
E l e c t r o n i
c

J
o

u
r n a l

o
f

P
r

o b a b i l i t y

Electron. J. Probab. 17 (2012), no. 11, 1–15.
ISSN: 1083-6489 DOI: 10.1214/EJP.v17-1770

Extinction of Fleming-Viot-type
particle systems with strong drift∗

Mariusz Bieniek† Krzysztof Burdzy‡ Soumik Pal‡

Abstract

We consider a Fleming-Viot-type particle system consisting of independently moving
particles that are killed on the boundary of a domain. At the time of death of a
particle, another particle branches. If there are only two particles and the underlying
motion is a Bessel process on (0,∞), both particles converge to 0 at a finite time if
and only if the dimension of the Bessel process is less than 0. If the underlying
diffusion is Brownian motion with a drift stronger than (but arbitrarily close to, in
a suitable sense) the drift of a Bessel process, all particles converge to 0 at a finite
time, for any number of particles.
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1 Introduction

Our paper is motivated by an open problem concerning extinction in a finite time
of a branching particle system. We prove two results that are related to the original
problem and might shed some light on the still unanswered question.

The following Fleming-Viot-type particle system was studied in [5]. Consider an
open bounded set D ⊂ Rd and an integer N ≥ 2. Let Xt = (X1

t , . . . , X
N
t ) be a process

with values in DN defined as follows. Let X0 = (x1, . . . , xN ) ∈ DN . Then the processes
X1
t , . . . , X

N
t evolve as independent Brownian motions until the time τ1 when one of

them, say, Xj hits the boundary of D. At this time one of the remaining particles is
chosen uniformly, say, Xk, and the process Xj jumps at time τ1 to Xk

τ1 . The processes
X1
t , . . . , X

N
t continue evolving as independent Brownian motions after time τ1 until the

first time τ2 > τ1 when one of them hits the boundary of D. Again at the time τ2
the particle which approaches the boundary jumps to the current location of a particle
chosen uniformly at random from amongst the ones strictly inside D. The subsequent
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Extinction of Fleming-Viot-type particle systems

evolution of X proceeds in the same way. We will say that X constructed above is driven
by Brownian motion. The main results in this paper are concerned with Fleming-Viot
particle systems driven by other processes.

The above recipe defines the process Xt only for t < τ∞, where

τ∞ = lim
k→∞

τk.

There is no natural way to define the process Xt for t ≥ τ∞, and, therefore, it is of
interest to investigate what conditions ensure that τ∞ = ∞. In Theorem 1.1 of [5] the
authors claim that in every domain D ⊂ Rd and every N ≥ 2, we have τ∞ = ∞, so the
Fleming-Viot process is always well-defined. However, the proof of Theorem 1.1 in [5]
contains an error which is irreparable in the following sense. That proof is based on
only two properties of Brownian motion—the strong Markov property and the fact the
the hitting time distribution of a compact set has no atoms (assuming that the starting
point lies outside the set). Hence, if some version of that argument were true, it would
apply to almost all non-trivial examples of Markov processes with continuous time, and
in particular to all diffusions. However, in [3], the authors provided an example of a
diffusion X on D = (0,∞) (a Bessel process with dimension ν = −4), such that τ∞ <∞
for the Fleming-Viot process driven by this diffusion with N = 2.

It is not known whether Theorem 1.1 of [5] is correct in full generality. It was proved
in [3, 10] that the theorem holds in domains which do not have thin channels.

1.1 Main results

We will prove two theorems. The first theorem is concerned with Bessel processes
but it is motivated by the original model based on Brownian motion in an open bounded
subset of Rd. Recall that for any real ν, a ν-dimensional Bessel process on (0,∞) killed
at 0 may be defined as a solution to the stochastic differential equation

dXt = dWt +
ν − 1

2Xt
dt, (1.1)

where W is the standard Brownian motion. To make a link between Brownian motion
in a domain and Bessel processes, we recall that there exists a regularized version ρ

of the distance function ([14, Theorem 2, p. 171]). More precisely, there exist 0 <

c1, c2, c3, c4 <∞ and a C∞ function ρ : D → (0,∞) with the following properties,

c1 dist(x, ∂D) ≤ ρ(x) ≤ c2 dist(x, ∂D),

sup
x∈D
|∇ρ(x)| ≤ c3,

sup
x∈D

∣∣∣∣ρ(x)
∂

∂xi

∂

∂xm
ρ(x)

∣∣∣∣ ≤ c4 for 1 ≤ i,m ≤ d.

The above estimates and the Itô formula show that ifB = (B1, . . . , Bd) is a d-dimensional
Brownian motion and Zt = ρ(Bt) then

dZt =

d∑
k=1

ak(Zt)dB
k
t +

b(Zt)

Zt
dt,

where the functions ak( · ) and b( · ) are bounded. This shows that the dynamics of Z
resembles that of a Bessel process. Note that if τ∞ < ∞ for the Fleming-Viot process
driven by Brownian motion in a domain D then the distances of all particles to ∂D go
to 0 as t ↑ τ∞, by Lemma 5.2 of [3]. Hence, it is of some interest to see whether a
Fleming-Viot process based on a Bessel process can become extinct in a finite time. We
have a complete answer only for N = 2, i.e., a two-particle process.
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Theorem 1.1. Let X be a Fleming-Viot process with N particles on (0,∞) driven by
Bessel process of dimension ν ∈ R.

(i) If N = 2 then τ∞ <∞, a.s., if and only if ν < 0.
(ii) If Nν ≥ 2 then τ∞ =∞, a.s.

Our second main result is also motivated by some results presented in [5]. Several
theorems in [5, 3] are concerned with limits when N → ∞. To formulate rigorously
any of these theorems it would suffice that τ∞ = ∞, a.s., for all sufficiently large N .
In other words, it is not necessary to know whether τ∞ = ∞ for small values of N .
One may wonder whether it is necessarily the case that τ∞ = ∞ for any Fleming-Viot-
type process and sufficiently large N . Our next result shows that once the drift of the
diffusion is slightly stronger than the drift of any Bessel process, then τ∞ < ∞ for the
Fleming-Viot process driven by this diffusion and every N .

Consider the following SDE for a diffusion on (0, 2],

Xt = x0 +Wt −
∫ t

0

1

βXβ−1
t

ds− Lt, t ≤ T0, (1.2)

where x0 ∈ (0, 2], β > 2, W is Brownian motion, T0 is the first hitting time of 0 by X,
and Lt is the local time of X at 2, i.e., Lt is a continuous additive functional of X such
that ∫ ∞

0

1{Xs 6=2}dLs = 0, a.s.

It is well known that (1.2) has a unique pathwise solution (X,L) (see, e.g., [2], Theorem
I.12.1). We will analyze a Fleming-Viot process on (0, 2] driven by the diffusion defined
in (1.2). The role of the boundary is played by the point 0, and only this point. In other
words, the particles jump only when they reach 0. Let Px denote the distribution of the
Fleming-Viot particle system starting from X0 = x.

Theorem 1.2. Fix any β > 2. For every N ≥ 2, the N -particle Fleming-Viot process on
(0, 2] driven by diffusion defined in (1.2) has the property that τ∞ <∞, a.s. Moreover,

Px(τ∞ > t) ≤ c1e−c2t, t ≥ 0, x ∈ (0, 2]N , (1.3)

where c1 and c2 depend only on N and β, and satisfy 0 < c1, c2 <∞.

Remark 1.3. (i) If we take β = 2 in (1.2) then the diffusion is a Bessel process (locally
near 0). Hence, we may say that Theorem 1.2 is concerned with a diffusion with a drift
“slightly stronger” than the drift of any Bessel process.

(ii) The theorem still holds if the constant 1/β in the drift term in (1.2) is replaced
by any other positive constant. We chose 1/β to simplify some formulas in the proof.

(iii) The diffusion (1.2) is reflected at 2 so that we can prove the exponential bound
in (1.3). For some Markov processes, the hitting time of a point can be finite almost
surely but it may have an infinite expectation; the hitting time of 0 by one-dimensional
Brownian motion starting at 1 is a classical example of such situation. The reflection
is used in (1.2) to get rid of the effects of excursions of the diffusion far away from the
boundary at 0. A different example could be constructed based on a diffusion on (0,∞)

with no reflection but with very strong negative drift far away from 0.

We end this section with two open problems.

Problem 1.4. Find necessary and sufficient conditions, in terms of N and ν, for non-
extinction in a finite time of anN -particle Fleming-Viot process driven by a ν-dimensional
Bessel process.
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Problem 1.5. Does there exist a Fleming-Viot-type process, not necessarily driven by
Brownian motion, such that τ∞ = ∞, a.s., for the N -particle system, but τ∞ < ∞ with
positive probability for the (N + 1)-particle system, for some N ≥ 2?

The rest of the paper contains the proofs of the two main theorems.

2 Proof of Theorem 1.1

2.1 Bessel processes

We start with a review of some facts about Bessel processes and Gamma distribu-
tions. Let Zt, t ≥ 0, be a square of a Bessel process of dimension ν ∈ R starting at x ≥ 0,
(Z ∼ BESQν(x), for short), i.e., Z is the unique strong solution to stochastic differential
equation

dZt = ν dt+ 2
√
|Zt| dWt, Z0 = x,

where W is a one-dimensional Brownian motion (see [12, Chapter 11] for the case ν ≥ 0

and [8] for the general case).
Squares of Bessel processes have the following scaling property: if Zt ∼ BESQν(x)

and for some c > 0 and all t ≥ 0 we have Z ′t = cZc−1t, then Z ′ ∼ BESQν(cx).
If Z ∼ BESQν(x) with x > 0, and T0 denotes the first hitting time of 0, then T0 =∞,

a.s., if ν ≥ 2, and T0 <∞, a.s., if ν < 2. Moreover, in the latter case we have

T0
d
=

x

2G
, (2.1)

where G is Γ
(
1− ν

2

)
-distributed random variable [8, eqn. (15)]. Here and in what fol-

lows we say that a random variable is Γ(α)-distributed if it has the density

fα(x) =
1

Γ(α)
xα−1e−x, x > 0, α > 0,

where

Γ(α) =

∫ ∞
0

xα−1 e−x dx

denotes the standard gamma function. Note that we consider only a one-parameter
family of gamma densities, unlike the traditional two-parameter family.

In [12], a Bessel process X of dimension ν ≥ 0 starting at x ≥ 0 (X ∼ Besν(x)),
is defined as the square root of BESQν(x2) process Z. If ν ≥ 0, then by so called
comparison theorems, the paths of Zt are defined for all t ≥ 0, so Xt is well defined for
all t ∈ [0,∞). We define a Bessel process X of dimension ν < 0 starting at x ≥ 0 as the
square root of a BESQν(x2) process Z, i.e., Xt =

√
Zt for t ≤ T0. For any real ν, these

definitions are equivalent to the definition given in (1.1) by the Itô formula.
Processes Besν(x) with ν ∈ R scale as follows. If X ∼ Besν(x) is a Bessel process

on [0, T0), then for all c > 0, cXc−2t is a Besν(cx) process on [0, c2T0]. This follows easily
from the scaling property of BESQν(x) processes.

2.2 Proof of Theorem 1.1 (i)

We start with an alternative construction of the Fleming-Viot process X. Let X =

(Xt, t ∈ [0, T0)) be a Besν(1) process. Let Y =
(
Y 1
t , Y

2
t

)
, where Y 1

t and Y 2
t are indepen-

dent copies of Xt and let Yi
t =

(
Y i,1t , Y i,2t

)
, i = 1, 2, . . . , be a sequence of independent

copies of Y. For i = 1, 2, . . . we set

σi = inf
{
t > 0 : Y i,1t ∧ Y i,2t = 0

}
,
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and

αi = Y i,1σi ∨ Y
i,2
σi .

It is easily seen that σ1 may be represented as σ1 = min(T ′0, T
′′
0 ), where T ′0 and T ′′0 are

independent copies of T0, and that (σi, i = 1, 2, . . . ) is a sequence of independent and
identically distributed random variables.

We construct a two-particle Fleming-Viot type process Xt =
(
X1
t , X

2
t

)
as follows.

First let τ1 = σ1 and set Xt = Y1
t for t ∈ [0, τ1). At τ1 one of the particles hits the

boundary of D = (0,∞), and it jumps to ξ1 = α1. To continue the process we use the
scaling property of Yt: let τ2 = τ1 + ξ2

1σ2 and set Xt = ξ1Y
2
ξ−2
1 (t−τ1)

for t ∈ [τ1, τ2). At τ2,

one of the particles hits the boundary and jumps, this time to ξ2 = α2ξ1. We continue
the process in the same way by setting

ξj =

j∏
i=1

αi,

τn =

n∑
j=1

ξ2
j−1σj ,

and

Xt = ξnY
n
ξ−2
n (t−τn)

, for t ∈ [τn, τn+1) .

It is easy to see that the construction of X given above is equivalent to that given in
the Introduction, except that the driving process is a ν-dimensional Bessel process. The
process Xt is well defined up until τ∞, and we will show now that τ∞ <∞ almost surely
if and only if ν < 0.

Note that X0 = (1, 1) for the process constructed above. However, it is easy to see
that for any two starting points X0 = (x1

0, x
2
0) and X0 = (z1

0 , z
2
0) with x1

0, x
2
0, z

1
0 , z

2
0 > 0, the

distributions of Xτ1 are mutually absolutely continuous. This implies that the argument
given below proves the theorem for any initial value of X.

The case ν ≥ 2 is very simple: then σ1 = ∞, a.s., so τ∞ = ∞, a.s. So for the rest of
this section we assume that ν < 2.

To check whether τ∞ < ∞ or τ∞ = ∞, we will apply the following theorem. Let
log+ x = max(log x, 0).

Theorem 2.1. ([6]; see also [4] or [9]) Let {(An, Bn), n ≥ 1} be a sequence of indepen-
dent and identically distributed random variables such that An, Bn ∈ R and

E
(
log+ |A1|

)
<∞, E

(
log+ |B1|

)
<∞.

Then the infinite random series
∞∑
n=1

(n−1∏
j=1

Aj

)
Bn

converges a.s. to a finite limit if and only if

E log |A1| < 0.

We will apply Theorem 2.1 with An = α2
n and Bn = σn. Thus, in order to prove

Theorem 1.1 (i), it suffices to show that

(a) E log σ1 <∞ for ν < 2;
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(b) E log(α2
1) < 0 for ν < 0 and E log(α2

1) ≥ 0 for ν ≥ 0.

Proof of (a). Note that, in view of (2.1),

E log σ1 ≤ E log T0 = E log
1

2G
= − log 2− E logG,

where G ∼ Γ
(
1− ν

2

)
. But for G ∼ Γ(α) with α = 1− ν

2 > 0, we have

E logG =

∫ ∞
0

log x fα(x) dx

=
1

Γ(α)

∫ ∞
0

xα−1 log x e−x dx

=
1

Γ(α)

d

dα
Γ(α) = ψ(α) <∞,

(2.2)

where ψ is the well known digamma function ([1, Section 6.3]) defined as

ψ(x) =
d

dx
log Γ(x) =

Γ′(x)

Γ(x)
.

Proof of (b). By Theorem 8 part (ii) of [11] we get that the density of α2
1 is given by

hν(y) =
(y + 2)ν−3

Γ
(
1− ν

2

) ∞∑
n=0

Γ (3− ν + 2n)

n!Γ
(
2− ν

2 + n
) ( y

(y + 2)2

)n
=

(y + 2)ν−3

Γ
(
1− ν

2

) g( y

(y + 2)2

)
,

where

g(z) =

∞∑
n=0

cnz
n

with

cn =
Γ (2n+ 3− ν)

n!Γ
(
n+ 2− ν

2

) , n = 0, 1, 2, . . . .

By the duplication formula for the gamma function ([1, eqn. 6.1.18]), i.e.,

Γ(2z) =
22z−1

√
π

Γ(z)Γ

(
z +

1

2

)
,

we have

cn =
22n+2−ν
√
π
·

Γ
(
n+ 3−ν

2

)
n!

=
22n+2−ν
√
π

(
n+ 1−ν

2

n

)
Γ

(
3− ν

2

)
,

where for x > −1 and k ∈ N, (
x

k

)
=

Γ(x+ 1)

k!Γ(x− k + 1)

is a generalized binomial coefficient. Therefore,

g(z) =
22−ν
√
π

Γ

(
3− ν

2

) ∞∑
n=0

(
n+ 1−ν

2

n

)
(4z)n

=
22−ν
√
π

Γ

(
3− ν

2

)(
1

1− 4z

) 3−ν
2

,
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as for a ∈ R
∞∑
n=0

(
n+ a

n

)
zn = (1− z)−a−1.

Now

g

(
y

(y + 2)2

)
=

22−ν
√
π

Γ

(
3− ν

2

)
(y + 2)3−ν

(y2 + 4)
3−ν
2

and therefore for y ≥ 0

hν(y) =
22−ν
√
π

Γ
(

3−ν
2

)
Γ
(
1− ν

2

) 1

(y2 + 4)
3−ν
2

.

So, to prove (b) we need to study the sign of the integral

I(ν) =

∫ ∞
0

hν(y) log y dy.

Recall the Student’s t-distribution with a > 0 degrees of freedom ([1, section 26.7]).
The density for this distribution is given by

f(x; a) =
Γ
(
a+1

2

)
√
πaΓ

(
a
2

) (1 +
x2

a

)− a+1
2

, −∞ < x <∞.

Changing the variable y = 2x√
2−ν in I(ν) we get

I(ν) =

∫ ∞
0

f(x; 2− ν) log
2x√
2− ν

dx

=
1

2
E log

2 |X|√
2− ν

,

where X is a random variable with t-distribution with (2− ν)-degrees of freedom.
It is well known ([1, section 26.7]) that

X
d
=
Z
√

2− ν√
V

,

where Z has standard normal distribution and V has chi-squared distribution with (2−ν)

degrees of freedom, and Z and V are independent. Therefore

I(ν) =
1

2
E log

2 |Z|√
V

=
1

2
log 2 +

1

4

(
E log

Z2

2
− E log

V

2

)
.

Note that Z2

2 has Γ
(

1
2

)
distribution and V

2 has Γ
(

2−ν
2

)
distribution. Therefore, by (2.2),

I(ν) =
1

2
log 2 +

1

4

(
ψ

(
1

2

)
− ψ

(
2− ν

2

))
.

The function ψ is strictly increasing with ψ
(

1
2

)
= −2 log 2− γ and ψ(1) = −γ where γ is

the Euler constant ([1, eqns. 6.3.2, 6.3.3]). Using these facts we see that

I(ν) =
1

4

(
ψ(1)− ψ

(
2− ν

2

))
,

and therefore I(ν) < 0 iff 2−ν
2 > 1 iff ν < 0. This completes the proof of (b) and of

Theorem 1.1 (i).
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2.3 Proof of Theorem 1.1 (ii)

Suppose that X = (X1, . . . , XN ) is a Fleming-Viot process driven by ν-dimensional
Bessel process, driven by a ν-dimensional Bessel process, X0 = (x1, . . . , xN ), xj > 0 for
all 1 ≤ j ≤ N , and Nν ≥ 2. Let Zt = (X1

t )2 + · · ·+ (XN
t )2 and z0 = (x1)2 + · · ·+ (xN )2 >

0. According to [13, Thm. 2.1], the process {Zt, t ∈ [0, τ1)} is an (Nν)-dimensional
square of Bessel process, i.e., it has distribution BESQNν(z0). More generally, {Zt, t ∈
[τk, τk+1)} has distribution

∫
BESQNν(z)P(Zτk ∈ dz) for k ≥ 0, where, by convention,

τ0 = 0. Let Yt = Z
1/2
t , B0 = 0 and define B inductively on intervals (τk, τk+1] by

Bt = Bτk +

∫ t

τk

dYs −
∫ t

τk

Nν − 1

2Ys
ds.

Then, by the Itô formula, B is a Brownian motion and

dZt = 2
√
Zt dBt +Nν dt,

for t ∈ (τk, τk+1), k ≥ 0. Let Ẑt be defined by Ẑ0 = z0 and

Ẑt =

∫ t

0

2

√
Ẑs dBs +Nνt, t ≥ 0.

By definition, Ẑ is an (Nν)-dimensional squared Bessel process on [0,∞). We assumed
that Nν ≥ 2 and z0 > 0 so we have Ẑt > 0 for all t ≥ 0, a.s. Since Ẑ is continuous,
for every integer j > 0 there exists a random variable aj such that Ẑt > aj > 0 for all

t ∈ [0, j], a.s. Note that Ẑt = Zt for t ∈ [0, τ1) and Ẑτ1 < Zτ1 because Z has a positive
jump at time τ1. Strong existence and uniqueness for SDE’s with smooth coefficients
implies that Ẑt ≤ Zt for all t ∈ [τ1, τ2), because if the trajectories of Ẑ and Z ever meet
then they have to be identical after that time up to τ2. Once again, Ẑτ2 < Zτ2 because
Z has a positive jump at time τ2. By induction, Ẑt ≤ Zt for all t ∈ [τk, τk+1), k ≥ 0, a.s.
Hence, Zt > aj > 0 for all t ∈ [0, j] and j > 0, a.s. This implies that τ∞ = ∞, a.s., by an
argument similar to that in Lemma 5.2 of [3].

3 Proof of Theorem 1.2

3.1 Preliminaries

We will give new meanings to some symbols used in the previous section. Constants
denoted by c with subscripts will be tacitly assumed to be strictly positive and finite; in
addition, they may be assumed to satisfy some other conditions.

(i) Let W be one-dimensional Brownian motion and let b be a Lipschitz function
defined on an interval in R, i.e., |b(x1) − b(x2)| ≤ L|x1 − x2| for some L < ∞ and all
x1 and x2 in the domain of b. Consider a diffusion Xt, t ∈ [s, u], satisfying the following
stochastic differential equation,

dXt = dWt + b (Xt) dt, Xs = a. (3.1)

Let yt be the solution to the ordinary differential equation

d

dt
yt = b(yt), ys = a.

We will later write y′ = b(y) instead of d
dtyt = b(yt).

The following inequality appears in Ch. 3, Sect. 1 of the book by Freidlin and Wentzell
[7]. For every δ > 0,

P

(
sup
s≤t≤u

|Xt − yt| > δ

)
≤ P

(
sup
s≤t≤u

|Wt| > δe−L(u−s)
)
,
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where L is a Lipschitz constant of b. It follows that

P

(
sup
s≤t≤u

|Xt − yt| > δ

)
≤ P

(
sup
s≤t≤u

Wt > δe−L(u−s)
)

+ P

(
inf

s≤t≤u
Wt < −δe−L(u−s)

)
= 2P

(
sup
s≤t≤u

Wt > δe−L(u−s)
)

= 4P
(
Wu −Ws > δe−L(u−s)

)
≤ c0 exp

(
− δ2

2(u− s)
e−2L(u−s)

)
, (3.2)

where c0 is an absolute constant.
(ii) Recall that β > 2 and consider the function

b(x) = − 1

βxβ−1
, x > 0. (3.3)

We need the assumption that β > 2 for the main part of the argument but many calcu-
lations given below hold for a larger family of β’s. It is easy to check that

ys,a(t) :=
(
aβ + s− t

)1/β
, s ≤ t ≤ s+ aβ , (3.4)

is the solution to the ordinary differential equation

y′ = b(y) (3.5)

with the initial condition ys,a(s) = a, where s ∈ R, a > 0. Note that the function ys,a(t)

approaches 0 vertically at t = s+ aβ .
(iii) Fix any γ ∈ (0, 1) and let L be the Lipschitz constant of b on the interval[

a(γ/2)1/β/2, 2a
]
. Then

L = b′
(
a(γ/2)1/β/2

)
, b′(x) =

β − 1

βxβ
,

and, therefore,

L =
β − 1

β(a(γ/2)1/β/2)β
=

β − 1

βγ21−βaβ
. (3.6)

Let X be the solution to (3.1) with b defined in (3.3). Assume that δ > 0 is so small that

a(γ/2)1/β/2 ≤ y0,a((1− γ/2)aβ)− δ < y0,a(0) + δ ≤ 2a. (3.7)

It follows that if sup0≤t≤(1−γ/2)aβ |Xt − y0,a(t)| ≤ δ then Xt ∈
[
a(γ/2)1/β/2, 2a

]
for 0 ≤

t ≤ (1− γ/2)aβ . Hence, we can apply (3.2) with L given by (3.6) to obtain the following
estimate

P

(
sup

0≤t≤(1−γ/2)aβ
|Xt − y0,a(t)| > δ | X0 = a

)
≤ c0 exp

(
−c1

δ2

aβ

)
, (3.8)

where Xt satisfies (3.1) and c1 depends on β and γ, but it does not depend on δ and a.
(iv) Suppose that a > 0 and u = (1− γ)aβ . Then y0,a(u) = aγ1/β . For ε ∈ (0, 1), let

δ̄ = δ̄(ε) = a
[
1− (1− εγ)1/β

]
. (3.9)

We fix ε ∈ (0, 1) so small that for all a > 0 the inequality (3.7) is satisfied with δ̄ in place
of δ and, moreover,

(1− γ/2)(a− δ̄)β > (1− γ)aβ (3.10)
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and

γ1/β + 1− (1− εγ)1/β < 1. (3.11)

If δ ∈ [−δ̄, δ̄] then

y0,a+δ(t) =
(

(a+ δ)
β − t

)1/β

, 0 ≤ t ≤ (a+ δ)β .

It is straightforward to check that

y0,a+δ(u) ≥ aγ1/β(1− ε)1/β > 0.

We will estimate the difference y0,a+δ(u)− y0,a(u) as a function of δ. Let

f(δ) = y0,a+δ(u) =
(

(a+ δ)
β − (1− γ)aβ

)1/β

.

Then

y0,a+δ(u)− y0,a(u) = f(δ)− f(0) = δf ′(δ̂),

where δ̂ is between 0 and δ. But

f ′(δ) = (a+ δ)
β−1

(
(a+ δ)

β − (1− γ)aβ
)1/β−1

and

f ′′(δ) = −aβ(β − 1)(1− γ) (a+ δ)
β−2

(
(a+ δ)

β − (1− γ)aβ
)1/β−2

.

It follows from (3.9) and the fact that ε ∈ (0, 1) that (a+ δ)
β− (1−γ)aβ > 0. Thus f ′′ < 0

and f ′ is strictly decreasing. Therefore, for δ ∈ [−δ̄, δ̄] we have

f ′(δ) ≤ f ′(−δ̄) =

(
1− εγ
γ(1− ε)

)1−1/β

=: M > 1. (3.12)

Hence |y0,a+δ(u)− y0,a(u)| ≤ M |δ| for δ ∈ [−δ̄, δ̄]. Suppose that δ′ ∈ (0, δ̄] and δ = δ′

M+1 .
If a0 ∈ [a− δ, a+ δ], then

y0,a(u)− δ′ ≤ y0,a0(u) ≤ y0,a(u) + δ′. (3.13)

The function b(x) is strictly increasing on (0,∞). This easily implies that if 0 < a1 < a2

and 0 ≤ s < t ≤ aβ1 then

y0,a2(s)− y0,a1(s) < y0,a2(t)− y0,a1(t). (3.14)

Hence, inequality (3.13) holds in fact for all t ∈ [0, u] in place of u and, moreover,
y0,a−δ̄(t) ≤ y0,a(t)− δ′. Another consequence of (3.13) and (3.14) is that if s ∈ [0, u] and
a0 ∈ [y0,a(s)− δ, y0,a(s) + δ] then for t ∈ [s, u],

y0,a−δ̄(t) ≤ y0,a(t)− δ′ ≤ ys,a0(t) ≤ y0,a(t) + δ′. (3.15)

The following generalization of (3.10) also follows from (3.14). If s ∈ [0, u] and a0 ≥
y0,a(s)− δ then

s+ (1− γ/2)aβ0 > (1− γ)aβ . (3.16)
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3.2 Proof of Theorem 1.2

Suppose that Xt = (X1
t , . . . , X

N
t ) is a Fleming-Viot process on (0, 2] driven by the

diffusion defined in (1.2), with an arbitrary 2 ≤ N < ∞. Recall that the role of the
boundary is played by the point 0, and only this point. In other words, the particles
jump only when they approach 0.

Step 1. Let x =
(
x1, . . . , xN

)
, [N ] = {1, . . . , N}, and let j1 be the smallest integer in

[N ] with

xj1 = max
1≤j≤N

xj .

Consider process X starting from X0 = x and let I1 = {j1}, J1 = [N ] \ I1 and S0 = 0.
Let u = (1− γ)(xj1)β and

S1 = u ∧ inf
{
t ≥ 0 : ∃j∈J1 X

j
t = Xj1

t

}
.

Note that two processes Xi and Xj can meet either when their paths intersect at a time
when both processes are continuous or when one of the processes jumps onto the other.
Let j2 be the smallest index in J1 such that the equality in the definition of S1 holds with
j = j2. Let I2 = {j1, j2} and J2 = [N ] \ I2.

Next we proceed by induction. Assume that, for some n < N , the sets I1, . . . , In,
J1, . . . , Jn, and stopping times S1 < S2 < . . . < Sn−1 are defined. Then we let

Sn = u ∧ inf
{
t ≥ Sn−1 : ∃i∈In ∃j∈Jn Xi

t = Xj
t

}
,

In+1 = In ∪ {jn+1} and Jn+1 = [N ] \ In+1, where jn+1 is the smallest index in Jn such
that the equality in the definition of Sn holds with j = jn+1.

The set In has n elements which are indices of particles which are “descendants”
of the particle Xj1 that was the highest at time 0. By convention, we let In = IN and
Sn = u for n ≥ N .

Step 2. Write a = xj1 and u = (1− γ)aβ . Then x ∈ (0, a]N . Recall δ̄ and M defined in
(3.9) and (3.12), and for 1 ≤ n ≤ N define

δ̂n =
δ̄

(M + 1)N−n
. (3.17)

Note that δ̂n = (M + 1)δ̂n−1. Consider events

Fn =
⋃
j∈In

{
sup

Sn−1≤t<Sn

∣∣∣Xj
t − y0,a(t)

∣∣∣ > δ̂n

}
.

Note that for every t, maxj∈In X
j
t ≥ maxj∈Jn X

j
t . Hence,

⋃
1≤j≤N

{
sup

0≤t<u
Xj
t − y0,a(t) > δ̄

}
⊂

⋃
1≤n≤N

Fn,
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and, therefore,

Px

 ⋃
1≤j≤N

{
sup

0≤t<u
Xj
t − y0,a(t) > δ̄

}
≤ Px

 ⋃
1≤n≤N

Fn


= Px

 ⋃
1≤n≤N

Fn ∩ F c1 ∩ · · · ∩ F cn−1


≤

∑
1≤n≤N

Px
(
Fn ∩ F c1 ∩ · · · ∩ F cn−1

)
≤

∑
1≤n≤N

Px
(
Fn | F c1 , . . . , F cn−1

)
≤

∑
1≤n≤N

∑
j∈In

Px

(
sup

Sn−1≤t<Sn

∣∣∣Xj
t − y0,a(t)

∣∣∣ > δ̂n

∣∣∣ F c1 , . . . , F cn−1

)
,

(3.18)

where we adopted the convention Px(F1 | F c0 ) = Px(F1).
Suppose that F cn−1 holds and j ∈ In. Then |Xj

Sn−1
− y0,a(Sn−1)| ≤ δ̂n−1. Let yjt ,

t ≥ Sn−1, be a solution to y′ = b(y) with yjSn−1
= Xj

Sn−1
. By (3.15),

Px

(
sup

Sn−1≤t<Sn

∣∣∣Xj
t − y0,a(t)

∣∣∣ > δ̂n | F cn−1

)
≤ Px

(
sup

Sn−1≤t<Sn

∣∣∣Xj
t − y

j
t

∣∣∣ > δ̂n | F cn−1

)
.

It follows from (3.16) that we can apply (3.8) (with an appropriate shift of the time scale)
to Xj , assuming that F cn−1 holds, on the interval [Sn−1, Sn] ⊂ [0, u] = [0, (1 − γ)aβ ]. We
obtain

Px

(
sup

Sn−1≤t<Sn

∣∣∣Xj
t − y

j
t

∣∣∣ > δ̂n | F cn−1

)
≤ c0 exp

(
−c2

δ̂2
n

(y0,a(Sn−1) + δ̂n−1)β

)

≤ c0 exp

(
−c2

δ̄2(M + 1)−2N

(a+ δ̄)β

)
= c0 exp

(
−c3

δ̄2

(a+ δ̄)β

)
.

We combine this estimate with (3.18) to see that

Px

 ⋃
1≤j≤N

{
sup

0≤t<u
Xj
t − y0,a(t) > δ̄

} (3.19)

≤
∑

1≤n≤N

∑
j∈In

Px

(
sup

Sn−1≤t<Sn

∣∣∣Xj
t − y0,a(t)

∣∣∣ > δ̂n

∣∣∣ F c1 , . . . , F cn−1

)

≤ c0N2 exp

(
−c3

δ̄2

(a+ δ̄)β

)
.

Step 3. We will prove that there exist v < ∞ and r ∈ (0, 2) such that if x ∈ (0, r]N

then

Px(τ∞ > v) ≤ 1

2
. (3.20)

Consider an r ∈ (0, 2) and for x = (x1, . . . , xN ), let A0 = maxj x
j , U0 = 0, and for
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k = 0, 1, 2, . . . , let

Uk+1 = Uk + (1− γ)Aβk ,

Ak+1 = max
1≤j≤N

Xj
Uk+1

.

Let Y kt denote the solution to ODE (3.5) with the initial condition Y kUk = Ak. Recall ε

from (3.10) and let ∆k = Ak
[
1− (1− εγ)1/β

]
. For k = 0, 1, 2, . . . define events

Γk =

[
max

1≤j≤N
sup

Uk≤t<Uk+1

Xj
t > Y kt + ∆k

]
.

Note that Y kUk+1
= γ1/βAk. Suppose that

⋂∞
k=0 Γck holds. Then

Ak+1 ≤ γ1/βAk +Ak

[
1− (1− εγ)1/β

]
= c4Ak,

for all k, where c4 = γ1/β + 1 − (1 − εγ)1/β < 1, by (3.11). Hence, Ak ≤ ck4A0 and,
therefore,

∑
k A

β
k < ∞. If we let v = (1 − γ)

∑∞
k=1 r

βckβ4 < ∞ then limk→∞ Uk ≤ (1 −
γ)
∑∞
k=1A

β
0 c
kβ
4 ≤ v and lim supt↑v max1≤j≤N X

j
t = 0. This implies easily that τ∞ ≤ v.

Thus, to prove (3.20), it will suffice to show that there exists r ∈ (0, 2) such that if
x ∈ (0, r]N , then

Px

( ∞⋃
k=0

Γk

)
<

1

2
. (3.21)

But

Px

( ∞⋃
k=0

Γk

)
≤ Px(Γ0) +

∞∑
k=1

Px
(
Γk | Γc0, . . . ,Γck−1

)
. (3.22)

By (3.19) and the strong Markov property applied at Uk,

Px
(
Γk | Γc0, . . . ,Γck−1

)
≤ c0N2 exp

(
−c3

∆2
k

(Ak + ∆k)β

)
= c0N

2 exp

(
−c3A2−β

k

(1− (1− εγ)1/β)2

(2− (1− εγ)1/β)β

)
≤ c0N2 exp

(
−c5A2−β

0 c
k(2−β)
4

)
,

where c4 < 1. So by (3.22), if maxj x
j ≤ r, then

Px

( ∞⋃
k=0

Γk

)
≤ c0N2

∞∑
k=0

exp
(
−c5r2−βc

k(2−β)
4

)
,

which is convergent. Since 2− β < 0, we can choose r > 0 so small that the above sum
is less than 1/2, proving (3.21).

Step 4. Let r ∈ (0, 2) and v be as in Step 3. Partition the set (0, 2]N into two sets
A = (0, r]N and Ac. First we will show that the time when process X enters the set A
has a distribution with an exponentially decreasing tail.

So assume that X0 ∈ Ac and let

I1 =
{
j ∈ [N ] : Xj

0 ∈ (r, 2]
}
, I2 = [N ] \ I1.

Let τ j1 be the the first hitting time of 0 by the process Xj and let

η =

{
0 if I2 = ∅,
maxj∈I2

{
τ j1

}
, otherwise.
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Consider

p1(x) = Px
{
∀j∈I1 ∀0≤t≤1/2X

j
t ∈

[r
2
, 2
]

; η < 1/2;∀i∈I2∀τj1<t≤1/2X
j
t ∈

[r
4
, 2
]}

.

We will argue that for x ∈ Ac we have

p1(x) ≥ p1 > 0. (3.23)

Indeed, with probability at least q1 > 0 any particle from I1 stays in the interval [r/2, 2]

up to time t = 1/2. With probability at least q2 > 0 any particle from I2 hits 0 before
time t = 1/2; with probability at least 1/N it jumps onto a particle in I1; and then with
probability at least q3 > 0 it stays in the interval [r/4, 2] up to time t = 1/2. Therefore
(3.23) holds with p1 = (q1q2q3/N)N . Obviously q1, q2, q3 and p1 depend on r.

Next, if we define

p2(x) = Px
{
∀j∈[N ] ∀0<t<1/2X

j
t ∈

[r
8
, 2
]

;Xj
1/2 ∈

[r
8
, r
]}

,

and B =
[
r
4 , 2
]N

, then an argument similar to that proving (3.23) shows that for x ∈ B
we have p2(x) ≥ p2 > 0, where p2 depends on r. Therefore, by the Markov property at
time t = 1/2, for x ∈ Ac we have

Px(X1 ∈ A) ≥ p := p1p2 > 0. (3.24)

Now let
T = inf {t ≥ 0 : Xt ∈ A} .

By (3.24), for all x ∈ (0, 2]N ,
Px(T ≤ 1) ≥ p > 0.

Applying the Markov property at t = 1, 2, . . . we obtain

Px(T ≥ k) ≤ (1− p)k.

Choose k so large that (1−p)k < 1
2 . Recall that r and v are as in Step 3. Let θ denote

the usual Markovian shift operator. Then for any x ∈ (0, 2]N ,

Px (τ∞ ≥ k + v) ≤ Px(T ≥ k) + Px(τ∞ ◦ θT ≥ v) ≤ (1− p)k +
1

2
:= q < 1.

Therefore, applying the Markov property at times k+ v, 2(k+ v), 3(k+ v), . . . , we obtain,

Px(τ∞ ≥ n(k + v)) ≤ qn, n = 1, 2, . . . ,

which proves (1.3). This implies that τ∞ <∞, a.s.
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