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Abstract

Random walks in random scenery are processes defined by Zn :=
∑n

k=1 ξX1+...+Xk ,
where (Xk, k ≥ 1) and (ξy, y ∈ Z) are two independent sequences of i.i.d. ran-
dom variables. We suppose that the distributions of X1 and ξ0 belong to the nor-
mal domain of attraction of strictly stable distributions with index α ∈ [1, 2] and
β ∈ (0, 2] respectively. We are interested in the asymptotic behaviour as |a| goes
to infinity of quantities of the form

∑
n≥1E[h(Zn − a)] (when (Zn)n is transient) or∑

n≥1E[h(Zn)−h(Zn−a)] (when (Zn)n is recurrent) where h is some complex-valued
function defined on R or Z.
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1 Introduction

Renewal theorems in probability theory deal with the asymptotic behaviour when
|a| → +∞ of the potential kernel formally defined as

Ka(h) :=

∞∑
n=1

E[h(Zn − a)]

where h is some complex-valued function defined on R and (Zn)n≥1 a real transient ran-
dom process. The above kernel Ka(.) is not well-defined for recurrent process (Zn)n≥1,
in that case, we would rather study the kernel

Gn,a(h) :=

n∑
k=1

{
E[h(Zk)]− E[h(Zk − a)]

}
for n and |a| large. In the classical case when Zn is the sum of n non-centered indepen-
dent and identically distributed real random variables, renewal theorems were proved
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Renewal theorems for random walks in random scenery

by Erdös, Feller and Pollard [10], Blackwell [1, 2]. Extensions to multi-dimensional real
random walks or additive functionals of Markov chains were also obtained (see [12] for
statements and references).

In the particular case where the process (Zn)n≥1 takes its values in Z and h is the
Dirac function at 0, the study of the corresponding kernels

Ka(δ0) =

∞∑
n=1

P[Zn = a]

and

Gn,a(δ0) =

n∑
k=1

{
P[Zk = 0]− P[Zk = a]

}
have a long history (see [18]). In the case of aperiodic recurrent random walks on Z
with finite variance, the potential kernel is known to behave asymptotically as |a| when
|a| goes to infinity and, for some particular random walks as the simple random walk,
an explicit formula can be given (see Chapter VII in [18]).
In this paper we are interested in renewal theorems for random walk in random scenery
(RWRS). Random walk in random scenery is a simple model of process in disordered
media with long-range correlations. They have been used in a wide variety of models
in physics to study anomalous dispersion in layered random flows [16], diffusion with
random sources, or spin depolarization in random fields (we refer the reader to Le
Doussal’s review paper [14] for a discussion of these models). On the mathematical side,
motivated by the construction of new self-similar processes with stationary increments,
Kesten and Spitzer [13] and Borodin [4, 5] introduced RWRS in dimension one and
proved functional limit theorems. Their work has been further developed in [3] and
[8]. These processes are defined as follows. We consider two independent sequences
(Xk, k ≥ 1) and (ξy, y ∈ Z) of independent identically distributed random variables with
values in Z and R respectively. We define

∀n ≥ 1, Sn :=

n∑
k=1

Xk and S0 := 0.

The random walk in random scenery Z is then defined for all n ≥ 1 by

Zn :=

n∑
k=1

ξSk .

The symbol # stands for the cardinality of a finite set. Denoting by Nn(y) the local time
of the random walk S :

Nn(y) = #
{
k = 1, ..., n : Sk = y

}
the random variable Zn can be rewritten as

Zn =
∑
y∈Z

ξyNn(y). (1.1)

The distribution of ξ0 is assumed to belong to the normal domain of attraction of a
strictly stable distribution Sβ of index β ∈ (0, 2], with characteristic function φ given by

φ(u) = e−|u|
β(A1+iA2 sgn(u)), u ∈ R, (1.2)

where 0 < A1 < ∞ and |A−1
1 A2| ≤ | tan(πβ/2)|. When β = 1, A2 is null. We will denote

by ϕξ the characteristic function of the random variables ξx. When β > 1, this implies
that E[ξ0] = 0. Under these conditions, we have, for β ∈ (0, 2],

∀t > 0 , P [|ξ0| ≥ t] ≤
C(β)

tβ
. (1.3)
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Renewal theorems for random walks in random scenery

Concerning the random walk (Sn)n≥1, the distribution of X1 is assumed to belong to
the normal domain of attraction of a strictly stable distribution S ′α of index α. Since,
when α < 1, the behaviour of (Zn)n is very similar to the behaviour of the sum of
the ξk’s, k = 1, . . . , n, we restrict ourselves to the study of the case when α ∈ [1, 2].
Under the previous assumptions, the following weak convergences hold in the space of
càdlàg real-valued functions defined on [0,∞) and on R respectively, endowed with the
Skorohod topology : (

n−
1
αSbntc

)
t≥0

L
=⇒
n→∞

(U(t))t≥0

and

n− 1
β

bnxc∑
k=0

ξk


x≥0

L
=⇒
n→∞

(Y (x))x≥0 ,

where U and Y are two independent Lévy processes such that U(0) = 0, Y (0) = 0,
U(1) has distribution S ′α and Y (1) has distribution Sβ . For α ∈ ]1, 2], we will denote
by (Lt(x))x∈R,t≥0 a continuous version with compact support of the local time of the

process (U(t))t≥0 and by |L|β the random variable
(∫
R
Lβ1 (x) dx

)1/β

. Next let us define

δ := 1− 1

α
+

1

αβ
= 1 +

1

α
(

1

β
− 1). (1.4)

In [13], Kesten and Spitzer proved the convergence in distribution of ((n−δZnt)t≥0)n,
when α > 1, to a process (∆t)t≥0 defined as

∆t =

∫
R

Lt(x) dY (x),

by considering a process (Y (−x))x≥0 with the same distribution as (Y (x))x≥0 and inde-
pendent of U and (Y (x))x≥0.

In [8], Deligiannidis and Utev considered the case when α = 1 and β = 2 and proved the
convergence in distribution of ((Znt/

√
n log(n))t≥0)n to a Brownian motion. This result

is obtained by an adaptation of the proof of the same result by Bothausen in [3] in the
case when β = 2 and for a square integrable two-dimensional random walk (Sn)n.

In [7], Castell, Guillotin-Plantard and Pène completed the study of the case α = 1 by
proving the convergence of (n−

1
β (log(n))

1
β−1Znt)t≥0)n to c

1
β (Y (t))t∈R, with

c := (πa0)1−βΓ(β + 1), (1.5)

where a0 is such that t 7→ e−a0|t| is the characteristic function of the limit of (n−1Sn)n
and Γ denotes the Euler’s gamma function.

Let us indicate that, when α ≥ 1, the process (Zn)n is transient (resp. recurrent) if
β < 1 (resp. β > 1) (see [6, 17]).

We recall the definition of the Fourier transform ĥ as follows. For every h : R→ C (resp.
h : Z → C) integrable with respect to the Lebesgue measure on R (resp. with respect
to the counting measure on Z), we denote by I[h] the integral of h and by ĥ : I → C its
Fourier transform defined by

∀x ∈ I, ĥ(x) := I[h(·)eix·], with I = R (resp. I = [−π;π]).

1.1 Recurrent case : β ∈ [1, 2]

We consider two distinct cases:
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Renewal theorems for random walks in random scenery

• Lattice case: The random variables (ξx)x∈Z are assumed to be Z-valued and
non-arithmetic i.e. {u; |ϕξ(u)| = 1} = 2πZ.
The distribution of ξ0 belongs to the normal domain of attraction of Sβ with char-
acteristic function φ given by (1.2).

• Strongly non-lattice case: The random variables (ξx)x∈Z are assumed to be
strongly non-lattice i.e.

lim sup
|u|→+∞

|ϕξ(u)| < 1.

The distribution of ξ0 belongs to the normal domain of attraction of Sβ with char-
acteristic function φ given by (1.2).

For any a ∈ R (resp. a ∈ Z), we consider the kernel Kn,a defined as follows : for any
h : R → C (resp. h : Z → C) in the strongly non-lattice (resp. in the lattice) case, we
write

Kn,a(h) :=

n∑
k=1

{
E[h(Zk)]− E[h(Zk − a)]

}
when it is well-defined.

Theorem 1.1. The following assertions hold for every integrable function h on R with
Fourier transform integrable on R in the strongly non-lattice case and for every inte-
grable function h on Z in the lattice case.

• when α > 1 and β > 1,

lim
a→+∞

a1− 1
δ lim
n→+∞

Kn,a(h) = C1I[h],

with

C1 :=
Γ( 1

δβ )Γ(2− 1
δ )E

[
|L|−1/δ

β

]
πβ(1− δ)(A2

1 +A2
2)1/2δβ

sin

(
1

δ

(
π

2
− 1

β
arctan

(A2

A1

)))
.

• when α ≥ 1 and β = 1,

lim
a→+∞

(log a)−1 lim
n→+∞

Kn,a(h) = C2I[h],

with C2 := (πA1)−1.
• when α = 1 and β ∈ (1, 2),

lim
a→+∞

(
a−1 log(aβ)

)β−1
lim

n→+∞
Kn,a(h) = D1I[h],

with

D1 :=
Γ(2− β)

πc(β − 1)(A2
1 +A2

2)1/2
sin

(
πβ

2
− arctan

(A2

A1

))
.

• when α = 1 and β = 2, assume that h is even and that the distribution of the ξ′xs is
symmetric, then

lim
a→+∞

(
a−1 log(a2)

)
lim

n→+∞
Kn,a(h) = D2I[h],

with D2 := (2A1c)
−1.

Remark 1.2. 1- It is worth noting that since |A2/A1| ≤ | tan(πβ/2)|, the constants C1

and D1 are strictly positive.
2- The limit as a goes to −∞ is not considered in Theorem 1.1 and Theorem 1.3 since
it can be easily obtained from the limit as a goes to infinity. Indeed, the problem is
then equivalent to study the limit as a goes to infinity with the random variables (ξx)x
replaced by (−ξx)x and the function h by x 7→ h(−x). The limits can easily be deduced
from the above limit constants by changing A2 to −A2.
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1.2 Transient case : β ∈ (0, 1)

Let H1 denote the set of all the complex-valued Lebesgue-integrable functions h such
that its Fourier transform ĥ is continuously differentiable on R, with in addition ĥ and
(ĥ)′ Lebesgue-integrable.

Theorem 1.3. Assume that α ∈ (1, 2] and that the characteristic function of the random
variable ξ0 is equal to φ given by (1.2).
Then, for all h ∈ H1, we have

lim
a→+∞

a1− 1
δ

∑
n≥1

E[h(Zn − a)] = C0 I[h]

with

C0 :=
Γ( 1

δβ )Γ(2− 1
δ )E

[
|L|−1/δ

β

]
πβ(δ − 1)(A2

1 +A2
2)1/2δβ

sin

(
1

δ

(
π

2
− 1

β
arctan

(A2

A1

)))
.

1.3 Preliminaries to the proofs

In our proofs, we will use Fourier transforms for some h : R → C or h : Z → C and,
more precisely, the following fact

2πE[h(Zn − a)] =

∫
I
ĥ(t)E[eitZn ]e−iat dt.

This will lead us to the study of
∑
n≥1E[eitZn ]. Therefore it will be crucial to observe

that we have

∀t ∈ R, ∀n ≥ 1, E[eitZn ] = E

∏
y∈Z

eitξyNn(y)

 = E

∏
y∈Z

ϕξ(tNn(y))

 ,
since, taken (Sk)k≤n, (ξy)y is a sequence of iid random variables with characteristic
function ϕξ. Let us note that, in the particular case when ξ0 has the stable distribution
given by characteristic function (1.2), the quantity

∑
n≥1E[eitZn ] is equal to

ψ(t) :=
∑
n≥1

E

[ ∏
y∈Z

e−|t|
βNn(y)β(A1+iA2sgn(t))

]
.

Section 2 is devoted to the study of this series thanks to which, we prove Theorem 1.1
in Section 3 and Theorem 1.3 in Section 4.

2 Study of the series ψ

Let us note that we have, for every real number t 6= 0,

ψ(t) =
∑
n≥1

E[e−|t|
βVn(A1+iA2sgn(t))], (2.1)

with Vn :=
∑
y∈ZNn(y)β . Let us observe that Nn(y)

n ≤ (Nn(y)
n )β ≤ Nn(y)

nβ
if β ≤ 1, and

Nn(y)
nβ

≤ (Nn(y)
n )β ≤ Nn(y)

n if β > 1. Combining this with the fact that
∑
y∈ZNn(y) = n,

we obtain:

β ≤ 1 ⇒ nβ ≤ Vn ≤ n (2.2a)

β ≥ 1 ⇒ n ≤ Vn ≤ nβ . (2.2b)
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Proposition 2.1. When β ∈ (0, 2], for every r ∈ (0,+∞), the function ψ is bounded on
the set {t ∈ R : |t| ≥ r}.
When β ∈ (0, 1), the function ψ is differentiable on R \ {0}, and for every r ∈ (0,+∞),
its derivative ψ′ is bounded on the set {t ∈ R : |t| ≥ r}.

Proof. Let r > 0. Then: |t| ≥ r ⇒ |ψ(t)| ≤
∑
n≥1 e

−A1r
βn1∧β

, so the first assertion

is proved. Next, when β ∈ (0, 1), since
∑
n≥1 n e

−A1(rn)β < ∞, it easily follows from

Lebesgue’s theorem that ψ is differentiable on {t ∈ R : |t| ≥ r}, with |ψ′(t)| ≤ βrβ−1(A1+

|A2|)
∑
n≥1 n e

−A1(rn)β when |t| ≥ r.

In the particular case when β = 1, we have A2 = 0 and

ψ(t) =
1

eA1|t| − 1
∼t→0 γ(t), with γ(t) := A1

−1|t|−1.

When β 6= 1, the expression of ψ(t) is not so simple. We will need some estimates to
prove our results. Recall that the constant c is defined in (1.5) if α = 1 and set

C :=
1

δβ
Γ(

1

δβ
)E[|L|−1/δ

β ].

Proposition 2.2. When α > 1, β 6= 1, we have

lim
t→0

ψ(t)

γ(t)
= 1 (2.3)

and

lim
t→0

ψ′(t)

γ′(t)
= 1, (2.4)

where γ is the function defined by

γ(t) := C|t|−1/δ(A1 + iA2 sgn(t))−1/(δβ).

When α = 1 and β > 1, we have

lim
t→0

ψ(t)

γ(t)
= 1, (2.5)

where γ is the function defined by

γ(t) :=
(− log(|t|β))1−β

c|t|β(A1 + iA2 sgn(t))
.

To prove Proposition 2.2, we need some preliminaries lemmas. Let us define

bn := nδ if α > 1 and bn := n
1
β (log(n))1− 1

β if α = 1. (2.6)

We first recall some facts on the behaviour of the sequence
(
b−1
n V

1/β
n

)
n
.

Lemma 2.3 (Lemma 6 in [13], Lemma 5 in [7]). When α > 1, the sequence of random

variables
(
b−1
n V

1/β
n

)
n

converges in distribution to |L|β =
(∫
R
Lβ1 (x) dx

)1/β

.

When α = 1, the sequence of random variables
(
b−1
n V

1/β
n

)
n

converges almost surely

to c
1
β .
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Lemma 2.4 (Lemma 11 in [6], Lemma 16 in [7]). If β > 1, then

sup
n
E

[(
bn

V
1/β
n

)β/(β−1)
]
< +∞.

If β ≤ 1, then for every p ≥ 1,

sup
n
E

[(
bn

V
1/β
n

)p]
< +∞.

The idea will be that Vn is of order bβn. Therefore the study of
∑
n≥1 e

−|tbn|β(A1+iA2 sgn(t))

will be useful in the study of ψ(t). For any function g : R+ → R, we denote by L(g) the
Laplace transform of g given, for every z ∈ C with Re(z) > 0, by

L(g)(z) =

∫ +∞

0

e−ztg(t)dt,

when it is well defined.

Lemma 2.5. When α > 1, for every complex number z such that Re(z) > 0 and every
p ≥ 0, we have

Kp,α(z) := sup
u>0

∣∣∣∣∣∣
∑
n≥1

e−zu
δβbβn(uδβbβn)p − 1

uδβ
Γ(p+

1

δβ
)z−(p+ 1

δβ )

∣∣∣∣∣∣ < +∞.

When α = 1, for every complex number z such that Re(z) > 0 and every p ≥ 0, we have

Kp,1(z) := sup
u>0

∣∣∣∣∣∣
∑
n≥1

e−zub
β
n(ubβn)p − upL(w̃p)(zu)

∣∣∣∣∣∣ < +∞,

where w̃p(t) := w̃0(t)tp with

w̃0(t) :=

(β − 1)1−βw

(
t

1
β−1

β−1

)2−β

1 + w

(
t

1
β−1

β−1

) if β > 1

and

w̃0(t) := 1[(e/(1−β))1−β ;+∞)(t)
∆((1− β)t

1
1−β )2−β(1− β)1−β

∆((1− β)t
1

1−β )− 1
if β < 1.

Here w is the Lambert function defined on [0; +∞) as the inverse function of y 7→ yey

(defined on [0; +∞)) and ∆ is the function defined on [e; +∞) as the inverse function of
y 7→ ey/y defined on [1; +∞).

Proof. First, we consider the case when α > 1. With the change of variable y = (ux)δβ ,
we get∫ +∞

0

e−(ux)δβz(ux)pδβ dx =
1

uδβ

∫ ∞
0

e−yzy
1
δβ+p−1dy =

1

uδβ
Γ

(
p+

1

δβ

)
z−(p+ 1

δβ ).

Let bxc denote the integer part of x. Observe that∑
n≥1

e−(un)δβz(un)pδβ =

∫ +∞

1

e−(ubxc)δβz(ubxc)pδβ dx.
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Let us write
Ep(u, x) =

∣∣∣e−(ubxc)δβz(ubxc)pδβ − e−(ux)δβz(ux)pδβ
∣∣∣ .

Applying Taylor’s inequality to the function v 7→ e−vzvp on the interval [(u bxc)δβ , (ux)δβ ],
we obtain for every x > 2 (use bxc ≥ x/2)

Ep(u, x) ≤ (1 + |z|)(1 + p)(1 + (ux)pδβ)e−(ux/2)δβRe(z) uδβ
(
xδβ − bxcδβ

)
.

Next, by applying Taylor’s inequality to the function t 7→ tδβ according that δβ > 1 or
δβ < 1 (again use bxc ≥ x/2 in the last case), we have

Ep(u, x) ≤ (1 + |z|)(1 + p)(1 + (ux)pδβ) max
(
1, 21−δβ) δβ uδβ e−(ux/2)δβRe(z) xδβ−1.

Therefore, with the change of variable t = (ux/2)δβ , we get∫ +∞

2

Ep(u, x) dx ≤ (1 + |z|)(1 + p) max
(
2δβ , 2

) ∫ +∞

0

(1 + 2pδβtp)e−Re(z)t dt.

Now, we suppose that α = 1 and follow the same scheme. We observe that δβ = 1.
With the change of variable t = x(log x)β−1, we get∫ +∞

1

e−zux(log x)β−1

(ux(log x)β−1)p dx = upL(w̃p)(zu).

Indeed, if β>1, we have t=[(β−1)x
1

β−1 (log(x
1

β−1 ))]β−1 and so x=

[
exp

(
w

(
t

1
β−1

β−1

))]β−1

which gives dx = w̃0(t) dt (since w′(y) = w(y)
y(1+w(y)) and since ew(x) = x

w(x) ). Moreover, if
β < 1, we have

t =

[
x

1
1−β

(1− β) log(x
1

1−β )

]1−β

and so x =
[
exp

(
(1− β)∆

(
(1− β)t

1
1−β

))]
,

which gives dx = w̃0(t) dt (since ∆′(y) = ∆(y)
y(∆(y)−1) and since e∆(y) = y∆(y)).

Let x0 := max(4, e2(1−β)). We have∣∣∣∣∣∣
∑
n≥1

e−zun(logn)β−1

(un(log n)β−1)p − upL(w̃p)(zu)

∣∣∣∣∣∣ ≤ 2x0 sup
y

(e−Re(z)yyp) +

∫ +∞

x0

Ep(u, x) dx,

where

Ep(u, x) :=
∣∣∣e−(zubxc)(logbxc)β−1

(u bxc (log bxc)β−1)p − e−zux(log x)β−1

(ux(log x)β−1)p
∣∣∣ .

Applying Taylor’s inequality, we get

Ep(u, x) ≤ (1+|z|)(1+p)e−
Re(z)ux

4 (log x)β−1

2p(1+(2ux(log x)β−1)p)8u(β−1+log(x))(log x)β−2

(using the fact that bxc ≥ x/2 and log(x) ≥ log bxc ≥ (log x)/2 ≥ 1− β if x ≥ x0). Hence
there exists some c depending only on p and |z| such that

∫ +∞
x0

Ep(u, x) dx is less than

c

∫ +∞

x0

(1 + (2ux(log x)β−1)p)e−
Re(z)ux

4 (log x)β−1

u(β − 1 + log(x))(log x)β−2 dx.

With the change of variable t = ux(log x)β−1, for which we have dt = u(β − 1 +

log x)(log x)β−2 dx, we get∫ +∞

x0

Ep(u, x) dx ≤ c
∫ +∞

0

(1 + (2t)p)e−
Re(z)t

4 dt.

The last integral is finite.
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Lemma 2.6. For every complex number z such that Re(z) > 0 and every p ≥ 0, we have

lim
u→0+

[(zu)p+1L(w̃p)(zu)− Γ(p+ 1)(− log |u|)1−β ] = 0

and for every u0 > 0,

sup
0<u<u0

up+1L(w̃p)(u)

Γ(p+ 1)(− log |u|)1−β <∞.

Hence, if α = 1, for every z such that Re(z) > 0, we have∑
n≥1

e−zu
βbβn
(
uβbβn

)p ∼u→0+ Γ(p+ 1)
u−β(− log(|u|β))1−β

zp+1
.

Proof. We know that w(x) ∼+∞ log x and ∆(x) ∼+∞ log x. Hence, for every p ≥ 0, we
have

w̃p(t) ∼t→+∞ tp(log t)1−β .

Now, we apply Tauberian theorems (Theorems p. 443–446 in [11]) to Laplace trans-
forms L(.) defined for complex numbers such that Re(z) > 0. The lemma follows.

Lemma 2.7. There exist a sequence of random variables (an)n and a random variable
A defined on (0, 1) endowed with the Lebesgue measure λ such that, for every n ≥ 1, an

and (bnV
− 1
β

n )
1
δ have the same distribution, such that Eλ[supn≥1 an] < +∞ and such that

(an)n converges almost surely and in L1 to the random variable A.

Proof. Following the the Skorohod representation theorem, we define

an(x) := inf

{
u > 0 : P

(
(bnV

− 1
β

n )
1
δ ≤ u

)
≥ x

}
and A as follows :

A(x) := c−1 if α = 1

and
A(x) := inf

{
u > 0 : P

(
|L|−1/δ

β ≤ u
)
≥ x

}
if α > 1.

Remark that Lemma 2.4 insures the uniform integrability of

(
(bnV

− 1
β

n )
1
δ

)
n

. Therefore,

from Lemma 2.3, the sequence (an)n converges almost surely and in L1 to the random
variable A as n goes to infinity.
Moreover, from the formula Eλ[supn≥1 an] =

∫ +∞
0

λ(supn an > t) dt and the fact that

sup
n
an(x) > t ⇔ inf

n
P

(
(bnV

− 1
β

n )
1
δ ≤ t

)
< x,

we get

λ(sup
n
an > t) = sup

n
P

(
(bnV

− 1
β

n )
1
δ > t

)
≤ t−γ sup

n
E
[
b
γ
δ
n V
− γ
δβ

n

]
,

with γ := 2 when β ≤ 1 ; γ := δβ/(β − 1) when α > 1 and β > 1 or when α = 1 and
β ∈ (1, 2). In each of this case, this gives Eλ[supn≥1 an] < +∞ from Lemma 2.4. If α = 1

and β = 2, we take γ = 2 and use the fact that

sup
n
E
[
b
γ
δ
n V
− γ
δβ

n

]
= sup

n
E

[(
n log n

Vn

)2
]
≤ sup

n

(log n)2

n2
E[R2

n] <∞,

with Rn := #{y ∈ Z : Nn(y) > 0} (according to inequality (3b) in [15]) and we conclude
analogously.
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Therefore, using the previous lemma, the series ψ can be rewritten, for every real
number t 6= 0, as

ψ(t) = Eλ

∑
n≥1

e−|t|
βbβna

−δβ
n (A1+iA2sgn(t))

 . (2.7)

Lemma 2.8. There exists t0 > 0 such that when α > 1 or (α = 1 and β > 1), the family
of random variables  1

γ(t)

∑
n≥1

e−|t|
βbβna

−δβ
n (A1+iA2sgn(t))


0<|t|<t0

is uniformly integrable and such that, if α > 1, the family |t|β
γ(t)

∑
n≥1

bβna
−δβ
n e−|t|

β(a−1
n n)δβ(A1+iA2sgn(t))


0<|t|<t0

is also uniformly integrable.

Proof. If α > 1, thanks to lemma 2.5, we know that, for every real number t ∈ (0, 1) and
every complex number z such that Re(z) > 0, we have∣∣∣∣∣∣

∑
n≥1

e−|t|
β(a−1

n n)δβz

∣∣∣∣∣∣ ≤ |t|− 1
δ

supn an
δβ

Γ

(
1

δβ

)
|z|−

1
δβ +K0,α(z), (2.8)

and,

|t|β
∣∣∣∣∣∣
∑
n≥1

(a−1
n n)δβe−|t|

β(a−1
n n)δβz

∣∣∣∣∣∣ ≤ |t|− 1
δ

supn an
δβ

Γ

(
1 +

1

δβ

)
|z|−(1+ 1

δβ ) +K1,α(z), (2.9)

from which we conclude.
Now, let us consider the case α = 1 and β > 1. According to lemmas 2.5 and 2.6,

since 0 < A1|t|β(1 + supn an)−1 ≤ A1, we have∣∣∣∣∣∣
∑
n≥1

e−|t|
βbβna

−1
n (A1+iA2sgn(t))

∣∣∣∣∣∣ ≤ K0,1(A1) + L(w̃0)

(
A1|t|β(1 + sup

n
an)−1

)

≤ K0,1(A1) + c0|t|−β (1 + sup
n
an)

(
− log

(
A1|t|β(1 + sup

n
an)−1

))1−β

for some positive constant c0 > 0. Hence, there exists t1 ∈ (0, 1) such that for every

0 < |t| < t1, the quantity 1
|γ(t)|

∣∣∣∑n≥1 e
−|t|βbβna

−1
n (A1+iA2sgn(t))

∣∣∣ is less than

c1

1 + (1 + sup
n
an)

− log
(
A1|t|β(1 + supn an)−1

)
− log

(
A1|t|βc

)
1−β

for some positive constant c1 > 0.

If β > 1, since c(1 + supn(an)) ≥ 1 a.s., the right-hand side of the above inequality is

almost surely less than c1(2 + supn an) for every |t| < (cA1)−
1
β . Then, we can choose t0

as the infimum of (cA1)−
1
β and t1. The uniform integrability then follows from Lemma

2.7.
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Lemma 2.9. If (α > 1, β 6= 1) or (α = 1, β > 1), we have

lim
t→0

1

γ(t)

∑
n≥1

(
e−|t|

β(a−δβn bβn)(A1+iA2sgn(t)) − e−|t|
β(A−δβbβn)(A1+iA2sgn(t))

)
= 0 a.s..

Moreover, when α > 1 and β < 1 ,

lim
t→0

|t|β

γ(t)

∑
n≥1

(
bβn

aδβn
e−|t|

β(a−δβn bβn)(A1+iA2sgn(t)) − bβn
Aδβ

e−|t|
β(A−δβbβn)(A1+iA2sgn(t))

)
= 0 a.s..

Proof. We only prove the first assertion, the proof of the second one following the same
scheme. Let β 6= 1 and α ≥ 1. Let ε ∈ (0, 1/δ),

b|t|ε−1/δc∑
n=1

∣∣∣(e−|t|βa−δβn bβn(A1+iA2sgn(t)) − e−|t|
βA−δβbβn(A1+iA2sgn(t))

)∣∣∣ = O(|t|ε−1/δ) = o(γ(t)).

Now it remains to prove the almost sure convergence to 0 as t goes to 0 of the following
quantity :

εt :=
1

γ(t)

∑
n>[|t|ε−1/δ]

(
e−|t|

βa−δβn bβn(A1+iA2sgn(t)) − e−|t|
βA−δβbβn(A1+iA2sgn(t))

)
.

By applying Taylor’s inequality to the function v 7→ e−|t|
β |v|δβbβn(A1+iA2sgn(t)), we have

|εt| ≤ δβ(A1 + |A2|)
|t|β

γ(t)

∑
n>[|t|ε−1/δ]

( inf
n>[|t|ε−1/δ]

an)−δβbβne
−A1|t|β(sup

n>[|t|ε−1/δ ]
an)−δβbβn ×

×

∣∣∣∣∣ a−1
n −A−1

(supn>[|t|ε−1/δ] an)−1

∣∣∣∣∣
= o(1) a.s.,

using lemmas 2.5 and 2.6 and according to the fact that (an)n converges almost surely
to A.

Proof of Proposition 2.2. First consider the case α > 1 and β 6= 1. Thanks to lemmas
2.5 and 2.9, we get that

1

γ(t)

∑
n≥1

e−|t|
βa−δβn bβn(A1+iA2sgn(t)) − A

δβ
Γ(

1

δβ
)(A1 + iA2sgn(t))−1/δβ |t|−1/δ

→ 0 a.s.

as t goes to 0. Therefore, due to (2.7) and to the uniform integrability (Lemma 2.8), we
deduce (2.3). The proof of (2.5) is similar (using Lemma 2.6) and is omitted.
Again, to prove (2.4), we use (2.7). Since for t 6= 0,

ψ′(t) = −βsgn(t)(A1 + iA2sgn(t))|t|β−1
∑
n≥1

E
[
a−δβn bβne

−|t|β(a−δβn bβn(A1+iA2sgn(t))
]
,

and

γ′(t) = −C
δ

(A1 + iA2sgn(t))−1/δβ |t|−1/δ−1,

we decompose (
C

δβ
(A1 + iA2sgn(t))−(1+1/δβ)

)[
ψ′(t)

γ′(t)
− 1

]
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as the sum of

|t|1/δE

∑
n≥1

(
e−|t|

β(a−δβn bβn(A1+iA2sgn(t)) |t|β

aδβn
bβn − e−|t|

βA−δβbβn(A1+iA2sgn(t)) |t|β

Aδβ
bβn

)
and of

|t|1/δE

∑
n≥1

e−|t|
βA−δβbβn(A1+iA2sgn(t)) |t|β

Aδβ
bβn −

A

|t|1/δδβ
Γ(1 + 1

δβ )

(A1 + iA2sgn(t))1+1/δβ


The second assertion in Lemma 2.9 and the uniform integrability in Lemma 2.8 implies
that the first sum goes to 0 as t goes to 0. From Lemma 2.5, we get that the second one
goes to 0 as t goes to 0.

3 Proof of Theorem 1.1

We first begin to prove that for every a ∈ R, the sequence of

Kn,a(h) =
n∑
k=1

{E[h(Zk)]− E[h(Zk − a)]}

converges as n tends to infinity. Indeed, for every a ∈ R, we have

Kn,a(h) =
1

2π

∫
I
ĥ(t)

(
n∑
k=1

E[eitZk ]

)(
1− e−ita

)
dt. (3.1)

Proposition 3.1. i)- The series ∑
n≥1

|E[eitZn ]|

is bounded on any set [r,+∞[ with r > 0 and so the series

ψ̃(t) :=
∑
n≥1

E[eitZn ]

is well defined for every t 6= 0.

ii)- We have

lim
t→0

1

γ(t)

∑
n≥1

∣∣∣E[eitZn ]− E
[
e−|t|

βVn(A1+iA2sgn(t))
]∣∣∣ = 0,

and so

lim
t→0

1

γ(t)
[ψ̃(t)− ψ(t)] = 0,

Proof. In order to prove ii), we show that

lim
t→0

1

γ(t)

∑
n≥1

∣∣∣∣∣∣E
∏
y∈Z

ϕξ(tNn(y))

− E [e−|t|βVn(A1+iA2sgn(t))
]∣∣∣∣∣∣ = 0.

From Lemma 6 in [6] and Lemma 12 in [7], for every η > 0 and every n ≥ 1, there exists
a subset Ωn such that for every p > 1, P(Ωn) = 1−o(n−p) and such that, on Ωn, we have

N∗n = sup
x
Nn(x) ≤ n1− 1

α+η and Vn ≥ nδβ−η
′
,
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with η′ = ηβ
2 if α > 1, β > 1 ; η′ = η(1 − β) if α > 1, β ≤ 1 and η′ = η(1 − β)+ if α = 1.

Hence, it is enough to prove that∑
n≥1

|E [En(t)1Ωn ]| = o(γ(t)) as t→ 0,

with En(t) :=
∏
y∈Z ϕξ(tNn(y))− e−|t|βVn(A1+iA2sgn(t)).

In [6, 7], we also define some η̄ ≤ ηmax(1, β−1) and we take some η such that η+η̄ < 1
αβ .

Hence, for every ε0 > 0, there exists n1 such that for every n ≥ n1, we have nη+η̄− 1
αβ ≤

ε0.
In the proofs of propositions 8, 9 and 10 of [6] (and propositions 14, 15 of [7]) or using
the strong lattice property, we prove that there exist c > 0, θ > 0 and n0 such that for
every t and every integer n ≥ n0 and such that |t| > n−δ+η̄, we have, on Ωn,∏

y∈Z
|ϕξ(tNn(y))| ≤ e−cn

θ

and
∏
y∈Z
|φ(tNn(y))| ≤ e−cn

θ

.

Now, let t and n ≥ n1 be such that |t| ≤ n−δ+η̄. Recall that we have∣∣∣ϕξ(u)− φ(u)
∣∣∣ ≤ |u|βh(|u|),

with h a continuous and monotone function on [0; +∞) vanishing in 0. Therefore there
exist ε0 > 0 and σ > 0 such that, for every u ∈ [−ε0; ε0], we have

max(|φ(u)|, |ϕξ(u)|) ≤ exp(−σ|u|β).

We have

|En(t)| ≤
∑
y

(∏
z<y

|ϕξ(tNn(z))|

)
|ϕξ(tNn(y))− φ(tNn(y))|

(∏
z>y

|φ(tNn(z))|

)
.

Now, since |t| ≤ n−δ+η̄, on Ωn, for every y ∈ Z, we have |t|Nn(y) ≤ nη+η̄− 1
αβ ≤ ε0, we

get

|En(t)| ≤
∑
y

h(nη+η̄− 1
αβ )|t|βNn(y)β exp(−σ|t|βVn) exp(σεβ0 )

≤ h(nη+η̄− 1
αβ )|t|βVn exp(−σ|t|βVn) exp(σεβ0 ).

Now, we fix some t 6= 0. Let us write

N1(t) := {n ≥ 1 : n ≥ n0, |t| > n−δ+η̄}

and
N2(t) := {n ≥ 1 : n ≥ n1, |t| ≤ n−δ+η̄, n > |t|−

1
2δ }.

We have ∑
n≤max(n0,n1)

|En(t)| ≤ 2 max(n0, n1),

∑
n≤|t|−

1
2δ

|En(t)| ≤ 2|t|− 1
2δ = o(γ(t)), as t→ 0,

∑
n∈N1(t)

|En(t)| ≤ 2
∑
n≥1

e−cn
θ
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and∑
n∈N2(t)

E[|En(t)|1Ωn ] ≤ eσε
β
0 h
(
t−

1
2δ (η+η̄− 1

αβ )
)
|t|βE

[∑
n≥1

Vn exp(−σ|t|βVn)
]

= o(γ(t)),

as t → 0, using Proposition 2.2 and the continuity of the function h at 0 (and the fact
that |t|βVn exp(−σ|t|βVn) ≤ k0 exp(− 1

2σ|t|
βVn) for some k0 > 0). Then, ii)- is proved and

i)- can easily be deduced from the above arguments.

The integrand in (3.1) is bounded by Θ(t) := |ĥ(t)||1− e−ita|
∑
n≥1 |E[eitZn ]|.

Let r > 0, on the set {t; |t| ≥ r}, by i)- from Proposition 3.1, since ĥ is integrable,
Θ is integrable. From Propositions 2.2 and 3.1 (item ii)-) and from the fact that ĥ is
continuous at 0, Θ(t) is in O (|t|γ(t)) (at t = 0), which is integrable in the neighborhood
of 0 in all cases considered in Theorem 1.1 except (α, β) = (1, 2). From the dominated
convergence theorem, we deduce that

lim
n→+∞

Kn,a(h) =
1

2π

∫
I
ĥ(t)ψ̃(t)

(
1− e−ita

)
dt. (3.2)

In the case (α, β) = (1, 2), by assumption, for every integer n ≥ 1, the function t →
ĥ(t)

∑n
k=1E[eitZk ] being even, we have

Kn,a(h) =
1

2π

∫
I
ĥ(t)

(
n∑
k=1

E[eitZk ]

)
(1− cos(ta)) dt. (3.3)

The integrand in (3.3) is uniformly bounded in n by a function in O
(
log(1/|t|)−1

)
(at

t = 0), which is integrable in the neighborhood of 0. From the dominated convergence
theorem, we deduce that

lim
n→+∞

Kn,a(h) =
1

2π

∫
I
ĥ(t)ψ̃(t) (1− cos(ta)) dt. (3.4)

In the rest of the proof we only consider the strongly non-lattice case, the lattice
case can be handled in the same way.
Let us first consider the case α > 1, β ∈ (1, 2]. We recall that, in this case, we have set

C = (δβ)−1Γ(
1

δβ
)E[|L|−

1
δ

β ].

Since the function t→ ĥ(t)ψ̃(t) is integrable on I \ [−π, π] (note that ĥ is integrable and
ψ̃ is bounded on I \ [−π, π] by Proposition 3.1), we have

lim
a→+∞

a1−1/δ

2π

∫
{|t|≥π}

∣∣∣ĥ(t)ψ̃(t)
(
1− e−ita

)∣∣∣ dt = 0.

We define the functions

g(t) := (1− e−it)|t|−1/δ(A1 + iA2sgn(t))−1/δβ , ga(t) := ag(at) (3.5)

and f(t) := 1[−π,π](t) ĥ(t)|t|1/δψ̃(t)(A1 + iA2sgn(t))1/δβ . We have:

a1−1/δ

2π

∫
{|t|≤π}

ĥ(t)ψ̃(t)
(
1− e−ita

)
dt =

1

2π

∫
R

f(t) ga(t)dt =
1

2π

(
f ∗ ga

)
(0).

Since g is integrable on R and f is bounded on R and continuous at t = 0 with f(0) =

Cĥ(0) (by Propositions 4 and 12), it follows from classical arguments of approximate
identity that

lim
a→+∞

(f ∗ ga
)
(0) = Cĥ(0)

∫
R

g(t)dt.
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Let us observe that∫
R

g(t)dt = 2Re

[
(A1 + iA2)−

1
δβ

∫ ∞
0

1− e−it

t1/δ
dt

]
.

Apply the residue theorem to the function z 7→ z−1/δ(1 − e−iz) with the contour in the
complex plane defined by the line segment from −ir to −iR (r < R), the circular arc
connecting −iR to R, the line segment from R to r and the circular arc from r to −ir.
Then, by letting r tend to 0 and R to +∞, we obtain∫ ∞

0

1− e−it

t1/δ
dt =

δ

1− δ
Γ
(

2− 1

δ

)
ei

π
2δ (1−δ).

From this formula we easily deduce the first statement of theorem 1.1 using the fact
that

(A1 + iA2)−
1
δβ =

e−i
θ
δβ

(A2
1 +A2

2)
1

2δβ

, with θ = arctan

(
A2

A1

)
.

Now assume α ≥ 1, β = 1 or α = 1, β ∈ (1, 2). We have γ(t) = bt|t|−β(− log |t|)1−β (with

bt = A−1
1 if β = 1 and with bt = c−1(A1 + iA2sgn(t))−1 if α = 1, β ∈ (1, 2)). Moreover, by

combining propositions 2.2 and 3.1, we have

lim
t→0

∣∣∣(γ(t))−1ψ̃(t)− 1
∣∣∣ = 0.

Hence, for every ε ∈ (0, 1), there exists 0 < Aε < 1 such that

∀t, |t| ≤ Aε ⇒ [ |ψ̃(t)− γ(t)| < εγ(t) and |ĥ(t)− ĥ(0)| < ε ]. (3.6)

Since ψ̃ is bounded on [Aε,+∞[ and ĥ is integrable on I, we have∣∣∣∣∣ 1

2π

∫
t∈I, |t|≥Aε

ĥ(t)ψ̃(t)(1− e−ita)dt

∣∣∣∣∣ ≤ C(ε).

Let a be such that a ≥ A−1/β
ε . We have∣∣∣∣∣ 1

2π

∫
{|t|<a−β}

ĥ(t)ψ̃(t)(1− e−ita)dt

∣∣∣∣∣ ≤ a

π
||ĥ||∞

∫ a−β

0

t |γ(t)| dt,

that can be neglected as a goes to infinity since∫ a−β

0

|atγ(t)| dt = O
(
a(β−1)2 log(a)1−β

)
= o(aβ−1 log(a)1−β) as a→∞ if α = 1, β ∈ (1, 2)

as a goes to infinity and since∫ a−β

0

at|γ(t)| dt = O(1) = o(log(a)) as a→∞ if β = 1.

It remains to estimate 1
2π

∫
{a−β≤|t|≤Aε} ĥ(t)ψ̃(t)(1− e−ita)dt that we decompose into two

parts:

I1(a) :=
1

2π

∫
{a−β≤|t|<Aε}

[ĥ(t)ψ̃(t)− ĥ(0)γ(t)](1− e−ita)dt

and

I2(a) :=
ĥ(0)

2π

∫
{a−β≤|t|<Aε}

(1− e−ita)γ(t)dt.
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•We first estimate I2(a) for a large. Remark that by the change of variables u = at,

I2(a) =
ĥ(0)

2πa

∫
{a1−β<|u|<aAε}

(1− e−iu)γ
(u
a

)
du.

We treat separately the cases β = 1 and α = 1, β ∈ (1, 2). If β = 1, we have

1

2πa

∫
{1<|u|<aAε}

(1− e−iu)γ
(u
a

)
du =

1

A1π

∫
{1<u<aAε}

1− cosu

u
du ∼ 1

A1π
log(a)

since

lim
x→+∞

1

log(x)

∫ x

1

1− cos(u)

u
du = 1.

This comes from the fact that
(∫ x

1
cos(t)
t dt

)
x

is bounded.

If α = 1 and β ∈ (1, 2), we have
1

2πa

∫
{a1−β<|u|<aAε}

(1− e−iu)γ
(u
a

)
du =

=
aβ−1β1−β

2πc

∫
{a1−β<|u|<aAε}

(1− e−iu)(A1 + iA2sgn(u))−1|u|−β(log(a)− log |u|)1−β du

=
aβ−1(log(aβ))1−β

2πc

∫
R

fa(u) du,

with

fa(u) := 1[a1−β ,aAε](|u|)(1− e
−iu)(A1 + iA2sgn(u))−1|u|−β

(
1− log |u|

log a

)1−β

.

We observe that

|fa(u)| ≤ F (u) := min(1, |u|)|A1 + iA2|−1|u|−ββ1−β

(with F integrable on R since β ∈ (1, 2)) and that we have

∀u 6= 0, lim
a→+∞

fa(u) = (1− e−iu)(A1 + iA2sgn(u))−1|u|−β =: g(u).

So,

lim
a→+∞

(log(aβ))β−1

2πaβ

∫
{a1−β<|u|<aAε}

(1− e−iu)γ(u/a) du =
1

2πc

∫
R

g(u) du.

We recall that ∫
R

g(t)dt = 2Re

[
(A1 + iA2)−1

∫ ∞
0

1− e−it

tβ
dt

]
and that ∫ ∞

0

1− e−it

tβ
dt =

Γ(2− β)

β − 1
e
i
2 (β−1)π.

This gives

lim
a→+∞

(log(aβ))β−1

aβ−1
I2(a) = D1.

•Second, we estimate I1(a). From (3.6), we have

|I1(a)| ≤ ε(O(1) + |ĥ(0)|)
π

∫
{a−β≤|t|<Aε}

|1− e−ita||γ(t)| dt

≤ C
ε

a

∫
{a1−β<|u|<aAε}

|1− e−iu|γ
(u
a

)
du.
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When β = 1, |I1(a)| ≤ ε log(a). When α = 1 and β ∈ (1, 2), from the above computations,
we also have

lim
a→+∞

(log a)β−1

2πaβ

∫
{a1−β<|u|<aAε}

|1− e−iu|γ
(u
a

)
du =

1

2πc

∫
R

|g(u)| du.

Therefore, we get |I1(a)| ≤ Cεaβ−1(log a)1−β .

The case (α, β) = (1, 2) can be handled in the same way as α = 1, β ∈ (1, 2) using the

inequality 1− cos(t) ≤ min(2, t2). Details are omitted.

4 Proof of Theorem 1.3 (transient case)

We suppose that α > 1 and β < 1. So δ > 1. We will again use the notation

C = (δβ)−1Γ(
1

δβ
)E[|L|−

1
δ

β ].

Let h : R → C be a Lebesgue-integrable function such that its Fourier transform ĥ is
differentiable, with ĥ and (ĥ)′ Lebesgue-integrable. Then, using the Fourier inversion
formula, we obtain for every n ≥ 1,

2πE[h(Zn − a)] =

∫
R

ĥ(t)E[eitZn ]e−ita dt.

We get

2π
∑
n≥1

E[h(Zn − a)] =
∑
n≥1

∫
R

ĥ(t)E[eitZn ]e−ita dt.

Since here β < 1 (thus δ > 1), the function t 7→ ĥ(t)
∑
n≥1

∣∣E[eitZn ]
∣∣ is integrable (note

that
∑
n≥1

∣∣E[eitZn ]
∣∣ corresponds to the case A2 = 0, then use Proposition 2.1 and (2.3)).

Therefore, from (2.1), we have

2π
∑
n≥1

E[h(Zn − a)] =

∫
R

ĥ(t)ψ(t) e−ita dt.

Let S(R) denote the so-called Schwartz space. Let r ∈ (0,+∞) and let χ ∈ S(R) be such
that

|χ| ≤ 1 and ∀t ∈ [−r; r], χ(t) = 1. (4.1)

We have
2π
∑
n≥1

E[h(Zn − a)] = I1(a) + I2(a) + I3(a),

with

I1(a) := C ĥ(0)

∫
R

χ(t) |t|− 1
δ (A1 + iA2sgn(t))−

1
δβ e−ita dt,

I2(a) :=

∫
R

χ(t)
{
ĥ(t)ψ(t)− C ĥ(0)|t|− 1

δ (A1 + iA2sgn(t))−
1
δβ

}
e−ita dt,

I3(a) :=

∫
{|t|>r}

(1− χ(t)) ĥ(t)ψ(t) e−ita dt.

The study of I3(a) is easy. Set g3(t) = (1 − χ(t))ĥ(t)ψ(t). From (4.1), we have I3(a) =

ĝ3(a), and from Propositions 2.1 and 4, g3 and g′3 are Lebesgue-integrable on R. An
integration by parts then gives

I3(a) = O(a−1) = o(a1/δ−1) as a goes to∞.

The next two subsections are devoted to the study of I1(a) and I2(a).
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4.1 Study of I1(a)

Let us prove that:

lim
a→+∞

a1/δ−1 I1(a) = C ĥ(0) c−δ,β

where c−δ,β is a constant defined in Lemma 4.1 below. The last property follows from
Lemma 4.2 below. Before let us establish the following.

Lemma 4.1. For every function g ∈ S(R),∫
R

ĝ(u)

|u|1/δ(A1 + iA2 sgn(u))
1
δβ

du =

∫
R

g(v)

|v|1− 1
δ

(
c+δ,β1R+

(v) + c−δ,β1R−(v)
)
dv,

where

c+δ,β :=
2 Γ(1− 1

δ )

(A2
1 +A2

2)
1

2δβ

sin

(
1

δ

(π
2

+
1

β
arctan

(A2

A1

)))
and

c−δ,β :=
2 Γ(1− 1

δ )

(A2
1 +A2

2)
1

2δβ

sin

(
1

δ

(π
2
− 1

β
arctan

(A2

A1

)))
.

Note that, since δ > 1, the functions w 7→ |w|−1/δ and w 7→ |w|−(1− 1
δ ) are Lebesgue-

integrable on any neighborhood of w = 0, so that the two previous integrals are well
defined.

Proof. For every u 6= 0, we have

|u|− 1
δ (A1 + iA2sgn(u))−

1
δβ =

∫ +∞

0

e−x|u|
1
δ (A1+iA2sgn(u))

1
δβ
dx.

For any x > 0, let us denote by fx the Fourier transform of u 7→ e−x|u|
1
δ (A1+iA2sgn(u))

1
δβ

.
By Fubini’s theorem and Parseval’s identity, we have∫

R

ĝ(u)

|u| 1δ (A1 + iA2sgn(u))
1
δβ

du =

∫ +∞

0

(∫
R

ĝ(u)e−x|u|
1
δ (A1+iA2sgn(u))

1
δβ
du

)
dx

=

∫ +∞

0

(∫
R

g(v)fx(v) dv

)
dx.

Next, since we have: ∀x > 0, ∀v ∈ R, fx(v) = x−δf1

(
v
xδ

)
, we obtain, from Fubini’s the-

orem, with the change of variable y = |v|/xδ and finally by the dominated convergence
theorem (since c±δ,β are well defined, see below), that∫

R

ĝ(u)

|u| 1δ (A1 + iA2sgn(u))
1
δβ

du = lim
A→0

∫
R

g(v)

[∫ +∞

A

x−δf1

( v
xδ

)
dx

]
dv

= lim
A→0

∫
R

g(v)|v|1/δ−1

[∫ |v|A−δ
0

f1(sgn(v)y)

δy1/δ
dy

]
dv

=

∫
R

g(v)

|v|1−1/δ

(
c+δ,β1R+(v) + c−δ,β1R−(v)

)
dv,

with

c+δ,β :=

∫ +∞

0

f1(y)

δy1/δ
dy and c−δ,β :=

∫ +∞

0

f1(−y)

δy1/δ
dy.
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Let us compute c+δ,β. We have

c+δ,β = lim
A→+∞

1

δ

∫ A

0

f1(y) y−1/δ dy

= lim
A→+∞

1

δ

∫ A

0

y−1/δ

(∫
R

eixye−|x|
1
δ (A1+iA2sgn(x))

1
δβ
dx

)
dy

= lim
A→+∞

∫
R

|u|− 1
δ eiu

(∫ +∞

|u|
A

1

δ
v

1
δ−1e−v

1
δ (A1+iA2sgn(u))

1
δβ
dv

)
du

= lim
A→+∞

∫
R

|u|− 1
δ eiu

e−|u|
1
δ A−

1
δ (A1+iA2sgn(u))

1
δβ

(A1 + iA2sgn(u))
1
δβ

du

= lim
A→+∞

2 Re

∫ +∞

0

u−
1
δ eiu

e−u
1
δ A−

1
δ (A1+iA2)

1
δβ

(A1 + iA2)
1
δβ

du

 ,
using the change of variables (u, v) = (yx, x). Now applying the residue theorem to the

function z 7→ z−
1
δ eize−z

1
δ A−

1
δ (A1+iA2)

1
δβ

with the contour in the complexe plane defined
as follows : the line segment from r to R (r < R), the circular arc connecting R to iR, the
line segment from iR to ir and the circular arc from ir to r and letting r → 0, R→ +∞,
we get that∫ +∞

0

u−
1
δ eiue−u

1
δ A−

1
δ (A1+iA2)

1
δβ
du = ei(

π
2−

π
2δ )
∫ +∞

0

t−
1
δ e−te−t

1
δ e

iπ
2δ A−

1
δ (A1+iA2)

1
δβ
dt.

Taking A→ +∞, we get the expression of c+δ,β.

Lemma 4.2. We have: lim
a→+∞

a1−1/δ

∫
R

χ(t)|t|− 1
δ (A1 + iA2 sgn(t))−

1
δβ e−ita dt = c−δ,β.

Proof. Let γ ∈ S(R) such that γ̂ = χ, and define: ∀x ∈ R, γ̃a(x) := aγ(−ax). From
Lemma 4.1 and from the change of variable v = wa, we get∫

R

χ(t)|t|−1/δ(A1 + iA2sgn(t))−
1
δβ e−ita dt =

∫
R

̂γ(·+ a)(t)|t|−1/δ(A1 + iA2sgn(t))−
1
δβ dt

=

∫
R

γ(v + a)|v|1/δ−1(c+δ,β1R+
(v) + c−δ,β1R−(v)) dv

= a1/δ−1

∫
R

a γ
(
a
(
w + 1

))
gδ(w) dw

= a1/δ−1

∫
R

γ̃a (−1− w) gδ(w) dw

= a1/δ−1
(
γ̃a ∗ gδ

)
(−1),

where ∗ denotes the convolution product on R and

gδ(v) := |v|1/δ−1(c+δ,β1R+(v) + c−δ,β1R−(v)).

Observe that we have ∫
R

γ̃a(w)dw =

∫
R

γ(y)dy = χ(0) = 1.

Now, from the fact that γ̃ ∈ S(R) (actually use supx∈R(1 + x2)|γ̃(x)| < ∞), that gδ is
continuous at −1 and that the function w → w−2gδ(w) is Lebesgue-integrable at infinity,
it can be easily deduced from classical arguments of approximate identity that we have
(see Prop. 1.14 in D. Guibourg’s thesis [12] for details): lima→+∞(γ̃a∗gδ)(−1) = gδ(−1) =

c−δ,β.
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4.2 Study of I2(a)

Let us prove that:
I2(a) = o(a1/δ−1) as a goes to∞.

Set Φ(t) := ψ(t)− C|t|− 1
δ (A1 + iA2sgn(t))−

1
δβ . We have

I2(a) =

∫
R

χ(t)
{
ĥ(t)ψ(t)− C ĥ(0)|t|− 1

δ (A1 + iA2sgn(t))−
1
δβ

}
e−ita dt = J1(a) + J2(a)

with

J1(a) :=

∫
R

χ(t)
{
ĥ(t)− ĥ(0)

}
ψ(t)e−ita dt and J2(a) := ĥ(0)

∫
R

χ(t)Φ(t)e−ita dt.

Note that J1(a) = ĝ1(−a), with g1 := χ(ĥ − ĥ(0))ψ. From Proposition 2.2 and since ĥ is
continuously differentiable, we have ψ(t) = O(|t|−1/δ) and (ĥ(t)− ĥ(0))ψ′(t) = O(|t|−1/δ)

when t → 0. Hence g1 and g′1 are Lebesgue-integrable on R, so that we obtain by
integration by parts:

J1(a) = O(a−1) = o(a1−1/δ) as a goes to∞.

To study J2(a), let us set G(t) := χ(t)Φ(t), and write

J2(a) = ĥ(0)

∫
{|t|≤ 2π

a }
G(t) e−ita dt+ ĥ(0)

∫
{|t|> 2π

a }
G(t) e−ita dt

=: ĥ(0)J2,1(a) + ĥ(0)J2,2(a) (4.3)

where J2,1(a) and J2,2(a) are above defined in an obvious way. From Proposition 2.2 we
have Φ(t) = ϑ0(t)|t|− 1

δ , with limu→0 ϑ0(u) = 0. Since |χ| ≤ 1, we obtain:

∣∣J2,1(a)
∣∣ ≤ ∫

{|t|≤ 2π
a }

∣∣Φ(t)
∣∣ dt ≤ 2

1− 1
δ

(
2π

a

)1− 1
δ

sup
|t|≤ 2π

a

|ϑ0(t)| = o(a
1
δ−1), (4.4)

as a goes to infinity. Next we have J2,2(a) = −
∫
{|t|> 2π

a }G(t) e−i(t−
π
a sgn(t))a dt, hence

J2,2(a) =
1

2

{∫
{|t|> 2π

a }
G(t) e−ita dt−

∫
{|t|>π

a}
G
(
t+

π

a
sgn(t)

)
e−ita dt

}
,

from which we deduce:∣∣J2,2(a)
∣∣ ≤ 1

2

∫
{|t|>π

a}

∣∣∣G(t)−G
(
t+

π

a
sgn(t)

)∣∣∣ dt+

∫
{πa<|t|< 2π

a }
|G(t)| dt. (4.5)

The last integral in (4.5) is o(a
1
δ−1) (use the second inequality in (4.4)). Next, by using

Proposition 2.2, one can easily see that there exists ϑ1 : R \ {0} → C such that

G ′(u) = |u|−1− 1
δ ϑ1(u) with lim

u→0
ϑ1(u) = 0.

Let ε > 0, and let α = α(ε) > 0 be such that sup|s|<α |ϑ1(s)| ≤ ε
2δ . Note that[

a >
2π

α
and |t| < α

2

]
⇒ |t| ≤

∣∣∣t+
π

a
sgn(t)

∣∣∣ < α.

Then, by applying Taylor’s inequality to G, we obtain for all a such that a > 2π
α∫

{πa<|t|<α
2 }

∣∣∣G(t)−G
(
t+

π

a
sgn(t)

)∣∣∣ dt ≤ ε

δ

π

a

∫ +∞

π
a

t−1− 1
δ dt ≤ ε

(π
a

)1− 1
δ

. (4.6)
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Moreover, since Φ and Φ ′ are bounded on R \ [−α2 ; α2 ] (by Proposition 2.1), and from
χ ∈ S(R), there exists a positive constant Dα such that:

∀x ∈ R \
[
−α

2
;
α

2

]
,
∣∣G ′(x)

∣∣ ≤ Dα

x2
.

Thus, if a is large enough, namely if a is such that 4Dα
α (πa )

1
δ ≤ ε, then we have∫

{|t|≥α2 }

∣∣∣G(t)−G
(
t+

π

a
sgn(t)

)∣∣∣ dt ≤ 2Dα
π

a

∫ +∞

α
2

t−2 dt ≤ ε
(π
a

)1− 1
δ

(4.7)

From (4.5) (4.6) (4.7), it follows that we have when a is sufficiently large: J2,2(a) ≤
ε
(
π
a

)1− 1
δ . From this fact and from (4.3) (4.4), we have:

J2(a) = o(a1/δ−1) as a goes to∞.

The desired property for I2(a) is then established. This completes the proof of Theo-
rem 1.3.

Remark 4.3. The generalization of our proof to the more general context when the
distribution of ξ0 belongs to the normal domain of attraction of a stable distribution of
index β is not as simple as in the recurrent case. Indeed we used precise estimation of
the derivative of ψ that should require the existence of the derivative of ϕξ outside 0,
which does not appear as a natural hypothesis when β < 1 since ξ0 is not integrable.
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