G-martingale
representation theorem. More precisely, for any ξ ∈ L2

G(ΩT ), can we have the following
representation: for any t ∈ [0, T ],

Xt := Êt(ξ) = Ê(ξ) +

∫ t

0

ZsdBs +

∫ t

0

ηsd〈B〉s −
∫ t

0

2G(ηs)ds. (1.1)
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Uniqueness of the representation for G-martingales

Remark 1.1. Clearly, Kt :=
∫ t

0
ηsd〈B〉s −

∫ t
0

2G(ηs)ds is a nonincreasing process and
Kt ≡ 0 if the G-expectation reduces to the classical linear case (σ = σ). In the case
σ > σ, G-martingales with finite variation have very rich and interesting new structures
which nontrivially generalize the classical ones.

[5] proved the representation (1.1) for cylindrical functions ξ ∈ Lip(ΩT ) by Itô’s
formula in the setting of G-expectation space. [10] and [11] generalized this result and
proved a decomposition theorem for G-martingales. The following theorem is from [11]:

For ξ ∈ LβG(ΩT ) with some β > 1, Xt = Êt(ξ), t ∈ [0, T ] has the following decomposi-
tion:

Xt = X0 +

∫ t

0

ZsdBs +Kt, q.s.,

where {Kt} is a continuous nonincreasing process with K0 = 0 and {Kt}t∈[0,T ] a G-
martingale. Furthermore, the above decomposition is unique and {Zt} ∈ Hα

G(0, T ),
KT ∈ LαG(ΩT ) for any 1 ≤ α < β.

So in order to prove the representation theorem for general G-martiangales, it suf-
fices to prove the representation for G-martingales with finite variation. The main pur-
pose of this article is to prove the uniqueness of the representation.

In [5], processes in form of Kt(η) :=
∫ t

0
ηsd〈B〉s −

∫ t
0

2G(ηs)ds, η ∈ M1
G(0, T ) were

proved to be G-martingales. However, the uniqueness of the representation remains
unresolved. Since σ2(t − s) ≤ 〈B〉t − 〈B〉s ≤ σ2(t − s) for any 0 ≤ s < t ≤ T , we set
θs = d〈B〉s

ds . Setting ηs = θs − σ2, η∗s = θs − σ2, it’s easy to check that Kt(η) = Kt(η
∗).

This leads to a popular misunderstanding that the representation is not unique, and
that the two parts of the representation are essentially the same things. Note that the
counterexample is based on the assumption that θ belongs to M1

G(0, T ), which seems
“natural" since in the linear case M1

G(0, T ) consists of all adapted measurable processes
with the norm finite. However, in [13] it was proved that θ does not belong to M1

G(0, T ).
In order to prove the uniqueness, we must find ways to distinguish the two classes of

processes in forms of
∫ t

0
ηsd〈B〉s and

∫ t
0
ζsds, η, ζ ∈ M1

G(0, T ), which are both processes
with absolutely continuous paths.

For a process {Kt} with finite variation, motivated by [13], we define

d(K) := lim sup
n→∞

Ê[

∫ T

0

δn(s)dKs], (1.2)

where, for n ∈ N , δn(s) is defined in the following way:

δn(s) =

n−1∑
i=0

(−1)i1
] iTn ,

(i+1)T
n ]

(s), for all s ∈ [0, T ].

We prove that d(K) = 0 if Kt =
∫ t

0
ζsds for some ζ ∈ M1

G(0, T ) and that d(K) > 0 if

Kt =
∫ t

0
ηsd〈B〉s for some η ∈M1

G(0, T ) such that Ê[
∫ T

0
|ηs|ds] > 0.

Remark 1.2. Assume σ > σ. If Kt = 〈B〉t, it’s easy to prove that

d(K) =
(σ2 − σ2)T

2
> 0

since {〈B〉t} is a process with stationary and independent increments. However, for
general nontrivial η ∈M1

G(0, T ), it turns out quite difficult to prove

lim sup
n→∞

Ê[

∫ T

0

δn(s)ηsd〈B〉s] > 0.
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Uniqueness of the representation for G-martingales

Due to the results stated above, we can distinguish these two classes of processes
completely:

If
∫ t

0
ηsd〈B〉s =

∫ t
0
ζsds, for some η, ζ ∈M1

G(0, T ), then we have

Ê[

∫ T

0

|ηs|ds] = Ê[

∫ T

0

|ζs|ds] = 0.

As an application, we obtain the uniqueness of the representation for G-martingales
with finite variation(see Corollary 3.6).

We refer the reader to [3] for a result on the uniqueness of the representation in
a different situation. More recently, some developments have been made in this field.
[9] presented a result on the existence of the representation. However, in that setting,
the representation is not unique. In [8] more properties were developed about the
functional d defined in (1.2) and gave a complete representation for G-martingales. In
particular, the multidimensional case was considered there.

This article is organized as follows: In section 2, we recall some basic notions and
results of G-expectation and the related space of random variables. In section 3, we
present the main results and some corollaries. In section 4, we give the proofs to the
main results.

2 Preliminaries

We review some basic notions and results of G-expectation and the related space of
random variables. More details of this section can be found in [4, 5, 6, 7].

Definition 2.1. Let Ω be a given set and letH be a vector lattice of real valued functions
defined on Ω with c ∈ H for all constants c. H is considered as the space of "random
variables". A sublinear expectation Ê on H is a functional Ê : H → R satisfying the
following properties: for all X,Y ∈ H, we have

(a) Monotonicity: If X ≥ Y then Ê(X) ≥ Ê(Y ).
(b) Constant preservation: Ê(c) = c.
(c) Sub-additivity: Ê(X)− Ê(Y ) ≤ Ê(X − Y ).
(d) Positive homogeneity: Ê(λX) = λÊ(X), λ ≥ 0.

(Ω,H, Ê) is called a sublinear expectation space.

Definition 2.2. Let X1 and X2 be two n-dimensional random vectors defined respec-
tively in sublinear expectation spaces (Ω1,H1, Ê1) and (Ω2,H2, Ê2). They are called
identically distributed, denoted by X1 ∼ X2, if Ê1[ϕ(X1)] = Ê2[ϕ(X2)], for all ϕ ∈
Cl,Lip(R

n), where Cl,Lip(R
n) is the space of real continuous functions defined on Rn

such that

|ϕ(x)− ϕ(y)| ≤ C(1 + |x|k + |y|k)|x− y|, for all x, y ∈ Rn,

where k and C depend only on ϕ.

Definition 2.3. In a sublinear expectation space (Ω,H, Ê) a random vector Y = (Y1, · ·
·, Yn), Yi ∈ H, is said to be independent of another random vector X = (X1, · · ·, Xm),
Xi ∈ H under Ê(·), denoted by Y⊥X, if for every test function ϕ ∈ Cl,Lip(Rm × Rn) we
have Ê[ϕ(X,Y )] = Ê[Ê[ϕ(x, Y )]x=X ].

Definition 2.4. (G-normal distribution) A d-dimensional random vector X = (X1, · ·
·, Xd) in a sublinear expectation space (Ω,H, Ê) is called G-normally distributed if for
each a, b ∈ R+ we have

aX + bX̂ ∼
√
a2 + b2X,
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Uniqueness of the representation for G-martingales

where X̂ is an independent copy of X. Here the letter G denotes the function

G(A) :=
1

2
Ê[(AX,X)] : Sd → R,

where Sd denotes the collection of d× d symmetric matrices.

The function G(·) : Sd → R is a monotonic, sublinear mapping on Sd and G(A) =
1
2 Ê[(AX,X)] ≤ 1

2 |A|Ê[|X|2] =: 1
2 |A|σ̄

2 implies that there exists a bounded, convex and
closed subset Γ ⊂ S+

d such that

G(A) =
1

2
sup
γ∈Γ

Tr(γA), (2.1)

where S+
d denotes the collection of nonnegative elements in Sd.

If there exists some β > 0 such that G(A) − G(B) ≥ βTr(A − B) for any A ≥ B, we
call the G-normal distribution non-degenerate.

Definition 2.5. i) Let ΩT = C0([0, T ];Rd), the space of real valued continuous functions
on [0, T ] with ω0 = 0, be endowed with the supremum norm and let Bt(ω) = ωt be the
canonical process. Set H0

T := {ϕ(Bt1 , ..., Btn)|n ≥ 1, t1, ..., tn ∈ [0, T ], ϕ ∈ Cl,Lip(Rd×n)}.
G-expectation is a sublinear expectation defined by

Ê[X] = Ẽ[ϕ(
√
t1 − t0ξ1, · · ·,

√
tm − tm−1ξm)],

for all X = ϕ(Bt1 − Bt0 , Bt2 − Bt1 , · · ·, Btm − Btm−1), where ξ1, · · ·, ξn are identically
distributed d-dimensional G-normally distributed random vectors in a sublinear expec-
tation space (Ω̃, H̃, Ẽ) such that ξi+1 is independent of (ξ1, · · ·, ξi) for every i = 1, · · ·,m.
(ΩT ,H0

T , Ê) is called a G-expectation space.
ii) Let us define the conditional G-expectation Êt of ξ ∈ H0

T knowingH0
t , for t ∈ [0, T ].

Without loss of generality we can assume that ξ has the representation ξ = ϕ(Bt1 −
Bt0 , Bt2 −Bt1 , · · ·, Btm −Btm−1) with t = ti, for some 1 ≤ i ≤ n, and we put

Êti [ϕ(Bt1 −Bt0 , Bt2 −Bt1 , · · ·, Btm −Btm−1
)]

= ϕ̃(Bt1 −Bt0 , Bt2 −Bt1 , · · ·, Bti −Bti−1
),

where
ϕ̃(x1, · · ·, xi) = Ê[ϕ(x1, · · ·, xi, Bti+1 −Bti , · · ·, Btm −Btm−1)].

Define ‖ξ‖p,G = [Ê(|ξ|p)]1/p for ξ ∈ H0
T and p ≥ 1. Then for all t ∈ [0, T ], Êt(·) is

a continuous mapping on H0
T w.r.t. the norm ‖ · ‖1,G. Therefore it can be extended

continuously to the completion L1
G(ΩT ) of H0

T under the norm ‖ · ‖1,G.
Let Lip(ΩT ) := {ϕ(Bt1 , ..., Btn)|n ≥ 1, t1, ..., tn ∈ [0, T ], ϕ ∈ Cb,Lip(R

d×n)}, where
Cb,Lip(R

d×n) denotes the set of bounded Lipschitz functions on Rd×n. [1] proved that
the completions of Cb(ΩT )(the totality of bounded continuous function on ΩT ), H0

T and
Lip(ΩT ) under ‖ · ‖p,G are the same and we denote them by LpG(ΩT ).

Definition 2.6. Let M0
G(0, T ) be the collection of processes in the following form: for a

given partition {t0, · · ·, tN} = πT of [0, T ],

ηt(ω) =

N−1∑
j=0

ξj(ω)1]tj ,tj+1](t),

where ξi ∈ Lip(Ωti), i = 0, 1, 2, · · ·, N − 1. For p ≥ 1 and η ∈ M0
G(0, T ), let ‖η‖HpG =

{Ê(
∫ T

0
|ηs|2ds)p/2}1/p, ‖η‖Mp

G
= {Ê(

∫ T
0
|ηs|pds)}1/p and denote Hp

G(0, T ), Mp
G(0, T ) the

completions of M0
G(0, T ) under the norms ‖ · ‖HpG , ‖ · ‖Mp

G
respectively.
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Uniqueness of the representation for G-martingales

Theorem 2.7. ([1]) There exists a tight subset P ⊂M1(ΩT ), the totality of probability
measures on (ΩT ,B(ΩT )), such that

Ê(ξ) = sup
P∈P

EP (ξ) for all ξ ∈ H0
T .

P is called a set that represents Ê.

Remark 2.8. (i) Let (Ω0,F0, P 0) be a probability space and {Wt} be a d-dimensional
Brownian motion under P 0. Let F 0 = {F0

t } be the augmented filtration generated by
W . [1] proved that

PM := {Ph|Ph = P 0 ◦X−1, Xt =

∫ t

0

hsdWs, h ∈ L2
F 0([0, T ]; Γ1/2)}

is a set that represents Ê, where Γ1/2 := {γ1/2|γ ∈ Γ}, Γ is the set in the representation
of G(·) in the formula (2.1) and L2

F 0([0, T ]; Γ1/2) is the set of F 0-adapted measurable
processes with values in Γ1/2.

(ii) For the 1-dimensional case, L2
F 0([0, T ]; Γ1/2) reduces to the form below:

{h| h is an adapted measurable process w.r.t. F 0 and σ ≤ |hs| ≤ σ}.

3 Main results

In the following two sections, the function sgn : R→ {1,−1} is defined by sgn(x) = 1

if x ≥ 0 and sgn(x) = −1 if x < 0. The main result in this section is Theorem 3.3, relying
on which we prove the uniqueness of the representation for G-martingales(Corollary
3.6).

Proposition 3.1. For each η ∈M1
G(0, T ), by abuse of notation, let

d(η) = lim sup
n→∞

Ê[

∫ T

0

δn(s)ηsd〈B〉s].

Then

−σ
2 − σ2

2
Ê[−

∫ T

0

|ηs|ds] ≤ d(η) ≤ σ2 − σ2

2
Ê[

∫ T

0

|ηs|ds]. (3.1)

Proof. For η, ζ ∈M1
G(0, T ), we have

|Ê[−
∫ T

0

|ηs|ds]− Ê[−
∫ T

0

|ζs|ds]| ≤ Ê[

∫ T

0

|ηs − ζs|ds]

and

|d(η)− d(ζ)| ≤ Ê[

∫ T

0

|ηs − ζs|d〈B〉s].

Hence both Ê[−
∫ T

0
| · |ds] and d(·) are continuous functionals on M1

G(0, T ) w.r.t. the
norm ‖ · ‖M1

G
, and consequently it suffices to prove the assertion for η ∈ M0

G(0, T ). Let

ηs =
∑m−1
i=0 ξti1]ti,ti+1](s), ξti ∈ L1

G(Ωti), i = 0, · · ·,m− 1. We first prove the inequality on
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the right-hand side. Note that

Ê[

∫ T

0

δn(s)ηsd〈B〉s]−
σ2 − σ2

2
Ê[

∫ T

0

|ηs|ds]

= Ê[

m−1∑
i=0

|ξti |
∫ ti+1

ti

δn(s)sgn(ξti)d〈B〉s]− Ê[

m−1∑
i=0

|ξti |
∫ ti+1

ti

σ2 − σ2

2
ds]

≤
m−1∑
i=0

Ê[|ξti |(
∫ ti+1

ti

δn(s)sgn(ξti)d〈B〉s −
∫ ti+1

ti

σ2 − σ2

2
ds)]

≤
m−1∑
i=0

[Ê(|ξti |)ai(n)],

where ai(n) = max{bi(n), ci(n)} → 0 as n goes to infinity. Here

bi(n) = |Ê(

∫ ti+1

ti

δn(s)d〈B〉s −
∫ ti+1

ti

σ2 − σ2

2
ds)|,

ci(n) = |Ê(−
∫ ti+1

ti

δn(s)d〈B〉s −
∫ ti+1

ti

σ2 − σ2

2
ds)|.

So we have

d(η) ≤ σ2 − σ2

2
Ê[

∫ T

0

|ηs|ds].

On the other hand,

Ê[

∫ T

0

δn(s)ηsd〈B〉s] +
σ2 − σ2

2
Ê[−

∫ T

0

|ηs|ds]

= Ê[

m−1∑
i=0

|ξti |
∫ ti+1

ti

δn(s)sgn(ξti)d〈B〉s] + Ê[

m−1∑
i=0

(−|ξti |)
∫ ti+1

ti

σ2 − σ2

2
ds]

≥ Ê[

m−1∑
i=0

|ξti |(
∫ ti+1

ti

δn(s)sgn(ξti)d〈B〉s −
∫ ti+1

ti

σ2 − σ2

2
ds)]

≥ Ê[

m−2∑
i=0

|ξti |(
∫ ti+1

ti

δn(s)sgn(ξti)d〈B〉s −
∫ ti+1

ti

σ2 − σ2

2
ds)− |ξtm−1 |am−1(n)]

≥ Ê[

m−2∑
i=0

|ξti |(
∫ ti+1

ti

δn(s)sgn(ξti)d〈B〉s −
∫ ti+1

ti

σ2 − σ2

2
ds)]− Ê[|ξtm−1

|am−1(n)]

≥
m−1∑
i=0

[−Ê(|ξti |)ai(n)].

So by the same arguments as above we have

−σ
2 − σ2

2
Ê[−

∫ T

0

|ηs|ds] ≤ d(η).

Remark 3.2. (i) A straightforward corollary of Proposition 3.1 is that if
∫ T

0
|ηs|ds is

symmetric (i.e., Ê[
∫ T

0
|ηs|ds] = −Ê[−

∫ T
0
|ηs|ds]), the equality below holds:

d(η) =
σ2 − σ2

2
Ê[

∫ T

0

|ηs|ds].
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(ii) The inequalities in (3.1) may be strict:
Let ηs = 〈B〉T/21]T/2,T ](s) + a1[0,T/2](s), a = T (σ2 − σ2)/4.
Then

d(η) = lim
n→∞

Ê[

∫ T

0

δ2n(s)ηsd〈B〉s] = aσ2T/2,

σ2 − σ2

2
Ê[

∫ T

0

|ηs|ds] = a2 + aσ2T/2,

−σ
2 − σ2

2
Ê[−

∫ T

0

|ηs|ds] = −a2 + aσ2T/2.

Now, we shall state the main result of this article, whose proof is postponed to
Section 4.

Theorem 3.3. (i) For η ∈M1
G(0, T ), we have

lim
n→∞

Ê[

∫ T

0

δn(s)ηsds] = 0;

ii) Assume σ > σ. For η ∈M1
G(0, T ) with Ê[

∫ T
0
|ηs|ds] > 0, we have

d(η) = lim sup
n→∞

Ê[

∫ T

0

δn(s)ηsd〈B〉s] > 0.

Remark 3.4. (i) Let (Ω, F,F , P ) be a filtered probability space. We recall that for any

progressively measurable process η such that E[
∫ T

0
|ηs|ds] <∞, we have

lim
n→∞

E[

∫ T

0

δn(s)ηsds] = 0.

Therefore, ii) of Theorem 3.3 presents a particular property of G-expectation space
relative to probability space.

(ii) The second assertion of Theorem 3.3 is motivated by the following simple case:
for any n ∈ N , we have

Ê[

∫ T

0

δ2n(s)d〈B〉s] = Ê[

n−1∑
i=0

(−(〈B〉 (2i+2)T
2n

− 〈B〉 (2i+1)T
2n

) + (〈B〉 (2i+1)T
2n

− 〈B〉 2iT
2n

))].

Since 〈B〉 is a process with stationary and independent increments, we have

Ê[

n−1∑
i=0

(−(〈B〉 (2i+2)T
2n

− 〈B〉 (2i+1)T
2n

) + (〈B〉 (2i+1)T
2n

− 〈B〉 2iT
2n

))]

=

n−1∑
i=0

{Ê[−(〈B〉 (2i+2)T
2n

− 〈B〉 (2i+1)T
2n

)] + Ê[〈B〉 (2i+1)T
2n

−B 2iT
2n

]}.

Noting that

Ê[−(〈B〉 (2i+2)T
2n

− 〈B〉 (2i+1)T
2n

)] = −σ
2T

2n
, Ê[〈B〉 (2i+1)T

2n
−B 2iT

2n
] =

σ2T

2n
,

we have

Ê[

∫ T

0

δ2n(s)d〈B〉s] =
(σ2 − σ2)T

2
.
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Corollary 3.5. Let ζ, η ∈ M1
G(0, T ). If

∫ t
0
ηsd〈B〉s =

∫ t
0
ζsds for all t ∈ [0, T ], we have

E[
∫ T

0
|ηs|ds] = Ê[

∫ T
0
|ζs|ds] = 0.

Proof. By i) of Theorem 3.3, we have

lim sup
n→∞

Ê[

∫ T

0

δn(s)ηsd〈B〉s] = lim
n→∞

Ê[

∫ T

0

δn(s)ζsds] = 0.

By ii) of Theorem 3.3, we have Ê[
∫ T

0
|ηs|ds] = 0, which leads to Ê[

∫ T
0
|ζs|ds] = 0.

The following corollary is about the uniqueness of representation for G-martingales
with finite variation.

Corollary 3.6. Let ζ, η ∈M1
G(0, T ). If for all t ∈ [0, T ],∫ t

0

ηsd〈B〉s −
∫ t

0

2G(ηs)ds =

∫ t

0

ζsd〈B〉s −
∫ t

0

2G(ζs)ds, (3.2)

we have Ê[
∫ T

0
|ηs − ζs|ds] = 0.

Proof. By the assumption, we have∫ t

0

(ηs − ζs)d〈B〉s =

∫ t

0

2[G(ηs)−G(ζs)]ds, for all t ∈ [0, T ].

Since η−ζ, 2[G(η)−G(ζ)] ∈M1
G(0, T ), we have Ê[

∫ T
0
|ηs−ζs|ds] = 0 by Corollary 3.5.

Remark 3.7. (i) Recall that G(a) = 1
2 (σ2a+ − σ2a−). For ε ∈ (0, σ

2−σ2

2 ), [3] defined Gε
in the following way:

Gε(a) = G(a)− ε

2
|a|, for all a ∈ R.

Note that in the proof to the second assertion of Theorem 3.3 in the next section we
have actually proved that

d(η) ≥ εÊGε [
∫ T

0

|ηs|ds]. (3.3)

(ii) For η ∈ M1
G(0, T ), let Kt =

∫ t
0
ηsd〈B〉s −

∫ t
0

2G(ηs)ds. Then, by i) of Theorem 3.3,
we have

Ê(−KT ) ≥ lim sup
n→∞

Ê(

∫ T

0

δn(s)dKs) = d(η). (3.4)

This, combined with (3.3), leads to the following estimate:

Ê[−KT ] ≥ εÊGε [
∫ T

0

|ηs|ds], (3.5)

which was already proved in [3]. So for η ∈ M1
G(0, T ) such that KT :=

∫ T
0
ηsd〈B〉s −∫ T

0
2G(ηs)ds = 0 we have, by (3.5), η ≡ 0. However, for η, ζ ∈ M1

G(0, T ) such that
(3.2) holds, (3.5) does not lead to η ≡ ζ since the nonlinearity of G, which is the main
difficulty in dealing with the uniqueness of the representation.
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4 Proof to Theorem 3.3

In order to prove Theorem 3.3, we first introduce two lemmas.
Let ΩT = Cb([0, T ];R) be endowed with the supremum norm and let σ : [0, T ]×ΩT →

R be a measurable mapping satisfying
i) σ is bounded;
ii) There exists L > 0 such that |σ(s, ω) − σ(s, ω′)| ≤ L‖ω − ω′‖ for any s ∈ [0, T ] and

ω, ω′ ∈ Cb([0, T ];R);
iii) For t ∈ [0, T ], σ(t, ·) is Bt(ΩT ) measurable.
Then the following lemma is easy.

Lemma 4.1. Let (Ω, F,F , P ) be a filtered probability space and let M be a continuous
F -martingale with 〈M〉t − 〈M〉s ≤ C(t − s) for some C > 0 and any 0 ≤ s < t ≤ T . Let
FM = {FMt } be the augmented filtration generated by M . Then for any Y0 ∈ L2(FM0 ),
there exists a unique F -adapted continuous process Y with E[supt∈[0,T ] |Yt|2] <∞ such

that Yt = Y0 +
∫ t

0
σ(s, Y )dMs. Moreover, Y is FM -adapted.

We believe that Lemma 4.1 must be covered by some more general result. For
readers’ convenience, we give a brief proof here.

Proof. Uniqueness. Assume that Xi, i = 1, 2 are F -adapted continuous processes such
that E[supt∈[0,T ] |Xi

t |2] < ∞ and Xi
t = Y0 +

∫ t
0
σ(s,Xi)dMs. Set X̂ = X1 − X2 and

σ̂s = σ(s,X1)− σ(s,X2). Then we have

sup
0≤s≤t

X̂2
s ≤ sup

0≤s≤t
|
∫ s

0

σ̂rdMr|2.

By Doob’s inequality, we have

At := E[ sup
0≤s≤t

X̂2
s ] ≤ 4CL2

∫ t

0

E[X̂2
s ]ds ≤ 4CL2

∫ t

0

Asds.

By Gronwall’s inequality, we have AT = 0.
Existence. Let Y 0 ≡ Y0. For m ≥ 0, set

Y m+1
t = Y0 +

∫ t

0

σ(s, Y m)dMs. (4.1)

Clearly, for any m, Y m is a continuous FM -adapted process.
For any m,n ∈ N , set X̂ = Y m+1 − Y n+1, x̂ = Y m − Y n and σ̂s = σ(s, Y m)− σ(s, Y n).

Choose β > CL2/2 and apply Itô’s formula to e−2βt|X̂t|2:

e−2βt|X̂t|2 = −2β

∫ t

0

e−2βs|X̂s|2ds+

∫ t

0

2e−2βsX̂sdX̂s +

∫ t

0

e−2βsσ̂2
sd〈M〉s.

Since X̂ is a square integrable martingale and σ̂ is bounded, we know that

〈
∫ ·

0

2e−2βsX̂sdX̂s〉t =

∫ t

0

4e−4βs|X̂s|2σ̂2
sd〈M〉s

is L1-integrable, which implies that
∫ t

0
2e−2βsX̂sdX̂s is a square integrable martingale.

So we have

1

2β
e−2βTE[|X̂T |2] + E[

∫ T

0

e−2βs|X̂s|2ds] ≤
CL2

2β
E[

∫ T

0

e−2βs|x̂s|2ds]. (4.2)
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Noting that α =
√

CL2

2β < 1, by (4.2), we conclude that

‖Y k+l − Y l‖2,β ≤
∞∑
i=l

‖Y i+1 − Y i‖2,β ≤
∞∑
i=l

αi‖Y 1 − Y 0‖2,β =
αl

1− α
‖Y 1 − Y 0‖2,β ,

where ‖X‖22,β = E[
∫ T

0
e−2βs|Xs|2ds]. So {Y m} is a Cauchy sequence under the norm

‖ · ‖2,β . By (4.2) and Doob’s inequality, we conclude that

sup
m>0

E[ sup
t∈[0,T ]

|Y m+n
t − Y nt |2]→ 0

as n goes to infinity. So there exists a continuous FM -adapted process Y such that
E[supt∈[0,T ] |Yt|2] <∞ and Yt = Y0 +

∫ t
0
σ(s, Y )dMs.

Let (Ω,F , P ) be a probability space and let {Wt} be a standard 1-dimensional Brow-
nian motion on (Ω,F , P ). Let FW be the augmented filtration generated by W .

Denote by A0([c, C]), for some 0 ≤ c ≤ C < ∞, the collection of FW adapted mea-
surable processes in the following form

hs =

m−1∑
i=0

ξi1] iTm ,
(i+1)T
m ]

(s), (4.3)

where ξi = ψi(
∫ iT
m

(i−1)T
m

hsdWs, · · ·,
∫ T
m

0
hsdWs), ψi ∈ Cb,lip(R

i), c ≤ |ψi| ≤ C. Denote by

A([c, C]) the collection of FW adapted measurable processes such that c ≤ |hs| ≤ C.

Lemma 4.2. A0([c, C]) is dense in A([c, C]) under the norm

‖h‖2 = [E(

∫ T

0

|hs|2ds)]1/2.

Proof. Since ∪C>ε>0A([ε, C]) is dense in A([0, C]) under the norm ‖ · ‖2, it suffices to
show the c > 0 case.

Let hs = Hs(W ) =
∑m−1
i=0 ξi1] iTm ,

(i+1)T
m ]

(s), where

ξi = ϕi(W iT
m
−W (i−1)T

m
, · · ·,W T

m
−W0),

ϕi ∈ Cb,lip(Ri), c ≤ |ϕi| ≤ C.

Then σ(s, ω) = H−1
s (ω) is a bounded Lipschitz function. Let Xt :=

∫ t
0
hsdWs. Since

Wt =
∫ t

0
σ(s,W )dXs, we conclude, by Lemma 4.1, that W is FX -adapted.

For a process {Xt}, we denote the vector (XT −X (m−1)T
m

, · · ·, X T
m
−X0) by Xm

[0,T ].

For arbitrary εi > 0, i = 0, · · ·,m − 1, since X is a process with continuous paths,
there exists ni ∈ N and ψi ∈ Cb,lip(Rini) with the Lipschitz constant Li = Li(εi) such

that E[|ξi − ξ̃i|2] < ε2
i . Here ξ̃i = ψi(X

ini
[0, iTm ]

), c ≤ |ψi| ≤ C.

Define ξ̂i in the following way:
Set ξ̂0 = ξ̃0;
For s ∈]0, Tm ], set ĥs = ξ̂0;

Assuming that we have defined ĥs for all s ∈ [0, iTm ], 0 ≤ i ≤ m− 1,

set X̂t :=
∫ t

0
ĥsdWs, for t ∈ [0, iTm ], and ξ̂i = ψi(X̂

ini
[0, iTm ]

);

For s ∈] iTm ,
(i+1)T
m ], set ĥs = ξ̂i.

It is obvious that ĥ belongs to A0([c, C]).
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We claim that for any m− 1 ≥ i ≥ 1,

E[|ξ̂i − ξ̃i|2] ≤
i−1∑
j=0

Aijε
2
j , (4.4)

where Aij = 2TL2
i (
∑i−1
k=j+1A

k
j + 1), for i ≥ j + 2, Aii−1 = 2TL2

i , which shows that Aij
depends only on Lj+1, · · ·, Li and T .

Indeed, E[|ξ̂1 − ξ̃1|2] ≤ L2
1E[|ξ̂0 − ξ0|2|]E[|Wn1

[0, Tm ]
|2] ≤ T

mL
2
1ε

2
0 ≤ A1

0ε
2
0. Assume (4.4)

holds for 1 ≤ i ≤ l; we will prove it for i = l + 1.

E[|ξ̂l+1 − ξ̃l+1|2] ≤ L2
l+1

l∑
i=0

E[|ξ̂i − ξi|2]E[|Wnl+1

[ iTm ,
(i+1)T
m ]
|2]

≤ TL2
l+1

l∑
i=0

E[|ξ̂i − ξi|2]

≤ 2TL2
l+1

l∑
i=0

E[(|ξ̂i − ξ̃i|2 + |ξ̃i − ξi|2)].

By the assumption, we have

2TL2
l+1

l∑
i=0

E[(|ξ̂i − ξ̃i|2 + |ξ̃i − ξi|2)]

≤ 2TL2
l+1(

l∑
i=0

ε2
i +

l∑
i=1

i−1∑
j=0

Aijε
2
j )

= 2TL2
l+1[

l−1∑
j=0

(

l∑
i=j+1

Aij + 1)ε2
j + ε2

l ]

=

l∑
j=0

Al+1
j ε2

j .

Then

E[|ξ̂i − ξi|2] ≤ 2(E[|ξ̂i − ξ̃i|2] + E[|ξ̃i − ξi|2])

≤ 2ε2
i + 2

i−1∑
j=0

Aijε
2
j =:

i∑
j=0

Bijε
2
j ,

which shows that Bij depends only on Lj+1, · · ·, Li, T for j < i and Bii = 2. So for any

ε > 0, we can choose ξ̂i, i = 0, · · ·,m− 1 defined above such that E[|ξ̂i − ξi|2] < ε for all
i = 0, · · ·,m− 1. Then

E[

∫ T

0

|hs − ĥs|2] < Tε.

Remark 4.3. According to Lemma 4.2, the collection of FW adapted measurable pro-

cesses in the form of (4.3) with ξi = ψi(
∫ iT
m

(i−1)T
m

hsdWs, · · ·,
∫ T
m

0
hsdWs), ψi ∈ Cb,lip(Ri) is

dense in L2
FW ([0, T ]×Ω), the space of FW adapted measurable processes endowed with

the L2-norm.
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Proof to Theorem 3.3. i) The proof to the first assertion is easy. For η ∈M0
G(0, T ),

the claim is obvious. For η ∈ M1
G(0, T ), there exists a sequence of {ηm} ⊂ M0

G(0, T )

such that Ê[
∫ T

0
|ηms −ηs|ds]→ 0 as m→∞. Then |Ê[

∫ T
0
δn(s)ηsds]| ≤ |Ê[

∫ T
0
δn(s)ηms ds]|+

Ê[
∫ T

0
|ηms − ηs|ds]. First let n→∞, then let m→∞, and we get the desired result.

ii) Now we prove the second assertion. Let (Ω0,F0, P 0) be a probability space and
{Wt} be a 1-dimensional standard Brownian motion under P 0. Let F 0 = {F0

t } be the
augmented filtration generated by W .

For η ∈M1
G(0, T ) with Ê[

∫ T
0
|ηs|ds] > 0, by Theorem 2.7 and Remark 2.8, there exists

an F 0 adapted measurable process g with σ ≤ |gs| ≤ σ such that EPg [
∫ T

0
|ηs|ds] > 0,

where Pg = P 0 ◦ [
∫ ·

0
gsdWs]

−1. Set gns = sgn(gs)(|gs| ∨
√
σ2 + 1

n ) ∧
√
σ2 − 1

n . Since Pgn

converges weekly to Pg and
∫ T

0
|ηs|ds belongs to L1

G(ΩT ), we have

lim
n
EPgn [

∫ T

0

|ηs|ds] = EPg [

∫ T

0

|ηs|ds] > 0.

So, by Theorem 2.7 and Remark 2.8 again, there exists ε > 0 such that ÊGε [
∫ T

0
|ηs|ds] >

0, and consequently, for any ε with ÊGε [
∫ T

0
|ηs|ds] > ε > 0, there exists an F 0 adapted

measuable process h with σ2+ε ≤ h2
s ≤ σ2−ε such that EPh [

∫ T
0
|ηs|ds] ≥ ÊGε [

∫ T
0
|ηs|ds]−

ε =: A > 0. By the definition of M1
G(0, T ), for any Aε

(σ2+ε)
> δ > 0, there exists ζ ∈

M0
G(0, T ) such that

Ê[

∫ T

0

|ηs − ζs|ds] < δ.

Without loss of generality, by Lemma 4.2, we assume that there exists m ∈ N such
that

ζs =

m−1∑
i=0

ξ iT
m

1
] iTm ,

(i+1)T
m ]

(s)

where ξ iT
m

= ϕi(B iT
m
− B (i−1)T

m
, · · ·, B T

m
− B0), ϕi ∈ Cb,lip(Ri), for all 0 ≤ i ≤ m − 1; and

that

hs =

m−1∑
i=0

a iT
m

1
] iTm ,

(i+1)T
m ]

(s)

where a iT
m

= ψi(
∫ iT
m

(i−1)T
m

hsdWs, · · ·,
∫ T
m

0
hsdWs), σ2 + ε ≤ |ψi|2 ≤ σ2− ε, ψi ∈ Cb,lip(Ri), for

all 0 ≤ i ≤ m− 1.
We have divided the following proof into four steps:
1. Here we give some notations those will be used in the sequel steps.
Define Hi : [σ2 + ε, σ2 − ε]→ [σ, σ], i=1, -1 in the following way:

H1(x)2 = σ21
[x≥σ

2+σ2

2 ]
+ (2x− σ2)1

[x<σ2+σ2

2 ]
;

H−1(x)2 = (2x− σ2)1
[x≥σ

2+σ2

2 ]
+ σ21

[x<σ2+σ2

2 ]
.

It’s easily seen that H1(x)2 +H−1(x)2 = 2x and H1(x)2 −H−1(x)2 ≥ 2ε.
For n ∈ N , define Hi

n :]0, T/m]× [σ2 + ε, σ2 − ε]→ [σ, σ], i = 1,−1 by

Hi
n(s, x) =

2n−1∑
j=0

1
] jT2mn ,

(j+1)T
2mn ]

(s)H(−1)ji(x).

2. Fix n ∈ N . We construct an adapted measurable process hn based on h, ζ.
Set an0 = a0, ξ

n
0 = ξ0;
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For s ∈]0, Tm ], set hns = H
sgn(ξn0 )
n (s, (an0 )2);

Assume that we have defined hns for all s ∈ [0, iTm ], 0 ≤ i ≤ m− 1. Set

aniT
m

= ψi(
∫ iT
m

(i−1)T
m

hns dWs, · · ·,
∫ T
m

0
hns dWs),

ξniT
m

= ϕi(
∫ iT
m

(i−1)T
m

hns dWs, · · ·,
∫ T
m

0
hns dWs);

For s ∈] iTm ,
(i+1)T
m ], set hns = H

sgn(ξniT
m

)

n (s− iT
m , (a

n
iT
m

)2).

3. We claim that EPh [
∫ T

0
|ζs|ds] = EPhn [

∫ T
0
|ζs|ds].

Actually, we have

EPh [

∫ T

0

|ζs|ds] =
T

m
EP 0 [

m−1∑
i=0

|ϕi(
∫ iT

m

(i−1)T
m

hsdWs, · · ·,
∫ T

m

0

hsdWs)|]

= : EP 0 [Φ(

∫ T

(m−1)T
m

hsdWs, · · ·,
∫ T

m

0

hsdWs)]

and

EPhn [

∫ T

0

|ζs|ds] = EP 0 [Φ(

∫ T

(m−1)T
m

hns dWs, · · ·,
∫ T

m

0

hns dWs)],

where Φ(xm, · · ·, x1) =
∑m−1
i=0 |ϕi(xi, · · ·, x1)|.

Now it suffices to show that for any 0 ≤ i ≤ m and Φi ∈ Cb(Ri), we have

EP 0 [Φi(

∫ iT
m

(i−1)T
m

hns dWs, · · ·,
∫ T

m

0

hns dWs)] = EP 0 [Φi(

∫ iT
m

(i−1)T
m

hsdWs, · · ·,
∫ T

m

0

hsdWs)].

We prove the assertion by induction on i. Clearly, the assertion holds for i = 0. Assum-
ing the assertion to hold for i ≥ 0, we shall prove it for i+ 1.

Let x = (xi, · · ·, x1). Noting that

Φi(x) := EP 0 [Φi+1(

∫ (i+1)T
m

iT
m

Hsgn(ϕi(x))
n (s− iT

m
,ψi(x)2)dWs, x)]

= EP 0 [Φi+1(

∫ (i+1)T
m

iT
m

ψi(x)dWs, x)],

we have

EP 0 [Φi+1(

∫ (i+1)T
m

iT
m

hsdWs, · · ·,
∫ T

m

0

hsdWs)] = EP 0 [Φi(

∫ iT
m

(i−1)T
m

hsdWs, · · ·,
∫ T

m

0

hsdWs)]

EP 0 [Φi+1(

∫ (i+1)T
m

iT
m

hns dWs, · · ·,
∫ T

m

0

hns dWs)] = EP 0 [Φi(

∫ iT
m

(i−1)T
m

hns dWs, · · ·,
∫ T

m

0

hns dWs)].

By the assumption, we get the desired result.

4. Based on the above arguments, we can prove the desired conclusion by simple
computations.
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By the sub-additivity of Ê, we have

Ê[

∫ T

0

δ2mn(s)ηsd〈B〉s]

≥ Ê[

∫ T

0

δ2mn(s)ζsd〈B〉s]− Ê[

∫ T

0

|ηs − ζs|d〈B〉s]

≥ EPhn [

∫ T

0

δ2mn(s)ζsd〈B〉s]− σ2δ

= EPhn [

m−1∑
i=0

ξ iT
m

∫ (i+1)T
m

iT
m

δ2mn(s)d〈B〉s]− σ2δ.

By the definition of hn, we have

EPhn [

m−1∑
i=0

ξ iT
m

∫ (i+1)T
m

iT
m

δ2mn(s)d〈B〉s]− σ2δ

≥ T

m
εEPhn [

m−1∑
i=0

|ξ iT
m
|]− σ2δ

= εEPhn [

∫ T

0

|ζs|ds]− σ2δ.

Due to the assertion of Step 3, we have

εEPhn [

∫ T

0

|ζs|ds]− σ2δ = εEPh [

∫ T

0

|ζs|ds]− σ2δ

≥ εEPh [

∫ T

0

|ηs|ds]− εδ − σ2δ

≥ Aε− εδ − σ2δ > 0.

Since A, ε, δ do not depend on n, we have d(η) ≥ Aε− εδ − σ2δ > 0. Noting that ε, δ are

arbitrary, we have d(η) ≥ εÊGε [
∫ T

0
|ηs|ds]. The proof is completed. 2
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